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Abstract 

This paper focuses on the creation of a human 
navigation assistance prototype. The system uses a 
conventional RGB-D camera and a laptop to  analyze 
the environment surrounding the user and provides 
him with enough information for a safe navigation. The 
system is designed to work indoors and performs two 
main tasks: floor and obstacle detection and staircase 
detection. Both tasks make use of the range and visual 
information captured by the sensor. The camera points 
downwards, allowing to acquire relevant navigation 
information without invading the privacy of other 
people. The system has been tested in real 
environments showing good results in the detection of 
obstacles and staircase.

Resumen 

Este trabajo se centra en el diseño de un prototipo 
de asistencia a la navegación para personas. El 
sistema se basa en un sensor RGB-D portable 
conectado a un PC para analizar el entorno alrededor 
del usuario y facilitarle información para la 
navegación en este entorno. El sistema está diseñado 
para trabajar en interiores y realiza dos tareas 
principales: detección del suelo y obstáculos cercanos 
y detección de segmentos de escalera. Ambas tareas 
utilizan la información, tanto de profundidad como 
visual capturada por el sensor. La cámara está 
dispuesta mirando hacia abajo para capturar 
información relevante para la navegación sin interferir 
en la privacidad de otras personas. El prototipo ha 
sido probado en entornos reales mostrando buenos 
resultados en la detección de obstáculos y escaleras.

1. Introduction

The ability of navigating effectively in the 
environment is natural for people, but not easy to 
complete under certain circumstances, such as the case 
of visually impaired people or when moving at 

unknown and intricate environments. Wearable 
intelligent systems are great platforms for navigation 
assistance. Those systems can be very useful for 
improving or complementing the human abilities in 
order to better interact with the environment. In this 
context, project VINEA (Wearable computer VIsion 
for human Navigation and Enhanced Assistance) aims 
for the consecution of a personal assistance system 
based on visual information. This system will help 
people to navigate in unknown environments and it 
will complement the human abilities. Possible users of 
this system will range from visually impaired people to 
users performing specific tasks that complicate the 
visibility or accessing to poor visibility environments. 

A personal guidance system must keep the subject 
away from hazards, but it should also point out specific 
features of the environment the user might want to 
interact with. In this paper, we present a system that 
benefits of the use of new and affordable RGB-D 
cameras to assist the user navigation. Two navigation 
problems are faced and solved: floor and obstacle 
detection and staircase detection. 

The system uses chest mounted RGB-D camera. 
The camera points to the floor, capturing the 
traversable area in front of the user. This configuration 
allows to capture information important for the 
navigation (e.g. floor plane, close objects and 
obstacles) while sensitive information and privacy of 
other people is out of the field of view of the sensor.  

RGB-D sensors provide range and color 
information. Range information is used to detect and 
classify the main structural elements of the scene. Due 
to the limitations of the range sensor, the color 
information is jointly used with the range information 
to extend the floor segmentation to the entire scene. In 
particular, we use range information for closer 
distances and color information is used for larger 
distances. This is a key issue not only to detect near 
obstacles but also to allow high level planning of the 
navigational task thanks to the longer-range 
segmentation our method provides. Once we have 
detected the floor of the scene, we solve the detection 
and modeling of one common obstacle that a person 
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can come across while moving around: the stairs. 
Finding stairs along the path has the double benefit of 
preventing falls and advertising the possibility of 
reaching another floor in the building. Additionally, we 
have developed a user interface that sends navigation 
commands via sound map information and voice 
commands. 

The proposed system has been tested with a user 
wearing the prototype on a wide variety of scenarios 
and datasets. The experimental results show that the 
system is robust and works correctly in challenging 
indoor environments. 

This work is a step forward towards the creation of 
a human navigation assistance tool. The technical 
details and evaluations of the detection approaches 
used here have been individually presented in papers 
[1] and [2]. 

2. Related Work 

Many different navigation assistance systems for 
visually impaired have been proposed in the literature 
[3]. In general, they do not use visual information and 
they need complex hardware systems, such as wireless 
communication technology,  or ultrasonic and GPS 
sensors [4]. Other approaches propose the use of 
colored navigation lines set on the floor and RFID 
technology to create map information, [5]. Or the 
creation of a previous floor map of a building to define 
a semantic plan for a wearable navigation system by 
means of augmented reality, [6]. 

Vision sensors play a key role in perception 
systems because of their low cost and versatility. The 
work in [7] presents a system for indoor human 
localization based on global features that does not need 
3D reconstruction. A disadvantage of monocular 
systems is that global scale is not observable from a 
single image. A way to overcome this problem is using 
stereo vision such as in [8]. 

In recent years, RGB-D cameras  have gained 
importance on the fields of computer vision and 
robotics thanks to their low price and the combination 
of range and color sensors. They capture color and 
depth information of the scene simultaneously. The 
depth information can help to perceive the shape of the 
scene and it is independent of textures and lightning 
conditions, however, it is usually limited to about 5 
meters. Color information complements this limit, and 
can include surface details not present in the range 
data. This is the only sensor used in this work, which 
benefits from both the range and visual information to 
obtain a robust and efficient system. 

These kind of sensors has been used to find and 
identify objects in the scene [9, 10]. One step ahead is 
to integrate range systems in the navigation task. Some 
examples are [11], where a Kinect sensor is used, [12] 

where range information is used to distinguish solid 
obstacles from wild terrain, or [13], where FAST 
corner detector and depth information for path 
planning tasks are used. RGB-D cameras can be also 
used to estimate the motion and the 3D structure of the 
scene [14] 

Regarding the problems faced in our approach, we 
see how computer vision has been used before for floor 
and path-segmentation. The work in [15] presents a 
system that solves floor-segmentation using hue and 
light information of the images. In [16], authors use a 
histogram-based road classifier. In [17], a method to 
find the drivable surface with appearance models is 
presented, and [18] shows how the fusion of 
information, in particular color and geometry 
information, improves the segmentation of the scene. 
We exploit this idea by extending the structure 
estimated from the depth data with the information 
from the color image. 

Stairs detection has also been faced using 
conventional cameras [19], stereo vision [20] and even 
laser scanning [21]. We find also approaches using 
RGB-D as main sensor and machine learning 
algorithms to perform the staircase detection [22, 23]. 
Papers [24, 25] use also RGB-D cameras and 
geometric reasoning to detect the stairs. This is the 
approach we have consider in our method for stair 
detection. We start from the traversable area detected 
with our floor detection approach and detect and model 
staircase with one or more steps. 

3. Prototype setup 

There are many options to locate a camera or a 
RGB-D sensor for a wearable navigation system [26].
The RGB-D device provides range information from 
active sensing by means of infrared sensor and 

Fig. 1 Wearable camera position: the RGB-D sensor is 
chest mounted and it looks downwards 45º; the laptop 
where all the computation is carried on is on the 
backpack. The image shows the field of view of the 
sensor (green) and the axis of the scene (X’-Y’-Z’) and 
the sensor (X-Y-Z).
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7. Experiments 

Next sections detail the experiments performed to 
test the different methods proposed in this work. The 
methods have been evaluated in real scenarios 
exhibiting a wide variety of visual characteristics and 
lighting conditions. 

7.1 Datasets used for the experiments 

We have tested the algorithm in public and private 
buildings. The public ones are placed in University of 
Zaragoza (Spain) and they are: Ada Byron building, 
Torres Quevedo building and I+D building where 
Institute of Engineering Investigation of Aragón (I3A) 
is placed. The private buildings are examples of houses 
and a garage. Since the number of datasets to test 
approaches for navigation assistance is almost non-
existent we have released our dataset2, which collects 
data used in our experiment to be available to the 
research community. Additionally, scenarios including 

                                                          
2 http://webdiis.unizar.es/%7Eglopez/dataset.html 

stairs were also recorded to conduct specific 
experiments. We have also evaluated our system using 
the dataset of the Technische Universität München 
(TUM)3 and the dataset compiled by Tang et al. 
compiled in [24]. 

7.2 Floor and obstacle detection testing 

Fig. 8 presents results of our floor detection 
algorithm on some typical corridor images available in 
our dataset, and the TUM dataset. Even in the presence 
of hard conditions (i.e. brightness, reflections), we 
obtain good results.  

A quantitative analysis is shown in Table 1. This 
table shows the performance of floor detection 
obtained just with range data and when the whole 
system is used. For these results, the floor of 150 
images has been manually labeled. Table shows 
precision, recall and F1 statistic values. The recall 
confidence interval is also computed in the last column 
at the 95% confidence level.  

The precision obtained with range data is 100% in 
all scenarios. These perfect precisions are caused 
because of short-range hardware limitations and 
because the range sensor is unable to obtain range data 
of regions which are closed to an object’s boundary, 
producing conservative results. On the other hand, 
recall has low values due to these limitations. 

The best recall results using just the range data 
correspond to sequences where there is no sun light 
(Garage and Ada Byron bldg.). However, for the rest 
of sequences the results are weak. Is in those sequences 
where the use of both range and image data advantages 
are shown.  Range segmentation is limited due to solar 
light so recall is lower than 80% (55% for the TUM 
dataset). Adding the color information improves the 
recall to 95%. 

                                                          
3 http://vision.in.tum.de/data/datasets/rgbd-dataset

Table 1 Results of the floor detection evaluated with the 
annotated ground truth. 

Fig. 9 Results of the stair detection. Last column shows results obtained in dark environments.



Table 2 shows the contribution of
algorithm, range segmentation and co
to the final floor result. In order 
comparison in metric units, we nee
image’s floor without projective dist
top view of it in real magnitude. Othe
the segmented region is in the proje
less number of pixels it contains (des
similar metric area tan closer reg
calculated the homography from the i
and we have obtained the number o
segmented by range and color algo
shows that the expansion of the ran
with color segmentation is important
Scenarios where there is no solar ligh
contribution of range segmentation
medium-low solar light incidence
contribution of 50% approximately w
segmentations. Those scenarios wher
solar light is really high, the color seg
highest contribution, more than 70%
floor is obtained with this part o
reducing drastically the limitations of 

7.3 Stair detection experiments

To test the stair detection algor
Tang dataset. The results with th
successful even in total darkness (Fig.
false positives and false negatives u
and compared our results with meth
[25] (Fig. 10). We achieve better resu
negatives as in [25] but also without fa

If we look at the step detection rate
position of the step in the staircase 
how behavior changes when facing as

Fig. 10 Comparison of false neg
positives between our work and 
presented by [24, 25].

f each part of the 
olor segmentation,

to obtain a fair 
ed to project the 
tortion to have a 
erwise, the farther 
ective image, the 
spite representing 
gions). We have 
image to the floor 
of squared meters 
orithms. Table 2 
nge segmentation 
t in all scenarios. 
t have the highest 
. Scenarios with 
e we obtain a 
with both kind of 
re the presence of 
gmentation has the 
% of the detected 

f our algorithm, 
the range data.  

rithm we use the 
his dataset were 
. 9). We tested for 
using this dataset 
hods in [24] and 
ults with no false 

false positives.
e according to the 
(Fig. 11) we see 

scending staircase 

or descending steps. When the
staircase the whole staircase c
but self occlusion of consecu
the measurements decreases w
rate detection of further steps 
ascending staircases the steps 
for the sensor as they rise
decreases. In general, steps 
position are out of the field of 

We have quantitatively an
of the model to the real stair
the width from the analysis a
may be partial and it is not 
measurements. After computin
of staircases, in both asce
perspectives, from different vi
were compared to the real m
have a length of 30cm and a h
values for the computed leng
cm and 15.4 cm respectively.
were conducted with real peo
the stairs. Obstructing the 
partially does not adversely 
model, length and height were
respectively in these cases. 
experiments with people 

Table 2 Contribution to the fina
color segmentation.

gatives and false 
the approaches 

Fig. 10 Step detection rate wit
staircase.

e user faces a descending 
an be seen by the sensor, 

utive steps and quality of 
with the distance so the 
decreases. In the case of 
remain close and visible 

, although visual angle
higher than the seventh 
view of the camera.
nalyzed the resemblance 
rcase. We have excluded 
as the view of the stairs 
as relevant as the other 
ng the height and length 
ending and descending 
iewing angles, the results 

measurements. Real stairs 
height of 15cm. The mean 
gth and height where 29 
 Half of the experiments 
ople going up and down 

view of the staircase 
affect the quality of the 
e 29.39 cm and 15.56 cm 

Some pictures of the 
climbing up/down the 

al result of the range and 

th the step position in the 



staircase can be seen in Fig. 12.  
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he stair detection 
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ted a navigation 
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ing obstacles and 
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evant information 
privacy of nearby 

ured by the sensor 
obstacles, and the 
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Additionally, the environment
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The system has been t
environments showing good 
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