
Abstract—An RGB-D based occlusion-handling camera po-
sition computation method for proper object perception has
been designed and implemented. This proposal is an improved
alternative to our previous optimisation-based approach where
the contribution is twofold: this new method is geometric-based
and it is also able to handle dynamic occlusions. This approach
makes extensive use of a ray-projection model where a key
aspect is that the solution space is defined within a sphere
surface around the object. The method has been designed
with a view to robotic applications and therefore provides
robust and versatile features. Therefore, it does not require
training nor prior knowledge of the scene, making it suitable
for diverse applications and scenarios. Satisfactory results have
been obtained with real time experiments.

Index Terms—computer vision; deformable object tracking;
occlusion handling; best next view

I. INTRODUCTION

Occlusion handling represents a challenge in a variety of
problems and applications such as object tracking and opti-
mal object perception. Robot manipulation tasks performed
in industrial environments require proper visual perception
of target objects. Occasionally, perception is hampered by
elements in the environment that lie between the object and
the sensor, thus causing occlusions. Identifying occlusions
and finding new sensor positions that prevent such occlusion
can allow for a more consistent perception.

Multiple object tracking methods tackle occlusion han-
dling. There is a variety of monocular approaches which,
for example, adapt to changing visual features and detect
occlusions using area and distance heuristics [1], or present
a tracking method that makes use of structural informa-
tion captured in superpixels [2]. Recently, a model-guided
method that uses learning-based segmentation and optimi-
sation techniques for pose-estimation in order to define
occlusion masks was presented [3]. Another approach tracks
the object in a coarse-to-fine manner and formulates the
background as a Gaussian model [4]. Unconventional ap-
proaches like [5] handle occlusions with the use of correla-
tion filtering and probabilistic finite state machines (FSMs).
Not relying on RGB-D sensors, the work in [6] proposes a
learning-based method that handles 3D texture-less objects
and occlusions. On the other hand, other methods rely
on 3D information: Using multi-sensor information, static
occlusions that may occur during tracking are predicted

This work was supported by the Spanish Government/European Union
through projects PGC2018-098719-B-I00 (MCIU/AEI/FEDER, UE) and
COMMANDIA SOE2/P1/F0638 (Interreg Sudoe Programme, ERDF).

and dynamically handled [7]. Alternatively, work in [8]
represents targets as 3D point clouds and defines occlusions
by solving a partitioning problem.

The papers mentioned above solve the object track-
ing problem but they define the occlusion handling prob-
lem from two different perspectives: (i) some methods,
namely [1] [2], focus on 2D tracking in generic images and
consider occlusions as elements that may hinder the object
tracking process while (ii) other methods like [7] adopt a
more active robotics-oriented approach and consider occlu-
sions as elements of the environment that may affect tasks
to be performed. The later is the approach adopted in this
paper as occlusions will be considered in a camera position
computation process, with a view to future applications in
the handling of deformable objects by robots. Regarding
the camera position optimisation problem, a widespread ap-
proach is the Next Best View (NBV) problem (defined in [9])
with problem formulations like the one discussed in [10].
The NBV is usually present in the autonomous generation
of complete 3D model of objects [11]. The problem of
time-varying scenes requires multi-sensor approaches like
[12]. It is also common to find NBV in applications for
exploring unknown environments and objects [13]. Solving
the NBV problem involves the computation of the camera
position for optimal perception, which is related to Visual
Servoing (VS) [14]. Visual Servoing aims to control the
motion of a robot by, for instance, detecting and following
the object of interest. Therefore a target camera position
must be generated to allow the tracking of the object at every
moment while avoiding occlusions. However, standard VS
focuses on rigid objects while VS with non-rigid objects,
although it has been addressed in the literature [15], is still
an ongoing and researched topic.

This paper is an extension of [16], in which a method
for RGB-D deformable object tracking and camera posi-
tion estimation for optimal object perception is presented.
However, in [16], the camera optimisation method does not
consider occlusions. Making use of the scene information
provided by the deformable object tracking method, the
main contribution of this paper is a new occlusion-handling
camera position computation method for proper object per-
ception. This method shows a different approach to the one
presented in [16], which is energy-function based. A new
geometric-based analytical method that can handle both:
deformable/dynamic scene elements and moving RGB-D
camera, is introduced.

2020 5th International Conference on Robotics and Automation Engineering

Dynamic Occlusion Handling for Real Time Object Perception

Ignacio Cuiral-Zueco and Gonzalo López-Nicolás
Instituto de Investigación en Ingenierı́a de Aragón

Universidad de Zaragoza, Spain
Email: ignaciocuiral@unizar.es, gonlopez@unizar.es

13978-1-7281-8981-9/20/$31.00 ©2020 IEEE

Citation: I. Cuiral-Zueco, G. López-Nicolás. Dynamic Occlusion Handling for Real Time Object Perception. 2020
5th International Conference on Robotics and Automation Engineering (ICRAE), pp. 13-18. Singapore,
November 20 - 22, 2020.

Augmented OBB(k)

Supervoxel

G(k)=(V(k),E(k)) Object contour in frame k

em(k)
vn(k)

C(k)

Rsphere

pn(k)

qb(k) Occluding elements

Sphere(k)

Estimated camera

Real camera

Fig. 1: Elements involved in the problem definition: graph G(k) = (V (k),E(k)) with vertices, V (k), defined by the object's
N(k) supervoxel centroids and edges, E(k). Associated supervoxel normal vectors pn(k)∈ P(k). Occluding elements qb(k)∈
Q(k) that lie within Sphere(k), which is defined by the object centroid C(k) and a radius Rsphere. All of the object's
supervoxels lie within the augmented OBB(k). The Real camera position and the Estimated camera position are represented
with reference frames. The Real camera is obtained from the RGB-D SLAM system while the estimated camera represents
the target position from which the occluding elements do not interfere with the object perception.

II. PROBLEM FORMULATION

In this section, elements and assumptions required to de-
fine and address the camera location problem are introduced.

A. Target Object.

The system presented in [16] receives RGB and depth-
map video frames as input. For each new frame k ∈ Z≥0,
the deformable object tracking method provides the set
of N(k) Supervoxels [17] that conform the object state
in frame k (see Fig. 1). These supervoxels are distributed
uniformly in 3D space creating a grid of step-size Rseed .
They conform a graph G(k) = (V (k),E(k)) with vertices,
V (k) = {vn(k), n = 1, . . . ,N(k)}, defined by the object's
N(k) supervoxel centroids and edges, E(k) = {em(k), m =
1, . . . ,M(k)}, defined by the M(k) connections between
neighbouring vertices within an Rad j. Radius Rad j is closely
related to Rseed :

Rad j = αRseed , (1)

where α, 1 ≤ α ≤ 3/2, is defined so adjacency between
supervoxels is ensured after the supervoxel growing process
has taken place. Each graph vertex vn(k) has an associated
supervoxel normal pn(k) ∈ P(k) = {pn(k), n = 1, . . . ,N(k)}.
The object's centroid C(k) and the voxel cloud associated
to the object's supervoxels are used to define an augmented
Oriented Bounding Box (OBB) which is obtained through
Principal Component Analyisis (PCA).

Every frame k, the real camera affine transformation
Treal(k) = [Rreal | treal], where camera orientation Rreal(k) ∈

Occluding elements

Augmented OBB(k)
Sphere(k)

Object

Interacting elements

Camera

Fig. 2: Scene element classification: Inside the augmented
OBB the object and the interacting elements (green). Outside
the augmented OBB and inside Sphere(k) the occluding
elements (red). On the sphere's surface, the real camera is
represented by a reference frame. The aim is to compute
a new camera position in order to prevent the occluding
elements from interfering with the object.

R3×3 and position treal(k)∈R3 are defined in a fixed global
reference frame W, is provided by an RGB-D SLAM system
(see [16] for additional details).

B. Occluding elements.

In the object tracking process, the scene's point cloud is
discretised into supervoxels in every frame. Some of these

14

supervoxels become part of the object, the rest are classified
into two different sub-categories:

1) Interacting elements: those supervoxels that lie within
the augmented OBB but are not part of the object.
Usually the object holder or manipulator (Fig. 2).

2) Occluding elements: An Sphere(k) can be defined
with centre C(k) and radius:

Rsphere = dpre f , (2)

where dpre f is the preferred camera-to-object distance
(introduced in [16]). Sphere′s surface becomes the
solution space for the camera position estimation.
Supervoxel centroids that lie outside the augmented
OBB but inside Sphere(k) become occluding elements
Q(k) = {qb(k), b = 1, . . . ,B(k)} (Fig. 1) as they may
lie between the object and the desired optimal cam-
era position. The difference between interacting and
occluding elements is illustrated and exemplified in
Fig.3.

C. Problem definition.

The objective is to determine, in each video frame, a
position of the camera on the sphere's surface of radious
Rsphere (2) seeking perpendicularity to the object’s surface. In
the case of occlusions interfering with the estimated camera
position, positions lying as close as possible to the initial
solution that ensure occlusions are avoided will be obtained.
There is no prior object knowledge and no assumptions are
made about the object characteristics (it may be deformable,
textureless, etc.) therefore its initial state should be correctly
defined:

Assumption 1. The initial position of the sensor (frame
k = 0) allows complete (not necessarily optimal) observation
of the target object's region of interest.

Although the sensor information is discrete in time, it is
assumed that the events in the scene have enough continuity:

Assumption 2. The object and the occluding elements
may undergo great deformations and movements, but never
within time intervals significantly shorter than the sensor's
frame rate.

III. OCCLUSION HANDLING METHOD

Our occlusion handling method makes use of two sets of
sphere-centred rays. These sets are used to compute an initial
optimal camera position that, in the case of lying within
and occlusion affected area, is iterated until it reaches an
occlusion-free position while staying as close as possible
from the initial optimal solution. It is worth mentioning
in advance that the method explanation elements (camera
positions, sphere rays, etc.) are all object-referenced. The
object reference is defined by its centroid C(k), and the
orientation axes are set, arbitrarily, as the main inertia axes
of the objec's voxel cloud.

C(k)vn(k)

pn(k)

Sphere(k)
sn(k)

sn(k)

(a) Normals-to-sphere intersection rays sn(k).

C(k)vn(k)

Sphere(k)

dc(k)

qb(k)

dc(k)

(b) Occlusion-to-sphere intersection rays dc(k).

Fig. 3: This figure exemplifies the generation of the two
sets of sphere-centred rays. (a) shows how object normals
pn(k) intersect Sphere(k) in sn(k) points, which allows
defining normals-to-sphere rays sn(k) . In (b), supervoxel-to-
occlusion rays intersect Sphere(k) in dc(k) points and thus
generating occlusion-to-sphere rays dc(k). Blue dots denote
object's supervoxels and red squares the occluding elements.

A. Generation of sphere-centred sets of rays.

The two sphere-centred set of rays are: (i) the normals-
to-sphere rays and the (ii) occlusion-to-sphere rays (Fig. 3).
They enclose, respectively, information on the object's sur-
face configuration and the relative position of occlusions
with respect to the object. The normals-to-sphere set is
defined by sphere surface points sn(k), S(k) = {sn(k), n =
1, . . . ,N(k)}, obtained from the intersection of the object
supervoxel normals pn(k) with Sphere(k). These intersection
points sn(k) and the sphere centre C(k) define the set of rays
S(k)= {sn(k), n= 1, . . . ,N(k)}. These rays are computed as:

sn(k) = sn(k)−C(k). (3)

On the other hand, occlusion-to-sphere rays are defined
by dc(k) sphere surface points. These points are obtained
with the rays defined by supervoxel centroids vn(k) and the
occluding elements positions qb(k) intersecting Sphere(k)
of radius Rsphere (2). Intersection points dc(k), D(k) =

15

Gnomonic projection of sphere
points D(k) into ti(k)-defined plane.

Initial estimated camera position t0(k)

D (k): plane projections

D (k) points nearby
camera position?

No

Yes
Final estimated

tf(k)

i=i+1

Computation of new
camera position ti+1(k)

i=0

camera position

i=f

Fig. 4: Flowchart representing the iterative process for the
final camera position t f (k) computation. Using the initial
camera position t0(k) as input, the iterative process performs
a gnomonic projection of the occlusion-to-sphere points
D(k) into a plane tangent to Sphere(k) in point ti(k). If
no projected points DΠ(k) lie nearby ti(k), ti= f (k) becomes
the final camera position.

{dc(k), c = 1, . . . ,NC(k)}, and the sphere centre C(k) define
the set of occlusion-to-sphere rays D(k) = {dc(k), c =
1, . . . ,NC(k)}, being NC(k) = N(k)B(k), and dc(k) = dc(k)−
C(k).

B. Obtention of initial camera estimation.

Normals-to-sphere rays sn(k) serve the purpose of defin-
ing the camera position and optical axis orientation in such a
way that perpendicularity is seeked for each supervoxel vn(k)
and the object centroid C(k) is pointed at. The initial camera
pose is the position and orientation the camera would need
to adopt if no occlusions existed. It is obtained by computing
the angular average of normals-to-sphere rays s̄(k). This
average is computed in spherical coordinates (Rsphere, θ̄ , ϕ̄)
as follows:

θ̄ = atan2

(
1
N

N

∑
n=1

cos(θn),
1
N

N

∑
n=1

sin(θn)

)
, (4)

ϕ̄ = atan2

(
1
N

N

∑
n=1

cos(ϕn),
1
N

N

∑
n=1

sin(ϕn)

)
. (5)

The intersection of s̄(k) with Sphere(k) generates point
s̄(k), which is the initial camera position t0(k) = s̄(k). The
camera's Z0(k) axis orientation is Z0(k) =−s̄(k)/‖s̄(k)‖, as
this ensures the camera is pointing towards the sphere centre
C(k).

C. Iterative occlusion-free camera pose estimation.

Occlusion-to-sphere rays encapsulate the information of
the positions dc(k) ∈ D(k) contained in Sphere(k) from
which a supervoxel vn(k) of the object is occluded by

dc(k)

ti+1(k)
ti(k)

ti+1(k)

Rsphere

Rseed

C(k)dc(k)

Sphere(k)

dj(k)

Fig. 5: Illustration of the ti+1(k) camera position computa-
tion process. In each iteration, the method makes use of the
gnomonic projection of occlusion-to-sphere intersection rays
dc(k) ∈ D(k). The projection points, DΠ(k), are then used
to obtain vector v̄(k). Adding scaled v̄(k) to ti(k) allows
obtaining tΠ

i+1(k), which is then mapped back to the sphere
surface as ti+1(k).

element qb(k). In order to avoid occlusions and provide
alternative camera positions to the initial one, an iterative
process has been designed and implemented. The iterative
process for the final camera position t f (k) computation uses
the initial optimal camera position t0(k) = s̄(k) as input
(Fig. 4). Beginning with t0(k) and for the following camera
positions ti(k), iteration i = 1, ..., f performs a gnomonic
projection of the occlusion-to-sphere points D(k), which are
projected into a plane Πi(k) tangent to Sphere(k) in point
ti(k) (Fig. 5). The normal vector of the plane is the camera's
Zi(k) axis, which is computed as Zi(k) = −ti(k)/‖ti(k)‖.
Projected plane points dΠ

c (k) ∈ DΠ(k) for iteration i are:

dΠ
c (k) =C(k)+dc(k)

(ti(k)−C(k))ᵀ (−Zi(k))
dc(k)ᵀ (−Zi(k))

. (6)

If no projected points DΠ(k) lie within a plane-contained
Rseed radius circumference centred in ti(k), ti= f (k) becomes
the final camera position, otherwise a new camera position
ti+1(k) is computed and the iterative process continues. The
computation of the new camera position is performed by
making use of the projected occlusion-to-sphere points dΠ

c ∈
DΠ(k). Projected points that lie within a plane-contained
Rsphere radius circumference centred in ti(k) are denoted as
dΠ

j (k)∈DΠ(k) (Fig. 5). A set of vectors V(k) = {v j(k), j =

1, . . . ,J(k) 3 v j(k) =
−−−−−−−→
dΠ

j (k) ti(k)} is defined with a common
ending in ti(k) and origins in each dΠ

j (k) ∈ DΠ(k). Vector
v̄(k) is the vector sum of all v j(k) re-sized and added to
ti(k):

tΠ
i+1(k) = ti(k)+Rseed

v̄(k)
‖v̄(k)‖

. (7)

16

Once tΠ
i+1(k) is obtained, it is mapped back to the sphere

surface using the same gnomonic projection model and thus
obtaining ti+1(k):

ti+1(k) = Rsphere
tΠ
i+1(k)−C(k)
‖tΠ

i+1(k)−C(k)‖
. (8)

Once the iteration process comes to an end, ti= f (k) becomes
the occlusion-free camera position of frame k. The camera's
Z f (k) axis orientation is Z f (k) = −t f (k)/‖t f (k)‖ and thus
ensuring the camera is pointing towards the sphere centre
C(k).

IV. EXPERIMENTAL RESULTS

The system's program is run and fed with the information
obtained from an RGB-D camera in real time. Although the
method has been designed to handle dynamic objects and
cameras, in the experiment we focus on the occlusion avoid-
ance feature and, for the sake of simplicity, both the camera
and the target object are static. Numeric values of relevant
parameters used in the experiment are Rseed = 0.02 [m] and
Rsphere = 0.5 [m]. Experiments have been conducted in a
workspace of approximately 1 cubic meter. Sequences were
recorded in real time with the Realsense D435 RGB-D
camera. The programming language used is C++ and all
measurements have been recorded on an Intel Core i7 1.8
GHz processor.

The target object, a DVD case, is a flat plastic object
that allows to intuitively figure out what position of the
camera might provide a solution. In Fig. 6 three frames of
the processed sequence are shown. The real camera position
treal , the initial camera estimation t0 and the final camera
estimation t f are displayed along with the object's voxel
cloud, the occluding elements and other elements of the
method. The first frame is the base case scenario where
no occluding elements interfere and thus t0 = t f . In the
second displayed frame, an occluding element (hand) shifts
the initial camera position estimation to the left while in
the third one two occluding elements (two hands) force
the estimated camera to move upwards in order to have
a proper object perception. Normals-to-sphere intersection
rays Sn are represented as blue lines. It is rather noticeable
how most of them are grouped in front of the DVD case
while some others seem to disperse up and left. This second
group corresponds to the normal vectors of the supervoxels
in the DVD case edges. A comparison of the angular error
εn,i between the initial and the final estimated positions
has been carried out. εn,i represents how far the angular
alignment between camera position ti and ray sn is. Ideally,
angle between these vectors should be 0[º] as to perceive
supervoxel n more perpendicularly while pointing at the
object's centroid C(k). The angular error between an object
normal pn and a camera estimated position ti is computed
as:

εn,i = atan2
(
(sn× ti)

ᵀ sn× ti

‖sn× ti‖
,−tᵀi sn

)
. (9)

TABLE I: Mean ε̄ and standard deviations σ of the angular
errors in the displayed frames for initial t0 and final t f .

Camera ε̄ [º] σ [º]

Frame a) t0 11.12 7.93
t f 11.12 7.93

Frame b) t0 12.86 10.04
t f 20.38 8.33

Frame c) t0 14.15 9.03
t f 33.03 8.17

Table I shows the mean ε̄ and standard deviations σ

of the angular errors in the displayed frames for both
estimated cameras: initial (t0) and final (t f). Comparing
both cameras in the second and the third frames, angular
error means are approximately doubled thus highlighting
the trade-off between adequate perception and occlusion
avoidance. Number of object supervoxels in each frame are
N = 25, N = 27 and N = 17 (a, b and c respectively). Note
how, in the experiments, the real camera is not moved to the
estimated camera position: Robot-based camera positioning
(Visual Servoing) is left for upcoming research as this paper
focuses on the camera position estimation problem.

V. DISCUSSION AND CONCLUSIONS

A method for calculating a camera position that allows
perceiving a target object while avoiding occlusions has been
designed and implemented. The system uses RGB and depth
information and can be applied to deformable objects and
dynamic occlusions. The solution space has been defined
within a sphere surface around the object which allows to
choose the desired perception distance, something useful in
possible robotic applications where a tools require a constant
working distance. Previous methods [1] [2] [8] have a more
visual-based approach for object tracking. Approaches in
[6] or [7] take a perspective more suitable for physical
applications while others like [18] tackle the drone physical
occlusion avoidance problem directly. The value of our
proposal relies on its practical approach for application in
object manipulation scenarios. Similarly to [18], this method
has been designed with a view to robotic applications where
interaction with the environment is expected. Amongst its
strengths, computation times of the method are within the
order of milliseconds. Other advantages are: the method
flexibility and adaptability. It can be adjusted to handle many
applications and a variety of scenarios as it does not require
prior information or training. Relying on a geometric-based
design, this approach provides an analytical scene evaluation
thus making it robust and resilient as can be seen in the
experiment (Fig. 6, c), where a double occlusion is handled.
Making extensive use of RGB-D information and not only
focusing on colour or texture allows the method to overcome
texture-less elements (occluders and objects).

Future applications of this occlusion handling method
include camera servoing for deformable object state feed-
back in shape manipulation control: Even in controlled
environments, the manipulator robots can create occlusions.

17

Fig. 6: Three frames of the processed sequence are shown (top) along with several scene elements. The real camera position
treal , the initial camera estimation t0 and the final camera estimation t f are displayed along with the object’s voxel cloud, the
normals-to-sphere intersection rays Sn (blue lines), the occluding elements Q (red squares) and the gnomonic projection of
D points: DΠ (small red dots). The object's augmented OBB and supervoxel normals (in red) are also shown. In a) the base
case scenario is displayed and, since there are no occluding elements interfering, t0 = t f . b) an occluding element (hand)
shifts the initial camera position estimation to the left while in c) two occluding elements force it to move upwards.

A proper perception system capable of handling such occlu-
sions, like the one presented in this paper, could be of use
in scenarios such as those presented in [19].

REFERENCES

[1] A. Yilmaz, X. Li, and M. Shah. Contour-based object tracking
with occlusion handling in video acquired using mobile cameras.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(11):1531–1536, 2004.

[2] F. Yang, H. Lu, and M.H. Yang. Robust superpixel tracking.
Transactions on Image Processing, 23(4):1639–1651, 2014.

[3] L. Zhong, Y. Zhang, H. Zhao, A. Chang, W. Xiang, S. Zhang, and
L. Zhang. Seeing through the occluders: Robust monocular 6-dof
object pose tracking via model-guided video object segmentation.
IEEE Robotics and Automation Letters, 5(4):5159–5166, 2020.

[4] S. Zhao, S. Zhang, and L. Zhang. Towards occlusion handling:
object tracking with background estimation. IEEE Transactions on
Cybernetics, 48(7):2086–2100, 2017.

[5] C. Liu, D. Q. Huynh, and M. Reynolds. Toward occlusion handling
in visual tracking via probabilistic finite state machines. IEEE
Transactions on Cybernetics, 50(4):1726–1738, 2018.

[6] A. Crivellaro, M. Rad, Y. Verdie, K. M. Yi, P. Fua, and V. Lepetit.
Robust 3D object tracking from monocular images using stable parts.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(6):1465–1479, 2017.

[7] P. Wunsch and G. Hirzinger. Real-time visual tracking of 3D
objects with dynamic handling of occlusion. In IEEE International
Conference on Robotics and Automation, volume 4, pages 2868–2873,
1997.

[8] A. Cavagna, S. Melillo, L. Parisi, and F. Ricci-Tersenghi. SpaRTA
Tracking across occlusions via partitioning of 3D clouds of points.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2019.

[9] R. Pito. A solution to the next best view problem for automated
surface acquisition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(10):1016–1030, 1999.

[10] J. Delmerico, S. Isler, R. Sabzevari, and D. Scaramuzza. A com-
parison of volumetric information gain metrics for active 3D object
reconstruction. Autonomous Robots, 42(2):197–208, 2018.

[11] M. Krainin, B. Curless, and D. Fox. Autonomous generation of com-
plete 3D object models using next best view manipulation planning.
In IEEE International Conference on Robotics and Automation, pages
5031–5037, 2011.

[12] R. Herguedas, G. López-Nicolás, and C. Sagüés. Multi-camera
coverage of deformable contour shapes. In IEEE 15th International
Conference on Automation Science and Engineering (CASE), pages
1597–1602, 2019.

[13] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart.
Receding horizon “next-best-view” planner for 3D exploration. In
IEEE International Conference on Robotics and Automation, pages
1462–1468, 2016.

[14] F. Chaumette and S. Hutchinson. Visual servo control. I. basic
approaches. IEEE Robotics & Automation Magazine, 13(4):82–90,
2006.

[15] D. Santosh and C.V. Jawahar. Visual servoing in non-rigid environ-
ments: A space-time approach. In IEEE International Conference on
Robotics and Automation, pages 2452–2457, 2007.

[16] I. Cuiral-Zueco and G. López-Nicolás. RGB-D tracking and optimal
perception of deformable objects. IEEE Access, 8:136884–136897,
2020.

[17] J. Papon, A. Abramov, M. Schoeler, and F. Worgotter. Voxel cloud
connectivity segmentation-supervoxels for point clouds. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 2027–
2034, 2013.

[18] B. Penin, P. R. Giordano, and F. Chaumette. Vision-based reactive
planning for aggressive target tracking while avoiding collisions and
occlusions. IEEE Robotics and Automation Letters, 3(4):3725–3732,
2018.

[19] D. Navarro-Alarcon, H.M. Yip, Zerui Wang, Y. Liu, F. Zhong,
T. Zhang, and P. Li. Automatic 3D manipulation of soft objects by
robotic arms with an adaptive deformation model. IEEE Transactions
on Robotics, 32(2):429–441, 2016.

18

