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Nomenclature

A = inertial North-East-Down (NED) coordinate system

“a = origin of A, m

B = body-fixed coordinate system

“b = origin of B, m

¢ = current camera-fixed coordinate system

Ac = origin of C, m

T = target camera-fixed coordinate system

At = origin of 7, m

Lhey Lt = lead and aspect angles, deg

CT-LoS = Current-Target Line of Sight, i.e., LoS through the camera centers

A = angle of the CT-LoS, deg

A = rate of change of the CT-LoS angle, deg/s

Ye, Yt = flight-path angles of the current and target cameras, deg

fe, ft = focal length of the current and target cameras, pixels

€c,y, €t,y = current and target epipolar coordinates, pixels

€cy, €ty = rate of change of the current and target epipolar coordinates, pixels/s
Teyt = magnitude of the range between camera centers, m

n — magnitude of the lateral acceleration perpendicular to the CT-LoS, m/s?

CT-system = state space representation of the engagement
n = [\, AT, CT-system’s state vector
A = CT-system’s state matrix

= CT-system’s input vector

i = n, CT-system’s input, m/s>

& = [eiy, €iy]7, linearized output’s state vector
A; = linearized output’s state matrix

B; = linearized output’s input vector

v; = linearized output’s input, pixels/s

C; = linearized output’s measurement vector
i = eiy,r, epipolar reference, pixels

i = tracking error, pixels-s

K; = state feedback gain vector



w; = input disturbance, pixels/s

X; = [¢], 047, closed-loop augmented linearized output’s state vector
A, = closed-loop augmented linearized output’s state matrix

Bi.a, Bi,a = closed-loop augmented linearized output’s input vectors

Xi = [n7,xT]7, full closed-loop system’s state vector

F(xi) = full closed-loop system’s nominal system

W = full closed-loop system’s input perturbation

Subscripts and superscripts:

7 = c: current, t: target

Y = epipolar coordinate in the vertical plane
a = augmented matrices and vectors

r = reference epipolar coordinate

A, B, C, T = relative to respective coordinate frame

I. Introduction

IN the last years, the proliferation of unmanned aerial vehicles for several purposes (monitoring,
delivery, recreation, etc.), has promoted the development of Guidance, Navigation and Control
techniques (GNC) [1-3]. Although, many different combinations of electronic systems are used
(FPGASs, DSPs, cameras, IMUs, GPSs, radars, spectrometers, etc), it is attractive to base the GNC
algorithms in few elements, in order to increase the global reliability of the aerial vehicle. This work
addresses the guidance of an autonomous glider with a technique that uses a camera as the main
sensor and algorithms based on the epipolar geometry.

In general, the use of computer vision data in robot motion control is known as visual servo
control, and the use of visual-feedback control loop to increase the accuracy of the robot motion
system is known as visual servoing [4]. The epipolar geometry has been widely studied and used
for wheeled-robot navigation, but its use for the guidance of aerial vehicles it is still an open
research area. In [5], Chaumette and Hutchinson describe the use of epipolar geometry to estimate

3-D parameters of the camera pose, given two views of the same scene. In their approach, the



fundamental matrix is computed using a set of corresponding points between two images. The main
drawback of this technique occurs when the current and desired images coincide, since the epipolar
geometry becomes degenerate and other formulations, such as the homography, are preferred for
the visual control. Hybrid and switching techniques, that join the epipolar geometry and the
homography, are then proposed as a solution for the visual servo control of a robot.

In [6], Rives proposes an image-based visual servoing navigation method based on the motion
of interest points over the image to reach their respective epipolar lines using two steps: robot
rotations, and robot translation along the epipolar line. Mariottini et al. propose in [7,8] an image-
based visual servoing algorithm for nonholonomic mobile robots, using also two steps: first the
control uses input-output linearization to regulate the current epipole and to align the robot with
the line along the optical axis of the desired camera, and then, the control advances the robot to the
desired position. No knowledge of the 3-D scene is required and asymptotic convergence is proved.

Lopez-Nicolas et al. show in [9] an epipolar visual servoing technique that includes into the
design of the control law the nonholonomic constraints of a mobile robot. Two views are used
to facilitate the teach-by-showing visual servo approach and no specific knowledge of the scene is
required. The epipolar coordinates are used as inputs for the nonlinear system, and input-output
linearization is used to design the control law. In [10,11], Lopez-Nicolas et al. propose a switching
control for mobile robots based on the epipolar geometry and homography. The switched controllers
are designed using exact input-output linearization. The goal of this switching control is to produce a
smooth robot motion activating the alternative control when an ill-conditioned situation is detected.
Discontinuities due to the switching are avoided feeding back the velocities of one control to the
other one.

Many advances in visual servo control applied to GNC of aerial vehicles have been also developed
recently. Most of them use state estimation based on visual data and Kalman filters. For example,
in [12], Gurfil and Rotstein use an implicit extended Kalman filter (IEKF) to estimate the states
of an aircraft. The filter includes noisy measurements and the aircraft velocity vector calculated
in camera axes by means of the so-called implicit constraint. The use of the IEKF reduces the

noise due to the vehicle motion. In recent works [13,14], Indelman et al. propose a new vision-



based navigation aiding technique for navigation. This technique uses the constraints derived from
general three-view geometry, and inertial navigation information to improve the estimation of the
position of the aerial vehicle. The fusion of the information is done by means of an IEKF that also
estimates the drift and bias errors of the inertial navigation system (INS). This technique is used
to solve position estimation in GPS-denied environments and for cooperative navigation. Other
contributions of this technique are the handling of loops (a vehicle revisits the same area) and the
reduced computation load against other methods of localization. This technique keeps the estimated
vector size as a constant and it relegates the scene reconstruction as a secondary task.

In [15], Webb et al. deal with the problem of state estimation for autonomous micro aerial
vehicles (MAV). They use an IEKF plus epipolar geometry computed from feature points estimated
with image processing. Under this configuration, it has been proved that the filter compensates
significant modeling and initial condition errors. In [16], Koch et al. propose an extended Kalman
filter (EKF) for sensor data fusion and for unmanned aerial vehicle (UAV) navigation. The filter
uses vision data from ground features, tracked by the Lucas-Kanade Feature Tracker method, in
order to compensate GPS failures. The position of ground features is determined as long as GPS
data is available. When GPS fails, the position of new features is computed from the states that
are estimated from the vision-based filter.

Johnson et al. [17] describe two vision-based methods to estimate the range of an aircraft
relative to a target. A single camera provides measurements of the target in the image plane, and
both, the velocity and the position of the aircraft relative to the target, are estimated by means of
an EKF. In [18], Ma et al. propose a guidance law for a small UAV using a vision-based tracking of
a target moving on the ground. Measurements of the target position in the image plane of a single
camera are used in an adaptive estimator, which feeds back the guidance law in order to maintain
the vehicle tracking the target at a given horizontal distance. The vehicle makes a circular orbit of a
predefined radius keeping the target at the center of the orbit. In an early work [19], the same authors
addressed the problem of tracking a ground vehicle, with unknown time-varying velocity, stabilizing
the tracking horizontal distance to the target, to a constant value. A fast-estimation algorithm is

used to estimate the time-varying target’s velocity and an inverse-kinematic-based controller is used



to stabilize the horizontal range. Two controllers and a switching scheme are designed respectively
for the case when visual measurements are available and the case when out-of-frame events occurs
(target is out of the image plane). Stability analysis of both controllers is presented. A different
approach is proposed in [20], where Martinez et al. use feature points estimated from the camera
information, to maintain the consistency of image calculations with the image scale change, when
the vehicle approaches to the target. They show simulations, seeking a laser marker temporarily
occluded.

The use of homography for aircraft navigation and control has been reported by Kaiser et al.
in [21], where a vision-based pose estimation method is proposed for an aerial vehicle to determine
the current coordinates between successive images. The method is based on a series of geometric
homography relationships, to create a series of daisy-chained pose estimates. This method ensures
the mapping of landmarks in the world frame and can estimate the position of static features that
leave the field of view (FoV) of the camera. The problem of degradation or instability of the visual
servo control when the features leave the FoV has been previously addressed. For instance, in [22],
homography relationships and image geometry are used to estimate the positions of feature points in
the FoV of satellites. Also, in [23], Lee et al. present an adaptive image-based visual servoing control
integrated with an adaptive sliding mode control for the operation of a small UAV (a quadrotor).
The control objective is to keep the image features into the image plane, using the position and
angular rate data from both a motion capture system and an inertial measurement unit (IMU).

In this paper, we present two guidance strategies for an autonomous glider, a class of aerial
vehicles equipped with a single camera. These strategies are based on the epipolar coordinates
that can be computed from two overlapping images using the geometry of two views. As it is
noted by Indelman et al. in [14], the use of only two views gives information about the camera
orientations, and the range between the camera centers cannot be computed directly. Additional
information, such as inertial navigation, is necessary to improve the estimation of the aerial vehicle
actual position. In our research, we use only two views, since the use of the camera orientation
and the stabilization of the line of sight (LoS), will guide the glider to the desired position, and

eventually intercept that position in a given future time.



In a previous work [24] we have proposed two strategies of guidance using the engagement rule
between the camera centers, the proportional navigation concept, and input-output linearization.
In this paper, we present a new state space representation of a full closed-loop system, including
external disturbance input, establishing the basis for stability analysis. In the full closed-loop system,
the vehicle’s angular acceleration is considered as an external input and conditions for asymptotic
stability and ultimate boundedness are established for both strategies. The estimation of the range
between the vehicle and the target is avoided and only vision-based data is required to guide the
vehicle to a desired position. In addition, we include a simple attitude control, achieved by the
stabilization of two angles: the lead angle and the LoS angle. The analysis is constrained to motion
on a vertical plane so the actuation (lateral acceleration) is perpendicular to the LoS in this plane.
In addition, the camera is considered aero-stabilized, i.e., the orientation of its principal axis is
parallel to the glider’s velocity vector.

The paper is organized as follows: Sec. II describes the concepts of the epipolar geometry,
the engagement system, and the design of the epipolar guidance strategies. Sec. III presents the
stability analysis for both guidance methods. In Sec. IV simulation experiments are shown and,

finally, conclusions are presented in Sec. V.

II. Design of the Guidance Strategies
In this section, we present a brief overview of the main concepts and properties of the epipolar

geometry, the engagement system, and the development of the guidance strategies.

A. Epipolar Geometry

The epipolar geometry is the intrinsic geometric relationship between two views of a given scene
(Fig. 1). It is totally defined by the relative poses and the intrinsic parameters of both cameras,
i.e., by the fundamental matrix F € R3*3 [25]. F describes the mapping of any point from one
view to its matching point in the other view. As in [10] and [11], the first view is generated by the
camera on-board the vehicle, and is called the current view. The other is the target view, and can
be obtained and loaded into memory offline. The scenes of these two views must overlap.

The following coordinate systems are defined: the inertial NED (North-East-Down) coordinate
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Fig. 1 3-D Epipolar Geometry.

system A : {a,,4,,4a,}, with origin at “a € R?; the current camera-fixed coordinate system C :
{é,,¢,,¢e.}, with origin at “Ac € R3 (current camera center); and the target camera-fixed coordinate
system 7 : {t;,t,,t.}, with origin at At € R? (target camera center). C and 7 are aligned with
their correspondent image planes: 7. for the current view and 7 for the target view.

The baseline is the straight line passing through the camera centers. The epipoles are the
projections of each camera center onto the image plane of the other camera, so the current epipole
“Ae. € R3, and the target epipole “e, € R3, are the intersections between the baseline and the
image planes 7. and m, respectively. The m.-plane that contains the baseline is called the epipolar
plane, and the intersections between 7, and the image planes are respectively the epipolar lines 1,
and ;. °p. € R® and 7"p; € R? are the projections of the point “p € R? onto the respective
image planes 7. and 7. Homogeneous coordinates are preferred over Cartesian coordinates to
represent geometric entities such as points, lines and planes [25].

The matrix F can be computed mapping “p. ~ 7 p; and then "p; + ;. Therefore, the

relationship between p. and 1; can be written as [25]

lt - [Tet]XHg (Cpc) (1)

c
=F ( pc) )
where F = [Te]xHy, [Tedx € R¥3 is a skew-symmetric matrix based on
Te, = T[et7w,et7y,et7z]T (homogeneous representation of the target epipole), and Hy € R3 is a

homography based on the ground plane 7, that contains the point Ap. In addition, since the pro-

jection 7 p; belongs to its respective epipolar line 1;, or (Tpt)T I; = 0, the following property of F



and its relationships with the epipoles can be derived:

("p)" F (pe) =0 (22)
F(‘e.) =0 (2b)
F' (Te)) =0 . (2¢)

Hence, the following remark about the use of feature correspondences to compute the epipolar
points can be established.

Remark 1. If a set of a minimum size N of feature correspondences (pairs in homogeneous
coordinates), Fr = {(Cf)c,i,Tf)t,i)k | (Tf)t,i)Tf‘k (“Pei) =050 = 1,.. .,N}, is retrieved,
at a time ty, from the current view and the target view, then the fundamental matrix F: can be
estimated uniquely (only for the current pair of views) and up to scale for the time ¢;. Conse-
quently, an estimation of the epipoles, (Céak,Tét)k), can be performed so that Fy, (Cécyk) =0 and
F;;F (Tét7k) = 0 (for this purpose, there are many proposed algorithms [22]).

For the case of motion in a vertical plane, some simplifications can be introduced (Fig. 2).
Camera’s rotational motion are described with simple angular velocities: J.¢; = +.a, for the
current camera, and A;t, = Y4, for the target camera. 7. and v; are the respective instantaneous
orientations, or flight-path angles, measured with respect to a horizon parallel to the a,-axis.

The instantaneous separation between the camera centers will define the magnitude of the range

vector

Arc,t = Ara,t - Ara,c ; (3)

where Araﬂg is the position vector of the target camera center, “t, and Ara,c is the position vector
of the current camera center, Ac. In addition, Arc,t matches the baseline, which is the same Line
of Sight (LoS) named CT-LoS in Fig. 2. The camera velocity angles, u. and p;, measured with
respect to the CT-LoS, are the lead and the aspect angles [26]. The orientation of the CT-LoS with
respect to the a,-axis is commonly denoted as A. Then, the lead and aspect angles can be written,

in terms of A, as



Fig. 2 2-D Epipolar Geometry.

e = (A = 7e) (4a)

pe=(ve—A) . (4b)

If the current and target epipoles are represented in Cartesian coordinates, relative to C and T,

as Ce. = [ecus ey Cen]t and Te, = [eru, €1y, er.]T, the epipolar coordinates e., and e, , result
as
ey = Jotan (1) (50)
ety = —fetan () (5b)

where f. and f; are the focal lengths of the current and target cameras. If we substitute Eq. (4a)

and Eq. (4b) it yields

ecy = fetan (A —~c) (6a)

ey =—fitan (v —A) . (6b)

10



The last two equations show the relationship between the epipolar coordinates, e., and e;,, and

the CT-LoS angle, A\, enabling the definition of guidance based on epipolar coordinates.

B. Engagement System
We define the CT-system as the state space representation of the engagement of the current

and target cameras (Fig. 3). The CT-LoS angle, J, is equal to

Fig. 3 Engagement system.

z
= tan = 7
arctan— (7)

where = and z are the range components along the a,-axis and the a,-axis. The CT-LoS rate of

change, A, can be computed by differentiation of Eq. (7) with respect to ¢

: Zx — 2%
A=, (8)

Tc,t
where rc, = V22 + 22 is the magnitude of the range Argt. Differentiating Eq. (8), with respect to

t, it follows that

11



In addition, if the target camera is static, Af‘c7t = — Ai‘a)c, which is the negative of the closing

velocity. If the aerial vehicle can generate a lateral acceleration “n = “[n,,0,n.]”, perpendicular
to the CT-LoS, then, the components of Ai‘cyt, Z and Z, and the lateral acceleration components, n,

and n_, will be related by the following equations

&= -ng=—nsinA (10a)

Z=mn,=mncosA , (10b)

where n is the magnitude of “n. Also, from Fig. 3, it can be seen that

= 11
o~ cos A (11a)
© —sinh . (11b)
Teyt

Then, using Eq. (10a)-Eq. (11b), in Eq. (9), it results that

o
Teti 4

Tc,t Tc,t

A=-2

n . (12)

Finally, the CT -system state space representation is

n=An+Bu , (13)

where 7 = [1,m2]7 = [\, A]” is the state vector, u = n is the control input, and

0 1 0
A= . B= , 14
0 —2let ! .

Tc,t Tc,t

are the state matrix and input vector, respectively. A and B depend on the range magnitude and
its rate of change, which in turn implicitly depend on ¢. The system in Eq. (13) is continuous,

linear, and time-varying. It has an equilibrium subspace equal to the 7;-axis, and its stability can

12



be directly computed from A. Because of the eigenvalues of A are A1 o = {0, =27 /7 }, only
marginal stability [27] about 72 is concluded.

Traditionally, the guidance of an aerial vehicle is performed by a porportional navigation (PN)
law [28], which measures the states and the range by means of inertial sensors, seekers, and/or
external agents that guide the vehicle to a desired target position [29]. In this work, the current
camera is the main sensor that will be used to feed back the guidance methods that we propose in

the following section.

C. Epipole-Based Guidance

Two strategies are proposed: the current epipole-based guidance (CEBG) and the target epipole-
based guidance (TEBG). Both methods are based on the assumption that stabilization of the epipo-
lar coordinates could guide an aerial vehicle to the position of a fixed target camera. The CEBG
makes the output of the C7-system equal to the current epipolar coordinate, e.y, and the TEBG
makes the output equal to the target epipolar coordinate, e;,. Using the subscript ¢ to denote c,

for the current camera, or ¢, for the target camera, both outputs can be written as

Yi =€y - (15)

Considering Eq. (6a) and Eq. (6b), the above formulation leads to a nonlinear system with
respect to the 7;-state. Then, a mapping from these nonlinear outputs to linear outputs can be
achieved by means of the input-output linearization method [30]. In this context, and since the
input u of the CT-system becomes explicit at the second derivative of each output, the relative

degree for each output is the same and equal to 2. Then, the following transformation

§il=Yi=¢€iy (16a)
Gio= &1 = §i = iy (16b)
51‘,2 = le =4 = €y =V , (16¢)

maps the nonlinear output y; into the linearized output

13



& = A& + B (17)

where & = [¢1,&.2]7 is the linearized output state and

A, = B; = , (18)
00 1

are the respective linearized output state matrix and the linearized output control vector. v; € R
is the control input that eliminates the nonlinearities of its respective output y;, if and only if, it is
related to the CT-system input, u, given the following conditions: For the output ., in R? and for

all n, with

T . ..
c = WMUC + 27 1m2 + Te Ve
C C (19)

u
- 2T6,t(772 - '.76)2 tan (771 - 'VC)

And, for the output v, in R? and for all n, with

Te .
Up = g + 272
ft sec (Fyt - 771) (20)

+ 2Tc,t"7§ tan ("yt — 7’]1)

After this linearization, each guidance method is designed to stabilize the corresponding linear
output, & 1, to an epipolar reference &; 1, = e;4,, € R. Using an integral action we ensure the
tracking of the epipolar coordinate and the rejection of input disturbances and plant parameter
variations [27][30]. It is assumed that &;; is measured as y., ; = C;&;, with C; = [1,0]. Therefore,

the tracking error o;, for each method, results as

0i = Ymi — &ir
(21)
=GCi& —&iar
Thus, if the state o; is augmented to the linearized output in Eq. (17), and state feedback

control

14



v; = =K ?aai]T +wi (22)

with K; = [ki.1, ki 2, ki3] (KI' € R?), is applied to the input of each linearized output (w; € R is an
input disturbance that can represent linearization and measurement errors), then, the closed-loop

augmented linearized output becomes

%= AjoXi + Biawi +Bialiny (23a)
Ym,i = |:Cl O:| Xi (23b)
where x; = [¢],0;]T is the closed-loop augmented linearized output state, and
A; —Bjlkii, ki2) —Bikis B; _ 0251
Ai,a = Bi,a = Bi,a = ) (24)
C; 0 0 —1

are respectively the augmented state matrix and the augmented input vectors of the closed-loop
augmented linearized output.

It can be easily verified that the pair (A;,B;) is controllable and that the transfer function
Ci(slaxa — A;)"'B; has no zero in s = 0. Therefore, all the eigenvalues of A, . can be assigned
arbitrarily by means of the gain vector K; [27]. We choose K; such that A, , is Hurwitz, since this
guarantees the epipolar coordinate follows the reference.

Finally, we define a full closed-loop system, as the composition of the closed-loop augmented
linearized output, Eq. (23a), plus the closed-loop CT-system, Eq. (13). It is observed that both
epipolar guidance strategies share the same equation form for the closed-loop augmented linearized
output, whereas the equation form of the closed-loop CT-system only changes in one term that
depends on the relationship between the inputs u; and v; (Eq. (19) for the CEBG, and Eq. (20) for

the TEBQG). The full closed-loop system can be written as

xi=foa)+ Wi, (25)

15



where y; = [n7,x7]7 is the full closed-loop system state,

72

fi

f(Xi) = _W

il
(ki,l&,l + ki 2&i2 + kizo; + Qﬁ’j@ ) (26)
i1 i

A;oxi + B o

and

0

fiwi
W= |2 4 k|- (27)
it f7

B; qw;

k; has been defined to be 4;. When ¢ = ¢, k. = ., and when i = ¢, Ky = 4 = 0. Stability of the

full closed-loop system will be analyzed in the next section.

III. Stability Analysis
The nonlinear system in Eq. (25) can be thought as a system that is composed of a nominal
system, f(x;), and an input perturbation, W;. For the CEBG, we can view % as an external
perturbation that is related to the airframe stability of the vehicle that carries the current camera;
whereas, for the TEBG, since the target camera is static (4 = 4¢ = 0), we can say that the guidance
is free of this external perturbation. For the stability analysis, two cases for both strategies are
considered: the case of the full closed-loop system with w; = 0, and the case of the full closed-loop

system with w; # 0.

A. Stability of the Full Closed-Loop System with w; =0

Ifw; = 0, we observe, from Eq. (25) - Eq. (27), that the full closed-loop system x; = f(xi) + %,
and its equilibrium depends on the perturbation input ;. The following corollary, based on Theorem
4.5 in [30], states the stability properties of this system.

Corollary 1. Let w; = 0, the matrix A;, to be Hurtwitz, and the angular velocity 4; to be
a vanishing perturbation. Then, and for all ¢ > ¢4 (tg4 > 0): (i) The full closed-loop system in

Eq. (25) has the equilibrium subspace

16



T
k,

Xi,ss = |vi +mg, 0, &1,y O, _kl_Jgi,l,r ) (28)
i3

where m; = arctan(§,1,-/f:). (ii) The origin, x;ss = 0, is asymptotically stable.
Proof. See Appendix A. O

The stability of the TEBG is completely defined by the above corollary because the path angle 4
is always assumed as a constant value (4 = 4 = 0for allt > 0). In contrast, for the CEBG,
since the value of the perturbation 4. depends on the vehicle’s dynamics, the stability of the full
closed-loop system will depend on the airframe’s equilibrium, and specifically, if 7. is an equilibrium
of the airframe. If 7. is a constant for all ¢ > ¢4, then the stability of the CEBG is completely

defined by this Corollary.

B. Stability of the Full Closed-Loop System with w; # 0

When w; # 0, the full closed-loop system in Eq. (25) results as x; = f(x:) + 7 but perturbed
by an additional term that depends on w;. Since w; has direct influence on both the 7;-state and
the x;-state, then, an assumption of the nature of w; and ; needs to be established to conclude
about the stability of the full closed-loop system. The following corollary, based on Lemma 9.3 and
Lemma 13.3 in [30], defines the stability of the perturbed full closed-loop system.

Corollary 2. Let the matrix A;, to be Hurtwitz, P; = P7 to be a positive definite matrix
that is the unique solution of the Lyapunov equation P;A; , + AZaPi = —1I, and k a nonnegative

constant such that & < 1/(2[|P;B;.|).

(i) If both w; and 4; are vanishing perturbations, then, and for all ¢t > ¢4 (t4 > 0), the full
closed-loop system, in Eq. (25), has the equilibrium subspace that is shown in Eq. (28), and

the origin it has, x;,ss = 0, is asymptotically stable.

(ii) If 4; is a vanishing perturbation, and w; satisfies

lJews]] < kwa(wr) (29)

17



forallt > to+T1, where tg > tq4 (tq > 0), and wy is a class K function that depends on the
parameter wi, then, the trajectories of the full closed-loop system, in Eq. (25), and for some

finite time 77, are ultimately bounded by

Ixill < wsa(wr) , V t>to+T1 . (30)

(iii) If 4; is not a vanishing perturbation, and

Y45 < kwr(ws) (31)

i

forallt > to+Ts, where tg > tq4 (tq > 0), and wy is a class K function that depends on the
parameter ws, then, the trajectories of the full closed-loop system, in Eq. (25), and for some

finite time 75, are ultimately bounded by

Ixill <ws(ws) , V t>to+Tz . (32)

Proof. See Appendix B. O

It is noted from the above Corollary that: if condition in Eq. (29), or Eq. (31), are satisfied, and
even though w; and/or 4; could not be vanishing perturbations, then, the subsystem %; (in Eq.
(23a)) still has an equilibrium that is exponentially stable. However, only ultimately boundedness

is guaranteed for the full closed-loop system under the conditions that have been established.

IV. Simulation Experiments
To show the application of each guidance strategy, we use an autonomous glider, described in the
following subsection, in a series of simulations with a set of initial conditions. A classical three-loop
autopilot guarantees that the acceleration requirements are reached, without overcome the airframe’s
aerodynamic capabilities. We have assumed that both cameras have the same parameters: f; = 1

mm (focal length), image plane size equal to 240 x 240 pixels/mm (height x  width), skew
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parameter zero, principal point offset at (240, 320) pixels (height, width), and spatial resolution of

480 x 640 pixels (height x width).

A. Aerial Vehicle Model

We use a glider provided with a horizontal control surface (wing) and a stabilizing fixed surface
(tail). The control action is performed by the wing deflection angle § [31]. Fig. 4 shows the wing-
body-tail configuration. In this figure, B : {f)w, f)y, BZ} is the vehicle-fixed coordinate frame, which
is aligned with the vehicle’s principal axes, and is located at ‘b € R3 (the vehicle’s center of

gravity, CG).

Fig. 4 Aerial vehicle in the a,a.-plane.

For simplicity, the current camera center has been translated to CG, and it is assumed it always

A

has an orientation parallel to the vehicle’s velocity vector, “*v.. Equations of motion of the vehicle

can be found in [29]. Here, the following state space representation, in the a,a,-plane, is retrieved:

.fl = I3

:fSQ = T4

. . OAqSTef

T3 = —X¢Tq4 — gSinry — —
" (33)

. CNquef

Ty = —TeX3z — gCOSTy — ——
m

Lil'5 = T

. queflreme

Te = ——7

Iyy
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where x; is the longitudinal translation, x is the vertical translation, x3 is the longitudinal velocity,
x4 is the vertical velocity, x5 = 6 is the attitude angle, and zg = 0 is the angular velocity. m is
the vehicle mass, g is the acceleration of gravity, I, is the principal moment of inertia around the
By—axis, and, for small aerial vehicles, S;.¢ and /,..¢ are the respective maximum cross-sectional area
and the mean diameter of the body’s. The dynamic pressure is ¢ = (1/2)pV?, where V is the free-
stream velocity and p is the air density. The angle of attack can be written as & = arctan (x4/z3).

The aerodynamic coefficients C'4, Cy, and C,,, were estimated with Tornado Vortex-Lattice

Method [32] and are described by the functions

Ca = Cand®+Chgsad+ Cy 562
Cn =Cnoa+ Cnsé (34)
Cm = Um,a®® + Om,55 )

where C4 o, Ca,a,6, Ca,s, CN,a, ON,6y Cma, and Cy, 5 are coefficients that depend on h (altitude)

and M (Mach number). These coefficients are stored in look-up tables.

B. Autopilot

A classical autopilot provides the lateral acceleration required by the guidance methods. It
translates the acceleration command, u; (Eq. (19) for the CEBG and Eq. (20) for the TEBG), to
wing deflection, 6. An autopilot’s detailed description can be found in [33]. The autopilot’s closed-
loop gains: Kpc, K4, wr, and Kg, depend on the scheduling variables, h and M, and are stored
in look-up tables.

The parameters of the autopilot are set to: wer = 10 rad/s (cross-zero frequency), ¢ = 1.0 (total
damping), and 7 = 0.4 s (total time constant). The autopilot was tested for combinations of several
flight conditions. Fig. 5 shows the autopilot’s response to the unit step reference, n,.y = us(t — 1)
G of n (lateral acceleration), a (angle of attack), and ¢ (deflection angle).

When M = 0.3 and M = 0.9 the autopilot follows the reference u,er (Fig. 5(a) and Fig. 5(b)).
However, it is noticed that the settling time for low velocities is greater than for high velocities, and

the response requires higher values for the angles a and § (Fig. 5(c) and Fig. 5(e)). This means that
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Fig. 5 Autopilot’s response to n,.; = us(t — 1) G.

when there is not enough velocity, the vehicle aerodynamic capabilities can be exceeded and the
system could become unstable. Also, the vehicle maneuverability for low altitude is greater than

for high altitude.

C. Experiments for the Current Epipole-Based Guidance

For these experiments, the following conditions are set: hg = 4000 m (vehicle initial altitude),
Aa = 400,0,ho] m, 4t = “[3000,0,3000]" m, and 7; = 45 deg. The gain K. = [15,5,15]
ensures the Hurtwitz condition for the matrix A, ,, which has the eigenvalues: — 1.7221 + ¢2.5838,

— 1.7221 — 42.5838, and — 1.5558 + ¢0.0000. Perturbation w. is assumed to be zero.
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1. Interception of a target camera

This experiment represents the interception of the target camera in three different initial con-
ditions. The current epipolar coordinate reference is set to .1, = ecyr, = 0 pixels, and the
initial conditions are associated with three current cameras: Cy, Cs, and C5. The initial conditions
for these cameras are: “c1 9 = “[0,0,ho]7 m, Acay = “4[100,0,ho]" m, Aczo = “[200,0,ho)”
m, Bveio = Bveso = Bveso = B[195,0,007 m/s, and ve10 = Ye20 = Yeso = 45 deg.

Fig. 6 shows the experiment results.
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Fig. 6 Interception of a target camera. For all the initial conditions, &1, = ecy,r = 0.

Figure 6(a) shows the trajectories of each current camera approaching to the target camera
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position. For each initial condition, and despite 7. is not an equilibrium of the aerial vehicle, the
guidance of the current cameras to the target camera position is ensured because {1 = ey is
regulated by K. (Fig. 6(c)). Fig. 6(d) shows the evolution of the target epipolar coordinate, e .
Figure 6(b) shows the lateral acceleration, n, required for the vehicle. In the case Cs, a higher lateral
acceleration is required. Fig. 6(e) and Fig. 6(f) show that « and ¢ does not exceed the aerodynamic

and structural capabilities of the airframe and instability is avoided.

2. Lead angle control

This experiment shows the trajectory of the vehicle when the current epipo-

lar reference is set to three different signals. Each reference is defined as
e = €cyry = Sjlus(t) + us(t — 4) 4+ us(t — 8)] pixels, with j = 1,2,3,
S1 = 20,8 = —10,and S3 = —40. The current camera, C, has the initial conditions:

Aco = 40,0, ho]” m, Byeo = B[195,0,0]" m/s, and 7.9 = 45 deg. Fig. 7 shows the experiment
results.

Figure 7(a) shows the resulting trajectories. Since the references have a final nonzero value,
and 7, is not an equilibrium of the vehicle, then, the guidance of the current camera to the target
camera, position is not ensured. However, different trajectory shapes and control of the lead angle
e are achieved. Fig. 7(b) shows the tracking of the current epipolar references, and Fig. 7(c) shows
the stabilization of the lead angle. For each case, the value of the lead angle is arctan (ec y.r ;/ fc)
(Eq. (5a)). Fig. 7(d), Fig. 7(e), and Fig. 7(f), show respectively the values of n, a, and §. In these
figures, we can observe that when the current epipolar coordinate reaches a high absolute value,

instability could not be avoided.

D. Experiments for the Target Epipole-Based Guidance
In these experiments, we choose the same values for “a, “t, v;, and K, than for the CEBG

experiments. Perturbation w; is assumed to be zero too.
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Fig. 7 Lead angle control.

1. Interception of a target camera

This experiment shows the interception of the target camera in three different initial con-
ditions, following three different target epipolar references. Each reference is defined as:
a1 = €yr1 = —[10us(t — 2) — bus(t — 6) — bug(t — 10)] pixels, {12 = €ryr2 = 0
pixels, and 103 = eryrs = 10us(t — 2) — bus(t — 6) — bus(t — 10) pixels. The initial
conditions are associated with three current cameras: C, Cs, and Cs, with the following values:
‘ACLO = Aczyo = A0370 = A[O,O,ho]T m, BVC)LO = Bvcygo = nggyo = 5[240,0,0] m/s,

Ye,1,0 = 40 deg, ve2,0 = 45 deg, and .30 = 55 deg. Fig. 8 shows the experiment results.
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Fig. 8 Interception of a target camera.

Figure 8(a) shows the trajectories followed by the vehicle. Given that the end values of each reference
are zero (Fig. 8(d)), conditions of Corollary 1 are satisfied, so, the interception of the target camera
is ensured. It is observed in Fig. 8(b) that a larger acceleration is required when the vehicle starts
to move with a high initial orientation. Since the vehicle has no propulsion it has flight against
the gravity. Fig. 8(e) and Fig. 8(f) show that o and ¢ stay under reasonable bounds avoiding the

system become unstable.

25



2. LoS angle control

This experiment shows how a control of the LoS angle, A, is achieved when the

vehicle follows three different target epipolar references. Each reference is defined as
é‘t)l’r)j = etyrj = Sj[us(t -1 - ]) + us(t -5 — j)] pixels, with 7 = 1,2,3, ST = -2,
Sy = —6,and S3 = — 16. The current camera, C, has the initial conditions: ‘co = “[0,0, ho]”

m, Bvcyo = 5[240,0,0]" m/s, and Ye,0 = 45 deg. Fig. 9 shows the experiment results.
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Fig. 9 LoS angle control.

Figure 9(a) shows the trajectories followed for the vehicle. Since conditions of Corollary 1 are

satisfied, every current camera intercepts the target camera. Fig. 9(b) shows the tracking of target

26



epipolar reference, and Fig. 9(c) shows the stabilization of A to a values that are defined by the
target epipolar references. The final LoS angles obtained in this experiment are 44.05 deg, 42.14
deg, and 37.41 deg, in accordance with Eq. (28). In Fig. 9(d), Fig. 9(e), and Fig. 9(f), we observe
that the current camera following the larger epipolar reference (S5 = — 16) requires the larger

values of n, a, and §. However, vehicle’s aerodynamic properties are not exceeded.

E. Noise Sensitivity Analysis

The most influential variables in the behavior of the proposed guidance strategies are: the initial
vehicle attitude 6y, the flight-path angle ~., and the epipolar coordinates measurements, e, and
ety Therefore, a set of Monte-Carlo simulations with noise added to the referred variables have
been proposed to show the performance of the guidance strategies.

The simulations were conducted for the case of interception of the target camera position. The
initial conditions were set to: &1, = €y = O pixels, Aco = 40,0, ho)" m, Byeo = B[195,0,0]T
m/s,and 0y = 7.0 = 45 deg, for the CEBG, and &1, = €1y, = 0 pixels, “co = 4[0,0, ko]
m, Bv.o = 5[240,0,0) m/s, and 6y = 7.0 = 45 deg, for the TEBG. We have chosen the same
values for “a, “t, 7;, and K, than those specified in Sec. IV.C and Sec. IV.D.

The following noise sources have been chosen to make the simulations: Ny = 6y + U(-2,2)
(deg), N = 5. + U(—0.1,0.1) (deg), and N3 = {e., + U(-10,10),e;, + U(-10,10)}
(pixels,pixels). U(a,b) is an uniform noise defined in the interval (a,b). The selected intervals allow
successful (stable) simulations. A total of 100 runs were analyzed for each strategy and the results
of the simulations are presented in Fig. 10 and Table 1.

For the CEBG: Fig. 10(a), Fig. 10(c), and Fig. 10(e) show the noisy final positions (red
plus signs) for each run and the ideal final position located at (2678,1307) m at time 15.66 s (blue
asterisk). According to these figures, the noisy final positions approximately move along of a straight
line and we can say that, even though noise is added to the variables, eventually the target position
can be reached at another time.

For the TEBG: Fig. 10(b), Fig. 10(d), and Fig. 10(f) show the noisy final positions and the

ideal final position located at (2650,1350) m at time 13.25 s. Also, for this strategy, we can say
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Fig. 10 Final positions for Monte-Carlo simulations for interception of a target camera.

that even though noise is added to the variables, eventually, the target position can be reached at
another time, except for the case when noise is added to the target epipole e; , (Fig. 10(f)). In this
case, the reference of the strategy is changed through the flight time and the guidance algorithm
tries to follow it. If this reference is changed, the goal of interception cannot be achieved.

Table 1 shows the mean values of the components in z and y of the position errors (u, and p,)
and the standard deviations (o, and o) in the final positions achieved by the guidance strategies.
For the noise N1 and Na, it can be concluded that the TEBG has better performance than the CEBG

since final position errors are low. However, high noise values over the target epipolar coordinate,
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included in N3, are not admissible for the purpose of interception of the target camera by the TEBG

algorithm. Fig. 10(e) shows that the same noise, N3, can be handled by the CEBG algorithm.

Table 1 Monte-Carlo simulations results for interception of a target camera

Noise CEBG TEBG

po (m) gy (m) 0w (m) oy (W) pe (m) gy (m) 0w (m) oy (m)

N1 22.8 20.0 25.6 25.6 7.94 7.93 5.73 5.73
N1 and N» 94.4 99.9 26.6 26.6 8.29 8.27 5.96 5.96
N1, N2, and N3 39.6 38.4 18.0 18.0 518 749 242 242

We can say that the guidance algorithms can lead the current camera to the target camera
position, under appropriate noise levels, but with time delay and a position error that depends on
the noise power. These results can be expected given the conditions established for Corollary 1 and
Corollary 2. On the other hand, we can say that suddenly perturbations on airframe’s stability,
and/or camera orientations, and/or epipole estimation errors, can make the features leave the FoV
of the current camera. In this case, the guidance algorithms will require additional strategies to
deal with this problem. This topic has been studied for several authors [20-23], and its study over

the CEBG and TEBG algorithms is not in the scope on this paper.

V. Conclusion

We have developed two strategies based on epipolar geometry to guide an autonomous glider
to a desired position. Their performances are shown by simulations over a specific type of aerial
vehicle.

The target epipole-based guidance (TEBG) is independent of the current camera angular ac-
celeration, .. Then, the stability of the origin of the full closed-loop system is always ensured and
it is asymptotically stable. Whereas, for the current epipole-based guidance (CEBG), the angular
velocity, 9., should be zero in order to achieve stability. If 4. is not a vanishing perturbation, and
in presence of an additional perturbation, w;, only ultimately boundedness can be ensured for both
strategies and under the conditions explained in Corollary 2.

Even though the aerial vehicle that was used here has not an equilibrium point, the goal of the
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guidance of the current camera to a desired target camera position is achieved with both guidance
methods. This was possible because the initial conditions of the guidance experiments avoid the
vehicle enters into instability. In addition, the lead angle and the LoS angle can be stabilized by the
CEBG and TEBG, respectively. Also, Monte-Carlo simulations with noise added to the relevant
variables, that can lead the system to instability, have been done to shown the performance of
both guidance algorithms. The advantages of each strategy have been showed by ideal and noisy
simulations.

The main contribution of the proposed guidance strategies is their independence of the range
magnitude, r., and its rate of change, 7., since these variables have been removed completely
by the input-output linearization technique. The two presented guidance strategies can be studied
for extrapolation to a different kind of aerial vehicle; however, to ensure successful outcomes, it is
required analysis of stability and performance of the selected autopilot according to the limits of

the airframe’s aerodynamic capabilities and the initial conditions that will be chosen.

Appendix

A. Proof of Corollary 1

Firstly, we can see that if 4; is a vanishing perturbation, then 4; and 4; will be equal to zero for
all ¢ > tq (tg > 0). Thus, the path angle +; will be a constant value and, if w; = 0, the perturbation
Wi, defined in Eq. (27), will be equal to zero for all ¢ > ¢4. Under these conditions, and from

Eq. (25), the nonperturbed full closed-loop system will be

Xi = fxi) - (35)

Next, to find the equilibrium x; ss of Eq. (35), we do f(xi,ss) = 0, and, using Eq. (18) and

Eq. (24) in Eq. (25), and after some algebra, it results that

30



0= 712,55

0= 67:,2,58
(36)

0=—F;i1&1,5s — ki28i,2,55 — Ki304 55

0=—&1,ss+&1r
At the equilibrium, and taking Eq. (6a) and Eq. (6b) into account, we can see that 71 ss = vi+m;,
where m; = arctan(&;1,/fi;). Therefore, and from Eq. (36), the nonperturbed full closed-loop

system in Eq. (35) has the equilibrium subspace

T
Xiss = |vi+mi, 0, &1, 0, —:Z—:;&,l,r . (37)

Now, to prove the stability of this equilibrium, we analyze the stability of the origin (because a
change of variables in the original system can shift any equilibrium point to the origin). In Eq. (37),
we can see that if the epipolar coordinate reference is set to zero, & 1, = 0, then the equilibrium
becomes the origin x; ss = 0.

From Theorem 4.5 in [30], we can say that since the matrix A; , is Hurtwitz, i.e., all its eigen-
values have negative real part, then the equilibrium x; ;s = 0 is asymptotically stable (moreover,
it is exponentially stable). That means that, for each ¢ > 0, there is a § = §(g) > 0 such that
[Ix;(0)]] < d(e) and tlggo x; = 0. |||l is a norm. In addition, and for each controller, since
the epipolar coordinates are related to the n-state by Eq. (6a) and Eq. (6b), we can verify that the

n-trajectory satisfy, for all ¢ > ¢4, the following statements:

e For the CEBG, since 1 = arctan({.1/f.), with m¢ = 0 and 4. = 0, and

ne = 1 = (f2&2)/( §)2+f02),then| lim 7, = 0Oand lim 7y = 0.

x|l =0 lIxil|—0

e For the TEBG, since 91 =  — arctan(§,1/f:), with m; = 0 and 44+ = 0, and
=1 = — (ff&2)/(Ey+ f7), then lim 7 = Oand lim 7 = 0.
Ixil|—0 I%il|—0

Finally, with the above findings, we can conclude that, for each e > 0, thereisad = () > 0

such that [|x;(0)|] < ¢ and tlim xi = 0 forallt > ¢4 Then, the origin, x;ss = 0, of the
— 00
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non-perturbed system in Eq. (35) is asymptotically stable for all ¢ > t4. The same result could
be achieved by Lemma 13.1 in [30], where the full closed-loop system is viewed as a cascade system

and when the x;-state acts as the input of the n-system.

B. Proof of Corollary 2

To prove the first part of this corollary we can say, as in the proof of the Corollary 1, that if
both perturbations, w; and %;, are vanishing for all ¢ > ¢4 (t4 > 0), then W;, in Eq. (27), will be
equal to zero, and the full closed-loop system, in Eq. (25), will be f(x;). The equilibrium of this
nonperturbed system is the same equilibrium displayed by Eq. (37), and asymptotically stability of
the origin, x;ss = 0, can be proved by Corollary 1.

To prove the second part, we can say that if the perturbation w; # 0 for all ¢, then the full closed-
loop system, in Eq. (25), has no longer an equilibrium (n-state is not controllable). Consequently,
we only can expect, for all ¢ > t4, that the y;-trajectories will be ultimately bounded. First, we

focus on the subsystem x;, and if the perturbation w; meets

llwill < Kl (38)

for all x;, with k& < 1/(2||P;B;.4||), and P; = P7 is a positive definite matrix that is the unique
solution of the Lyapunov equation P;A; , + A;TF,aPi = — I (because A, , is Hurwitz, Theorem
4.6 in [30]), then, by Lemma 13.3 in [30], the origin x; ;s = 0 will be globally exponentially stable.
This means that ||x;|| = 0ast — oo and, since 4; is equal to zero for all ¢ > ¢4, then, from
Eq. (26) and Eq. (27), we will have that 7o = w;/f;, i.e., the perturbation is weighted by f;. Next,
and from Lemma 9.3 in [30], we can say that due to the origin of the nonperturbed system, f(x;)

with w; = 0, is asymptotically stable (by Corollary 1), and assuming that the perturbation satisfies

wsll < fiwr < fiwa(la) (39)

where w; is a parameter that is bounded by the function wy(l), which in turns is a function that

is composed of a set of class K functions. Then, the trajectories of the perturbed full closed-loop
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system, in Eq. (25), satisfy

Ixill < ws([[xi(to)ll,t —to) , V to<t<to+T1 , (40)

and

Ixill < wa(wy) , V t=to+ Ty (41)

where tg > tg, T is some finite time, w3 is a class KL function, and w, is a class K function that
depends on w;. According to Lemma 9.3 in [30], the specific form of ws, w3, and w, will depend on
the Lyapunov function, V(x;), that could be defined in a domain D = {y; € R® | ||xi|| < L} (Ih
is the radious of the ball). Finally, and putting together the requirements of Lemmas 9.3 and 13.3
in [30], and taking Eq. (38) and Eq. (41) into account, we can say that the y;-trajectories will be

ultimately bounded, for all t > to + 71, if the following bound for the perturbation w; is fulfill,

[lwill < Rl < Ellxill < kwaws) (42)

The proof of the third part of the corollary is similar to the proof of the second part. Here, we
only emphasize that the condition for Lemma 9.3 in [30] is ||wi/fi + %l < ws < we(l2), where
ws is a parameter that is bounded by the function wg(l2). wg(l2) is a function composed of a set of
class K functions and [, is the radius of the ball, or the domain of a Lyapunov function for the full

system.
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