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Abstract. Recent research on visual prosthesis demonstrates the pos-
sibility of providing visual perception to people with certain blindness.
Bypassing the damaged part of the visual path, electrical stimulation
provokes spot percepts known as phosphenes. Due to physiological and
technological limitations the information received by patients has very
low resolution and reduced dynamic range. In this context, the inclusion
of new computer vision techniques to improve the semantic content in
this information channel is an active and open key topic. In this paper,
we present a system for Simulated Prosthetic Vision based on a head-
mounted display with an RGB-D camera, and two tools, one focused
on human interaction and the other oriented to navigation, exploring
different proposals of phosphenic representations.
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1 Introduction

A novel approach for treating blindness caused by retinal degenerative disorders
is implanting retinal prosthesis. Cell degeneration of photoreceptors caused by
retinitis pigmentosa and macular degeneration can be bypassed by artificially
stimulating non-damaged cells like retinal ganglion cells and sometimes bipolar
cells [36]. This effect is achieved with an implanted electrode array that provokes
a set of electrical stimuli which is perceived by the blind patient as a pattern of
visual spots, usually known as phosphenes [10].

The research in last years reports significant advances in the development of
visual prostheses. There exist different types of visual prostheses according to the
problem causing blindness: retinal prostheses, optic nerve prostheses or direct
stimulation of the cortex. If the patient suffers from damaged retina receptors
(cones and rods) any of the three classes is adequate. But if the damage is
caused in an advanced part of the optic pathway, the visual cortex may be the
most appropriate place. In particular, retinal prostheses are based in retinal
ganglion cells stimulation. This may be achieved via placement of epiretinal,
subretinal or suprachoroidal stimulating electrode arrays. Five representative
models are Argus II, Boston Retinal Implant Project, Epi-Ret 3, Intelligent
Medical Implants (IMI) and Alpha-IMS (Retina Implant AG). Currently, two
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Fig. 1. Flowchart for simulated prosthetic vision. (top). SPV facilitates research on
new methods to generate maps of phosphenes. Next step, would be to transfer the
research results to final patients (bottom).

of them have regulatory approval (America and Europe) for the treatment of
retinitis pigmentosa: the Argus II (epiretinal) and Alpha IMS (subretinal), the
Boston Retinal Implant is in animal studies and all others are in clinical trials.
The perception system used by most of current visual prostheses, with some
exceptions, is based on the acquisition of images with an external camera. The
acquired images are generally processed using basic image processing techniques
to generate a phosphenes-based image which is sent to the prosthesis.

Institute Image processing

Stanford University [3] Geometric / Spatio-temporal
Dobelle Institute (University of Utah) [11] Contour detection

Intelligent Medical Implants [16] Spatio-temporal filtration
Second Sight (Argus II) [28] Contrast improvement/Contour detection

University of New South Wales, Sydney [32] Mean/Gaussian filter, zoom

Table 1. Examples of works using basic image processing techniques performed in
visual prostheses.

A simulated prosthetic vision (SPV) generally consists of a vision-based sys-
tem and a head-mounted display on a normal sighted subject (see Fig. 1). This
system allows representing the descriptions of phosphene perception reported
by visual prosthesis patients. The advantages of using SPV in prosthetic vision
research have been acknowledged [1]. In particular, this approach avoids the im-
plications derived of treating with final patients allowing an early non-invasive
evaluation of advanced computer vision techniques and different representations.
Most of the current approaches used in prosthetic vision and SPV are based on
basic image processing techniques (see Table 1) like in [4,5]. However this con-
figuration (camera+prosthesis) allows exploring more advanced computer vision
techniques to enhance the semantics and the relevance of the information dis-
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played to the patient. For example, visual recognition can be used for enhancing
the saliency of meaningful objects [15,17], face detection can be used for human
interaction [21] and going further, the recent advances in 3D visual odometry
[25,13] could be used for assisting navigation with prosthetic vision.

In this paper we present a prototype consisting of a device for simulated
prosthetic vision based on RGB-D vision (Section 2), a human interaction tool
(Section 3) and a navigation tool (Section 4) where different representations
displaying maps of phosphenes are discussed. A key issue in our proposal is to
consider depth information to enhance basic image processing with advanced
computer vision techniques in the context of SPVs. Note that with current tech-
nology, depth perception is transmitted by stereo displays to non-blinded people,
however, since intrinsic technical limitations of prosthetic vision prevents from
transmitting the stereo effect, it requires alternative strategies to be represented
such as using an iconic way.

1.1 Related Work

Simulated prosthetic vision has already disclosed useful for reflecting clinical
findings [1], being used for studying performance in tasks such as reading [12],
finding text [9], hand-eye coordination, and mobility [29]. Most of these insights
are related with the number of electrodes needed for achieving a given task.
For example, according to Cha et al. [6] a pattern of 25 x 25 phosphenes allows
to recognize text in a reading speed of 100 words per minute for stationary
text and 170 words per minute for text moving automatically, however harder
tasks like face recognition requires hundreds of phosphenes [31,33]. Despite the
advances in prostheses development increase the available resolution there exist
physical restrictions when miniaturizing the electrode array. In [24] the limits
when increasing the number of electrodes by current spread and new strategies
for improving the stimuli are discussed.

First addressed task in navigation for SPV is obstacle avoidance [2,27]. [26]
presented a computationally model for detecting salient regions in an image
frame to avoid obstacles. Another visual processing system for bionic eye with
a focus on obstacle avoidance was implemented by [30]. Obstacle detection and
simultaneous localization and mapping were applied to guide a user on a safe
path using a stereo camera as input of the implanted prosthetic vision, and
vibration motors on the shoulders [34]. In [22] a technique to find a ground-
plane and the boundary with objects is presented. Objects and boundaries can
be then augmented to ensure object boundary visibility [19]. More recently,
[35] uses VR-based environments for evaluating the visual response for obstacle
avoidance in SPVs with a simpler set-up.

Representing depth in SPV is a key concept for achieving assisted navigation,
but its implementation is particularly challenging. Systems displaying depth and
contrast edges in a phosphene-based display are described in [18,21] and more re-
cently in [23]. In [14], a semantic labelling of the image provides a representation
for obstacle avoidance.
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2 RGB-D based prototype for simulated prosthetic vision

(a) (b)

Fig. 2. (a) Scheme for extrinsic calibration of the head-mounted display with respect
to the RGB-D sensor. (b) Our prototype for simulating prosthetic vision.

A device for Simulated Prosthetic Vision (SPV) allows simulating the perfor-
mance of a given vision algorithm without intervention of a blinded person. Our
first prototype combines a head-mounted display (HMD) 1 with an RGB-D cam-
era 2. The use of a depth sensor allows representing images from the point of view
of the user despite the camera is not exactly placed on the view-point of the user.
The localization of the display with respect to the camera is indirectly estimated
by using the external camera provided by Oculus. For calibrating the system this
camera has to simultaneously perceive a led-pattern carried by the HMD and a
chess pattern which is also viewed by the RGB-D sensor. The external camera
is used only once to calibrate the system, since HMD and RGB-D sensor are
coupled. The resulting Euclidean transformations are the transformation of the
HMD from the external camera TED, the transformation of the external camera
from the chess pattern TPE and the transformation of the RGB-D sensor from
the chess pattern TPC (see Fig. 2). These transformations are linearly related
by

TCD = TPC
−1TPETED (1)

The map of phosphenes is represented using Gaussian spots with a modu-
lar configuration (e.g. [8]). This is certainly not a precise representation of the
appearance of most phosphenes, but it is a standard representation used in the
literature [31,7]. We also assume a circular field of view. Given a resultant pro-
cessed image point, we use a look-up table for computing the corresponding
phosphene. This look-up table is initialized by computing the nearest phosphene
defined by the Euclidean distance. For addressing the focusing problem in very
close displays and provide wider field of view, the HMD combines asferic lenses

1 Oculus Rift www.oculus.com/rift/
2 Microsoft Kinect V2
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(a) (b) (c)

Fig. 3. Perceptual validation of calibration. (a-b) The subject must grasp a bottle and
return it to its original location without blowing out the others. (c) The subject must
introduce a small bottle in a basket.

(a) (b)

Fig. 4. Mean time used for each subject to grasp the bottle (8 executions per subject).

with a correcting barrel distortion. However, we can avoid computing the in-
trinsic calibration of the RGB-D sensor and the HMD since they are internally
provided by the corresponding SDKs (we have separately calibrated both sys-
tems and checked that the internal calibrations provided by SDKs are correct).
Finally we have performed a perceptual validation of the whole system represent-
ing the coloured point cloud captured by the RGB-D camera in the reference of
the HMD. With this configuration, different subjects have tested the prototype
by performing different tasks such as executing grasping tasks in short distances
and launching tasks in medium distances. In the first evaluation we measure the
time invested by a subject for grasping a bottle and return it to its original lo-
cation without blowing out the others. The evaluation considers two cases: first
(see Fig. 3 (a)) considers separated bottles and second considers the grasping
of a bottle surrounded by other bottles (see Fig. 3 (b)). This evaluation is per-
formed 8 times by 6 different subjects in three different series to study the human
adaptation to the device (see Fig. 4). In the second evaluation we measure the
success rate of introducing a small bottle in a basket located 2 meters far away
from the subject (see Fig. 3 (c)). The obtained success rate is 57% in comparison
with a success rate equal to 67% for the same evaluation with natural vision.
Conclusions from these evaluations are that the prototype permits to correctly
estimate 3D location and object dimensions once it has been calibrated. There
is also a fast human adaptation to the given virtual reality prototype.



VI

3 Iconic representation of humans for prosthetic vision

(a) (d)

(b) (e)

(c) (f)

Fig. 5. Iconic representation of humans using map of phosphenes. Faces: (a) Represen-
tation for a neutral expression. (b) Representation for a face not looking at the user.
(c) Representation for a happy expression. Human skeleton representation: (d) Far. (e)
Middle. (f) Near.

Human interaction is very important for patients with impaired vision where
identifying the presence of a person, its identity, knowing if the person is ap-
proaching or understanding their expressions is a very valuable information. A
retinal prosthesis can be used to enhance the human interaction experience.
However, the low resolution and reduced dynamic range of the phosphenic video
stream can impede an adequate understanding of the scene. In fact, human detec-
tion and recognition are difficult tasks when having any kind of impaired vision.
An interesting approach here is using computer vision techniques to perform this
recognition on the original images and to present an iconic representation to the
patient [18,21]. In this work, we exploit that the RGB-D camera provides human
detection describing skeletons and face parameters and we use this information
for an iconic representation of the person and its face. In particular, Kinect v2
API provides 3D position of human joints, eyes and mouth location, face ori-
entation in 3D and detects other binary features like expressions. In Fig. 5 we
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show iconic representations of a subject using a map of phosphenes. The RGB-D
sensor allows estimating the location of the person and the expression which is
represented with a variation in the iconic representation. We also detect and
represent the gaze direction. We have evaluated different representations taking
into account the available resolution of the simulated prosthesis. In particular,
we have evaluated two representations in three different resolutions. One repre-
sentation involves eyes and mouth (Fig. 5 (a-c) right) and the other also includes
a circle for representing the face (Fig. 5 (a-c) middle). In Fig. 5 (d-f) we show a
detail of the iconic representation of the skeleton of a person. Depending on the
depth we codify the range of the phosphenes. We also attach an example in the
available video 1.

4 Depth for navigation using prosthetic vision

(a) (b)

Fig. 6. (a) Ground removal from depth information for a better saliency on 3D scenario
with SPV. (b) Iconic representation of a corridor using chess floor and vanishing points
for showing a direction.

Assisted navigation for prosthetic vision can take advantage of the last ad-
vances in 3D localization using computer vision and RGB-D sensors [13,25]. The
location of the patient in combination with a map which can be simultaneously
estimated or previously stored is valuable information that can guide the patient
in day to day tasks but also in emergency evacuations.

Even when the complete environment is known, transmitting depth sensation
is hard due to low resolution and low dynamic range of prosthetic visual devices.
Notice that stereo vision is not possible since only monocular prostheses are pos-
sible. A straight-forward approach is encoding the depth, which can be estimated
with the RGB-D sensor, in a gray low-resolution image using the dynamic range

1 http://webdiis.unizar.es/%7Ebermudez/phosphenicRepresentation.wmv

http://webdiis.unizar.es/%7Ebermudez/phosphenicRepresentation.wmv
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of the phosphene representation [20]. However, the available gray-level is consid-
erably low making difficult the environment understanding. A first improvement
of this representation is removing the background of the image (for example the
ground [22]) in order to emphasize objects which are candidates to be obstacles.
In Fig. 6 (a) we show an example of ground removal using a RANSAC based
estimation of the ground plane.

Another of our proposals for describing depth is using an iconic description of
perspective projection. Inspired by old low-resolution 3D games and exploiting
the localization and mapping obtained from modern visual odometry systems,
the displacement with respect the ground can be evoked by using chess patterns.
Indoor scenes described by a high level map, can be represented using iconic
layouts representing main directions using pairs of parallel lines. This description
allows easily representing walls and corridors. In Fig. 6 (b) and in the attached
video 1 we show an example of the proposed representation of a corridor using
our map of phosphenes.

5 Discussion

In this paper we present a prototype for Simulated Prosthetic Vision based on a
head-mounted display and a RGB-D camera. This system is the framework used
to present two tools for human interaction and navigation. We have explored
different alternatives for depth and human representation in SPV. We observe
that there exist a tradeoff between the available resolution and the amount
of information being possible to represent. Iconic representations require more
performance in computer vision but they provide more understanding of the
environment. As future work we consider integrating a robust visual odometry
for fully exploiting the iconic representation of layouts.

Simulated prosthetic vision open new possibilities for understanding the per-
formance of computer vision algorithms for prosthetic vision. On the one hand
we have flexibility for testing different algorithms in simulations of different pros-
theses. On the other hand using SVPs allows validating the proposals in testing
groups crowded enough for obtaining design parameters with statistical meaning.
We believe that these first steps presented here pave the way for improving SPV
state-of-the-art techniques by including depth information inside the perception
loop. The main challenging issue here is to encapsulate depth information in the
constrained representation of the prosthetic vision system, and our proposals
aim towards these goals.
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