
Epipole-Based Guidan
e for an Autonomous Glider

Wilson O. A
hi
anoy

1

Universidad de Nariño, Pasto 520002, Colombia.

Carlos F. Rodriguez

2

Universidad de los Andes, Bogotá 111711, Colombia.

Carlos Sagüés

3

and Gonzalo López-Ni
olás

4

Universidad de Zaragoza, Maria de Luna 1 E-50018, España.

Two strategies based on epipolar geometry are proposed to guide an aerial vehi
le to a

desired position de�ned by a referen
e image. The starting point to design the strate-

gies is the engagement geometry of two images: the on-line image provided by the

on-board 
amera and the referen
e image. A full 
losed-loop system is derived 
om-

bining the 
on
ept of 
lassi
al proportional navigation, with the input-output nonlinear


ontrol te
hnique, and the tra
king of epipolar referen
es. Our main 
ontribution is the

de�nition of a guidan
e algorithm based on the partial linearization of the full 
losed-

loop system by means of pure image-based information: the epipolar geometry a
ross

two views. The proposed formulation avoids the requirement of estimating the range

between the 
urrent and target positions. Conditions for stability are established for

both strategies. Simulation experiments show the inter
eption of the target position

by the aerial vehi
le and additionally, a simple attitude 
ontrol.
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Nomen
lature

A = inertial North-East-Down (NED) 
oordinate system

A
a = origin of A, m

B = body-�xed 
oordinate system

A
b = origin of B, m

C = 
urrent 
amera-�xed 
oordinate system

A
c = origin of C, m

T = target 
amera-�xed 
oordinate system

A
t = origin of T , m

µc, µt = lead and aspe
t angles, deg

CT -LoS = Current-Target Line of Sight, i.e., LoS through the 
amera 
enters

λ = angle of the CT -LoS, deg

λ̇ = rate of 
hange of the CT -LoS angle, deg/s

γc, γt = �ight-path angles of the 
urrent and target 
ameras, deg

fc, ft = fo
al length of the 
urrent and target 
ameras, pixels

ec,y, et,y = 
urrent and target epipolar 
oordinates, pixels

ėc,y, ėt,y = rate of 
hange of the 
urrent and target epipolar 
oordinates, pixels/s

r

,t = magnitude of the range between 
amera 
enters, m

n = magnitude of the lateral a

eleration perpendi
ular to the CT -LoS, m/s

2

CT -system = state spa
e representation of the engagement

η = [λ, λ̇]T , CT -system's state ve
tor

A = CT -system's state matrix

B = CT -system's input ve
tor

u = n, CT -system's input, m/s

2

ξi = [ei,y , ėi,y]
T
, linearized output's state ve
tor

Ai = linearized output's state matrix

Bi = linearized output's input ve
tor

vi = linearized output's input, pixels/s

2

Ci = linearized output's measurement ve
tor

ξi,1,r = ei,y,r, epipolar referen
e, pixels

σi = tra
king error, pixels·s

Ki = state feedba
k gain ve
tor
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ωi = input disturban
e, pixels/s

2

xi = [ξTi , σi]
T
, 
losed-loop augmented linearized output's state ve
tor

Ai,a = 
losed-loop augmented linearized output's state matrix

Bi,a, B̄i,a = 
losed-loop augmented linearized output's input ve
tors

χi = [ηT ,xT
i ]

T
, full 
losed-loop system's state ve
tor

f(χi) = full 
losed-loop system's nominal system

Wi = full 
losed-loop system's input perturbation

Subs
ripts and supers
ripts:

i = 
: 
urrent, t: target

y = epipolar 
oordinate in the verti
al plane

a = augmented matri
es and ve
tors

r = referen
e epipolar 
oordinate

A, B, C, T = relative to respe
tive 
oordinate frame

I. Introdu
tion

IN the last years, the proliferation of unmanned aerial vehi
les for several purposes (monitoring,

delivery, re
reation, et
.), has promoted the development of Guidan
e, Navigation and Control

te
hniques (GNC) [1-3℄. Although, many di�erent 
ombinations of ele
troni
 systems are used

(FPGAs, DSPs, 
ameras, IMUs, GPSs, radars, spe
trometers, et
), it is attra
tive to base the GNC

algorithms in few elements, in order to in
rease the global reliability of the aerial vehi
le. This work

addresses the guidan
e of an autonomous glider with a te
hnique that uses a 
amera as the main

sensor and algorithms based on the epipolar geometry.

In general, the use of 
omputer vision data in robot motion 
ontrol is known as visual servo


ontrol, and the use of visual-feedba
k 
ontrol loop to in
rease the a

ura
y of the robot motion

system is known as visual servoing [4℄. The epipolar geometry has been widely studied and used

for wheeled-robot navigation, but its use for the guidan
e of aerial vehi
les it is still an open

resear
h area. In [5℄, Chaumette and Hut
hinson des
ribe the use of epipolar geometry to estimate

3-D parameters of the 
amera pose, given two views of the same s
ene. In their approa
h, the
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fundamental matrix is 
omputed using a set of 
orresponding points between two images. The main

drawba
k of this te
hnique o

urs when the 
urrent and desired images 
oin
ide, sin
e the epipolar

geometry be
omes degenerate and other formulations, su
h as the homography, are preferred for

the visual 
ontrol. Hybrid and swit
hing te
hniques, that join the epipolar geometry and the

homography, are then proposed as a solution for the visual servo 
ontrol of a robot.

In [6℄, Rives proposes an image-based visual servoing navigation method based on the motion

of interest points over the image to rea
h their respe
tive epipolar lines using two steps: robot

rotations, and robot translation along the epipolar line. Mariottini et al. propose in [7,8℄ an image-

based visual servoing algorithm for nonholonomi
 mobile robots, using also two steps: �rst the


ontrol uses input-output linearization to regulate the 
urrent epipole and to align the robot with

the line along the opti
al axis of the desired 
amera, and then, the 
ontrol advan
es the robot to the

desired position. No knowledge of the 3-D s
ene is required and asymptoti
 
onvergen
e is proved.

López-Ni
olás et al. show in [9℄ an epipolar visual servoing te
hnique that in
ludes into the

design of the 
ontrol law the nonholonomi
 
onstraints of a mobile robot. Two views are used

to fa
ilitate the tea
h-by-showing visual servo approa
h and no spe
i�
 knowledge of the s
ene is

required. The epipolar 
oordinates are used as inputs for the nonlinear system, and input-output

linearization is used to design the 
ontrol law. In [10,11℄, López-Ni
olás et al. propose a swit
hing


ontrol for mobile robots based on the epipolar geometry and homography. The swit
hed 
ontrollers

are designed using exa
t input-output linearization. The goal of this swit
hing 
ontrol is to produ
e a

smooth robot motion a
tivating the alternative 
ontrol when an ill-
onditioned situation is dete
ted.

Dis
ontinuities due to the swit
hing are avoided feeding ba
k the velo
ities of one 
ontrol to the

other one.

Many advan
es in visual servo 
ontrol applied to GNC of aerial vehi
les have been also developed

re
ently. Most of them use state estimation based on visual data and Kalman �lters. For example,

in [12℄, Gur�l and Rotstein use an impli
it extended Kalman �lter (IEKF) to estimate the states

of an air
raft. The �lter in
ludes noisy measurements and the air
raft velo
ity ve
tor 
al
ulated

in 
amera axes by means of the so-
alled impli
it 
onstraint. The use of the IEKF redu
es the

noise due to the vehi
le motion. In re
ent works [13,14℄, Indelman et al. propose a new vision-
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based navigation aiding te
hnique for navigation. This te
hnique uses the 
onstraints derived from

general three-view geometry, and inertial navigation information to improve the estimation of the

position of the aerial vehi
le. The fusion of the information is done by means of an IEKF that also

estimates the drift and bias errors of the inertial navigation system (INS). This te
hnique is used

to solve position estimation in GPS-denied environments and for 
ooperative navigation. Other


ontributions of this te
hnique are the handling of loops (a vehi
le revisits the same area) and the

redu
ed 
omputation load against other methods of lo
alization. This te
hnique keeps the estimated

ve
tor size as a 
onstant and it relegates the s
ene re
onstru
tion as a se
ondary task.

In [15℄, Webb et al. deal with the problem of state estimation for autonomous mi
ro aerial

vehi
les (MAV). They use an IEKF plus epipolar geometry 
omputed from feature points estimated

with image pro
essing. Under this 
on�guration, it has been proved that the �lter 
ompensates

signi�
ant modeling and initial 
ondition errors. In [16℄, Ko
h et al. propose an extended Kalman

�lter (EKF) for sensor data fusion and for unmanned aerial vehi
le (UAV) navigation. The �lter

uses vision data from ground features, tra
ked by the Lu
as-Kanade Feature Tra
ker method, in

order to 
ompensate GPS failures. The position of ground features is determined as long as GPS

data is available. When GPS fails, the position of new features is 
omputed from the states that

are estimated from the vision-based �lter.

Johnson et al. [17℄ des
ribe two vision-based methods to estimate the range of an air
raft

relative to a target. A single 
amera provides measurements of the target in the image plane, and

both, the velo
ity and the position of the air
raft relative to the target, are estimated by means of

an EKF. In [18℄, Ma et al. propose a guidan
e law for a small UAV using a vision-based tra
king of

a target moving on the ground. Measurements of the target position in the image plane of a single


amera are used in an adaptive estimator, whi
h feeds ba
k the guidan
e law in order to maintain

the vehi
le tra
king the target at a given horizontal distan
e. The vehi
le makes a 
ir
ular orbit of a

prede�ned radius keeping the target at the 
enter of the orbit. In an early work [19℄, the same authors

addressed the problem of tra
king a ground vehi
le, with unknown time-varying velo
ity, stabilizing

the tra
king horizontal distan
e to the target, to a 
onstant value. A fast-estimation algorithm is

used to estimate the time-varying target's velo
ity and an inverse-kinemati
-based 
ontroller is used
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to stabilize the horizontal range. Two 
ontrollers and a swit
hing s
heme are designed respe
tively

for the 
ase when visual measurements are available and the 
ase when out-of-frame events o

urs

(target is out of the image plane). Stability analysis of both 
ontrollers is presented. A di�erent

approa
h is proposed in [20℄, where Martinez et al. use feature points estimated from the 
amera

information, to maintain the 
onsisten
y of image 
al
ulations with the image s
ale 
hange, when

the vehi
le approa
hes to the target. They show simulations, seeking a laser marker temporarily

o

luded.

The use of homography for air
raft navigation and 
ontrol has been reported by Kaiser et al.

in [21℄, where a vision-based pose estimation method is proposed for an aerial vehi
le to determine

the 
urrent 
oordinates between su

essive images. The method is based on a series of geometri


homography relationships, to 
reate a series of daisy-
hained pose estimates. This method ensures

the mapping of landmarks in the world frame and 
an estimate the position of stati
 features that

leave the �eld of view (FoV) of the 
amera. The problem of degradation or instability of the visual

servo 
ontrol when the features leave the FoV has been previously addressed. For instan
e, in [22℄,

homography relationships and image geometry are used to estimate the positions of feature points in

the FoV of satellites. Also, in [23℄, Lee et al. present an adaptive image-based visual servoing 
ontrol

integrated with an adaptive sliding mode 
ontrol for the operation of a small UAV (a quadrotor).

The 
ontrol obje
tive is to keep the image features into the image plane, using the position and

angular rate data from both a motion 
apture system and an inertial measurement unit (IMU).

In this paper, we present two guidan
e strategies for an autonomous glider, a 
lass of aerial

vehi
les equipped with a single 
amera. These strategies are based on the epipolar 
oordinates

that 
an be 
omputed from two overlapping images using the geometry of two views. As it is

noted by Indelman et al. in [14℄, the use of only two views gives information about the 
amera

orientations, and the range between the 
amera 
enters 
annot be 
omputed dire
tly. Additional

information, su
h as inertial navigation, is ne
essary to improve the estimation of the aerial vehi
le

a
tual position. In our resear
h, we use only two views, sin
e the use of the 
amera orientation

and the stabilization of the line of sight (LoS), will guide the glider to the desired position, and

eventually inter
ept that position in a given future time.
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In a previous work [24℄ we have proposed two strategies of guidan
e using the engagement rule

between the 
amera 
enters, the proportional navigation 
on
ept, and input-output linearization.

In this paper, we present a new state spa
e representation of a full 
losed-loop system, in
luding

external disturban
e input, establishing the basis for stability analysis. In the full 
losed-loop system,

the vehi
le's angular a

eleration is 
onsidered as an external input and 
onditions for asymptoti


stability and ultimate boundedness are established for both strategies. The estimation of the range

between the vehi
le and the target is avoided and only vision-based data is required to guide the

vehi
le to a desired position. In addition, we in
lude a simple attitude 
ontrol, a
hieved by the

stabilization of two angles: the lead angle and the LoS angle. The analysis is 
onstrained to motion

on a verti
al plane so the a
tuation (lateral a

eleration) is perpendi
ular to the LoS in this plane.

In addition, the 
amera is 
onsidered aero-stabilized, i.e., the orientation of its prin
ipal axis is

parallel to the glider's velo
ity ve
tor.

The paper is organized as follows: Se
. II des
ribes the 
on
epts of the epipolar geometry,

the engagement system, and the design of the epipolar guidan
e strategies. Se
. III presents the

stability analysis for both guidan
e methods. In Se
. IV simulation experiments are shown and,

�nally, 
on
lusions are presented in Se
. V.

II. Design of the Guidan
e Strategies

In this se
tion, we present a brief overview of the main 
on
epts and properties of the epipolar

geometry, the engagement system, and the development of the guidan
e strategies.

A. Epipolar Geometry

The epipolar geometry is the intrinsi
 geometri
 relationship between two views of a given s
ene

(Fig. 1). It is totally de�ned by the relative poses and the intrinsi
 parameters of both 
ameras,

i.e., by the fundamental matrix F ∈ R
3×3

[25℄. F des
ribes the mapping of any point from one

view to its mat
hing point in the other view. As in [10℄ and [11℄, the �rst view is generated by the


amera on-board the vehi
le, and is 
alled the 
urrent view. The other is the target view, and 
an

be obtained and loaded into memory o�ine. The s
enes of these two views must overlap.

The following 
oordinate systems are de�ned: the inertial NED (North-East-Down) 
oordinate
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Fig. 1 3-D Epipolar Geometry.

system A : {âx, ây, âz}, with origin at

Aa ∈ R
3
; the 
urrent 
amera-�xed 
oordinate system C :

{ĉx, ĉy, ĉz}, with origin at

Ac ∈ R
3
(
urrent 
amera 
enter); and the target 
amera-�xed 
oordinate

system T : {t̂x, t̂y, t̂z}, with origin at

At ∈ R
3
(target 
amera 
enter). C and T are aligned with

their 
orrespondent image planes: πc for the 
urrent view and πt for the target view.

The baseline is the straight line passing through the 
amera 
enters. The epipoles are the

proje
tions of ea
h 
amera 
enter onto the image plane of the other 
amera, so the 
urrent epipole

Aec ∈ R
3
, and the target epipole

Aet ∈ R
3
, are the interse
tions between the baseline and the

image planes πc and πt, respe
tively. The πe-plane that 
ontains the baseline is 
alled the epipolar

plane, and the interse
tions between πe and the image planes are respe
tively the epipolar lines lc

and lt.
Cpc ∈ R

3
and

T pt ∈ R
3
are the proje
tions of the point

Ap ∈ R
3
onto the respe
tive

image planes πc and πt. Homogeneous 
oordinates are preferred over Cartesian 
oordinates to

represent geometri
 entities su
h as points, lines and planes [25℄.

The matrix F 
an be 
omputed mapping

Cpc 7→ T pt and then

T pt 7→ lt. Therefore, the

relationship between

Cpc and lt 
an be written as [25℄

lt = [T et]×Hg

(

Cpc

)

= F
(

Cpc

)

,

(1)

where F = [T et]×Hg, [T et]× ∈ R
3×3

is a skew-symmetri
 matrix based on

T et = T [et,x, et,y, et,z]
T
(homogeneous representation of the target epipole), and Hg ∈ R

3
is a

homography based on the ground plane πg that 
ontains the point

Ap. In addition, sin
e the pro-

je
tion

T pt belongs to its respe
tive epipolar line lt, or
(

T pt

)T
lt = 0, the following property of F

8



and its relationships with the epipoles 
an be derived:

(

T pt

)T
F
(

Cpc

)

= 0 (2a)

F
(

Cec
)

= 0 (2b)

FT
(

T et
)

= 0 . (2
)

Hen
e, the following remark about the use of feature 
orresponden
es to 
ompute the epipolar

points 
an be established.

Remark 1. If a set of a minimum size N of feature 
orresponden
es (pairs in homogeneous


oordinates), Fk =
{

(

Cp̂c,i,
T p̂t,i

)

k
|
(

T p̂t,i

)T
F̂k

(

Cp̂c,i

)

= 0 ; i = 1, . . . , N
}

, is retrieved,

at a time tk, from the 
urrent view and the target view, then the fundamental matrix F̂k 
an be

estimated uniquely (only for the 
urrent pair of views) and up to s
ale for the time tk. Conse-

quently, an estimation of the epipoles,

(

C êc,k,
T êt,k

)

, 
an be performed so that F̂k

(

C êc,k
)

= 0 and

F̂T
k

(

T êt,k
)

= 0 (for this purpose, there are many proposed algorithms [22℄).

For the 
ase of motion in a verti
al plane, some simpli�
ations 
an be introdu
ed (Fig. 2).

Camera's rotational motion are des
ribed with simple angular velo
ities: γ̇cĉx = γ̇cây for the


urrent 
amera, and γ̇tt̂x = γ̇tây for the target 
amera. γc and γt are the respe
tive instantaneous

orientations, or �ight-path angles, measured with respe
t to a horizon parallel to the âx-axis.

The instantaneous separation between the 
amera 
enters will de�ne the magnitude of the range

ve
tor

Arc,t =
Ara,t − Ara,c , (3)

where

Ara,t is the position ve
tor of the target 
amera 
enter,

At, and Ara,c is the position ve
tor

of the 
urrent 
amera 
enter,

Ac. In addition,

Arc,t mat
hes the baseline, whi
h is the same Line

of Sight (LoS) named CT -LoS in Fig. 2. The 
amera velo
ity angles, µc and µt, measured with

respe
t to the CT -LoS, are the lead and the aspe
t angles [26℄. The orientation of the CT -LoS with

respe
t to the âx-axis is 
ommonly denoted as λ. Then, the lead and aspe
t angles 
an be written,

in terms of λ, as

9



Fig. 2 2-D Epipolar Geometry.

µc = (λ− γc) (4a)

µt = (γt − λ) . (4b)

If the 
urrent and target epipoles are represented in Cartesian 
oordinates, relative to C and T ,

as

Cec = [ec,x, ec,y, ec,z]
T
and

T et = [et,x, et,y, et,z]
T
, the epipolar 
oordinates ec,y and et,y result

as

ec,y = fc tan (µc) (5a)

et,y = −ft tan (µt) , (5b)

where fc and ft are the fo
al lengths of the 
urrent and target 
ameras. If we substitute Eq. (4a)

and Eq. (4b) it yields

ec,y = fc tan (λ− γc) (6a)

et,y = −ft tan (γt − λ) . (6b)

10



The last two equations show the relationship between the epipolar 
oordinates, ec,y and et,y, and

the CT -LoS angle, λ, enabling the de�nition of guidan
e based on epipolar 
oordinates.

B. Engagement System

We de�ne the CT -system as the state spa
e representation of the engagement of the 
urrent

and target 
ameras (Fig. 3). The CT -LoS angle, λ, is equal to

Fig. 3 Engagement system.

λ = arctan
z

x
, (7)

where x and z are the range 
omponents along the âx-axis and the âz-axis. The CT -LoS rate of


hange, λ̇, 
an be 
omputed by di�erentiation of Eq. (7) with respe
t to t

λ̇ =
żx− zẋ

r2

,t

, (8)

where r

,t =

√
x2 + z2 is the magnitude of the range

Ar

,t. Di�erentiating Eq. (8), with respe
t to

t, it follows that

λ̈ =
1

r2c,t
(z̈x− zẍ)− 2

ṙc,t
rc,t

λ̇ . (9)
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In addition, if the target 
amera is stati
,

Aṙc,t = −Aṙa,c, whi
h is the negative of the 
losing

velo
ity. If the aerial vehi
le 
an generate a lateral a

eleration

An = A[nx, 0, nz]
T
, perpendi
ular

to the CT -LoS, then, the 
omponents of

Ar̈c,t, ẍ and z̈, and the lateral a

eleration 
omponents, nx

and nz, will be related by the following equations

ẍ = −nx = −n sinλ (10a)

z̈ = nz = n cosλ , (10b)

where n is the magnitude of

An. Also, from Fig. 3, it 
an be seen that

x

rc,t
= cosλ (11a)

z

rc,t
= sinλ . (11b)

Then, using Eq. (10a)-Eq. (11b), in Eq. (9), it results that

λ̈ = −2
ṙc,t
rc,t

λ̇+
1

rc,t
n . (12)

Finally, the CT -system state spa
e representation is

η̇ = Aη +Bu , (13)

where η = [η1, η2]
T = [λ, λ̇]T is the state ve
tor, u = n is the 
ontrol input, and

A =









0 1

0 −2
ṙc,t
rc,t









B =









0

1

rc,t









, (14)

are the state matrix and input ve
tor, respe
tively. A and B depend on the range magnitude and

its rate of 
hange, whi
h in turn impli
itly depend on t. The system in Eq. (13) is 
ontinuous,

linear, and time-varying. It has an equilibrium subspa
e equal to the η1-axis, and its stability 
an

12



be dire
tly 
omputed from A. Be
ause of the eigenvalues of A are Λ1,2 = {0,−2ṙc,t/rc,t}, only

marginal stability [27℄ about η2 is 
on
luded.

Traditionally, the guidan
e of an aerial vehi
le is performed by a porportional navigation (PN)

law [28℄, whi
h measures the states and the range by means of inertial sensors, seekers, and/or

external agents that guide the vehi
le to a desired target position [29℄. In this work, the 
urrent


amera is the main sensor that will be used to feed ba
k the guidan
e methods that we propose in

the following se
tion.

C. Epipole-Based Guidan
e

Two strategies are proposed: the 
urrent epipole-based guidan
e (CEBG) and the target epipole-

based guidan
e (TEBG). Both methods are based on the assumption that stabilization of the epipo-

lar 
oordinates 
ould guide an aerial vehi
le to the position of a �xed target 
amera. The CEBG

makes the output of the CT -system equal to the 
urrent epipolar 
oordinate, ec,y, and the TEBG

makes the output equal to the target epipolar 
oordinate, et,y. Using the subs
ript i to denote c,

for the 
urrent 
amera, or t, for the target 
amera, both outputs 
an be written as

yi = ei,y . (15)

Considering Eq. (6a) and Eq. (6b), the above formulation leads to a nonlinear system with

respe
t to the η1-state. Then, a mapping from these nonlinear outputs to linear outputs 
an be

a
hieved by means of the input-output linearization method [30℄. In this 
ontext, and sin
e the

input u of the CT -system be
omes expli
it at the se
ond derivative of ea
h output, the relative

degree for ea
h output is the same and equal to 2. Then, the following transformation

ξi,1 = yi = ei,y (16a)

ξi,2 = ξ̇i,1 = ẏi = ėi,y (16b)

ξ̇i,2 = ξ̈i,1 = ÿi = ëi,y = vi , (16
)

maps the nonlinear output yi into the linearized output
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ξ̇i = Aiξi +Bivi , (17)

where ξi = [ξi,1, ξi,2]
T
is the linearized output state and

Ai =









0 1

0 0









Bi =









0

1









, (18)

are the respe
tive linearized output state matrix and the linearized output 
ontrol ve
tor. vi ∈ R

is the 
ontrol input that eliminates the nonlinearities of its respe
tive output yi, if and only if, it is

related to the CT -system input, u, given the following 
onditions: For the output yc, in R
2
and for

all η, with

uc =
rc,t

fc sec2 (η1 − γc)
vc + 2ṙc,tη2 + rc,tγ̈c

− 2rc,t(η2 − γ̇c)
2 tan (η1 − γc) .

(19)

And, for the output yt, in R
2
and for all η, with

ut =
rc,t

ft sec2 (γt − η1)
vt + 2ṙc,tη2

+ 2rc,tη
2

2 tan (γt − η1) .

(20)

After this linearization, ea
h guidan
e method is designed to stabilize the 
orresponding linear

output, ξi,1, to an epipolar referen
e ξi,1,r = ei,y,r ∈ R. Using an integral a
tion we ensure the

tra
king of the epipolar 
oordinate and the reje
tion of input disturban
es and plant parameter

variations [27℄[30℄. It is assumed that ξi,1 is measured as ym,i = Ciξi, with Ci = [1, 0]. Therefore,

the tra
king error σi, for ea
h method, results as

σ̇i = ym,i − ξi,1,r

= Ciξi − ξi,1,r .

(21)

Thus, if the state σi is augmented to the linearized output in Eq. (17), and state feedba
k


ontrol
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vi = −Ki[ξ
T
i , σi]

T + ωi , (22)

with Ki = [ki,1, ki,2, ki,3] (K
T
i ∈ R

3
), is applied to the input of ea
h linearized output (ωi ∈ R is an

input disturban
e that 
an represent linearization and measurement errors), then, the 
losed-loop

augmented linearized output be
omes

ẋi = Ai,axi +Bi,aωi + B̄i,aξi,1,r (23a)

ym,i =

[

Ci 0

]

xi , (23b)

where xi = [ξTi , σi]
T
is the 
losed-loop augmented linearized output state, and

Ai,a =









Ai −Bi[ki,1, ki,2] −Biki,3

Ci 0









Bi,a =









Bi

0









B̄i,a =









02×1

−1









, (24)

are respe
tively the augmented state matrix and the augmented input ve
tors of the 
losed-loop

augmented linearized output.

It 
an be easily veri�ed that the pair (Ai,Bi) is 
ontrollable and that the transfer fun
tion

Ci(sI2×2 − Ai)
−1Bi has no zero in s = 0. Therefore, all the eigenvalues of Ai,a 
an be assigned

arbitrarily by means of the gain ve
tor Ki [27℄. We 
hoose Ki su
h that Ai,a is Hurwitz, sin
e this

guarantees the epipolar 
oordinate follows the referen
e.

Finally, we de�ne a full 
losed-loop system, as the 
omposition of the 
losed-loop augmented

linearized output, Eq. (23a), plus the 
losed-loop CT -system, Eq. (13). It is observed that both

epipolar guidan
e strategies share the same equation form for the 
losed-loop augmented linearized

output, whereas the equation form of the 
losed-loop CT -system only 
hanges in one term that

depends on the relationship between the inputs ui and vi (Eq. (19) for the CEBG, and Eq. (20) for

the TEBG). The full 
losed-loop system 
an be written as

χ̇i = f(χi) +Wi , (25)
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where χi = [ηT ,xT
i ]

T
is the full 
losed-loop system state,

f(χi) =



















η2

− fi
ξ2i,1 + f2

i

(

ki,1ξi,1 + ki,2ξi,2 + ki,3σi + 2
ξi,1ξ

2

i,2

ξ2i,1 + f2

i

)

Ai,axi + B̄i,aξi,1,r



















, (26)

and

Wi =

















0

fiωi

ξ2i,1 + f2

i

+ κi

Bi,aωi

















. (27)

κi has been de�ned to be γ̈i. When i = c, κc = γ̈c, and when i = t, κt = γ̈t = 0. Stability of the

full 
losed-loop system will be analyzed in the next se
tion.

III. Stability Analysis

The nonlinear system in Eq. (25) 
an be thought as a system that is 
omposed of a nominal

system, f(χi), and an input perturbation, Wi. For the CEBG, we 
an view γ̈ as an external

perturbation that is related to the airframe stability of the vehi
le that 
arries the 
urrent 
amera;

whereas, for the TEBG, sin
e the target 
amera is stati
 (γ̇t = γ̈t = 0), we 
an say that the guidan
e

is free of this external perturbation. For the stability analysis, two 
ases for both strategies are


onsidered: the 
ase of the full 
losed-loop system with ωi = 0, and the 
ase of the full 
losed-loop

system with ωi 6= 0.

A. Stability of the Full Closed-Loop System with ωi = 0

If ωi = 0, we observe, from Eq. (25) - Eq. (27), that the full 
losed-loop system χ̇i = f(χi) + γ̈i,

and its equilibrium depends on the perturbation input γi. The following 
orollary, based on Theorem

4.5 in [30℄, states the stability properties of this system.

Corollary 1. Let ωi = 0, the matrix Ai,a to be Hurtwitz, and the angular velo
ity γ̇i to be

a vanishing perturbation. Then, and for all t > td (td > 0): (i) The full 
losed-loop system in

Eq. (25) has the equilibrium subspa
e
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χi,ss =

[

γi +mi, 0, ξi,1,r, 0, −ki,1
ki,3

ξi,1,r

]T

, (28)

where mi = arctan (ξi,1,r/fi). (ii) The origin, χi,ss = 0, is asymptoti
ally stable.

Proof. See Appendix A.

The stability of the TEBG is 
ompletely de�ned by the above 
orollary be
ause the path angle γt

is always assumed as a 
onstant value (γ̇t = γ̈t = 0 for all t > 0). In 
ontrast, for the CEBG,

sin
e the value of the perturbation γ̇c depends on the vehi
le's dynami
s, the stability of the full


losed-loop system will depend on the airframe's equilibrium, and spe
i�
ally, if γc is an equilibrium

of the airframe. If γc is a 
onstant for all t > td, then the stability of the CEBG is 
ompletely

de�ned by this Corollary.

B. Stability of the Full Closed-Loop System with ωi 6= 0

When ωi 6= 0, the full 
losed-loop system in Eq. (25) results as χ̇i = f(χi) + γ̈i but perturbed

by an additional term that depends on ωi. Sin
e ωi has dire
t in�uen
e on both the η2-state and

the xi-state, then, an assumption of the nature of ωi and γi needs to be established to 
on
lude

about the stability of the full 
losed-loop system. The following 
orollary, based on Lemma 9.3 and

Lemma 13.3 in [30℄, de�nes the stability of the perturbed full 
losed-loop system.

Corollary 2. Let the matrix Ai,a to be Hurtwitz, Pi = PT
i to be a positive de�nite matrix

that is the unique solution of the Lyapunov equation PiAi,a + AT
i,aPi = −I, and k a nonnegative


onstant su
h that k ≤ 1/(2‖PiBi,a‖).

(i) If both ωi and γ̇i are vanishing perturbations, then, and for all t > td (td > 0), the full


losed-loop system, in Eq. (25), has the equilibrium subspa
e that is shown in Eq. (28), and

the origin it has, χi,ss = 0, is asymptoti
ally stable.

(ii) If γ̇i is a vanishing perturbation, and ωi satis�es

‖ωi‖ ≤ kw4(w1) , (29)
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for all t ≥ t0 +T1, where t0 ≥ td (td > 0), and w4 is a 
lass K fun
tion that depends on the

parameter w1, then, the traje
tories of the full 
losed-loop system, in Eq. (25), and for some

�nite time T1, are ultimately bounded by

‖χi‖ ≤ w4(w1) , ∀ t ≥ t0 + T1 . (30)

(iii) If γ̇i is not a vanishing perturbation, and

∥

∥

∥

∥

ωi

fi
+ γ̈i

∥

∥

∥

∥

≤ kw7(w5) , (31)

for all t ≥ t0 +T2, where t0 ≥ td (td > 0), and w7 is a 
lass K fun
tion that depends on the

parameter w5, then, the traje
tories of the full 
losed-loop system, in Eq. (25), and for some

�nite time T2, are ultimately bounded by

‖χi‖ ≤ w6(w5) , ∀ t ≥ t0 + T2 . (32)

Proof. See Appendix B.

It is noted from the above Corollary that: if 
ondition in Eq. (29), or Eq. (31), are satis�ed, and

even though ωi and/or γ̇i 
ould not be vanishing perturbations, then, the subsystem ẋi (in Eq.

(23a)) still has an equilibrium that is exponentially stable. However, only ultimately boundedness

is guaranteed for the full 
losed-loop system under the 
onditions that have been established.

IV. Simulation Experiments

To show the appli
ation of ea
h guidan
e strategy, we use an autonomous glider, des
ribed in the

following subse
tion, in a series of simulations with a set of initial 
onditions. A 
lassi
al three-loop

autopilot guarantees that the a

eleration requirements are rea
hed, without over
ome the airframe's

aerodynami
 
apabilities. We have assumed that both 
ameras have the same parameters: fi = 1

mm (fo
al length), image plane size equal to 240 × 240 pixels/mm (height × width), skew

18



parameter zero, prin
ipal point o�set at (240, 320) pixels (height, width), and spatial resolution of

480 × 640 pixels (height × width).

A. Aerial Vehi
le Model

We use a glider provided with a horizontal 
ontrol surfa
e (wing) and a stabilizing �xed surfa
e

(tail). The 
ontrol a
tion is performed by the wing de�e
tion angle δ [31℄. Fig. 4 shows the wing-

body-tail 
on�guration. In this �gure, B : {b̂x, b̂y, b̂z} is the vehi
le-�xed 
oordinate frame, whi
h

is aligned with the vehi
le's prin
ipal axes, and is lo
ated at

Ab ∈ R
3
(the vehi
le's 
enter of

gravity, CG).

Fig. 4 Aerial vehi
le in the âxâz-plane.

For simpli
ity, the 
urrent 
amera 
enter has been translated to CG, and it is assumed it always

has an orientation parallel to the vehi
le's velo
ity ve
tor,

Avc. Equations of motion of the vehi
le


an be found in [29℄. Here, the following state spa
e representation, in the âxâz-plane, is retrieved:

ẋ1 = x3

ẋ2 = x4

ẋ3 = −x6x4 − g sinx5 −
CAqSref

m

ẋ4 = −x6x3 − g cosx5 −
CN qSref

m

ẋ5 = x6

ẋ6 =
qSref lrefCm

Iyy
,

(33)
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where x1 is the longitudinal translation, x2 is the verti
al translation, x3 is the longitudinal velo
ity,

x4 is the verti
al velo
ity, x5 = θ is the attitude angle, and x6 = θ̇ is the angular velo
ity. m is

the vehi
le mass, g is the a

eleration of gravity, Iyy is the prin
ipal moment of inertia around the

b̂y-axis, and, for small aerial vehi
les, Sref and lref are the respe
tive maximum 
ross-se
tional area

and the mean diameter of the body's. The dynami
 pressure is q = (1/2)ρV 2
, where V is the free-

stream velo
ity and ρ is the air density. The angle of atta
k 
an be written as α = arctan (x4/x3).

The aerodynami
 
oe�
ients CA, CN , and Cm, were estimated with Tornado Vortex-Latti
e

Method [32℄ and are des
ribed by the fun
tions

CA = CA,αα
2 + CA,α,δαδ + CA,δδ

2

CN = CN,αα+ CN,δδ

Cm = Cm,αα+ Cm,δδ ,

(34)

where CA,α, CA,α,δ, CA,δ, CN,α, CN,δ, Cm,α, and Cm,δ are 
oe�
ients that depend on h (altitude)

and M (Ma
h number). These 
oe�
ients are stored in look-up tables.

B. Autopilot

A 
lassi
al autopilot provides the lateral a

eleration required by the guidan
e methods. It

translates the a

eleration 
ommand, ui (Eq. (19) for the CEBG and Eq. (20) for the TEBG), to

wing de�e
tion, δ. An autopilot's detailed des
ription 
an be found in [33℄. The autopilot's 
losed-

loop gains: KDC , KA, ωI , and KR, depend on the s
heduling variables, h and M , and are stored

in look-up tables.

The parameters of the autopilot are set to: ωCR = 10 rad/s (
ross-zero frequen
y), ζ = 1.0 (total

damping), and τ = 0.4 s (total time 
onstant). The autopilot was tested for 
ombinations of several

�ight 
onditions. Fig. 5 shows the autopilot's response to the unit step referen
e, nref = us(t− 1)

G of n (lateral a

eleration), α (angle of atta
k), and δ (de�e
tion angle).

When M = 0.3 and M = 0.9 the autopilot follows the referen
e uref (Fig. 5(a) and Fig. 5(b)).

However, it is noti
ed that the settling time for low velo
ities is greater than for high velo
ities, and

the response requires higher values for the angles α and δ (Fig. 5(
) and Fig. 5(e)). This means that
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(a) n (M = 0.3) (b) n (M = 0.9)

(
) α (M = 0.3) (d) α (M = 0.9)

(e) δ (M = 0.3) (f) δ (M = 0.9)

Fig. 5 Autopilot's response to nref = us(t− 1) G.

when there is not enough velo
ity, the vehi
le aerodynami
 
apabilities 
an be ex
eeded and the

system 
ould be
ome unstable. Also, the vehi
le maneuverability for low altitude is greater than

for high altitude.

C. Experiments for the Current Epipole-Based Guidan
e

For these experiments, the following 
onditions are set: h0 = 4000 m (vehi
le initial altitude),

Aa = A[0, 0, h0] m,

At = A[3000, 0, 3000]T m, and γt = 45 deg. The gain Kc = [15, 5, 15]

ensures the Hurtwitz 
ondition for the matrix Ac,a, whi
h has the eigenvalues: − 1.7221 + i2.5838,

− 1.7221 − i2.5838, and − 1.5558 + i0.0000. Perturbation ωc is assumed to be zero.
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1. Inter
eption of a target 
amera

This experiment represents the inter
eption of the target 
amera in three di�erent initial 
on-

ditions. The 
urrent epipolar 
oordinate referen
e is set to ξc,1,r = ec,y,r = 0 pixels, and the

initial 
onditions are asso
iated with three 
urrent 
ameras: C1, C2, and C3. The initial 
onditions

for these 
ameras are:

Ac1,0 = A[0, 0, h0]
T
m,

Ac2,0 = A[100, 0, h0]
T
m,

Ac3,0 = A[200, 0, h0]
T

m,

Bvc,1,0 = Bvc,2,0 = Bvc,3,0 = B[195, 0, 0]T m/s, and γc,1,0 = γc,2,0 = γc,3,0 = 45 deg.

Fig. 6 shows the experiment results.

(a) Traje
tory (b) Lateral a

eleration: n

(
) Current epipolar 
oordinate: ec,y (d) Target epipolar 
oordinate: et,y

(e) Angle of atta
k: α (f) Wing de�e
tion angle: δ

Fig. 6 Inter
eption of a target 
amera. For all the initial 
onditions, ξc,1,r = ec,y,r = 0.

Figure 6(a) shows the traje
tories of ea
h 
urrent 
amera approa
hing to the target 
amera
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position. For ea
h initial 
ondition, and despite γc is not an equilibrium of the aerial vehi
le, the

guidan
e of the 
urrent 
ameras to the target 
amera position is ensured be
ause ξc,1 = ec,y is

regulated by Kc (Fig. 6(
)). Fig. 6(d) shows the evolution of the target epipolar 
oordinate, et,y.

Figure 6(b) shows the lateral a

eleration, n, required for the vehi
le. In the 
ase C3, a higher lateral

a

eleration is required. Fig. 6(e) and Fig. 6(f) show that α and δ does not ex
eed the aerodynami


and stru
tural 
apabilities of the airframe and instability is avoided.

2. Lead angle 
ontrol

This experiment shows the traje
tory of the vehi
le when the 
urrent epipo-

lar referen
e is set to three di�erent signals. Ea
h referen
e is de�ned as

ξc,1,r,j = ec,y,r,j = Sj [us(t) + us(t − 4) + us(t − 8)] pixels, with j = 1, 2, 3,

S1 = 20, S2 = − 10, and S3 = − 40. The 
urrent 
amera, C, has the initial 
onditions:

Ac0 = A[0, 0, h0]
T
m,

Bvc,0 = B[195, 0, 0]T m/s, and γc,0 = 45 deg. Fig. 7 shows the experiment

results.

Figure 7(a) shows the resulting traje
tories. Sin
e the referen
es have a �nal nonzero value,

and γc is not an equilibrium of the vehi
le, then, the guidan
e of the 
urrent 
amera to the target


amera position is not ensured. However, di�erent traje
tory shapes and 
ontrol of the lead angle

µc are a
hieved. Fig. 7(b) shows the tra
king of the 
urrent epipolar referen
es, and Fig. 7(
) shows

the stabilization of the lead angle. For ea
h 
ase, the value of the lead angle is arctan (ec,y,r,j/fc)

(Eq. (5a)). Fig. 7(d), Fig. 7(e), and Fig. 7(f), show respe
tively the values of n, α, and δ. In these

�gures, we 
an observe that when the 
urrent epipolar 
oordinate rea
hes a high absolute value,

instability 
ould not be avoided.

D. Experiments for the Target Epipole-Based Guidan
e

In these experiments, we 
hoose the same values for

Aa, At, γt, and Kt, than for the CEBG

experiments. Perturbation ωt is assumed to be zero too.
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(a) Traje
tory (b) Current epipolar 
oordinate: ec,y

(
) Lead angle: µc (d) Lateral a

eleration: n

(e) Angle of atta
k: α (f) Wing de�e
tion: δ

Fig. 7 Lead angle 
ontrol.

1. Inter
eption of a target 
amera

This experiment shows the inter
eption of the target 
amera in three di�erent initial 
on-

ditions, following three di�erent target epipolar referen
es. Ea
h referen
e is de�ned as:

ξt,1,r,1 = et,y,r,1 = − [10us(t − 2) − 5us(t − 6) − 5us(t − 10)] pixels, ξt,1,r,2 = et,y,r,2 = 0

pixels, and ξt,1,r,3 = et,y,r,3 = 10us(t − 2) − 5us(t − 6) − 5us(t − 10) pixels. The initial


onditions are asso
iated with three 
urrent 
ameras: C1, C2, and C3, with the following values:

Ac1,0 = Ac2,0 = Ac3,0 = A[0, 0, h0]
T
m,

Bvc,1,0 = Bvc,2,0 = Bvc,3,0 = B[240, 0, 0] m/s,

γc,1,0 = 40 deg, γc,2,0 = 45 deg, and γc,3,0 = 55 deg. Fig. 8 shows the experiment results.
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(a) Traje
tory (b) Lateral a

eleration: n

(
) Current epipolar 
oordinate: ec,y (d) Target epipolar 
oordinate: et,y

(e) Angle of atta
k: α (f) Wing de�e
tion angle: δ

Fig. 8 Inter
eption of a target 
amera.

Figure 8(a) shows the traje
tories followed by the vehi
le. Given that the end values of ea
h referen
e

are zero (Fig. 8(d)), 
onditions of Corollary 1 are satis�ed, so, the inter
eption of the target 
amera

is ensured. It is observed in Fig. 8(b) that a larger a

eleration is required when the vehi
le starts

to move with a high initial orientation. Sin
e the vehi
le has no propulsion it has �ight against

the gravity. Fig. 8(e) and Fig. 8(f) show that α and δ stay under reasonable bounds avoiding the

system be
ome unstable.
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2. LoS angle 
ontrol

This experiment shows how a 
ontrol of the LoS angle, λ, is a
hieved when the

vehi
le follows three di�erent target epipolar referen
es. Ea
h referen
e is de�ned as

ξt,1,r,j = et,y,r,j = Sj [us(t − 1 − j) + us(t − 5 − j)] pixels, with j = 1, 2, 3, S1 = − 2,

S2 = − 6, and S3 = − 16. The 
urrent 
amera, C, has the initial 
onditions: Ac0 = A[0, 0, h0]
T

m,

Bvc,0 = B[240, 0, 0]T m/s, and γc,0 = 45 deg. Fig. 9 shows the experiment results.

(a) Traje
tory (b) Target epipolar 
oordinate: et,y

(
) LoS angle: λ (d) Lateral a

eleration: n

(e) Angle of atta
k: α (f) Wing de�e
tion: δ

Fig. 9 LoS angle 
ontrol.

Figure 9(a) shows the traje
tories followed for the vehi
le. Sin
e 
onditions of Corollary 1 are

satis�ed, every 
urrent 
amera inter
epts the target 
amera. Fig. 9(b) shows the tra
king of target
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epipolar referen
e, and Fig. 9(
) shows the stabilization of λ to a values that are de�ned by the

target epipolar referen
es. The �nal LoS angles obtained in this experiment are 44.05 deg, 42.14

deg, and 37.41 deg, in a

ordan
e with Eq. (28). In Fig. 9(d), Fig. 9(e), and Fig. 9(f), we observe

that the 
urrent 
amera following the larger epipolar referen
e (S3 = − 16) requires the larger

values of n, α, and δ. However, vehi
le's aerodynami
 properties are not ex
eeded.

E. Noise Sensitivity Analysis

The most in�uential variables in the behavior of the proposed guidan
e strategies are: the initial

vehi
le attitude θ0, the �ight-path angle γc, and the epipolar 
oordinates measurements, ec,y and

et,y. Therefore, a set of Monte-Carlo simulations with noise added to the referred variables have

been proposed to show the performan
e of the guidan
e strategies.

The simulations were 
ondu
ted for the 
ase of inter
eption of the target 
amera position. The

initial 
onditions were set to: ξc,1,r = ec,y,r = 0 pixels, Ac0 = A[0, 0, h0]
T
m,

Bvc,0 = B[195, 0, 0]T

m/s, and θ0 = γc,0 = 45 deg, for the CEBG, and ξt,1,r = et,y,r = 0 pixels,

Ac0 = A[0, 0, h0]
T

m,

Bvc,0 = B[240, 0, 0] m/s, and θ0 = γc,0 = 45 deg, for the TEBG. We have 
hosen the same

values for

Aa, At, γt, and Kt, than those spe
i�ed in Se
. IV.C and Se
. IV.D.

The following noise sour
es have been 
hosen to make the simulations: N1 = θ0 + U(−2, 2)

(deg), N2 = γc + U(−0.1, 0.1) (deg), and N3 = {ec,y + U(−10, 10), et,y + U(−10, 10)}

(pixels,pixels). U(a, b) is an uniform noise de�ned in the interval (a, b). The sele
ted intervals allow

su

essful (stable) simulations. A total of 100 runs were analyzed for ea
h strategy and the results

of the simulations are presented in Fig. 10 and Table 1.

For the CEBG: Fig. 10(a), Fig. 10(
), and Fig. 10(e) show the noisy �nal positions (red

plus signs) for ea
h run and the ideal �nal position lo
ated at (2678, 1307) m at time 15.66 s (blue

asterisk). A

ording to these �gures, the noisy �nal positions approximately move along of a straight

line and we 
an say that, even though noise is added to the variables, eventually the target position


an be rea
hed at another time.

For the TEBG: Fig. 10(b), Fig. 10(d), and Fig. 10(f) show the noisy �nal positions and the

ideal �nal position lo
ated at (2650, 1350) m at time 13.25 s. Also, for this strategy, we 
an say
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(a) CEBG: N1 (b) TEBG: N1

(
) CEBG: N1 and N2 (d) TEBG: N1 and N2

(e) CEBG: N1, N2, and N3 (f) TEBG: N1, N2, and N3

Fig. 10 Final positions for Monte-Carlo simulations for inter
eption of a target 
amera.

that even though noise is added to the variables, eventually, the target position 
an be rea
hed at

another time, ex
ept for the 
ase when noise is added to the target epipole et,y (Fig. 10(f)). In this


ase, the referen
e of the strategy is 
hanged through the �ight time and the guidan
e algorithm

tries to follow it. If this referen
e is 
hanged, the goal of inter
eption 
annot be a
hieved.

Table 1 shows the mean values of the 
omponents in x and y of the position errors (µx and µy)

and the standard deviations (σx and σy) in the �nal positions a
hieved by the guidan
e strategies.

For the noiseN1 andN2, it 
an be 
on
luded that the TEBG has better performan
e than the CEBG

sin
e �nal position errors are low. However, high noise values over the target epipolar 
oordinate,
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in
luded in N3, are not admissible for the purpose of inter
eption of the target 
amera by the TEBG

algorithm. Fig. 10(e) shows that the same noise, N3, 
an be handled by the CEBG algorithm.

Table 1 Monte-Carlo simulations results for inter
eption of a target 
amera

Noise CEBG TEBG

µx (m) µy (m) σx (m) σy (m) µx (m) µy (m) σx (m) σy (m)

N1 22.8 20.0 25.6 25.6 7.94 7.93 5.73 5.73

N1 and N2 94.4 99.9 26.6 26.6 8.29 8.27 5.96 5.96

N1, N2, and N3 39.6 38.4 18.0 18.0 518 749 242 242

We 
an say that the guidan
e algorithms 
an lead the 
urrent 
amera to the target 
amera

position, under appropriate noise levels, but with time delay and a position error that depends on

the noise power. These results 
an be expe
ted given the 
onditions established for Corollary 1 and

Corollary 2. On the other hand, we 
an say that suddenly perturbations on airframe's stability,

and/or 
amera orientations, and/or epipole estimation errors, 
an make the features leave the FoV

of the 
urrent 
amera. In this 
ase, the guidan
e algorithms will require additional strategies to

deal with this problem. This topi
 has been studied for several authors [20-23℄, and its study over

the CEBG and TEBG algorithms is not in the s
ope on this paper.

V. Con
lusion

We have developed two strategies based on epipolar geometry to guide an autonomous glider

to a desired position. Their performan
es are shown by simulations over a spe
i�
 type of aerial

vehi
le.

The target epipole-based guidan
e (TEBG) is independent of the 
urrent 
amera angular a
-


eleration, γ̈c. Then, the stability of the origin of the full 
losed-loop system is always ensured and

it is asymptoti
ally stable. Whereas, for the 
urrent epipole-based guidan
e (CEBG), the angular

velo
ity, γ̇c, should be zero in order to a
hieve stability. If γ̇c is not a vanishing perturbation, and

in presen
e of an additional perturbation, ωi, only ultimately boundedness 
an be ensured for both

strategies and under the 
onditions explained in Corollary 2.

Even though the aerial vehi
le that was used here has not an equilibrium point, the goal of the
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guidan
e of the 
urrent 
amera to a desired target 
amera position is a
hieved with both guidan
e

methods. This was possible be
ause the initial 
onditions of the guidan
e experiments avoid the

vehi
le enters into instability. In addition, the lead angle and the LoS angle 
an be stabilized by the

CEBG and TEBG, respe
tively. Also, Monte-Carlo simulations with noise added to the relevant

variables, that 
an lead the system to instability, have been done to shown the performan
e of

both guidan
e algorithms. The advantages of ea
h strategy have been showed by ideal and noisy

simulations.

The main 
ontribution of the proposed guidan
e strategies is their independen
e of the range

magnitude, rc,t, and its rate of 
hange, ṙc,t, sin
e these variables have been removed 
ompletely

by the input-output linearization te
hnique. The two presented guidan
e strategies 
an be studied

for extrapolation to a di�erent kind of aerial vehi
le; however, to ensure su

essful out
omes, it is

required analysis of stability and performan
e of the sele
ted autopilot a

ording to the limits of

the airframe's aerodynami
 
apabilities and the initial 
onditions that will be 
hosen.

Appendix

A. Proof of Corollary 1

Firstly, we 
an see that if γ̇i is a vanishing perturbation, then γ̇i and γ̈i will be equal to zero for

all t > td (td > 0). Thus, the path angle γi will be a 
onstant value and, if ωi = 0, the perturbation

Wi, de�ned in Eq. (27), will be equal to zero for all t > td. Under these 
onditions, and from

Eq. (25), the nonperturbed full 
losed-loop system will be

χ̇i = f(χi) . (35)

Next, to �nd the equilibrium χi,ss of Eq. (35), we do f(χi,ss) = 0, and, using Eq. (18) and

Eq. (24) in Eq. (25), and after some algebra, it results that
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0 = η2,ss

0 = ξi,2,ss

0 = −ki,1ξi,1,ss − ki,2ξi,2,ss − ki,3σi,ss

0 = −ξi,1,ss + ξi,1,r .

(36)

At the equilibrium, and taking Eq. (6a) and Eq. (6b) into a

ount, we 
an see that η1,ss = γi+mi,

where mi = arctan (ξi,1,r/fi). Therefore, and from Eq. (36), the nonperturbed full 
losed-loop

system in Eq. (35) has the equilibrium subspa
e

χi,ss =

[

γi +mi, 0, ξi,1,r, 0, −ki,1
ki,3

ξi,1,r

]T

. (37)

Now, to prove the stability of this equilibrium, we analyze the stability of the origin (be
ause a


hange of variables in the original system 
an shift any equilibrium point to the origin). In Eq. (37),

we 
an see that if the epipolar 
oordinate referen
e is set to zero, ξi,1,r = 0, then the equilibrium

be
omes the origin χi,ss = 0.

From Theorem 4.5 in [30℄, we 
an say that sin
e the matrix Ai,a is Hurtwitz, i.e., all its eigen-

values have negative real part, then the equilibrium xi,ss = 0 is asymptoti
ally stable (moreover,

it is exponentially stable). That means that, for ea
h ε > 0, there is a δ = δ(ε) > 0 su
h that

‖xi(0)‖ < δ(ε) and lim
t→∞

xi = 0. ‖ · ‖ is a norm. In addition, and for ea
h 
ontroller, sin
e

the epipolar 
oordinates are related to the η-state by Eq. (6a) and Eq. (6b), we 
an verify that the

η-traje
tory satisfy, for all t > td, the following statements:

• For the CEBG, sin
e η1 = arctan (ξc,1/fc), with mc = 0 and γ̇c = 0, and

η2 = η̇1 = (f2

c ξc,2)/(ξ
2

c,2 + f2

c ), then lim
‖xi‖→0

η1 = 0 and lim
‖xi‖→0

η2 = 0.

• For the TEBG, sin
e η1 = − arctan (ξt,1/ft), with mt = 0 and γ̇t = 0, and

η2 = η̇1 = − (f2

t ξt,2)/(ξ
2

t,2 + f2

t ), then lim
‖xi‖→0

η1 = 0 and lim
‖xi‖→0

η2 = 0.

Finally, with the above �ndings, we 
an 
on
lude that, for ea
h ε > 0, there is a δ = δ(ε) > 0

su
h that ‖χi(0)‖ < δ and lim
t→∞

χi = 0 for all t > td. Then, the origin, χi,ss = 0, of the
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non-perturbed system in Eq. (35) is asymptoti
ally stable for all t > td. The same result 
ould

be a
hieved by Lemma 13.1 in [30℄, where the full 
losed-loop system is viewed as a 
as
ade system

and when the xi-state a
ts as the input of the η-system.

B. Proof of Corollary 2

To prove the �rst part of this 
orollary we 
an say, as in the proof of the Corollary 1, that if

both perturbations, ωi and γ̇i, are vanishing for all t > td (td > 0), then Wi, in Eq. (27), will be

equal to zero, and the full 
losed-loop system, in Eq. (25), will be f(χi). The equilibrium of this

nonperturbed system is the same equilibrium displayed by Eq. (37), and asymptoti
ally stability of

the origin, χi,ss = 0, 
an be proved by Corollary 1.

To prove the se
ond part, we 
an say that if the perturbation ωi 6= 0 for all t, then the full 
losed-

loop system, in Eq. (25), has no longer an equilibrium (η-state is not 
ontrollable). Consequently,

we only 
an expe
t, for all t > td, that the χi-traje
tories will be ultimately bounded. First, we

fo
us on the subsystem ẋi, and if the perturbation ωi meets

‖ωi‖ ≤ k‖xi‖ , (38)

for all xi, with k < 1/(2‖PiBi,a‖), and Pi = PT
i is a positive de�nite matrix that is the unique

solution of the Lyapunov equation PiAi,a + AT
i,aPi = − I (be
ause Ai,a is Hurwitz, Theorem

4.6 in [30℄), then, by Lemma 13.3 in [30℄, the origin xi,ss = 0 will be globally exponentially stable.

This means that ‖xi‖ = 0 as t → ∞ and, sin
e γ̇i is equal to zero for all t > td, then, from

Eq. (26) and Eq. (27), we will have that η̇2 = ωi/fi, i.e., the perturbation is weighted by fi. Next,

and from Lemma 9.3 in [30℄, we 
an say that due to the origin of the nonperturbed system, f(χi)

with ωi = 0, is asymptoti
ally stable (by Corollary 1), and assuming that the perturbation satis�es

‖ωi‖ ≤ fiw1 < fiw2(l1) , (39)

where w1 is a parameter that is bounded by the fun
tion w2(l), whi
h in turns is a fun
tion that

is 
omposed of a set of 
lass K fun
tions. Then, the traje
tories of the perturbed full 
losed-loop
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system, in Eq. (25), satisfy

‖χi‖ ≤ w3(‖χi(t0)‖, t− t0) , ∀ t0 ≤ t < t0 + T1 , (40)

and

‖χi‖ ≤ w4(w1) , ∀ t ≥ t0 + T1 , (41)

where t0 ≥ td, T1 is some �nite time, w3 is a 
lass KL fun
tion, and w4 is a 
lass K fun
tion that

depends on w1. A

ording to Lemma 9.3 in [30℄, the spe
i�
 form of w2, w3, and w4 will depend on

the Lyapunov fun
tion, V (χi), that 
ould be de�ned in a domain D = {χi ∈ R
5 | ‖χi‖ < l1} (l1

is the radious of the ball). Finally, and putting together the requirements of Lemmas 9.3 and 13.3

in [30℄, and taking Eq. (38) and Eq. (41) into a

ount, we 
an say that the χi-traje
tories will be

ultimately bounded, for all t > t0 + T1, if the following bound for the perturbation ωi is ful�ll,

‖ωi‖ ≤ k‖xi‖ ≤ k‖χi‖ ≤ kw4(w1) . (42)

The proof of the third part of the 
orollary is similar to the proof of the se
ond part. Here, we

only emphasize that the 
ondition for Lemma 9.3 in [30℄ is ‖ωi/fi + γ̈i‖ ≤ w5 < w6(l2), where

w5 is a parameter that is bounded by the fun
tion w6(l2). w6(l2) is a fun
tion 
omposed of a set of


lass K fun
tions and l2 is the radius of the ball, or the domain of a Lyapunov fun
tion for the full

system.
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