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Two strategies based on epipolar geometry are proposed to guide an aerial vehile to a

desired position de�ned by a referene image. The starting point to design the strate-

gies is the engagement geometry of two images: the on-line image provided by the

on-board amera and the referene image. A full losed-loop system is derived om-

bining the onept of lassial proportional navigation, with the input-output nonlinear

ontrol tehnique, and the traking of epipolar referenes. Our main ontribution is the

de�nition of a guidane algorithm based on the partial linearization of the full losed-

loop system by means of pure image-based information: the epipolar geometry aross

two views. The proposed formulation avoids the requirement of estimating the range

between the urrent and target positions. Conditions for stability are established for

both strategies. Simulation experiments show the intereption of the target position

by the aerial vehile and additionally, a simple attitude ontrol.
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Nomenlature

A = inertial North-East-Down (NED) oordinate system

A
a = origin of A, m

B = body-�xed oordinate system

A
b = origin of B, m

C = urrent amera-�xed oordinate system

A
c = origin of C, m

T = target amera-�xed oordinate system

A
t = origin of T , m

µc, µt = lead and aspet angles, deg

CT -LoS = Current-Target Line of Sight, i.e., LoS through the amera enters

λ = angle of the CT -LoS, deg

λ̇ = rate of hange of the CT -LoS angle, deg/s

γc, γt = �ight-path angles of the urrent and target ameras, deg

fc, ft = foal length of the urrent and target ameras, pixels

ec,y, et,y = urrent and target epipolar oordinates, pixels

ėc,y, ėt,y = rate of hange of the urrent and target epipolar oordinates, pixels/s

r
,t = magnitude of the range between amera enters, m

n = magnitude of the lateral aeleration perpendiular to the CT -LoS, m/s

2

CT -system = state spae representation of the engagement

η = [λ, λ̇]T , CT -system's state vetor

A = CT -system's state matrix

B = CT -system's input vetor

u = n, CT -system's input, m/s
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ξi = [ei,y , ėi,y]
T
, linearized output's state vetor

Ai = linearized output's state matrix

Bi = linearized output's input vetor

vi = linearized output's input, pixels/s

2

Ci = linearized output's measurement vetor

ξi,1,r = ei,y,r, epipolar referene, pixels

σi = traking error, pixels·s

Ki = state feedbak gain vetor
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ωi = input disturbane, pixels/s

2

xi = [ξTi , σi]
T
, losed-loop augmented linearized output's state vetor

Ai,a = losed-loop augmented linearized output's state matrix

Bi,a, B̄i,a = losed-loop augmented linearized output's input vetors

χi = [ηT ,xT
i ]

T
, full losed-loop system's state vetor

f(χi) = full losed-loop system's nominal system

Wi = full losed-loop system's input perturbation

Subsripts and supersripts:

i = : urrent, t: target

y = epipolar oordinate in the vertial plane

a = augmented matries and vetors

r = referene epipolar oordinate

A, B, C, T = relative to respetive oordinate frame

I. Introdution

IN the last years, the proliferation of unmanned aerial vehiles for several purposes (monitoring,

delivery, rereation, et.), has promoted the development of Guidane, Navigation and Control

tehniques (GNC) [1-3℄. Although, many di�erent ombinations of eletroni systems are used

(FPGAs, DSPs, ameras, IMUs, GPSs, radars, spetrometers, et), it is attrative to base the GNC

algorithms in few elements, in order to inrease the global reliability of the aerial vehile. This work

addresses the guidane of an autonomous glider with a tehnique that uses a amera as the main

sensor and algorithms based on the epipolar geometry.

In general, the use of omputer vision data in robot motion ontrol is known as visual servo

ontrol, and the use of visual-feedbak ontrol loop to inrease the auray of the robot motion

system is known as visual servoing [4℄. The epipolar geometry has been widely studied and used

for wheeled-robot navigation, but its use for the guidane of aerial vehiles it is still an open

researh area. In [5℄, Chaumette and Huthinson desribe the use of epipolar geometry to estimate

3-D parameters of the amera pose, given two views of the same sene. In their approah, the
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fundamental matrix is omputed using a set of orresponding points between two images. The main

drawbak of this tehnique ours when the urrent and desired images oinide, sine the epipolar

geometry beomes degenerate and other formulations, suh as the homography, are preferred for

the visual ontrol. Hybrid and swithing tehniques, that join the epipolar geometry and the

homography, are then proposed as a solution for the visual servo ontrol of a robot.

In [6℄, Rives proposes an image-based visual servoing navigation method based on the motion

of interest points over the image to reah their respetive epipolar lines using two steps: robot

rotations, and robot translation along the epipolar line. Mariottini et al. propose in [7,8℄ an image-

based visual servoing algorithm for nonholonomi mobile robots, using also two steps: �rst the

ontrol uses input-output linearization to regulate the urrent epipole and to align the robot with

the line along the optial axis of the desired amera, and then, the ontrol advanes the robot to the

desired position. No knowledge of the 3-D sene is required and asymptoti onvergene is proved.

López-Niolás et al. show in [9℄ an epipolar visual servoing tehnique that inludes into the

design of the ontrol law the nonholonomi onstraints of a mobile robot. Two views are used

to failitate the teah-by-showing visual servo approah and no spei� knowledge of the sene is

required. The epipolar oordinates are used as inputs for the nonlinear system, and input-output

linearization is used to design the ontrol law. In [10,11℄, López-Niolás et al. propose a swithing

ontrol for mobile robots based on the epipolar geometry and homography. The swithed ontrollers

are designed using exat input-output linearization. The goal of this swithing ontrol is to produe a

smooth robot motion ativating the alternative ontrol when an ill-onditioned situation is deteted.

Disontinuities due to the swithing are avoided feeding bak the veloities of one ontrol to the

other one.

Many advanes in visual servo ontrol applied to GNC of aerial vehiles have been also developed

reently. Most of them use state estimation based on visual data and Kalman �lters. For example,

in [12℄, Gur�l and Rotstein use an impliit extended Kalman �lter (IEKF) to estimate the states

of an airraft. The �lter inludes noisy measurements and the airraft veloity vetor alulated

in amera axes by means of the so-alled impliit onstraint. The use of the IEKF redues the

noise due to the vehile motion. In reent works [13,14℄, Indelman et al. propose a new vision-
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based navigation aiding tehnique for navigation. This tehnique uses the onstraints derived from

general three-view geometry, and inertial navigation information to improve the estimation of the

position of the aerial vehile. The fusion of the information is done by means of an IEKF that also

estimates the drift and bias errors of the inertial navigation system (INS). This tehnique is used

to solve position estimation in GPS-denied environments and for ooperative navigation. Other

ontributions of this tehnique are the handling of loops (a vehile revisits the same area) and the

redued omputation load against other methods of loalization. This tehnique keeps the estimated

vetor size as a onstant and it relegates the sene reonstrution as a seondary task.

In [15℄, Webb et al. deal with the problem of state estimation for autonomous miro aerial

vehiles (MAV). They use an IEKF plus epipolar geometry omputed from feature points estimated

with image proessing. Under this on�guration, it has been proved that the �lter ompensates

signi�ant modeling and initial ondition errors. In [16℄, Koh et al. propose an extended Kalman

�lter (EKF) for sensor data fusion and for unmanned aerial vehile (UAV) navigation. The �lter

uses vision data from ground features, traked by the Luas-Kanade Feature Traker method, in

order to ompensate GPS failures. The position of ground features is determined as long as GPS

data is available. When GPS fails, the position of new features is omputed from the states that

are estimated from the vision-based �lter.

Johnson et al. [17℄ desribe two vision-based methods to estimate the range of an airraft

relative to a target. A single amera provides measurements of the target in the image plane, and

both, the veloity and the position of the airraft relative to the target, are estimated by means of

an EKF. In [18℄, Ma et al. propose a guidane law for a small UAV using a vision-based traking of

a target moving on the ground. Measurements of the target position in the image plane of a single

amera are used in an adaptive estimator, whih feeds bak the guidane law in order to maintain

the vehile traking the target at a given horizontal distane. The vehile makes a irular orbit of a

prede�ned radius keeping the target at the enter of the orbit. In an early work [19℄, the same authors

addressed the problem of traking a ground vehile, with unknown time-varying veloity, stabilizing

the traking horizontal distane to the target, to a onstant value. A fast-estimation algorithm is

used to estimate the time-varying target's veloity and an inverse-kinemati-based ontroller is used
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to stabilize the horizontal range. Two ontrollers and a swithing sheme are designed respetively

for the ase when visual measurements are available and the ase when out-of-frame events ours

(target is out of the image plane). Stability analysis of both ontrollers is presented. A di�erent

approah is proposed in [20℄, where Martinez et al. use feature points estimated from the amera

information, to maintain the onsisteny of image alulations with the image sale hange, when

the vehile approahes to the target. They show simulations, seeking a laser marker temporarily

oluded.

The use of homography for airraft navigation and ontrol has been reported by Kaiser et al.

in [21℄, where a vision-based pose estimation method is proposed for an aerial vehile to determine

the urrent oordinates between suessive images. The method is based on a series of geometri

homography relationships, to reate a series of daisy-hained pose estimates. This method ensures

the mapping of landmarks in the world frame and an estimate the position of stati features that

leave the �eld of view (FoV) of the amera. The problem of degradation or instability of the visual

servo ontrol when the features leave the FoV has been previously addressed. For instane, in [22℄,

homography relationships and image geometry are used to estimate the positions of feature points in

the FoV of satellites. Also, in [23℄, Lee et al. present an adaptive image-based visual servoing ontrol

integrated with an adaptive sliding mode ontrol for the operation of a small UAV (a quadrotor).

The ontrol objetive is to keep the image features into the image plane, using the position and

angular rate data from both a motion apture system and an inertial measurement unit (IMU).

In this paper, we present two guidane strategies for an autonomous glider, a lass of aerial

vehiles equipped with a single amera. These strategies are based on the epipolar oordinates

that an be omputed from two overlapping images using the geometry of two views. As it is

noted by Indelman et al. in [14℄, the use of only two views gives information about the amera

orientations, and the range between the amera enters annot be omputed diretly. Additional

information, suh as inertial navigation, is neessary to improve the estimation of the aerial vehile

atual position. In our researh, we use only two views, sine the use of the amera orientation

and the stabilization of the line of sight (LoS), will guide the glider to the desired position, and

eventually interept that position in a given future time.
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In a previous work [24℄ we have proposed two strategies of guidane using the engagement rule

between the amera enters, the proportional navigation onept, and input-output linearization.

In this paper, we present a new state spae representation of a full losed-loop system, inluding

external disturbane input, establishing the basis for stability analysis. In the full losed-loop system,

the vehile's angular aeleration is onsidered as an external input and onditions for asymptoti

stability and ultimate boundedness are established for both strategies. The estimation of the range

between the vehile and the target is avoided and only vision-based data is required to guide the

vehile to a desired position. In addition, we inlude a simple attitude ontrol, ahieved by the

stabilization of two angles: the lead angle and the LoS angle. The analysis is onstrained to motion

on a vertial plane so the atuation (lateral aeleration) is perpendiular to the LoS in this plane.

In addition, the amera is onsidered aero-stabilized, i.e., the orientation of its prinipal axis is

parallel to the glider's veloity vetor.

The paper is organized as follows: Se. II desribes the onepts of the epipolar geometry,

the engagement system, and the design of the epipolar guidane strategies. Se. III presents the

stability analysis for both guidane methods. In Se. IV simulation experiments are shown and,

�nally, onlusions are presented in Se. V.

II. Design of the Guidane Strategies

In this setion, we present a brief overview of the main onepts and properties of the epipolar

geometry, the engagement system, and the development of the guidane strategies.

A. Epipolar Geometry

The epipolar geometry is the intrinsi geometri relationship between two views of a given sene

(Fig. 1). It is totally de�ned by the relative poses and the intrinsi parameters of both ameras,

i.e., by the fundamental matrix F ∈ R
3×3

[25℄. F desribes the mapping of any point from one

view to its mathing point in the other view. As in [10℄ and [11℄, the �rst view is generated by the

amera on-board the vehile, and is alled the urrent view. The other is the target view, and an

be obtained and loaded into memory o�ine. The senes of these two views must overlap.

The following oordinate systems are de�ned: the inertial NED (North-East-Down) oordinate

7



Fig. 1 3-D Epipolar Geometry.

system A : {âx, ây, âz}, with origin at

Aa ∈ R
3
; the urrent amera-�xed oordinate system C :

{ĉx, ĉy, ĉz}, with origin at

Ac ∈ R
3
(urrent amera enter); and the target amera-�xed oordinate

system T : {t̂x, t̂y, t̂z}, with origin at

At ∈ R
3
(target amera enter). C and T are aligned with

their orrespondent image planes: πc for the urrent view and πt for the target view.

The baseline is the straight line passing through the amera enters. The epipoles are the

projetions of eah amera enter onto the image plane of the other amera, so the urrent epipole

Aec ∈ R
3
, and the target epipole

Aet ∈ R
3
, are the intersetions between the baseline and the

image planes πc and πt, respetively. The πe-plane that ontains the baseline is alled the epipolar

plane, and the intersetions between πe and the image planes are respetively the epipolar lines lc

and lt.
Cpc ∈ R

3
and

T pt ∈ R
3
are the projetions of the point

Ap ∈ R
3
onto the respetive

image planes πc and πt. Homogeneous oordinates are preferred over Cartesian oordinates to

represent geometri entities suh as points, lines and planes [25℄.

The matrix F an be omputed mapping

Cpc 7→ T pt and then

T pt 7→ lt. Therefore, the

relationship between

Cpc and lt an be written as [25℄

lt = [T et]×Hg

(

Cpc

)

= F
(

Cpc

)

,

(1)

where F = [T et]×Hg, [T et]× ∈ R
3×3

is a skew-symmetri matrix based on

T et = T [et,x, et,y, et,z]
T
(homogeneous representation of the target epipole), and Hg ∈ R

3
is a

homography based on the ground plane πg that ontains the point

Ap. In addition, sine the pro-

jetion

T pt belongs to its respetive epipolar line lt, or
(

T pt

)T
lt = 0, the following property of F
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and its relationships with the epipoles an be derived:

(

T pt

)T
F
(

Cpc

)

= 0 (2a)

F
(

Cec
)

= 0 (2b)

FT
(

T et
)

= 0 . (2)

Hene, the following remark about the use of feature orrespondenes to ompute the epipolar

points an be established.

Remark 1. If a set of a minimum size N of feature orrespondenes (pairs in homogeneous

oordinates), Fk =
{

(

Cp̂c,i,
T p̂t,i

)

k
|
(

T p̂t,i

)T
F̂k

(

Cp̂c,i

)

= 0 ; i = 1, . . . , N
}

, is retrieved,

at a time tk, from the urrent view and the target view, then the fundamental matrix F̂k an be

estimated uniquely (only for the urrent pair of views) and up to sale for the time tk. Conse-

quently, an estimation of the epipoles,

(

C êc,k,
T êt,k

)

, an be performed so that F̂k

(

C êc,k
)

= 0 and

F̂T
k

(

T êt,k
)

= 0 (for this purpose, there are many proposed algorithms [22℄).

For the ase of motion in a vertial plane, some simpli�ations an be introdued (Fig. 2).

Camera's rotational motion are desribed with simple angular veloities: γ̇cĉx = γ̇cây for the

urrent amera, and γ̇tt̂x = γ̇tây for the target amera. γc and γt are the respetive instantaneous

orientations, or �ight-path angles, measured with respet to a horizon parallel to the âx-axis.

The instantaneous separation between the amera enters will de�ne the magnitude of the range

vetor

Arc,t =
Ara,t − Ara,c , (3)

where

Ara,t is the position vetor of the target amera enter,

At, and Ara,c is the position vetor

of the urrent amera enter,

Ac. In addition,

Arc,t mathes the baseline, whih is the same Line

of Sight (LoS) named CT -LoS in Fig. 2. The amera veloity angles, µc and µt, measured with

respet to the CT -LoS, are the lead and the aspet angles [26℄. The orientation of the CT -LoS with

respet to the âx-axis is ommonly denoted as λ. Then, the lead and aspet angles an be written,

in terms of λ, as
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Fig. 2 2-D Epipolar Geometry.

µc = (λ− γc) (4a)

µt = (γt − λ) . (4b)

If the urrent and target epipoles are represented in Cartesian oordinates, relative to C and T ,

as

Cec = [ec,x, ec,y, ec,z]
T
and

T et = [et,x, et,y, et,z]
T
, the epipolar oordinates ec,y and et,y result

as

ec,y = fc tan (µc) (5a)

et,y = −ft tan (µt) , (5b)

where fc and ft are the foal lengths of the urrent and target ameras. If we substitute Eq. (4a)

and Eq. (4b) it yields

ec,y = fc tan (λ− γc) (6a)

et,y = −ft tan (γt − λ) . (6b)
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The last two equations show the relationship between the epipolar oordinates, ec,y and et,y, and

the CT -LoS angle, λ, enabling the de�nition of guidane based on epipolar oordinates.

B. Engagement System

We de�ne the CT -system as the state spae representation of the engagement of the urrent

and target ameras (Fig. 3). The CT -LoS angle, λ, is equal to

Fig. 3 Engagement system.

λ = arctan
z

x
, (7)

where x and z are the range omponents along the âx-axis and the âz-axis. The CT -LoS rate of

hange, λ̇, an be omputed by di�erentiation of Eq. (7) with respet to t

λ̇ =
żx− zẋ

r2
,t

, (8)

where r
,t =

√
x2 + z2 is the magnitude of the range

Ar
,t. Di�erentiating Eq. (8), with respet to

t, it follows that

λ̈ =
1

r2c,t
(z̈x− zẍ)− 2

ṙc,t
rc,t

λ̇ . (9)
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In addition, if the target amera is stati,

Aṙc,t = −Aṙa,c, whih is the negative of the losing

veloity. If the aerial vehile an generate a lateral aeleration

An = A[nx, 0, nz]
T
, perpendiular

to the CT -LoS, then, the omponents of

Ar̈c,t, ẍ and z̈, and the lateral aeleration omponents, nx

and nz, will be related by the following equations

ẍ = −nx = −n sinλ (10a)

z̈ = nz = n cosλ , (10b)

where n is the magnitude of

An. Also, from Fig. 3, it an be seen that

x

rc,t
= cosλ (11a)

z

rc,t
= sinλ . (11b)

Then, using Eq. (10a)-Eq. (11b), in Eq. (9), it results that

λ̈ = −2
ṙc,t
rc,t

λ̇+
1

rc,t
n . (12)

Finally, the CT -system state spae representation is

η̇ = Aη +Bu , (13)

where η = [η1, η2]
T = [λ, λ̇]T is the state vetor, u = n is the ontrol input, and

A =









0 1

0 −2
ṙc,t
rc,t









B =









0

1

rc,t









, (14)

are the state matrix and input vetor, respetively. A and B depend on the range magnitude and

its rate of hange, whih in turn impliitly depend on t. The system in Eq. (13) is ontinuous,

linear, and time-varying. It has an equilibrium subspae equal to the η1-axis, and its stability an
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be diretly omputed from A. Beause of the eigenvalues of A are Λ1,2 = {0,−2ṙc,t/rc,t}, only

marginal stability [27℄ about η2 is onluded.

Traditionally, the guidane of an aerial vehile is performed by a porportional navigation (PN)

law [28℄, whih measures the states and the range by means of inertial sensors, seekers, and/or

external agents that guide the vehile to a desired target position [29℄. In this work, the urrent

amera is the main sensor that will be used to feed bak the guidane methods that we propose in

the following setion.

C. Epipole-Based Guidane

Two strategies are proposed: the urrent epipole-based guidane (CEBG) and the target epipole-

based guidane (TEBG). Both methods are based on the assumption that stabilization of the epipo-

lar oordinates ould guide an aerial vehile to the position of a �xed target amera. The CEBG

makes the output of the CT -system equal to the urrent epipolar oordinate, ec,y, and the TEBG

makes the output equal to the target epipolar oordinate, et,y. Using the subsript i to denote c,

for the urrent amera, or t, for the target amera, both outputs an be written as

yi = ei,y . (15)

Considering Eq. (6a) and Eq. (6b), the above formulation leads to a nonlinear system with

respet to the η1-state. Then, a mapping from these nonlinear outputs to linear outputs an be

ahieved by means of the input-output linearization method [30℄. In this ontext, and sine the

input u of the CT -system beomes expliit at the seond derivative of eah output, the relative

degree for eah output is the same and equal to 2. Then, the following transformation

ξi,1 = yi = ei,y (16a)

ξi,2 = ξ̇i,1 = ẏi = ėi,y (16b)

ξ̇i,2 = ξ̈i,1 = ÿi = ëi,y = vi , (16)

maps the nonlinear output yi into the linearized output
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ξ̇i = Aiξi +Bivi , (17)

where ξi = [ξi,1, ξi,2]
T
is the linearized output state and

Ai =









0 1

0 0









Bi =









0

1









, (18)

are the respetive linearized output state matrix and the linearized output ontrol vetor. vi ∈ R

is the ontrol input that eliminates the nonlinearities of its respetive output yi, if and only if, it is

related to the CT -system input, u, given the following onditions: For the output yc, in R
2
and for

all η, with

uc =
rc,t

fc sec2 (η1 − γc)
vc + 2ṙc,tη2 + rc,tγ̈c

− 2rc,t(η2 − γ̇c)
2 tan (η1 − γc) .

(19)

And, for the output yt, in R
2
and for all η, with

ut =
rc,t

ft sec2 (γt − η1)
vt + 2ṙc,tη2

+ 2rc,tη
2

2 tan (γt − η1) .

(20)

After this linearization, eah guidane method is designed to stabilize the orresponding linear

output, ξi,1, to an epipolar referene ξi,1,r = ei,y,r ∈ R. Using an integral ation we ensure the

traking of the epipolar oordinate and the rejetion of input disturbanes and plant parameter

variations [27℄[30℄. It is assumed that ξi,1 is measured as ym,i = Ciξi, with Ci = [1, 0]. Therefore,

the traking error σi, for eah method, results as

σ̇i = ym,i − ξi,1,r

= Ciξi − ξi,1,r .

(21)

Thus, if the state σi is augmented to the linearized output in Eq. (17), and state feedbak

ontrol
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vi = −Ki[ξ
T
i , σi]

T + ωi , (22)

with Ki = [ki,1, ki,2, ki,3] (K
T
i ∈ R

3
), is applied to the input of eah linearized output (ωi ∈ R is an

input disturbane that an represent linearization and measurement errors), then, the losed-loop

augmented linearized output beomes

ẋi = Ai,axi +Bi,aωi + B̄i,aξi,1,r (23a)

ym,i =

[

Ci 0

]

xi , (23b)

where xi = [ξTi , σi]
T
is the losed-loop augmented linearized output state, and

Ai,a =









Ai −Bi[ki,1, ki,2] −Biki,3

Ci 0









Bi,a =









Bi

0









B̄i,a =









02×1

−1









, (24)

are respetively the augmented state matrix and the augmented input vetors of the losed-loop

augmented linearized output.

It an be easily veri�ed that the pair (Ai,Bi) is ontrollable and that the transfer funtion

Ci(sI2×2 − Ai)
−1Bi has no zero in s = 0. Therefore, all the eigenvalues of Ai,a an be assigned

arbitrarily by means of the gain vetor Ki [27℄. We hoose Ki suh that Ai,a is Hurwitz, sine this

guarantees the epipolar oordinate follows the referene.

Finally, we de�ne a full losed-loop system, as the omposition of the losed-loop augmented

linearized output, Eq. (23a), plus the losed-loop CT -system, Eq. (13). It is observed that both

epipolar guidane strategies share the same equation form for the losed-loop augmented linearized

output, whereas the equation form of the losed-loop CT -system only hanges in one term that

depends on the relationship between the inputs ui and vi (Eq. (19) for the CEBG, and Eq. (20) for

the TEBG). The full losed-loop system an be written as

χ̇i = f(χi) +Wi , (25)
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where χi = [ηT ,xT
i ]

T
is the full losed-loop system state,

f(χi) =



















η2

− fi
ξ2i,1 + f2

i

(

ki,1ξi,1 + ki,2ξi,2 + ki,3σi + 2
ξi,1ξ

2

i,2

ξ2i,1 + f2

i

)

Ai,axi + B̄i,aξi,1,r



















, (26)

and

Wi =

















0

fiωi

ξ2i,1 + f2

i

+ κi

Bi,aωi

















. (27)

κi has been de�ned to be γ̈i. When i = c, κc = γ̈c, and when i = t, κt = γ̈t = 0. Stability of the

full losed-loop system will be analyzed in the next setion.

III. Stability Analysis

The nonlinear system in Eq. (25) an be thought as a system that is omposed of a nominal

system, f(χi), and an input perturbation, Wi. For the CEBG, we an view γ̈ as an external

perturbation that is related to the airframe stability of the vehile that arries the urrent amera;

whereas, for the TEBG, sine the target amera is stati (γ̇t = γ̈t = 0), we an say that the guidane

is free of this external perturbation. For the stability analysis, two ases for both strategies are

onsidered: the ase of the full losed-loop system with ωi = 0, and the ase of the full losed-loop

system with ωi 6= 0.

A. Stability of the Full Closed-Loop System with ωi = 0

If ωi = 0, we observe, from Eq. (25) - Eq. (27), that the full losed-loop system χ̇i = f(χi) + γ̈i,

and its equilibrium depends on the perturbation input γi. The following orollary, based on Theorem

4.5 in [30℄, states the stability properties of this system.

Corollary 1. Let ωi = 0, the matrix Ai,a to be Hurtwitz, and the angular veloity γ̇i to be

a vanishing perturbation. Then, and for all t > td (td > 0): (i) The full losed-loop system in

Eq. (25) has the equilibrium subspae
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χi,ss =

[

γi +mi, 0, ξi,1,r, 0, −ki,1
ki,3

ξi,1,r

]T

, (28)

where mi = arctan (ξi,1,r/fi). (ii) The origin, χi,ss = 0, is asymptotially stable.

Proof. See Appendix A.

The stability of the TEBG is ompletely de�ned by the above orollary beause the path angle γt

is always assumed as a onstant value (γ̇t = γ̈t = 0 for all t > 0). In ontrast, for the CEBG,

sine the value of the perturbation γ̇c depends on the vehile's dynamis, the stability of the full

losed-loop system will depend on the airframe's equilibrium, and spei�ally, if γc is an equilibrium

of the airframe. If γc is a onstant for all t > td, then the stability of the CEBG is ompletely

de�ned by this Corollary.

B. Stability of the Full Closed-Loop System with ωi 6= 0

When ωi 6= 0, the full losed-loop system in Eq. (25) results as χ̇i = f(χi) + γ̈i but perturbed

by an additional term that depends on ωi. Sine ωi has diret in�uene on both the η2-state and

the xi-state, then, an assumption of the nature of ωi and γi needs to be established to onlude

about the stability of the full losed-loop system. The following orollary, based on Lemma 9.3 and

Lemma 13.3 in [30℄, de�nes the stability of the perturbed full losed-loop system.

Corollary 2. Let the matrix Ai,a to be Hurtwitz, Pi = PT
i to be a positive de�nite matrix

that is the unique solution of the Lyapunov equation PiAi,a + AT
i,aPi = −I, and k a nonnegative

onstant suh that k ≤ 1/(2‖PiBi,a‖).

(i) If both ωi and γ̇i are vanishing perturbations, then, and for all t > td (td > 0), the full

losed-loop system, in Eq. (25), has the equilibrium subspae that is shown in Eq. (28), and

the origin it has, χi,ss = 0, is asymptotially stable.

(ii) If γ̇i is a vanishing perturbation, and ωi satis�es

‖ωi‖ ≤ kw4(w1) , (29)
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for all t ≥ t0 +T1, where t0 ≥ td (td > 0), and w4 is a lass K funtion that depends on the

parameter w1, then, the trajetories of the full losed-loop system, in Eq. (25), and for some

�nite time T1, are ultimately bounded by

‖χi‖ ≤ w4(w1) , ∀ t ≥ t0 + T1 . (30)

(iii) If γ̇i is not a vanishing perturbation, and

∥

∥

∥

∥

ωi

fi
+ γ̈i

∥

∥

∥

∥

≤ kw7(w5) , (31)

for all t ≥ t0 +T2, where t0 ≥ td (td > 0), and w7 is a lass K funtion that depends on the

parameter w5, then, the trajetories of the full losed-loop system, in Eq. (25), and for some

�nite time T2, are ultimately bounded by

‖χi‖ ≤ w6(w5) , ∀ t ≥ t0 + T2 . (32)

Proof. See Appendix B.

It is noted from the above Corollary that: if ondition in Eq. (29), or Eq. (31), are satis�ed, and

even though ωi and/or γ̇i ould not be vanishing perturbations, then, the subsystem ẋi (in Eq.

(23a)) still has an equilibrium that is exponentially stable. However, only ultimately boundedness

is guaranteed for the full losed-loop system under the onditions that have been established.

IV. Simulation Experiments

To show the appliation of eah guidane strategy, we use an autonomous glider, desribed in the

following subsetion, in a series of simulations with a set of initial onditions. A lassial three-loop

autopilot guarantees that the aeleration requirements are reahed, without overome the airframe's

aerodynami apabilities. We have assumed that both ameras have the same parameters: fi = 1

mm (foal length), image plane size equal to 240 × 240 pixels/mm (height × width), skew
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parameter zero, prinipal point o�set at (240, 320) pixels (height, width), and spatial resolution of

480 × 640 pixels (height × width).

A. Aerial Vehile Model

We use a glider provided with a horizontal ontrol surfae (wing) and a stabilizing �xed surfae

(tail). The ontrol ation is performed by the wing de�etion angle δ [31℄. Fig. 4 shows the wing-

body-tail on�guration. In this �gure, B : {b̂x, b̂y, b̂z} is the vehile-�xed oordinate frame, whih

is aligned with the vehile's prinipal axes, and is loated at

Ab ∈ R
3
(the vehile's enter of

gravity, CG).

Fig. 4 Aerial vehile in the âxâz-plane.

For simpliity, the urrent amera enter has been translated to CG, and it is assumed it always

has an orientation parallel to the vehile's veloity vetor,

Avc. Equations of motion of the vehile

an be found in [29℄. Here, the following state spae representation, in the âxâz-plane, is retrieved:

ẋ1 = x3

ẋ2 = x4

ẋ3 = −x6x4 − g sinx5 −
CAqSref

m

ẋ4 = −x6x3 − g cosx5 −
CN qSref

m

ẋ5 = x6

ẋ6 =
qSref lrefCm

Iyy
,

(33)
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where x1 is the longitudinal translation, x2 is the vertial translation, x3 is the longitudinal veloity,

x4 is the vertial veloity, x5 = θ is the attitude angle, and x6 = θ̇ is the angular veloity. m is

the vehile mass, g is the aeleration of gravity, Iyy is the prinipal moment of inertia around the

b̂y-axis, and, for small aerial vehiles, Sref and lref are the respetive maximum ross-setional area

and the mean diameter of the body's. The dynami pressure is q = (1/2)ρV 2
, where V is the free-

stream veloity and ρ is the air density. The angle of attak an be written as α = arctan (x4/x3).

The aerodynami oe�ients CA, CN , and Cm, were estimated with Tornado Vortex-Lattie

Method [32℄ and are desribed by the funtions

CA = CA,αα
2 + CA,α,δαδ + CA,δδ

2

CN = CN,αα+ CN,δδ

Cm = Cm,αα+ Cm,δδ ,

(34)

where CA,α, CA,α,δ, CA,δ, CN,α, CN,δ, Cm,α, and Cm,δ are oe�ients that depend on h (altitude)

and M (Mah number). These oe�ients are stored in look-up tables.

B. Autopilot

A lassial autopilot provides the lateral aeleration required by the guidane methods. It

translates the aeleration ommand, ui (Eq. (19) for the CEBG and Eq. (20) for the TEBG), to

wing de�etion, δ. An autopilot's detailed desription an be found in [33℄. The autopilot's losed-

loop gains: KDC , KA, ωI , and KR, depend on the sheduling variables, h and M , and are stored

in look-up tables.

The parameters of the autopilot are set to: ωCR = 10 rad/s (ross-zero frequeny), ζ = 1.0 (total

damping), and τ = 0.4 s (total time onstant). The autopilot was tested for ombinations of several

�ight onditions. Fig. 5 shows the autopilot's response to the unit step referene, nref = us(t− 1)

G of n (lateral aeleration), α (angle of attak), and δ (de�etion angle).

When M = 0.3 and M = 0.9 the autopilot follows the referene uref (Fig. 5(a) and Fig. 5(b)).

However, it is notied that the settling time for low veloities is greater than for high veloities, and

the response requires higher values for the angles α and δ (Fig. 5() and Fig. 5(e)). This means that
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(a) n (M = 0.3) (b) n (M = 0.9)

() α (M = 0.3) (d) α (M = 0.9)

(e) δ (M = 0.3) (f) δ (M = 0.9)

Fig. 5 Autopilot's response to nref = us(t− 1) G.

when there is not enough veloity, the vehile aerodynami apabilities an be exeeded and the

system ould beome unstable. Also, the vehile maneuverability for low altitude is greater than

for high altitude.

C. Experiments for the Current Epipole-Based Guidane

For these experiments, the following onditions are set: h0 = 4000 m (vehile initial altitude),

Aa = A[0, 0, h0] m,

At = A[3000, 0, 3000]T m, and γt = 45 deg. The gain Kc = [15, 5, 15]

ensures the Hurtwitz ondition for the matrix Ac,a, whih has the eigenvalues: − 1.7221 + i2.5838,

− 1.7221 − i2.5838, and − 1.5558 + i0.0000. Perturbation ωc is assumed to be zero.
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1. Intereption of a target amera

This experiment represents the intereption of the target amera in three di�erent initial on-

ditions. The urrent epipolar oordinate referene is set to ξc,1,r = ec,y,r = 0 pixels, and the

initial onditions are assoiated with three urrent ameras: C1, C2, and C3. The initial onditions

for these ameras are:

Ac1,0 = A[0, 0, h0]
T
m,

Ac2,0 = A[100, 0, h0]
T
m,

Ac3,0 = A[200, 0, h0]
T

m,

Bvc,1,0 = Bvc,2,0 = Bvc,3,0 = B[195, 0, 0]T m/s, and γc,1,0 = γc,2,0 = γc,3,0 = 45 deg.

Fig. 6 shows the experiment results.

(a) Trajetory (b) Lateral aeleration: n

() Current epipolar oordinate: ec,y (d) Target epipolar oordinate: et,y

(e) Angle of attak: α (f) Wing de�etion angle: δ

Fig. 6 Intereption of a target amera. For all the initial onditions, ξc,1,r = ec,y,r = 0.

Figure 6(a) shows the trajetories of eah urrent amera approahing to the target amera
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position. For eah initial ondition, and despite γc is not an equilibrium of the aerial vehile, the

guidane of the urrent ameras to the target amera position is ensured beause ξc,1 = ec,y is

regulated by Kc (Fig. 6()). Fig. 6(d) shows the evolution of the target epipolar oordinate, et,y.

Figure 6(b) shows the lateral aeleration, n, required for the vehile. In the ase C3, a higher lateral

aeleration is required. Fig. 6(e) and Fig. 6(f) show that α and δ does not exeed the aerodynami

and strutural apabilities of the airframe and instability is avoided.

2. Lead angle ontrol

This experiment shows the trajetory of the vehile when the urrent epipo-

lar referene is set to three di�erent signals. Eah referene is de�ned as

ξc,1,r,j = ec,y,r,j = Sj [us(t) + us(t − 4) + us(t − 8)] pixels, with j = 1, 2, 3,

S1 = 20, S2 = − 10, and S3 = − 40. The urrent amera, C, has the initial onditions:

Ac0 = A[0, 0, h0]
T
m,

Bvc,0 = B[195, 0, 0]T m/s, and γc,0 = 45 deg. Fig. 7 shows the experiment

results.

Figure 7(a) shows the resulting trajetories. Sine the referenes have a �nal nonzero value,

and γc is not an equilibrium of the vehile, then, the guidane of the urrent amera to the target

amera position is not ensured. However, di�erent trajetory shapes and ontrol of the lead angle

µc are ahieved. Fig. 7(b) shows the traking of the urrent epipolar referenes, and Fig. 7() shows

the stabilization of the lead angle. For eah ase, the value of the lead angle is arctan (ec,y,r,j/fc)

(Eq. (5a)). Fig. 7(d), Fig. 7(e), and Fig. 7(f), show respetively the values of n, α, and δ. In these

�gures, we an observe that when the urrent epipolar oordinate reahes a high absolute value,

instability ould not be avoided.

D. Experiments for the Target Epipole-Based Guidane

In these experiments, we hoose the same values for

Aa, At, γt, and Kt, than for the CEBG

experiments. Perturbation ωt is assumed to be zero too.
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(a) Trajetory (b) Current epipolar oordinate: ec,y

() Lead angle: µc (d) Lateral aeleration: n

(e) Angle of attak: α (f) Wing de�etion: δ

Fig. 7 Lead angle ontrol.

1. Intereption of a target amera

This experiment shows the intereption of the target amera in three di�erent initial on-

ditions, following three di�erent target epipolar referenes. Eah referene is de�ned as:

ξt,1,r,1 = et,y,r,1 = − [10us(t − 2) − 5us(t − 6) − 5us(t − 10)] pixels, ξt,1,r,2 = et,y,r,2 = 0

pixels, and ξt,1,r,3 = et,y,r,3 = 10us(t − 2) − 5us(t − 6) − 5us(t − 10) pixels. The initial

onditions are assoiated with three urrent ameras: C1, C2, and C3, with the following values:

Ac1,0 = Ac2,0 = Ac3,0 = A[0, 0, h0]
T
m,

Bvc,1,0 = Bvc,2,0 = Bvc,3,0 = B[240, 0, 0] m/s,

γc,1,0 = 40 deg, γc,2,0 = 45 deg, and γc,3,0 = 55 deg. Fig. 8 shows the experiment results.
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(a) Trajetory (b) Lateral aeleration: n

() Current epipolar oordinate: ec,y (d) Target epipolar oordinate: et,y

(e) Angle of attak: α (f) Wing de�etion angle: δ

Fig. 8 Intereption of a target amera.

Figure 8(a) shows the trajetories followed by the vehile. Given that the end values of eah referene

are zero (Fig. 8(d)), onditions of Corollary 1 are satis�ed, so, the intereption of the target amera

is ensured. It is observed in Fig. 8(b) that a larger aeleration is required when the vehile starts

to move with a high initial orientation. Sine the vehile has no propulsion it has �ight against

the gravity. Fig. 8(e) and Fig. 8(f) show that α and δ stay under reasonable bounds avoiding the

system beome unstable.
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2. LoS angle ontrol

This experiment shows how a ontrol of the LoS angle, λ, is ahieved when the

vehile follows three di�erent target epipolar referenes. Eah referene is de�ned as

ξt,1,r,j = et,y,r,j = Sj [us(t − 1 − j) + us(t − 5 − j)] pixels, with j = 1, 2, 3, S1 = − 2,

S2 = − 6, and S3 = − 16. The urrent amera, C, has the initial onditions: Ac0 = A[0, 0, h0]
T

m,

Bvc,0 = B[240, 0, 0]T m/s, and γc,0 = 45 deg. Fig. 9 shows the experiment results.

(a) Trajetory (b) Target epipolar oordinate: et,y

() LoS angle: λ (d) Lateral aeleration: n

(e) Angle of attak: α (f) Wing de�etion: δ

Fig. 9 LoS angle ontrol.

Figure 9(a) shows the trajetories followed for the vehile. Sine onditions of Corollary 1 are

satis�ed, every urrent amera interepts the target amera. Fig. 9(b) shows the traking of target
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epipolar referene, and Fig. 9() shows the stabilization of λ to a values that are de�ned by the

target epipolar referenes. The �nal LoS angles obtained in this experiment are 44.05 deg, 42.14

deg, and 37.41 deg, in aordane with Eq. (28). In Fig. 9(d), Fig. 9(e), and Fig. 9(f), we observe

that the urrent amera following the larger epipolar referene (S3 = − 16) requires the larger

values of n, α, and δ. However, vehile's aerodynami properties are not exeeded.

E. Noise Sensitivity Analysis

The most in�uential variables in the behavior of the proposed guidane strategies are: the initial

vehile attitude θ0, the �ight-path angle γc, and the epipolar oordinates measurements, ec,y and

et,y. Therefore, a set of Monte-Carlo simulations with noise added to the referred variables have

been proposed to show the performane of the guidane strategies.

The simulations were onduted for the ase of intereption of the target amera position. The

initial onditions were set to: ξc,1,r = ec,y,r = 0 pixels, Ac0 = A[0, 0, h0]
T
m,

Bvc,0 = B[195, 0, 0]T

m/s, and θ0 = γc,0 = 45 deg, for the CEBG, and ξt,1,r = et,y,r = 0 pixels,

Ac0 = A[0, 0, h0]
T

m,

Bvc,0 = B[240, 0, 0] m/s, and θ0 = γc,0 = 45 deg, for the TEBG. We have hosen the same

values for

Aa, At, γt, and Kt, than those spei�ed in Se. IV.C and Se. IV.D.

The following noise soures have been hosen to make the simulations: N1 = θ0 + U(−2, 2)

(deg), N2 = γc + U(−0.1, 0.1) (deg), and N3 = {ec,y + U(−10, 10), et,y + U(−10, 10)}

(pixels,pixels). U(a, b) is an uniform noise de�ned in the interval (a, b). The seleted intervals allow

suessful (stable) simulations. A total of 100 runs were analyzed for eah strategy and the results

of the simulations are presented in Fig. 10 and Table 1.

For the CEBG: Fig. 10(a), Fig. 10(), and Fig. 10(e) show the noisy �nal positions (red

plus signs) for eah run and the ideal �nal position loated at (2678, 1307) m at time 15.66 s (blue

asterisk). Aording to these �gures, the noisy �nal positions approximately move along of a straight

line and we an say that, even though noise is added to the variables, eventually the target position

an be reahed at another time.

For the TEBG: Fig. 10(b), Fig. 10(d), and Fig. 10(f) show the noisy �nal positions and the

ideal �nal position loated at (2650, 1350) m at time 13.25 s. Also, for this strategy, we an say
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(a) CEBG: N1 (b) TEBG: N1

() CEBG: N1 and N2 (d) TEBG: N1 and N2

(e) CEBG: N1, N2, and N3 (f) TEBG: N1, N2, and N3

Fig. 10 Final positions for Monte-Carlo simulations for intereption of a target amera.

that even though noise is added to the variables, eventually, the target position an be reahed at

another time, exept for the ase when noise is added to the target epipole et,y (Fig. 10(f)). In this

ase, the referene of the strategy is hanged through the �ight time and the guidane algorithm

tries to follow it. If this referene is hanged, the goal of intereption annot be ahieved.

Table 1 shows the mean values of the omponents in x and y of the position errors (µx and µy)

and the standard deviations (σx and σy) in the �nal positions ahieved by the guidane strategies.

For the noiseN1 andN2, it an be onluded that the TEBG has better performane than the CEBG

sine �nal position errors are low. However, high noise values over the target epipolar oordinate,
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inluded in N3, are not admissible for the purpose of intereption of the target amera by the TEBG

algorithm. Fig. 10(e) shows that the same noise, N3, an be handled by the CEBG algorithm.

Table 1 Monte-Carlo simulations results for intereption of a target amera

Noise CEBG TEBG

µx (m) µy (m) σx (m) σy (m) µx (m) µy (m) σx (m) σy (m)

N1 22.8 20.0 25.6 25.6 7.94 7.93 5.73 5.73

N1 and N2 94.4 99.9 26.6 26.6 8.29 8.27 5.96 5.96

N1, N2, and N3 39.6 38.4 18.0 18.0 518 749 242 242

We an say that the guidane algorithms an lead the urrent amera to the target amera

position, under appropriate noise levels, but with time delay and a position error that depends on

the noise power. These results an be expeted given the onditions established for Corollary 1 and

Corollary 2. On the other hand, we an say that suddenly perturbations on airframe's stability,

and/or amera orientations, and/or epipole estimation errors, an make the features leave the FoV

of the urrent amera. In this ase, the guidane algorithms will require additional strategies to

deal with this problem. This topi has been studied for several authors [20-23℄, and its study over

the CEBG and TEBG algorithms is not in the sope on this paper.

V. Conlusion

We have developed two strategies based on epipolar geometry to guide an autonomous glider

to a desired position. Their performanes are shown by simulations over a spei� type of aerial

vehile.

The target epipole-based guidane (TEBG) is independent of the urrent amera angular a-

eleration, γ̈c. Then, the stability of the origin of the full losed-loop system is always ensured and

it is asymptotially stable. Whereas, for the urrent epipole-based guidane (CEBG), the angular

veloity, γ̇c, should be zero in order to ahieve stability. If γ̇c is not a vanishing perturbation, and

in presene of an additional perturbation, ωi, only ultimately boundedness an be ensured for both

strategies and under the onditions explained in Corollary 2.

Even though the aerial vehile that was used here has not an equilibrium point, the goal of the
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guidane of the urrent amera to a desired target amera position is ahieved with both guidane

methods. This was possible beause the initial onditions of the guidane experiments avoid the

vehile enters into instability. In addition, the lead angle and the LoS angle an be stabilized by the

CEBG and TEBG, respetively. Also, Monte-Carlo simulations with noise added to the relevant

variables, that an lead the system to instability, have been done to shown the performane of

both guidane algorithms. The advantages of eah strategy have been showed by ideal and noisy

simulations.

The main ontribution of the proposed guidane strategies is their independene of the range

magnitude, rc,t, and its rate of hange, ṙc,t, sine these variables have been removed ompletely

by the input-output linearization tehnique. The two presented guidane strategies an be studied

for extrapolation to a di�erent kind of aerial vehile; however, to ensure suessful outomes, it is

required analysis of stability and performane of the seleted autopilot aording to the limits of

the airframe's aerodynami apabilities and the initial onditions that will be hosen.

Appendix

A. Proof of Corollary 1

Firstly, we an see that if γ̇i is a vanishing perturbation, then γ̇i and γ̈i will be equal to zero for

all t > td (td > 0). Thus, the path angle γi will be a onstant value and, if ωi = 0, the perturbation

Wi, de�ned in Eq. (27), will be equal to zero for all t > td. Under these onditions, and from

Eq. (25), the nonperturbed full losed-loop system will be

χ̇i = f(χi) . (35)

Next, to �nd the equilibrium χi,ss of Eq. (35), we do f(χi,ss) = 0, and, using Eq. (18) and

Eq. (24) in Eq. (25), and after some algebra, it results that

30



0 = η2,ss

0 = ξi,2,ss

0 = −ki,1ξi,1,ss − ki,2ξi,2,ss − ki,3σi,ss

0 = −ξi,1,ss + ξi,1,r .

(36)

At the equilibrium, and taking Eq. (6a) and Eq. (6b) into aount, we an see that η1,ss = γi+mi,

where mi = arctan (ξi,1,r/fi). Therefore, and from Eq. (36), the nonperturbed full losed-loop

system in Eq. (35) has the equilibrium subspae

χi,ss =

[

γi +mi, 0, ξi,1,r, 0, −ki,1
ki,3

ξi,1,r

]T

. (37)

Now, to prove the stability of this equilibrium, we analyze the stability of the origin (beause a

hange of variables in the original system an shift any equilibrium point to the origin). In Eq. (37),

we an see that if the epipolar oordinate referene is set to zero, ξi,1,r = 0, then the equilibrium

beomes the origin χi,ss = 0.

From Theorem 4.5 in [30℄, we an say that sine the matrix Ai,a is Hurtwitz, i.e., all its eigen-

values have negative real part, then the equilibrium xi,ss = 0 is asymptotially stable (moreover,

it is exponentially stable). That means that, for eah ε > 0, there is a δ = δ(ε) > 0 suh that

‖xi(0)‖ < δ(ε) and lim
t→∞

xi = 0. ‖ · ‖ is a norm. In addition, and for eah ontroller, sine

the epipolar oordinates are related to the η-state by Eq. (6a) and Eq. (6b), we an verify that the

η-trajetory satisfy, for all t > td, the following statements:

• For the CEBG, sine η1 = arctan (ξc,1/fc), with mc = 0 and γ̇c = 0, and

η2 = η̇1 = (f2

c ξc,2)/(ξ
2

c,2 + f2

c ), then lim
‖xi‖→0

η1 = 0 and lim
‖xi‖→0

η2 = 0.

• For the TEBG, sine η1 = − arctan (ξt,1/ft), with mt = 0 and γ̇t = 0, and

η2 = η̇1 = − (f2

t ξt,2)/(ξ
2

t,2 + f2

t ), then lim
‖xi‖→0

η1 = 0 and lim
‖xi‖→0

η2 = 0.

Finally, with the above �ndings, we an onlude that, for eah ε > 0, there is a δ = δ(ε) > 0

suh that ‖χi(0)‖ < δ and lim
t→∞

χi = 0 for all t > td. Then, the origin, χi,ss = 0, of the
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non-perturbed system in Eq. (35) is asymptotially stable for all t > td. The same result ould

be ahieved by Lemma 13.1 in [30℄, where the full losed-loop system is viewed as a asade system

and when the xi-state ats as the input of the η-system.

B. Proof of Corollary 2

To prove the �rst part of this orollary we an say, as in the proof of the Corollary 1, that if

both perturbations, ωi and γ̇i, are vanishing for all t > td (td > 0), then Wi, in Eq. (27), will be

equal to zero, and the full losed-loop system, in Eq. (25), will be f(χi). The equilibrium of this

nonperturbed system is the same equilibrium displayed by Eq. (37), and asymptotially stability of

the origin, χi,ss = 0, an be proved by Corollary 1.

To prove the seond part, we an say that if the perturbation ωi 6= 0 for all t, then the full losed-

loop system, in Eq. (25), has no longer an equilibrium (η-state is not ontrollable). Consequently,

we only an expet, for all t > td, that the χi-trajetories will be ultimately bounded. First, we

fous on the subsystem ẋi, and if the perturbation ωi meets

‖ωi‖ ≤ k‖xi‖ , (38)

for all xi, with k < 1/(2‖PiBi,a‖), and Pi = PT
i is a positive de�nite matrix that is the unique

solution of the Lyapunov equation PiAi,a + AT
i,aPi = − I (beause Ai,a is Hurwitz, Theorem

4.6 in [30℄), then, by Lemma 13.3 in [30℄, the origin xi,ss = 0 will be globally exponentially stable.

This means that ‖xi‖ = 0 as t → ∞ and, sine γ̇i is equal to zero for all t > td, then, from

Eq. (26) and Eq. (27), we will have that η̇2 = ωi/fi, i.e., the perturbation is weighted by fi. Next,

and from Lemma 9.3 in [30℄, we an say that due to the origin of the nonperturbed system, f(χi)

with ωi = 0, is asymptotially stable (by Corollary 1), and assuming that the perturbation satis�es

‖ωi‖ ≤ fiw1 < fiw2(l1) , (39)

where w1 is a parameter that is bounded by the funtion w2(l), whih in turns is a funtion that

is omposed of a set of lass K funtions. Then, the trajetories of the perturbed full losed-loop
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system, in Eq. (25), satisfy

‖χi‖ ≤ w3(‖χi(t0)‖, t− t0) , ∀ t0 ≤ t < t0 + T1 , (40)

and

‖χi‖ ≤ w4(w1) , ∀ t ≥ t0 + T1 , (41)

where t0 ≥ td, T1 is some �nite time, w3 is a lass KL funtion, and w4 is a lass K funtion that

depends on w1. Aording to Lemma 9.3 in [30℄, the spei� form of w2, w3, and w4 will depend on

the Lyapunov funtion, V (χi), that ould be de�ned in a domain D = {χi ∈ R
5 | ‖χi‖ < l1} (l1

is the radious of the ball). Finally, and putting together the requirements of Lemmas 9.3 and 13.3

in [30℄, and taking Eq. (38) and Eq. (41) into aount, we an say that the χi-trajetories will be

ultimately bounded, for all t > t0 + T1, if the following bound for the perturbation ωi is ful�ll,

‖ωi‖ ≤ k‖xi‖ ≤ k‖χi‖ ≤ kw4(w1) . (42)

The proof of the third part of the orollary is similar to the proof of the seond part. Here, we

only emphasize that the ondition for Lemma 9.3 in [30℄ is ‖ωi/fi + γ̈i‖ ≤ w5 < w6(l2), where

w5 is a parameter that is bounded by the funtion w6(l2). w6(l2) is a funtion omposed of a set of

lass K funtions and l2 is the radius of the ball, or the domain of a Lyapunov funtion for the full

system.
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