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Abstract— This paper presents a visual homing method for
a robot moving on the ground plane. The approach employs a
set of omnidirectional images acquired previously at different
locations (including the goal position) in the environment,
and the current image taken by the robot. We present as
contribution a method to obtain the relative angles between all
these locations, using the computation of the 1D trifocal tensor
between views and an indirect angle estimation procedure. The
tensor is particularly well suited for planar motion and provides
important robustness properties to our technique. Another
contribution of our paper is a new control law that uses the
available angles, with no range information involved, to drive
the robot to the goal. Therefore, our method takes advantage of
the strengths of omnidirectional vision, which provides a wide
field of view and very precise angular information. We present
a formal proof of the stability of the proposed control law. The
performance of our approach is illustrated through simulations
and different sets of experiments with real images.

I. INTRODUCTION

A. Problem Statement

Vision sensors have long been used to perform robot nav-

igation [1] due to the high amount of information provided

by cameras and their relatively low cost. Many research

efforts in today’s robotics continue to tackle the problem

of visual control [2], [3]. A task of recognized interest in the

vision-based navigation and control fields is homing, whose

objective is to enable a robot to return to a previously visited

location in an environment using visual information. Visual

homing is often inspired by the mechanisms that certain

animal species, such as insects, utilize to return to their

known home location [4], [5]. A wide variety of methods

have been employed to perform this task. For example, there

are works on visual homing based on image distance [6], in

scale space [7] or using frequency components [8].

Our approach is firstly motivated by the properties of om-

nidirectional vision sensors. They offer a wide field of view,

which is a very interesting quality for navigation, and provide

very precise angular information. In contrast, their radial

information is strongly affected by distortion. In addition to

this, it is known that the robustness of the performance of

vision-based tasks can be improved if, instead of using the

image information directly (either through appearance-based

measurements or extracted features), the geometric models
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that relate the views of a scene are employed. Thus, we

propose a homing method for a robot moving on the ground

plane that makes use of the angles between omnidirectional

views extracted by means of the 1D trifocal tensor model.

Our approach, which takes advantage of the planar motion

constraint through the 1D tensor, employs only the angular

visual information provided by omnidirectional images to

obtain the relative angles between the view from the current

position and a set of previously acquired reference views

taken at different locations, any of which can be selected as

the home (or goal) position. A stable control law based on

the estimated angles is used to guide the robot to the target.

B. Related Work

The interesting properties of omnidirectional cameras have

motivated the proposal of a number of angle-based homing

methods, being [9] an early work and [10], [11] more

recent contributions. These approaches are purely feature-

based: landmark angles in the images are used to generate

a homing vector, which defines the direction of motion

towards the goal. An alternative which is known to increase

the robustness in the presence of wrong feature matches is

to employ the models that express the intrinsic geometric

relations between the views of a scene. A number of visual

control methods have been presented using two-view models

such as the epipolar geometry [12]–[15] and the homography

[16]–[18].

The trifocal tensor is the model that encapsulates the

geometric constraints of three views of a scene [19]. This

model has been used for control purposes [20], [21]. In

particular, robot navigation on the ground plane lends itself

to the use of the 1D trifocal tensor, the matching constraint

between three 1D views which minimally parameterizes

them [22]. The 1D trifocal tensor, which can be computed

linearly from point correspondences, allows to perform 2D

projective reconstruction. In robotics, it has been used for

2D localization tasks [23], [24] and control [25], [26].

When compared with other approaches in the literature of

visual navigation, ours is neither a pure topological map-

based nor image memory-based approach, but it shares

elements with both kinds of techniques. As the representation

of the robot’s environment necessary to perform navigation,

we use a set of omnidirectional images. These serve us not

only to build a connectivity graph of the environment, as

in [27], [28], but also to store further information, which
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fits the view graph concept of [29]. We use the extracted

geometric information relating the views to find connections

between all the available reference images. Thus, in contrast

with [27], [28], the graph we construct is not appearance-

based, but as close to complete as possible. In addition to

the graph, we also store the geometric information needed

to perform homing between any two connected nodes in it

using our proposed angle-based control law.

Some works in the literature use an image memory in

a visual path following scheme [10], [17], [30]. We also

employ a memory of stored images, which in our case serves

as a representation of the environment that provides the

references necessary to compute the geometric information

that permits navigation. However, in contrast with these

methods, our approach allows direct homing between two

distant positions without having the need to travel along a

rigid visual route of intermediate images. This long-range

ability of our technique also differentiates it from local

homing approaches, which are typically short-range [4]–[8],

[12].

C. Contributions relative to the literature

We believe that an important contribution of our work

which sets it apart from the other visual homing approaches

is the use of the 1D trifocal tensor to extract the geometric

information. In addition to being particularly appropriate for

the characteristics of omnidirectional cameras and planar

motion, as discussed above, this tensor proves to be a

strong constraint which allows the extraction of angular

information in a remarkably robust way. The reasons for

this are the presence of three views in the model and the

possibility to perform triangle consistency checks to validate

the estimations. This increases the robustness with respect

to purely feature-based methods and approaches employing

two-view geometric constraints. In addition, the angle-based

control law we present has strong stability properties, further

contributing to the robustness of the overall system.

We also present as contribution a method to compute

the relative angles between all the available omnidirectional

views. This is achieved through the use of the computation

of the 1D trifocal tensor, a new angular disambiguation

procedure and a novel approach for the indirect computation

of angles. This method is what endows our technique with

long-range direct homing capabilities.

The visual control method proposed in this paper was first

presented in [25]. In the present paper, we provide several

new contributions with respect to that previous work, namely:

1) Definition and analysis of the geometric visual three-

view reconstruction ambiguities associated to our method.

2) Formal description of some aspects of the technique

such as the connectivity of the reference views.

3) Stronger and more complete stability results. Namely,

we provide in this paper both global asymptotic stability

and local exponential stability proofs for our control law. In

addition, the original control law has been slightly modified

to make the motion of the robot smoother.
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Fig. 1. Nomenclature and conventions used throughout the paper. eAB

is the epipole of view B in view A. αAB is the angle or direction of that
epipole, i.e. its angular polar coordinate in view A. The reference axis for
the measurement of the angles is given by the robot’s direction of motion.
The angles are measured counterclockwise between −π and π.

4) Extended discussion of the method and its charac-

teristics, including a broader literature survey, in order to

highlight the relevance of the presented work.

5) Two new sets of experiments, using images acquired

both indoors and outdoors, which validate the performance

of the approach and illustrate its robustness under varying

working conditions.

The contents of the paper are organized as follows:

Section II presents the procedure for the computation of

all the angular information needed for the homing task. In

section III the designed control strategy is described and its

stability analysis is presented. Section IV provides an account

of the results of the simulations and experiments conducted

with real images. We discuss in section V a number of

characteristics of the method and compare it with existing

works. Finally, in section VI the conclusion and directions for

future work are given. Some nomenclature and conventions

used throughout the paper are illustrated in Fig. 1.

II. COMPUTATION OF THE REFERENCE SET ANGLES

From the set of omnidirectional images we use to represent

the environment, we can define an undirected graph G(V,E).
The nodes or vertices which make up the set V are the

locations on the plane where each of the images were

acquired. A link exists between two given nodes when the

relative angles between their corresponding associated views

are known, and E is the set of these links. Therefore, we can

think of this graph as a topological map (i.e. a representation

of an environment as a group of places and a group of

connections between them). The adjacency matrix (A) of

G is defined such that A(i, j) = 1 when a link in E
exists between nodes i and j in V . Otherwise, A(i, j) = 0.

In addition to the graph description, which expresses the

connectivity of the nodes in our system, we must also store

the relative angles between the views. We do so using a data

structure M such that M(i, j) = αij is the angle of the

epipole of view j in view i.
Relevant features are extracted and matched between pairs

of images on the reference set, and the resulting point

correspondences are stored. We then start an estimation

procedure that operates as follows:

• A set of four images (which we can call A, B, C

and D) taken in two groups of three (e.g. A-B-C and B-

C-D) are processed in each step. For each trio of images

we obtain three-view point correspondences by taking the



common two-view matches between them. From a minimum

number of seven point matches between the three views in

each group, we can calculate two 1D trifocal tensors, and we

can eventually obtain the angles of the epipoles in each of

the views of the four-image set (as will be described in the

following subsections). This way, the four associated graph

nodes become adjacent.

• We run through the complete set of reference images

calculating trifocal tensors and estimating the angles between

the views. Whenever there is more than one estimation of a

certain angle available, we simply choose the result that was

obtained from the largest set of point matches. A possible

alternative would be to compute a weighted average. After

this stage is completed, we usually end up with an incomplete

graph.

• We fill the graph’s adjacency matrix using the indirect

estimation procedure that will be described in section II-B.

This procedure is aimed at computing the unknown angles

between the views from the already known values. For every

pair of nodes i, j such that A(i, j) = 0, we search for two

other nodes k, l such that A(i, k), A(i, l), A(j, k), A(j, l) and

A(k, l) all equal 1. When these conditions hold, we are able

to compute the angles between i and j, and consequently

make A(i, j) = 1 and calculate the value M(i, j).

The typical way in which the graph’s adjacency matrix

becomes filled is the following: when several locations are

adjacent physically, the relative angles between them can be

computed directly thanks to the large amount of common

visual information between the views, and the graph nodes

corresponding to these locations are also adjacent. Thus,

initially we have the whole set of images divided in groups of

connected locations (with adjacent associated graph nodes).

If two of these groups are adjacent physically, it is very likely

that they have at least two nodes in common. When this is the

case, we can connect all the elements in the two groups using

the indirect angle computation procedure, and all the nodes

in the two groups become adjacent. Following this procedure,

the adjacency matrix gets gradually filled until every pair of

nodes are adjacent (i.e. the graph is complete) or it is not

possible to find new connections between the nodes. Next,

we describe the different steps of the process through which

the relative angles between the views are obtained.

A. Angles from the 1D trifocal tensor

The trifocal tensor is the mathematical entity that en-

capsulates all the geometric relations between three views

that are independent of scene structure. In particular, the

1D trifocal tensor relates three 1D views on a plane, and

presents interesting properties; namely, it can be estimated

linearly from a minimum of seven three-view point matches

(or five, if the calibration of the cameras is known [31]), and

2D projective reconstruction can be obtained from it.

1) Foundations: 1D trifocal tensor computation and

epipole extraction: The projections of a given point in three

1D views (which we will refer to as A, B and C) on a plane

are related by the following trilinear constraint [22]:

2
∑

i=1

2
∑

j=1

2
∑

k=1

Tijku
A
i u

B
j u

C
k = 0, (1)

where Tijk are the elements of the 1D trifocal tensor,

T ∈ R2×2×2, between the views, and u
A, uB and u

C are

the homogeneous coordinates of the projections of the point

in each view. T is defined up to a scale factor and therefore

can be calculated, in the uncalibrated case, from a minimum

set of seven point correspondences across the views.

The process we follow to estimate T starts by detecting

relevant features in three omnidirectional images, e.g. by

means of the SIFT keypoint extractor [32], and finding

matches between them. The angles (α) of the matched

image points, measured counterclockwise from the verti-

cal axis, are converted to a 1D projective formulation,

with the corresponding homogeneous 1D coordinates being

(sinα, cosα)T . In this mapping, the distinction between

angles differing by π is lost.

Each of the point matches in 1D projective coordinates

gives rise to an equation of the form of (1). If more than

seven correspondences are available, we find a least squares

solution to the resulting system of linear equations through

Singular Value Decomposition [19], [24]. In this process, a

robust estimation method (RANSAC) is employed in order

to reject wrong matches.

After T has been estimated, we extract the epipoles from

it using a procedure taken from [23], [33] that we briefly

describe next. A 1D homography is a mapping between

projected points in two lines (two of the 1D views, in our

case) induced by another line. From the coefficients of the

trifocal tensor, we can directly extract what are known as

the intrinsic homographies. For example, the two intrinsic

homographies from A to B, KAB and LAB, are obtained

by substituting the lines defined by u
C = (1, 0)T and

u
C = (0, 1)T in (1), yielding

KAB =

[

−T211 − T221

T111 T121

]

, LAB =

[

−T212 − T222

T112 T122

]

.

(2)

Now, HA=KABL
−1

AB
is a homography from A to itself;

by definition, the epipoles are the only points that are mapped

to themselves by such a homography, i.e.: eAB = HAeAB

and eAC = HAeAC. Therefore we can calculate them as the

eigenvectors of matrix HA. It is important to note, though,

that with this method we do not know which of the other

two views (B or C) each of the two recovered epipoles

corresponds to. By mapping this pair of epipoles to the other

views through the intrinsic homographies, we finally obtain

the six epipoles of the set of three 1D views.

2) Ambiguity resolution: There are three ambiguities that

need to be resolved in order to determine the correct values of

the angles of the 2D epipoles from the values of the epipoles

extracted using the 1D trifocal tensor.

Firstly, as mentioned in section II-A.1, an epipole in a

given view recovered from the 1D trifocal tensor may be

assigned to any of the two other views. This results in
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Fig. 2. Four possible 2D reconstructions from the epipoles between two
views extracted from the 1D trifocal tensor (top). The relations between the
angles of the projections of matched points (e.g. P1 and P2) in two aligned
views can be used to resolve the 2D reconstruction ambiguities (below).

two possible solutions in the assignment of the set of six

epipoles between the three views. As shown in [22], [31],

both solutions give completely self-consistent 2D projective

reconstructions, regardless of the number of point matches

between the views. This fundamental ambiguity in the 2D

reconstruction from three 1D views can only be resolved

through the use of a fourth view, as noted in [23]. We propose

a new method to resolve the ambiguity that operates in the

following way: having a group of four views (which we

can call A, B, C and D), we calculate two different trifocal

tensors between them; for instance, the tensor relating A,

B and C, and the tensor between B, C, and D. Since the

epipoles between B and C must be identical in the two

estimations, by detecting the common (or, in a real situation,

the closest) epipoles in these two views we can disambiguate

the assignment of the complete set of epipoles.

The origin of the two other ambiguities lies in the fact

that in the mapping of 2D image points to 1D projective

coordinates, the distinction between bearings differing by π
is lost. The angle of a recovered 1D epipole (e1, e2)

T is

obtained as arctan(e1/e2) in 2D. As a consequence, from

the 1D epipole we can extract two different angles in a

2D view, separated by π radians. There are, therefore, four

possible solutions for the values of the epipoles between two

given views A and B, which may be interpreted as emerging

from two combined reconstruction ambiguities; namely, an

ambiguity in the direction of the translation vector from view

A to view B, which accounts for the difference between

solutions (a) and (c) in Fig. 2, and an ambiguity of π radians

in the orientation of view B, illustrated, for example, by

solutions (a) and (b) in the same figure.

This double ambiguity for a set of two views might be

resolved through point reconstruction, but instead we propose

a simple method employing only the angles of matched

image points. The method takes advantage of the properties

TABLE I

DISAMBIGUATION OF THE ANGLES OF THE EPIPOLES IN TWO VIEWS

test1 test2 αAB αBA Case in Fig. 2

1 1 αs

AB
αs

BA
(a)

0 1 αs

AB
αs

BA
+ π (b)

1 0 αs

AB
+ π αs

BA
+ π (c)

0 0 αs

AB
+ π αs

BA
(d)

of the optical flow between two omnidirectional images when

they are aligned. To do so, it exploits the relative angular

differences between the projections of a scene point in the

two images. This is illustrated in Fig. 2. The complete

procedure for the computation of the relative angles between

views from the 1D trifocal tensor, resolving all the existing

ambiguities, is provided in algorithm 1.

Next, we determine what the possible reconstructions

are for a trio of 1D views in the plane, starting from

the knowledge of the 1D epipoles between them. As we

have already seen, a 1D epipole can represent two different

angles in the plane separated by π radians, which gives

four possible reconstructions of the 2D relative geometry

between two views. With three views, we have six epipoles,

and the combination of all the possible values of the angles

gives 26 = 64 possible reconstructions of the geometry of

the views. However, by considering geometric consistency

constraints between the three views, it can be shown that

only 23 = 8 of these possibilities are actually valid, jointly

coherent reconstructions.

When we convert the points in three omnidirectional

images with a common image plane into 1D coordinates,

the situation is equivalent to having three 1D cameras in a

common 2D space. We can express the relative locations

of these cameras with a rotation matrix R ∈ R2×2 and

a translation vector t ∈ R2×1. By considering one of the

cameras (PA) as the fixed origin of the reference system,

we have the following projection matrices: PA = [I|0] ,

PB = [RB|tB] and PC = [RC|tC]. The rotation matrices

are as follows:

RB =

[

cosφs
B sinφs

B

− sinφs
B cosφs

B

]

, RC =

[

cosφs
C sinφs

C

− sinφs
C cosφs

C

]

,

(3)

where we can express: φs
B = π − αs

AB + αs
BA and φs

C =
π−αs

AC+αs
CA. The superscript s alludes to angles extracted

directly from the 1D epipoles arbitrarily (i.e. without having

been disambiguated). The translation vectors can also be

worked out:

tB =

[

−eAB cosφs
B − sinφs

B

eAB sinφs
B − cosφs

B

]

(4)

tC =

[

−eAC cosφs
C − sinφs

C

eAC cosφs
C − cosφs

C

]

, (5)

where eAB and eAC are the epipoles in inhomogeneous

coordinates. The vectors tB and tC are defined up to

scale. Actually, there is only one scale in the three-view



Algorithm 1 Disambiguation of the relative angles between views A,B,C and B,C,D from the 1D epipoles

1) Let us consider the 1D epipoles in inhomogeneous coordinates in view B: eB1, eB2 extracted from the tensor computed

between A, B and C, and e
′

B1
, e

′

B2
extracted from the tensor computed between B, C and D. Find i ∈ {1, 2}, j ∈

{1, 2} such that min{| arctan(eBi) − arctan(e
′

Bj)|, | arctan(eBi) − arctan(e
′

Bj) − π|} is minimum. Then compute

αBC = (arctan(eBi) + arctan(e
′

Bj))/2, and assign the angles of all the other epipoles accordingly. The angles have

an ambiguity of π.

2) For each pair of images (let us take A and B as example):

a) Define αs
AB = {αAB ∨ αAB + π} and αs

BA = {αBA ∨ αBA + π} so that both αs
AB and αs

BA ∈ (0, π]
b) Rotate all the m points matched between A and B (αAk and αBk, measured counterclockwise):

For k = 1, ...,m, αAkr = αAk − αs
AB , αBkr = αBk − αs

BA

c) Test 1: Relative orientation of the two aligned images. For k = 1, ...,m,

nr(k) = sign(αAkr ·αBkr) ·min(| sinαAkr |, | sinαBkr |). If
m
∑

k=1

nr(k) > 0, then test1 = 0, otherwise test1 = 1

d) Test 2: Sign of translation from A to B. If test1 = 1, then for k = 1, ...,m, αBkr = αBkr + π.

For k = 1, ...,m, if sign(αAkr · αBkr) = 1 then st(k) = sign(|αAkr| − |αBkr |) · (|αAkr | − |αBkr |)
2,

otherwise st(k) = 0. If
m
∑

k=1

st(k) > 0, then test2 = 0, otherwise test2 = 1

e) Obtain from Table I the unambiguous angles αAB and αBA

3) Check the joint coherence of the disambiguations of the pairs of views taken in groups of three, by verifying in Table

II that the obtained three-view reconstructions are valid.

TABLE II

THE EIGHT POSSIBLE RECONSTRUCTIONS OF THE CAMERA LOCATIONS

FROM THE EPIPOLES IN THREE VIEWS

PB = [RB|tB ] [RB|tB ] [−RB| − tB ] [−RB | − tB ]
PC = [RC |tC ] [−RC | − tC ] [RC |tC ] [−RC | − tC ]

PB = [RB| − tB ] [RB| − tB ] [−RB|tB ] [−RB |tB ]
PC = [RC | − tC ] [−RC |tC ] [RC | − tC ] [−RC |tC ]

reconstruction, since a relation exists between the magnitudes

of tB and tC through the triangle formed by the views:

||tC||

||tB||
=

∣

∣

∣

∣

sin(αs
BA − αs

BC)

sin(αs
CA − αs

CB)

∣

∣

∣

∣

. (6)

The eight possible reconstructions, up to scale, from the

epipoles between three views are shown in Table II.

Thus, after using the proposed two-view disambiguation

method, we check if the views taken in groups of three give

jointly coherent reconstructions. In addition, we also check

that the triangle formed by the locations of the three views is

consistent (i.e. that the sum of its angles is sufficiently close

to π). By doing so the angles between every trio of views

are estimated robustly.

B. Complete solution of four-view sets

In practice, it is usually not possible to find matches across

all the images. Next, we propose a method to compute all

the angular information using the matches between sets of

adjacent or close images. A geometric setting of the type

shown in Fig. 3, where two triangles are known between the

locations of four views, comes up in our method every time

we estimate two trifocal tensors from a four-view set. This

section describes the method employed to calculate the two

unknown angles in this configuration.

We use the notation ÂBC to allude to the values (> 0)

of the angles in a triangle. Without loss of generality, we

·ABD

·BAC

·CBD

·CAD

·DAC

·DAB

·BAD

·ACD

AB
e

AC
e

BA
e

BC
e

BD
e CA

e

CB
e

CD
e
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e

DC
e

AD
e

DA
e

A

B

D

C

·DBC

·BCD ·CAB

·ABC

Fig. 3. Geometric setting with four views and two known triangles.

can formulate the problem in the following terms: all the

angles from every view to the others in the set are known

except the angles of the epipoles between views A and D.

Therefore all the angles in the four triangles formed by the

set of four views are known, except the ones including both

vertices A and D (represented with dashed lines in Fig. 3).

Our objective is to calculate the angles αAD and αDA of

the epipoles eAD and eDA, which can be directly obtained

from the knowledge of the angles of the triangles at those

vertices. We start by applying the law of sines on the set of

four triangles (ABC, ABD, ACD and BCD), which finally

yields the following expression

sin ÂBD

sin ÂCD
= KA, (7)
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Fig. 4. Seven regions where point A can be located.

TABLE III

VALUES OF SIGNS FOR THE DIFFERENT REGIONS IN WHICH A MAY LIE

Region of vertex A Relation between angles at vertex A sign1 sign2

Ω1 ÂCD = 2π − ÂBD− ÂBC -1 1

Ω2, Ω5 ÂCD = ÂBD+ ÂBC 1 -1

Ω3, Ω6 ÂCD = ÂBC− ÂBD 1 1

Ω4, Ω7 ÂCD = ÂBD− ÂBC -1 -1

where KA is a known value given by

KA =
sin ĈBD · sin B̂AD

sin B̂CD · sin ĈAD
. (8)

Using the intrinsic relationship between the three angles

at vertex A and applying trigonometric identities, we can

calculate the individual values of the angles in (7). We must,

however, take into account the fact that the location of A with

respect to the other three vertices changes the geometry of

the set and, consequently, the relation between the angles at

the aforementioned vertex. Therefore, we need to divide the

plane into seven regions, as shown in Fig. 4, to account for

these differences. It turns out that the expression that gives

the angle ÂBD has the same form in all cases (i.e. for all

regions), but the signs of two of its terms, denoted as sign1

and sign2, are dependent on the region where A lies

ÂBD = arctan
sign1 ·KA sin(ÂBC)

1 + sign2 ·KA cos(ÂBC)
. (9)

We can easily determine the region in which A is located

using the known angles of the epipoles in views B and C,

and choose the appropriate values of sign1 and sign2 as

shown in table III.

The angle of the epipole of view D in view A is finally

obtained as follows

αAD =

{

αAB + ÂBD, if 0 ≤ αBA − αBD < π

αAB − ÂBD, if 0 > αBA − αBD ≥ −π
.

(10)

The angle of the epipole in view D of view A (αDA) can be

calculated through a completely analogous process, simply

interchanging the roles of vertices A and D. The results are

validated using geometric consistency checks. By employing

the procedure we have just presented, we can calculate the

two unknown angles and thus obtain the complete set of

angles between the four views. In addition, this method is

useful for two other purposes within our homing technique:

• In the initial stage, described in the beginning of section

II, this method allows to fill in the missing elements in the

matrix of epipole angles, corresponding to pairs of views that

could not be linked directly due to the impossibility to find

a sufficiently large set of three-view matches between them.

• During homing, it enables us to obtain all the angles

needed to generate the motion commands employing a

minimum number of three views; we only need to compute

the trifocal tensor between the current image taken by the

robot and two of the reference images, which reduces the

cost of the algorithm.

III. HOMING STRATEGY

In this section we describe the strategy designed in order

for the mobile robot to perform homing. We assume the robot

moves on the ground plane and has unicycle kinematics.

The homing method is based solely on the computation

of the angles between a series of omnidirectional views of

the environment. This group of snapshots consists of the

image taken by the robot from its current position and a

set of previously acquired reference images, which includes

an image obtained at the desired target location. The angles

between the views on the reference set have been previously

computed and stored, as described in section II. Therefore,

only the angles between the current and the reference views

must be worked out during homing.

In every step of the robot’s motion, the camera takes an

omnidirectional image, from which key points are extracted.

When sufficient point matches are found between the current

and two of the reference images, the 1D trifocal tensor is

calculated as detailed in section II-A.1. From the tensor,

aided by the knowledge of the angles on the reference set, we

can extract the angles between the current and the two other

views. Finally, with the method explained in section II-B all

the angles of the epipoles in all the views can be computed.

A. Control law

For every reference view Ri(xi, zi, ϕi) (where xi, zi and

ϕi define its position and orientation in the ground plane),

the difference between the angles of its epipoles with respect

to the current and goal views defines an angular sector of

size Si = |αiC − αiG|, as illustrated in Fig. 5. We use the

average value of the angular sizes of these sectors to set the

linear velocity at which the robot will move toward the target

position

v = kv cosαCG ·
1

n

n
∑

i=1

Si, (11)

where kv > 0 is a control gain. As the robot moves closer

to the goal, the mean size of the angular sectors seen from

the reference positions will become smaller; thus, the robot’s

linear velocity will gradually decrease and eventually become

zero when the target is reached. The cosine term in (11)

ensures that v has the right sign; when the target is behind the

robot, cosαCG will be negative, therefore generating back-

ward motion. In addition, the cosine improves the behavior

by gradually reducing the vehicle’s translational speed when

it is not pointing to the goal.
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Fig. 5. Elements involved and angles employed in the homing strategy.
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are depicted as example.

The direction in which the robot travels is determined by

the angle at which the goal position is seen from the current

location, i.e. the angle αCG of the epipole eCG. The angular

velocity of the control law is given by

ω = kω(αCG − αd
CG), (12)

αd
CG =

{

0 if |αCG0
| ≤ π

2

π if |αCG0
| > π

2

,

where kω > 0 is a control gain, and αCG0
is the value of

αCG at the start of the execution. From a minimum number

of four reference views, one of which would be the view

from the target location, the robot will navigate to the home

position. Note that the orientation in which the robot reaches

the target position is not controlled, since, by definition, the

purpose of the homing task is getting to the goal location. In

addition, final orientation correction is less relevant when one

uses robots equipped with omnidirectional cameras, since

they always provide a full view of the environment regardless

of the robot’s orientation.

B. Stability Analysis

We first define di as the distance between reference view

i and the goal position (i.e. the length of line segments RiG
in Fig. 5), and dmin as the minimum of such distances.

As shown in theorem 1 (section A of the appendix), the

system under the proposed control law (11), (12) is globally

asymptotically stable if kω > kv ·π/dmin. This result means

that we can ensure the stability of the system if we have

an estimate of the value of dmin for the particular set of

reference views we are working with. This estimate does

not need to be precise, since what we have found is a fairly

conservative bound for the value of kω. In practice, the

system will be stable with angular velocity gains lower than

this threshold.

Additionally, as shown in proposition 1 (section B of

the appendix), the system under the proposed control law

(11), (12) is locally exponentially stable. The actual value

of the exponential decay parameter (which we call λmin)

in a particular case will depend on both the geometric

distribution of the reference views and the trajectory along

which the robot approaches the goal. The less collinear the

reference views are, the faster the system will be guaranteed

to converge.

IV. EXPERIMENTAL RESULTS

The performance of the proposed method has been tested

both in simulation and with real images.

A. Simulations

For the first simulation we present, the reference views

were positioned forming a square grid. A randomly dis-

tributed cloud of 200 points in 3D was generated and

projected in each camera. Four sample homing trajectories

with a 25-view reference set and the evolutions of their

corresponding motion commands are displayed in Fig. 6. The

cloud of points is also shown. One of the trajectories starts

from a position outside of the grid of reference views. As

can be seen, it behaves in the same way as the other three.

In all four trajectories the motion is smooth and the robot

converges to the goal position.

The reference views can be laid out in any arbitrary

configuration (as long as sufficient geometric diversity on

the plane is guaranteed). We illustrate this fact with the

simulation shown in Fig. 7. Eight reference images are used,

and they are placed at arbitrary locations in the environment.

The plot shows the paths from a common initial location

(marked with a square) to the positions associated to the

reference images, i.e. a different image is selected as the

target each time.

We also added Gaussian noise to the angles of the pro-

jected points to evaluate the performance of the homing

method. Fig. 8 displays the final position error obtained

after adding variable noise in simulations with sets of 4

(the minimum number for our method), 8 and 16 reference

images. Increasing the number of reference views makes the

system more robust to noise, since the linear velocity of the

control is computed by averaging out the contributions of all

the views.

B. Experiments with real images

In order to assess the performance of our homing method,

we tested it with three diverse sets of real omnidirectional

images.

1) First indoor experiment: The images for this first

experiment were obtained in a laboratory setting. The ex-

perimental setup is illustrated in Fig. 9. It consisted of

an ActivMedia Pioneer nonholonomic unicycle robot base

with a catadioptric vision system, made up of a Point Grey

FL2-08S2C camera and a Neovision HS3 hyperbolic mirror,
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Fig. 6. Simulation results. Left: robot paths for four different trajectories with a reference set consisting of 25 images acquired in positions forming a
grid. The goal view is at position (0,0) for all the trajectories. The locations of the reference images are marked as circles. The cloud of 200 points used
to compute the 1D trifocal tensors is also shown. Center: Linear velocity for the four trajectories. Right: angular velocity for the four trajectories.
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Fig. 7. Simulation results: robot paths with 8 reference images in arbitrary
locations. The different paths obtained by taking each of the reference
images (marked as circles) as the goal, from a common starting location
(marked as a square), are shown.
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Gaussian noise for reference sets of 4, 8 and 16 images.

Fig. 9. Omnidirectional camera (left) and complete setup (right) used for
the first indoor experiment and the outdoor experiment.

mounted on top. The resolution of the employed images was

800 × 600 pixels. The imaging system was used without

specific calibration other than the assumption that the camera

and mirror axis are vertically aligned.

To generate the reference set of views, 20 images were

acquired from locations forming a 5 × 4 rectangular grid

with a spacing of 1.2 m., thus covering a total area of 4.8 ×
3.6 m2. Features in the images were extracted and matched

using SIFT, and a RANSAC robust estimation was used to

calculate the 1D trifocal tensors between the views. The

number of three-view correspondences employed to obtain

the trifocal tensor estimations lied in the range of 30 to 80.

Although images taken on opposite sides of the room could

not be matched, the connections between adjacent or close

sets of views were sufficient to recover the relative angles of

the complete reference set. Vector field representations for

two different goal locations within the grid are displayed in
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Fig. 10. Top: displacement vectors (arrows) and directions of the epipoles
(line segments) with respect to the goal estimated at every reference position
for two different goal locations (marked with a cross) in the real setting
of the first indoor experiment. Bottom: goal images corresponding to the
homing vector representations on top.

Fig. 10.

The arrows in this figure represent displacement vectors

and have the following interpretation: if we consider a

robot with unicycle kinematic constraints initially situated

on each of the reference spots, with its initial orientation

aligned with the Y axis of the plot, the arrows represent

the displacement that the robot would perform according to

the proposed control law. All the vectors have been scaled

by an equal factor (the scale is different in the two plots,

for better visualization). As can be seen, the magnitude of

the vectors becomes larger as the distance to the target

increases. Notice in both plots that in the positions from

which the angle to the goal is ±π/2, the robot does not

translate initially. In these cases it first executes a rotation,

due to the cosine term introduced in the linear velocity of

the control law (11), before moving towards the goal. The

line segments in Fig. 10 show the estimated directions of

the epipoles of the goal position (i.e. the homing vectors) in

each of the reference locations. The accuracy of the results

obtained in this experiment is remarkable. The outliers in the

set of putative point correspondences are rejected through

the robust computation of the 1D trifocal tensor, and the

availability of a fairly large number of good three-view

matches makes it possible to compute the angles between

views very precisely.

2) Second indoor experiment: In order to assess the

performance of our method in more involved scenarios, we

tested it on the dataset of omnidirectional images used in

[34]. The images in this set (see examples in Fig. 11)

were provided unwrapped and had a resolution of 720 ×
120 pixels. We note here that our approach can be applied

Fig. 11. Example of a trio of images from the data set of the second
indoor experiment [34] with their putative SIFT correspondences joined by
lines (top). Feature matches remaining after the robust computation of the
1D trifocal tensor (bottom).

indistinctly to both wrapped and unwrapped omnidirectional

images. This data set covers an office environment compris-

ing a long corridor (around 14 m. of length) and several

rooms, and its images were acquired with separations of 0.3

or 0.5 m. The number of images used in this experiment was

213. Despite this denser coverage of the environment with

respect to the first experiment, the extraction and matching of

SIFT points between the views was much more complicated

due to the lower quality of the images. Thus, it was necessary

to select the parameters of the SIFT extractor appropriately,

which was done following the guidelines described in [7].

A number of 12 three-view correspondences was found

to be the minimum necessary for our method to operate

on this data set. An example of the matching process for

a trio of images from this set, showing the initial SIFT

correspondences between them and the matches remaining

after the robust computation of the 1D trifocal tensor, is

displayed in Fig. 11.

The results of this experiment are illustrated in Fig. 12.

The top three plots in the figure display the homing vectors

from all the reference positions to the target location, for

three goals chosen in different parts of the environment

(inside a room, in the center of the corridor, and near the

opposite end of it). As can be seen, the results are fairly

accurate and robust despite the low quality of the images.

This is also true when the positions are very far from the

goal or even located in a different room. For a small group

of locations in the set it was not possible to compute the

angular information and resulting homing vector. These cases

occurred when either the number of matched features was

insufficient or incoherent results (which were automatically
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Fig. 12. Experimental results for the data set of the second indoor experiment. The environment consists of two rooms and a corridor. Top three plots: the
computed homing vectors from all the positions of the reference views in the set to the goal location, marked with a cross, are shown for three different
examples. Bottom plot: sampled path along a chain of reference positions from a starting location (triangle) to a homing destination (cross) passing through
two homing sub-goals (circles).

detected and rejected by our method through geometric

consistency checks) were obtained.
Obviously, it would be necessary to define intermediate

goals in order for the robot to navigate in a setting of this

kind. If, for instance, we would like to go from the room

on the left (room 1) to the room on the right (room 2) in

this environment, the sequence of steps to follow would be:

first move through the door out of room 1 to a reachable

goal position in the corridor, then travel to the other side of

the corridor to a goal position in front of the door of room

2, then get into room 2 and reach the final goal. That is, a

global homing task has to be divided in several direct homing

steps, in each of which the goal location must be directly

reachable from the starting position. We illustrate the results

of an example of such a task in the bottom plot of Fig. 12.

The homing vectors along a sampled approximation of the

path that the robot would follow are shown. The intermediate

goals have been selected manually. Several aspects related

with the long-range operation of our homing method are

treated in the discussion section (V) of the paper.
We also present results with regard to the connectivity of

the views in this experiment in Fig. 13. Connectivity graphs

and their associated adjacency matrices are displayed. As can

be seen, only images that are close physically can be initially

connected. These links are obtained from the computation of

the 1D trifocal tensor between sets of three views. Then, the

matrix becomes filled using the indirect angle computation

procedure. Two intermediate cases of this process are shown

in Fig. 13, illustrating how the connections between views

are progressively computed. Eventually, almost the complete
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Fig. 13. Connectivity between views for the second indoor experiment.
Left column: graph representations of the connectivity, with lines joining
the connected locations in the environment after using our approach. Right
column: color-coded adjacency matrices corresponding to the connectivity
graphs on the left. White color means ’1’, black color means ’0’. The values
in the axes denote the indices of the images, ranging from 1 to the number
of available images. From top to bottom, four cases are shown: the initial
connectivity, two intermediate cases, and the final connectivity results.

set becomes interconnected, as shown by the plots in the

bottom row of the figure. The rate of the number of angles

computed initially with respect to the total number of angles

between all the views is 4.5%: a very low value, due to

the setting being large and densely populated with reference

images. However, this rate grows gradually to reach a high

final value of 82.9%. In the end, only 20 out of the 213

available images could not be connected to the rest of the set,

which means that 90.1% of the images were interconnected.

These experimental results show the ability of our technique

to connect robustly the views between different spaces (e.g.

different rooms), through large numbers of intermediate

images, and across long distances in a given environment.

They also illustrate how our approach can perform well in

scenarios with low quality images and few matched features.

3) Outdoor experiment: The method was also tested in an

outdoor scenario, using a data set acquired in a parking lot at

our university campus. The images were obtained using the

same robotic platform and camera arrangement described in

section IV-B.1. The separation between the locations where

the different reference images were taken was much larger

than in the indoors tests. For this experiment we used a set

of 18 images acquired from positions forming a rectangular

grid of approximate size 62 × 31 m2. Thus, the distance

between opposite corners of the grid was of around 70

m. The minimum distance between two images in this set

was 12.5 m. Once again, the SIFT keypoint extractor was

employed to obtain feature matches between the images. The

number of three-view correspondences used to compute the

1D trifocal tensors was in this case in the range of 20 to

Fig. 14. Example of a trio of images from the outdoor data set with
their putative SIFT correspondences joined by lines (left). Feature matches
remaining after the robust computation of the 1D trifocal tensor (right).
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Fig. 15. Color-coded adjacency matrices for the outdoor experiment’s
image set. White color means ’1’, black color means ’0’. The initial (left)
and final (right) adjacency matrices are shown.

60. Useful point matches were found mainly on the walls of

buildings, in the outer regions of the omnidirectional images.

Figure 14 shows an example of the three-view matching

process for this set, illustrating once again how the robust

computation of the 1D trifocal tensor makes it possible to

eliminate wrong correspondences.

Similarly to what occurred with the indoor tests, in this

experiment only the connections (i.e. the angles of the

epipoles) between physically close locations could be com-

puted directly, with the remaining angles being calculated

indirectly. We computed in this case 40% of the angles

between the available views directly. The initial adjacency

matrix obtained for this set of images is shown in Fig. 15,

along with the resulting final adjacency matrix. As can be

seen, in this case we eventually obtained a complete graph

(100% of the angles, i.e. we were able to link all the reference

positions between one another). The results of the angle



Fig. 16. Top: homing vectors estimated at every reference position for three different goal locations (marked with a cross) for the outdoor experiment.
The homing vector from an outer position associated to an image not belonging to the reference grid is also shown. The vectors are plotted superimposed
on a bird’s-eye picture of the real setting. Bottom: goal images corresponding to the three homing vector representations on top.

calculations for the outdoor experiment are illustrated in

Fig. 16, which shows the computed homing vectors from

the reference positions to the goal (marked with a cross) for

three different cases. The actual target images corresponding

to each case are also shown in the figure. We also show

the homing vectors from a position outside of the grid of

reference views. This illustrates that, as long as it is possible

to find sufficient three-view feature matches to compute the

1D trifocal tensor reliably between a given initial image and

two of the reference images, our homing method will work,

independently of the physical location where that initial

image is captured. The setting appears full of cars in the

bird’s eye view on which we superimpose our results, but

it was much less crowded when the images were acquired.

We can see that the results are good in terms of robustness

and accuracy. As previously commented in section IV-B.2, in

order to navigate in this setting we would need to ensure that

the goal location is reachable, e.g. by defining intermediate

homing targets such that the robot always moves along the

corridors of the parking lot.

The results of the outdoor experiment show that even with

a relatively sparse representation of the environment, in terms

of the separation between reference images, our approach is

still capable of performing robustly. It has potential to cover

and interconnect large areas, and allows homing to targets at

long distances.

The different experiments we have conducted demonstrate

that our method is versatile and has the ability to perform

robustly in different scenarios, both indoors and outdoors.

V. DISCUSSION

In this section we compare the characteristics of our

homing method with those of other existing approaches, and

discuss a number of aspects related to it.

A. Comparison with existing work

In the following, we discuss the differences between the

approach we present and other closely related works in

the fields of visual homing and navigation. It is difficult

to make a homogeneous and fair performance comparison

among methods, since each of them has very different

characteristics. Still, a number of aspects can be addressed.

In order to allow a more specific and detailed comparative

analysis, let us take at certain points of this discussion the

method by Argyros et al. [10] as a representative of visual

memory-based approaches, and the work by Goedemé et al.

[27] as an example of topological map-based techniques.

The method [10] is, like ours, purely angle-based. The

shape of the generated path to the goal depends heavily

on the particular distribution of the scene landmarks. In

contrast, in our method the path is independent of this. The

difference in behavior is illustrated in the simulation we

present in Fig. 17. Also, [10] can only be used to replay

previously executed homing paths (i.e. it is a pure path-

following approach). The method [27] uses an initial homing

vector which is refined during the execution of the homing

task. This initial vector is computed from the decomposition

of the essential matrix for omnidirectional cameras, which is

also used for the estimation of the homing direction in the

work [28]. We provide in Fig. 18 a comparison of the error

in the calculation of the homing vector when it is carried



−10 −5 0 5

−10

−5

0

5

x (m)

z
 (

m
)

−10 −5 0 5
−10

−5

0

5

x (m)

z
 (

m
)

Fig. 17. Homing paths from two different initial locations to the goal
location situated in (0,0), with seven (left) and eight (right) feature matches.
The paths generated by the method proposed by Argyros et al. [10] (solid
line) and the paths generated by the approach presented in this paper (dashed
line) are shown.

out using our method (based on the 1D trifocal tensor) and

using the essential matrix. As can be seen, the trifocal tensor

based-method is significantly more robust against noise.

As occurs with most existing visual homing approaches,

both [10] and [27] use only two views to carry out the task,

while we use the relations between three views. In these two

approaches, the images employed can be acquired in any

spatial distribution, whereas in our method, care must be

taken to avoid acquiring all the images from positions on a

straight line. Both of the related techniques take measures

to prevent outlier matches, but these are based on two-

view constraints, while we employ a stronger, three-view

constraint (the 1D trifocal tensor). In contrast with our

approach, none of the other two methods takes explicitly

into account nonholonomic vehicle kinematics in the design

of the motion strategy.

The approach we propose needs a minimum number of

four reference images (the goal image and three others). It

requires seven three-view correspondences in general con-

figuration (i.e. not all on the same plane of the scene), so

that the 1D trifocal tensor can be computed. This minimum

number of correspondences is reduced to five if the camera

is calibrated. Our second indoor experiment shows that our

approach is able to operate with a minimum of twelve

correct point correspondences between three views, although

a number higher than twenty is desirable for better accuracy.

In comparison, the method by Argyros et al. [10] employs

a minimum of three matches between two views, although

in practice they require several tens of correspondences to

achieve good performance. The technique by Goedemé et

al. [27] needs a minimum of eight points in general config-

uration matched between two views. Again, more points are

usually considered, so as to make the computations more reli-

able. We believe the information requirements of our method,

although higher than those of other existing approaches,

are very reasonable, since image feature extractors typically

provide many more matches than the minimum needed.

The fact that long-range homing can be carried out directly

in our method, provides advantages with respect to both

image memory-based and topological map-based long-range

navigation approaches, since we will require fewer homing

sub-paths in general, thus increasing the efficiency. We

believe that our method can also be more flexible if changes

in the path are required: unlike in [10], [17], [30], the path

to a given goal location is not restricted to following a fixed

sequence of images, and unlike in [27], [28], all the positions

of the reference views may be chosen as direct homing goals

at all times.

We believe that two advantages of our method are its

robustness, thanks to the use of the trifocal constraint, the

geometric consistency checks and the stability properties of

the control law, and its accuracy, due to the fact that both

the employed visual information and the designed control

law are purely angular.

B. Practical and performance-related considerations

Next, we address several points related to the performance

of our method and discuss a series of practical consider-

ations. An interesting issue to tackle is how the error in

the computed angles propagates as new angles are obtained

using the indirect estimation procedure (section II-B). The

theoretical analysis of this aspect in a general case (i.e.

for arbitrary angles in the four-view set of Fig. 3) turns

out to be very involved. We have observed through exten-

sive experiments that the angular error does not propagate

significantly across the graph we construct. Moreover, note

that large error propagation is prevented by the three-view

geometric consistency checks we perform, which ensure that

the errors in the angle computations are always maintained

within certain bounds. We provide as example the result

from a simulation for 4, 8 and 16 images in a square grid-

shaped reference set in Fig. 18. For this simulation, only

the minimum necessary angles were computed directly, and

all the rest were obtained indirectly. Notice that the average

error does not increase when computing the indirect angles.

Regarding the performance of the angular disambiguation

process described in section II-A.2, we have verified through

extensive experiments that the procedure we propose has

a very high success ratio. Figure 18 illustrates some of

our results. As can be seen, and for obvious reasons, the

disambiguation of the assignment of the epipoles has a

larger probability of failure when the positions of the images

are closer to being along a straight line. We show in the

figure that the epipoles can frequently be assigned wrongly

in quite extreme cases (very few points matched, and very

high noise). With just a few more points (twenty) available,

the success rate improves drastically. We have observed

through experimentation that the ambiguity in determining

the relative motion between two views from the 1D epipoles

(Fig. 2) is resolved very effectively by our proposed method.

Even for the minimum possible number of points (7) and

very high noise (5◦ of standard deviation in the projected

angles), the disambiguation turns out to be correct in 99% of

the cases. Note that the incorrect two-view disambiguations

that may originate from errors in the assignment of the

epipoles are robustly detected and discarded when the joint,

three-view coherence of the two-view results is checked

(algorithm 1).
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Fig. 18. Left: average error in the computed angle of the homing vector vs. number of matched features used. Solid line, top to bottom curves: homing
vector computed from the essential matrix, with added Gaussian noise of standard deviation 3, 1 and 0.3◦, respectively. Dashed line, top to bottom curves:
homing vector computed through our method based on the 1D trifocal tensor, with added Gaussian noise of standard deviation 3, 1 and 0.3◦, respectively.
Center: Error propagation in the computed angles between views, for reference sets of 4, 8 and 16 images. Right: performance of the procedure to
disambiguate the assignment of the epipoles. Solid line, top to bottom curves: success ratio of the disambiguation vs. degree of alignment of the locations
of the views, for seven matched points and Gaussian noise of standard deviation 1, 3 and 5◦, respectively. Dashed line, top to bottom curves: success ratio
for twenty matched points and Gaussian noise of standard deviation 1, 3 and 5◦, respectively.

The required density of reference images with our method

is dictated by the need for a sufficient number of three-

view feature matches in order to compute the 1D trifocal

tensor reliably. Thus, the maximum separation between the

locations of two reference images, or the maximum distance

from a given starting location to the locations where the

images in the set were taken, is given by the distance

at which the number of three-view matches drops below

a certain threshold. Also, the positions of the reference

images in our method must not all be on a straight line,

since both the disambiguation and indirect angle computation

procedures rely on the differences between the angles in the

triangles created by groups of three views. While acquiring

the reference images, it is simple to take this point into

account and guarantee that their locations are distributed in

the environment with sufficient diversity.

With these conditions in mind, we believe that it would

be possible to do the exploration of the environment in order

to capture the reference images in a semi-automatic manner.

The robot could be run across the environment capturing

images either at a certain rate, or when the number of

matches fell below a certain threshold. A sufficient number of

three-view matches between views needs to be available, and

in practice, the parameters of the feature extractor/matcher

have to be tuned in order to adapt to the conditions of

the environment and the images. These adjustments, which

can be typically done automatically, allow to optimize the

number of correspondences. If dynamic changes in the

environment occur, our homing approach will be robust to

them as long as sufficient features between images can be

matched.

The definition of the intermediate homing objectives for

our method could be done manually, or aided by the use of

image classification and place segmentation techniques, in

the manner of [35], [36]. In our case, the information that

could be used for these purposes is the initial connectivity

graph of the environment. For a given view, this graph deter-

mines robustly what other views share significant common

visual content with it. In order to implement our method, it

is required to integrate the homing approach with a reactive

obstacle avoidance procedure, as is common in other works

in the literature [10], [27].

VI. CONCLUSION AND FUTURE WORK

We have presented a visual homing method for a robot

moving on the ground plane. Employing omnidirectional

images acquired from the current robot position, the goal

location and a set of other positions in the environment,

the method works by computing the relative angles between

all the locations by means of the 1D trifocal tensor. We

have proposed a control law to drive the robot to the goal

employing the calculated angles. This law has been proven

to possess strong stability properties. In addition, the experi-

ments have shown that the approach provides good accuracy

and can perform robustly both indoors and outdoors, with

low image quality and with varying density of images in the

reference set. Homing between distant locations and different

settings is also feasible. The online operation of the method is

fast, the feature extraction process being the main limitation

in terms of speed. The method can be directly applied in

settings where stored image databases are available.

We can think of a number of directions for future work.

First, the method could be extended by adapting the control

law so that it applies to vehicles with different motion

constraints, in particular with car-like kinematics. Also, it

would be interesting to consider the possible methods to

cluster the images in the constructed graph to allow the

definition of the intermediate targets for a long-range homing

task. Another possible issue to address would be how the

acquisition of the reference image set could be carried out in

an unknown environment, taking into account such aspects as

the exploration strategy, the desired coverage area, the spatial

distribution of images and the separation between them.

Integrating the system with a reactive navigation method

for obstacle avoidance would be another interesting problem.

Finally, we believe it is feasible to extend the approach in



order to make it capable of driving the robot to positions in

the environment defined not by images captured from them,

but by visual features.

APPENDIX

A. Global asymptotic stability

Theorem 1: The system under the proposed control law

(11), (12) is globally asymptotically stable if kω > kv ·
π/dmin.

Proof: We will use Lyapunov techniques [37] to

analyze the stability of the system. We define the following

definite positive candidate Lyapunov function:

V (x, t) =
ρ2

2
+

(αCG − αd
CG)

2

2
, (13)

where ρ is the distance between the current and goal posi-

tions, and x is the state of the system, determined by ρ and

αCG. The two state variables we use are a suitable choice,

since we are only interested in reaching the goal position,

regardless of the final orientation of the robot. As can be

seen, both V and V̇ are continuous functions.

We note at this moment that the equilibrium in our system

occurs at the two following points: (ρ, αCG) = (0, 0) and

(ρ, αCG) = (0, π), which correspond to the situations where

the robot reaches the goal moving forwards or backwards,

respectively. In order to account for the multiple equilibria,

in the following we use the global invariant set theorem [38]

to prove the asymptotic stability of the system.

What we need to show is that V is radially unbounded

and V̇ is negative semi-definite over the whole state space.

It is straightforward that V (x) is radially unbounded, given

that V (x) → ∞ as ‖x‖ → ∞. Next, we prove that the

derivative V̇ (x) is negative definite. For our chosen candidate

Lyapunov function, this derivative is as follows:

V̇ = ρ ρ̇+ (αCG − αd
CG) α̇CG . (14)

We will suppose that the vehicle on which the control

method is to be implemented is a nonholonomic unicycle

platform. The dynamics of the system as a function of the

input velocities is then given, using the derivatives in polar

coordinates with the origin at the goal, by ρ̇ = −v cos(αCG)
and α̇CG = −ω+v sin(αCG)/ρ. Using the control velocities

(11), (12) we obtain

V̇ = −kv ρ cos2(αCG)
1

n

n
∑

i=1

Si − kω(αCG − αd
CG)

2

+(αCG − αd
CG) · sinαCG

kv
ρ

cosαCG ·
1

n

n
∑

i=1

Si .

(15)

By definition ρ ≥ 0 and Si ≥ 0. It is then straightfor-

ward to see that the first and the second term of (15) are

negative definite. However, the third term can be positive.

The interpretation is that for the system to be stable, the

convergence speed provided by the angular velocity has to

be higher than the convergence speed given by the linear

velocity. Otherwise, the angular error is not corrected fast

enough and the robot will move following spirals around

the goal. Still, the stability can be guaranteed if the control

gains are selected properly. From (15) we can see that it is

guaranteed that V̇ < 0 if the following inequality holds:

|kω · (αCG − αd
CG)| > | sin(αCG) cos(αCG)

kv
ρ

·
1

n

n
∑

i=1

Si| .

(16)

This is equivalent to the following condition on the angular

velocity gain:

kω >

∣

∣

∣

∣

∣

sin(αCG)

(αCG − αd
CG)

cos(αCG) · kv ·
1

n

n
∑

i=1

Si

ρ

∣

∣

∣

∣

∣

. (17)

We aim to find an upper bound to the right side of (17).

We start by analyzing the first fraction. Since αd
CG is equal

to either 0 or π, and sin(αCG) = − sin(αCG−π), we have:
∣

∣

∣

∣

sin(αCG)

(αCG − αd
CG)

∣

∣

∣

∣

=

∣

∣

∣

∣

sin(αCG)

(αCG)

∣

∣

∣

∣

≤ 1, (18)

as sin(αCG)/αCG is a sinc function, whose maximum

absolute value occurs at αCG = 0 and equals 1. We now look

for a bound to the Si/ρ term in (17). The angular sector Si

seen from reference view i has a value lying in the interval

0 ≤ Si ≤ π. We will study two subintervals separately:

• 0 ≤ Si ≤ π/2. Applying the law of sines on the

triangle defined by vertices C, G and Ri in Fig. 5, the addend

in (17) corresponding to reference view i becomes:

Si

ρ
=

Si

sin(Si)
·
sin(ĈRiG)

di
≤

π

2 · dmin

(19)

The first fraction of the product in (19) is a function of Si

whose value equals 1 at Si = 0 and increases monotonically

to a value of π/2 at Si = π/2, which is the limit of the

interval we are considering. Since the second fraction has

an upper bound equal to 1/dmin, the product of the two is

upper-bounded by π/(2 · dmin).
• π/2 < Si ≤ π. In this case, ρ > di, and an upper

bound is readily found for the addend in (17) corresponding

to reference view i:

Si

ρ
≤

π

dmin

. (20)

Thus, the contribution of each of the reference views to

the sum is upper-bounded by the higher of the two bounds in

(19) and (20), which is π
dmin

. The mean of all the individual

contributions is therefore bounded by this value, i.e.:

1

n

n
∑

i=1

Si

ρ
≤

π

dmin

, (21)

and inequality (17) becomes:

kω >
kv · π

dmin

. (22)



B. Local exponential stability

Proposition 1: The system under the proposed control law

(11), (12) is locally exponentially stable.

Proof:

We analyze the behavior of the system locally, i.e. assum-

ing the orientation of the robot has already been corrected

(αCG = αd
CG). The dynamics of the distance from the goal

for the unicycle vehicle considered is then given by:

ρ̇ = −v cosαCG = −kv
1

n

n
∑

i=1

Si. (23)

Now, taking into account that Si ≥ sinSi in all the interval

of possible values (0 ≤ Si ≤ π), we have:

ρ̇ ≤
−kv
n

n
∑

i=1

sinSi = −

[

kv
n

n
∑

i=1

sin(ĈRiG)

di

]

· ρ. (24)

It can be readily seen, looking at Fig. 5, that for any given

current position C of the robot, sin(ĈRiG) will be greater

than zero for at least one Ri as long as there are at least three

reference views (including the goal) and their locations are

not collinear. Thus, there exists a positive value λmin such

that
kv
n

n
∑

i=1

sin(ĈRiG)

di
≥ λmin > 0. (25)

From (24) and (25) it can be concluded that the local

convergence to the target state is bounded by an exponential

decay, i.e. the system is locally exponentially stable.
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