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Abstract—Petri nets are graph based tools to model and study
concurrent systems and their properties; one of them is liveness,
which is related to the possibility of every part of the system to be
activated eventually. Siphons are sets of places that are related to
liveness properties. When we need to deal with realistic problems
its computation is hard or even impossible and this is why in this
paper we are approaching it using evolutionary computation, a
meta-heuristic that has proved it can successfully find solutions
when the search space is big. In a previous work a formulation
of the siphon property based on linear constraints and a genetic
algorithm was proposed for general Petri Nets. Here we propose
to adapt an algebraic method based on the selection of rows
of the matrix that cancel in an adequate way input and output
transitions so the resulting selection is a siphon. We will also
present an evaluation for a family of resource allocation systems
(RAS). The proposed solution is based on a genetic algorithm
(GA); we can see how siphons can be computed using this genetic
algorithm, with experiments showing that in some cases they are
able to find a few solutions in less time than previous deterministic
algorithms.

Keywords—Siphons, genetic algorithms, incidence matrix, alge-
braic methods, computing, deadlock prevention

I. INTRODUCTION

A Resource Allocation System (RAS) can be seen as a
finite set of concurrent processes which share a finite set of
resources in a competitive way; it can be modelled by means
of a discrete event system. RAS are usually complex enough
to take advantage of the use of formal methods, which can
be used to improve its understanding, providing tools for the
analysis and implementation steps. They also help in the dialog
between people involved in the design, construction and system
management. Our proposal is to use Petri (or Place/Transition)
nets as a tool for this purpose. They are used to visualize and,
through formal analysis, describe structural properties of the
system they represent [1].

The competition for resources makes possible the existence
of deadlocks; a deadlock occurs when some processes are wait-
ing for resources that have been allocated to other processes,
that are also waiting for resources that have been allocated

to the former ones (maybe in a more complicated ways, the
dependence does not need to be direct). RAS have been widely
used when synthesizing deadlock avoidance and prevention
policies, and many of the published work relies on minimal
siphons for this [2], [3], [4], [5], [6], [7], [8]. A minimal siphon
is a set of places such that the existence of any edge from a
transition t to a place of D implies that there is an edge from
some place of D to t. When a siphon reaches a state with
no tokens, it will never become marked again; for this reason
they are related to liveness properties. In consequence, some
(efficient) methods to compute these structural components are
needed. In [8] some work has been done in the field of Flexible
Manufacturing Systems (FMS) trying to reduce the number
of siphons to be considered for deadlock prevention, but not
avoiding the computation of the whole set of minimal siphons.
In most cases siphon enumeration cannot be avoided and this
is the reason for trying to obtain efficient implementations ([2],
[9], [5], [7].)

In this work we are going to propose a genetic algorithm
implementation that uses a formulation of the siphon property
by means of linear algebra, using the incidence matrix of the
Petri Net model. This implementation has been tested in a well-
known family of RAS. We will show how we can compute
siphons using a genetic algorithm with an existing generic
package.

The rest of this paper follow the this scheme: Section II
provides an introduction to Petri Nets, Section III presents
the Genetic Algorithm. In Section IV we presents the adapted
method, and Section V is devoted to our experimental setup
and the experimental results, together with some discussion
about them. Finally, some conclusions are presented.

II. PETRI NETS

A Petri net (or Place/Transition net) is a 3-tuple N =
〈P, T,W 〉 where P and T are two non-empty disjoint sets
whose elements are called places and transitions, respectively.
In a generic way, elements belonging to P ∪ T are called
nodes. W : (P × T ) ∪ (T × P ) → IN defines the weighted

© © 2014 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.
Accepted Manuscript to appear in IEEE ICSTCC 2014 Proceedings
(http://www.ace.tuiasi.ro/icstcc2014/)



flow relation: if W (x, y) > 0, then we say that there is an arc
from x to y, with weight or multiplicity W (x, y). Ordinary
nets are those where W : (P × T ) ∪ (T × P ) → {0, 1}.
Given a net N = 〈P, T,W 〉 and a node x ∈ P ∪ T ,
•x = {y ∈ P ∪ T | W (y, x) > 0} is called the pre-set of
x, with x• = {y ∈ P ∪ T | W (x, y) > 0} being the post-set
of x. This notation is extended to a set of nodes as follows:
given X ⊆ P ∪ T, •X =

⋃
x∈X

•x, X• =
⋃

x∈X x•. A
Petri net is self–loop free when W (x, y) 6= 0 implies that
W (y, x) = 0. The Pre–incidence matrix Pre : P × T → IN
of N is Pre[p, t] = W (p, t). The Post–incidence matrix
Post : P × T → IN of N is Post[p, t] = W (t, p). A
self–loop free Petri net N = 〈P, T,W 〉 can be alternatively
represented as N = 〈P, T,C〉 where C is the incidence
matrix: a P ×T indexed matrix such that C[p, t] = W (t, p)−
W (p, t) = Post[p, t] − Pre[p, t]. A marking is a mapping
m : P → IN; in general, markings are represented in vector
form. A transition t ∈ T is enabled for a marking m if and
only if ∀p ∈ •t .m[p] ≥ W (p, t); this fact will be denoted

as m t
−→ (or m[t >). If t is enabled at m, it can occur;

when it occurs, this gives a new marking m′ = m+C[P, t];
this will be denoted as m t

−→m′ (or m[t > m′), and we
say that m’ is reached from m by the occurrence of t. The
state equation of a marked net is an algebraic equation that
gives a necessary condition for the reachability of a marking

from the initial marking: a markings m ∈ IN|P | such that

∃σ ∈ IN|T | .m = m0 + C · σ is said to be potentially
reachable. The potentially reachability set of a net is the set of
solutions for the state equation. Flows (Semiflows) are integer
(natural) annullers of matrix C (That is, a vector, y 6= 0
such that y · C = 0). Right and left annullers are called T–
(Semi)flows and P–(Semi)flows, respectively. The support of
P–(Semi)flows is given by: ‖y‖ = {p ∈ P | y[p](>) 6= 0}.
Let PS be the set of minimal P–Semiflows of N . (Semi)flows
are called minimal when its support is not a strict super-set
of the support of any other, and the greatest common divisor
of its elements is one. A P–Semiflow y defines the following
invariant property: ∀m0 . ∀m ∈ PRS(N ,m0) .y ·m = y ·m0

(cyclic behavior law).

Given a Petri net we will call N a subset of places D ⊆ P
is a siphon (E ⊆ P is a trap) of the net N if, and only if,
•D ⊆ D• (E• ⊆ •E). A siphon (trap) is minimal if, and only
if, it does not properly contain another siphon (trap). Siphons
have the important property that, if at a given marking the
siphon is unmarked, it will remain unmarked. Researchers have
considered and studied different methods for finding siphons
and traps. Among them let us present the main types, that
we will classify based on the underlying techniques used
for their computation: Algebraic methods compute families
of siphons by means of the solution of a set of linear
equations or inequalities. They use the net incidence–matrix
or a transformation of it. Methods using this approach can be
found in [10]. Methods based on graph theory directly use
the graph representation of the Petri net to compute siphons:
methods using this approach can be found in [11]. Methods
using logic formulas are based on characterizing siphons by
means of boolean variables, which typically represent places

or transitions and their relations [12].

III. GENETIC ALGORITHMS

Genetic algorithms [13] (GAs) are bioinspired methods
that take their inspiration from Darwin’s evolutionary and
its genetic-molecular basis. More technically the genetic al-
gorithm is a search and optimization algorithms based on a
population of solutions and using a method that is similar to
natural selection. A random population of candidate solutions
is evolved trying to explore the search space looking for better
solutions. The sketch of the canonical genetic algorithm is as
follows [14]:

1) (Start) Initialize the population with n random solutions
coded using a data structure generally called chromosome

2) (Loop) Repeat until a required set of solutions are found
or the evaluation budget (number of evaluations set in
advance) is exhausted.

3) Evaluate every member of the population on the basis of
its ability to solve the problem, that ability is called fitness.

4) (New population) Generate n new solutions

a) (Selection) Create a pool of solutions where the
former population is represented according to its
fitness.

b) (Reproduction) Extract randomly solutions from
these pools and combine them (in a process called
crossover) or change them (mutation). In some cases,
both operations are performed sequentially

c) (Accepting) Insert these new solutions into the former
population, in some cases replacing it completely.

The main task of a genetic algorithms designer is to find
good parameter settings (population size, encoding, selection
criteria, genetic operator probabilities, fitness evaluation, ...).
We have used the Algorithm::Evolutionary [15] im-
plementation following the example tide_bitstring.pl
for the experiments. There are many other available imple-
mentations, but this one is known by the authors, is written
in Perl and needs just a few lines of code to be adapted to
new problems. Since it is written in an interpreted scripting
language it can be, in general, slower than other libraries
written in Java or C++.

IV. THE PROPOSED APPROACH

The method presented by Boer and Murata in [16] uses
an algebraich approach, where the underlying graph of the
Petri net is represented by means of the signi-incidence matrix,
using the input and output arcs without weights.

For example, in Fig. 1 we can see a very simple Petri
net (which belongs to S4PR [17], [12]) and in Table I its
sign incidence matrix. In this matrix, the rows represent the
set of input/output transitions of places (or set of places):
positive entries for input transitions, negative ones for output
transitions, and ±–signed ones for transition that are both input
and output of the set. Adequate arithmetic operations that allow
to cancel any positive entry with a negative or a ‘±’ valued
one can be defined in order to represent the siphon property.
We will need to find adequate combinations of rows such that
positive signs can be cancelled to produce ‘±’ and negative
ones. For example, if we use the sign incidence matrix of
Table I, we can sum the rows corresponding to places P1 1
and R1, obtaining:
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Fig. 1. A S4PR with deadlock problems.

TABLE I. SIGN INCIDENCE MATRIX OF NET OF FIG. 1

T1 T2 T3 T4 T5 T6 T7

P1 1 + − 0 0 0 0 0 1

P1 2 0 + − 0 0 0 0 2

P1 3 0 0 + − 0 0 0 3

P2 1 0 0 0 0 + − 0 4

P2 2 0 0 0 0 0 + − 5

P1 0 − 0 0 + 0 0 0 6

P2 0 0 0 0 0 − 0 + 7

R1 − + 0 0 0 − + 8

R2 0 − − + − + 0 9

T1 T2 T3 T4 T5 T6 T7

P1 1 + − 0 0 0 0 0 1
R1 − + 0 0 0 − + 8

P1 1⊕R1 ± ± 0 0 0 − +

The ‘±’ symbols in the first and the second columns
represent that, in the net, •{P1 1 ∪R1} ∩ {P1 1 ∪R1}• =
{T1, T2}. Moreover, the ‘−’ symbol in the sixth column
represents the fact that T6 ∈ {P1 1 ∪R1}•, but it is not
an input transition of this set; finally, the ‘+’ symbol in the
seventh column represents that T7 is an input transition of this
set of places, but it is not an output transition.

The following theorem can be used for the computation of
the siphons. It helps us with the selection of a set of adequate
rows (places) of the sign incidence matrix.

Theorem 1 ([16]): Let N = 〈P, T,C〉 be a Petri net
with |T | = n and |P | = m. A subset of places, S =
{p1, p2, ..., pk} ⊆ P , is a siphon if and only if the addition
of the k row vectors of the sing incidence matrix of N ,
A1⊕A2⊕ ...⊕Ak, contains no ‘+’ entries, where Aj denotes
the row vector corresponding to place pj , j = 1, 2, ..., k. ♦

Assuming the previous results hold, if the sum of these rows
does not contain ‘+’ entries, this means that each ‘+’ in a row
is cancelled with a ‘−’, or a ‘±’ (that is, for each place in the
output of a transition, there exists a place of the net that is the

input of this transition).

For example, if we use the sign incidence matrix of Table I,
we can sum the rows corresponding to places P1 1, P2 2 and
R1, obtaining the desired result,

T1 T2 T3 T4 T5 T6 T7

P1 1⊕R1 ± ± 0 0 0 − +

P2 2 0 0 0 0 0 + − 5

P1 1⊕ P2 2⊕R1 ± ± 0 0 0 ± ±

showing that they are a siphon, since •{P1 1, P2 2, R1} =
{P1 1, P2 2, R1}• (in this case, they are also a trap).

The method proposed in [16] was based on the iterative
application of the previous ‘cancellation’ of ‘+’ signs by
means of the addition of matrix rows. Any resulting grouping
of places such that the sum has no ‘+’ signs corresponds to
a siphon. In that approach the algorithm started selecting a
matrix row, and then searching for some rows that could cancel
the ‘+’ signs. In our case we can avoid selecting a concrete
row and let the genetic algorithm select a combination of rows:
when their sum does not contain a ‘+’ sign, the associated set
of places is a siphon.

For each individual the variables will represent places (rows
of the sign incidence matrix), and the algorithm will use as
fitness function the number of places represented by active
bits. In the example previously shown, the resulting individ-
ual would be: (1, 0, 0, 0, 1, 0, 0, 1, 0), representing the siphon
{P1 1, P2 2, R1}. The objective will be to minimize the
number of active variables, in order to try to find the minimal
siphons. The reason for this is that we cannot state by means of
the proposed method the minimality, so we need to direct the
GA to some interesting solution. We have chosen to compute
the smaller siphons. We can imagine alternative objective
functions that would take into account just the number of
resource places, or the number of process places, or some
more complex measurements. There are some situations that
should be avoided: having an empty siphon is one of them
(all the variables set to zero); other undesirable situation is
to have all the places included (all the variables set to one);
finally, we do not want to reach a solution such that the
columns have a ‘+’ sign in a variable since it would not be
a siphon. In all of these cases, we penalize these types of
solutions in the fitness function. In [18] we excluded the P–
Semiflows from the solution for the set-based approach. Here
we have not considered P–Semiflows, so they can be a solution
of the genetic algorithm. In the previous example, the set
{P1 1, P2 2, R1} is a siphon, a trap and a P–Semiflow.

Since we want to obtain a result that minimizes the number
of active variables (remember that they represent rows in the
sign incidence matrix) in such a way that the corresponding
sum has no postive signs, we need to combine this information
in some way. For this, given a chromosome we can do the
operations (the sum of the rows) and then we can see if there
is some ‘+’ sign in the result. In this case, we return a negative
value. When we have an individual which represents an empty
siphon or a siphon composed by all the places of the net, we
can do the same.
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Fig. 2. Two processes with two stages sharing resources as in FMSAD and
FMSLD models modeled as a Petri net.

V. THE EXPERIMENTS

We have compared the results for the nets used in [17],
[18] as a benchmark for the performance of the methods.
These nets belong to S4PR class. It is a well–known subclass
for the modeling of a wide set of RAS with a well-defined
and easy to understand structure. Even the proposed method
should allow us to look for siphons in any general Petri net,
our previous work has concentrated in this class of nets and
our examples belong to it. S4PR nets allow the modeling of
concurrent sequential processes with routing decisions and a
general conservative use of resources. There is a more detailed
presentation of some of these models in [19], [17], [12].

The first and second classes of systems are compositions
of a set of sequential processes which have attached at each
processing step a single (and different) resource. We can see
and sketch of the Petri net representing two of such sequential
processes (with the resources for the first process only) in
Fig. 2. We can change the size for this family of systems in two
ways: changing the length of the process; that is, the number
of places for each process (two in the Figure). We can also
change the number of processes (two in the Figure). Then, for
a given number of processes of a fixed length we can compose
them: Each process shares its resources with the following one
in reverse order. So, if process i uses resources following the
sequence i1, i2, ..., im, the next process will use them following
the sequence im, im−1, ..., i1 (m is the length and resources
are associated to process i). The last process is composed
with the first one following the same rules. With these rules,
two different families of S4PR nets can be generated, labeled
as FMSAD and FMSLD in the tables. FMSAD nets have a
variable number of sequential processes with a fixed length
of 3. This variable number of processes is the parameter. In
our case, we are composing from 3 to 8 processes. FMSLD

forkR_i

phil1Waiting_i

philForkR_i philForkL_i

forkL_i

philEating_i

T5_i

T6_iT3_i

T2_iT1_i

Fig. 3. The i–th philosopher problem modeled as a Petri net

have two sequential processes of variable length which is the
parameter. We have made experiments with a length from 3
to 8. The last one corresponds to a model of the well known
dining philosophers problem. In this case we can change the
number of philosophers. Fig. 3 shows the model of the ith
philosopher. Places forkR i and forkL i represent the right
and left forks, respectively. Each fork will be shared with the
philosopher that is on the corresponding place on the table.
The results obtained for this family of nets are entitled Phil in
the tables.

In [18] we recomputed the values shown in [17] to include
time results obtained with the same computer for all the
experiments. The results of the best one are shown in the
comparison of Fig. 4. All the computations have been done
with a desktop computer, Intel(R) Core(TM) i5-2400 CPU @
3.10GHz, with 4Gb of RAM. Notice also that for each type
of problem the next size takes more than 24 hours to compute
the set of siphons with the first method.

For these new experiments, we have measured the time used
by the genetic algorithm to obtain at least one siphon; the GA
should be able to compute more than one (just selecting the
adequate set of best fit individuals). In any case, it would be
difficult to predict the number of good siphons, so let us use
this time as a conservative measure.

The genetic algorithm has several parameters that need to
be adjusted. We have used elitism and rank-based selection.
For mutation we have used a bitflip operation with 33%
of probability and we have selected a two-point crossover
operator with probability of 66%. These are the parameters
used by default in the tide_bitstring.pl example, and
we did not modify them. We have then focused on finding the
right size for the initial population and the correct number of
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TABLE II. TIMES FOR SIPHON COMPUTATION WITH THE PROPOSED

METHOD

Size Population Time Evaluations

FMSAD 3 16 0,03 (0,01) 247 (83,95)

3 32 0,05 (0,01) 479 (76,77)

3 64 0,08 (0,01) 834 (141,33)

4 16 0,04 (0,01) 226 (80,94)

4 32 0,09 (0,02) 565 (145,35)

4 64 0,18 (0,03) 1179 (215,43)

5 16 0,05 (0,02) 205 (98,40)

5 32 0,11 (0,04) 483 (209,11)

5 64 0,27 (0,08) 1225 (395,43)

6 32 0,14 (0,08) 457 (268,78)

6 64 0,31 (0,12) 1036 (463,36)

6 128 0,85 (0,28) 2964 (955,49)

7 32 0,16 (0,08) 407 (228,09)

7 64 0,34 (0,15) 909 (443,33)

7 128 0,93 (0,42) 2474 (1.205,99)

7 256 1,84 (0,77) 5016 (2.368,35)

8 64 0,40 (0,19) 822 (463,71)

8 128 0,88 (0,44) 1842 (1.025,05)

8 256 2,04 (1,20) 4248 (2.669,90)

9 64 0,41 (0,12) 664 (214,16)

FMSLD 3 8 0,01 (0,00) 107 (29,72)

3 16 0,01 (0,00) 208 (50,96)

3 32 0,03 (0,00) 405 (64,78)

4 8 0,01 (0,00) 118 (31,09)

4 16 0,02 (0,00) 228 (35,98)

4 32 0,04 (0,01) 462 (75,54)

5 16 0,03 (0,01) 272 (51,70)

5 32 0,05 (0,01) 491 (74,13)

6 16 0,04 (0,01) 270 (68,93)

6 32 0,07 (0,01) 535 (105,53)

7 16 0,05 (0,01) 323 (74,41)

7 32 0,10 (0,01) 637 (84,94)

8 16 0,07 (0,02) 336 (106,79)

8 32 0,13 (0,01) 661 (83,84)

8 64 0,23 (0,04) 1222 (208,84)

Phil 3 16 0,02 (0,01) 200 (60,89)

3 32 0,05 (0,01) 445 (99,29)

3 64 0,08 (0,01) 834 (141,33)

4 32 0,06 (0,02) 391 (118,45)

4 64 0,13 (0,04) 887 (232,26)

5 64 0,16 (0,06) 790 (271,09)

5 128 0,38 (0,11) 1876 (528,81)

6 64 0,19 (0,06) 707 (205,14)

6 128 0,42 (0,15) 1559 (587,77)

7 64 0,23 (0,05) 661 (137,34)

7 128 0,44 (0,07) 1281 (167,60)

8 64 0,27 (0,01) 625 (0,00)

8 128 0,58 (0,14) 1325 (285,92)

Column 1: Name (as in [17])

Column 2: Size of the problem.

Column 3: Population of the instance.

Column 4: Average time. P–Semiflows in the initial population. Random initial popula-

tion.

Column 5: Average number of evaluations (rounded). Random initial population.

In all the cases, in parentheses, the standard deviation.

In boldface we have marked the cases with the initial population of the same size as in

Table III for comparison.

evaluations. We start the experiment for each example with
an initial population of size 8 and we run the program thirty
times; if it fails (does not compute a siphon) more than once,
we double the size of the initial population and repeat until
we can reach thirty iterations with at most one failed result.
We also established a maximum number of evaluations: if no
solution is found after this number of evaluations the algorithm
stops (and we consider this run a failure). The initial population
is fully random. In [18] we tested the inclusion of the initial
population with the P–Semiflows but not significant differences
appeared, so we discarded that approach for this work. When

TABLE III. TIMES FOR SIPHON COMPUTATION WITH THE METHOD

PROPOSED IN [18]

Initial Population

Random

Size Pop. Time Eval.

FMSAD 3 64 0.96 (0.18) 938 (169.27)

4 64 1.92 (0.32) 1,082 (185.82)

5 64 3.33 (0.41) 1,222 (152.79)

6 128 12.61 (12.70) 2,657 (394.46)

7 256 31.71 (3.47) 5,954 (644.96)

8 256 50.95 (17.79) 7,009 (1,231.68)

FMSLD 3 32 0.50 (1.73) 379 (73.60)

4 32 0.36 (0.07) 447 (84.49)

5 32 0.65 (0.10) 526 (79.82)

6 32 1.00 (0.21) 562 (117.14)

7 32 1.59 (0.85) 661 (343.29)

8 64 4.05 (0.78) 1,310 (248.29)

Phil 3 64 0.34 (0.03) 812 (64.70)

4 64 0.62 (0.07) 863 (91.17)

5 128 2.03 (0.23) 1,859 (195.90)

6 128 3.18 (0.38) 2,042 (240.61)

7 128 4.60 (0.41) 2,185 (183.80)

8 128 6.40 (0.67) 2,362 (234.06)

Column 1: Name (as in [17])

Column 2: Size of the problem.

Column 3: Population of the instance.

Column 4: Average time. Random initial population.

Column 5: Average number of evaluations (rounded). Random initial population.

In all the cases, in parentheses, the standard deviation.

the algorithm stops, we can check whether the solution with
best fitness is a siphon or not: if it has not positive fitness it
won’t be a siphon.

The results obtained can be seen in Table II. They also can
be seen (with the standard deviation) in a graphical way in the
second column of Fig. 4 and a comparison with the algebraic
algebraic method which serves as inspiration for the GA in the
first column. The times shown for the genetic algorithm are the
average of the thirty runs of each experiment with the smaller
acceptable initial population for each size of each problem.
The time needed to reach a solution has been included in
TableeII; these results have been computed using the same
population size as our previous work (they are highlighted with
boldface in Table II) and some intermediate cases (filling the
gap by duplicating the initial population size). We can see that
the incidence matrix-based genetic algorithm is faster than the
previous set-based genetic one presented in [18]. The results of
the experiments of this set-based genetic method can be seen
in Table III for comparison. It requires smaller populations and
less evaluations to complete its task. In the comparison with
the classical algebraic approach this genetic approach is faster
for the FMSxD models but slower in the case of Philosophers
example (column 1 of Fig. 4).There are two things to remark
here: the results should not be compared directly, since the
algebraic implementations where done in C, and the genetic
algorithm has been programmed using Perl. The second thing
to note is that the genetic algorithm does not obtain all the
siphons. If we were interested in computing all the siphons,
we could add the computed ones as negative restrictions (this
set of places cannot be a solution) and apply again the GA.
There we saw that bigger initial populations where better for
obtaining more siphons running the algorithm several times.
We should expect a similar behaviour here.
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Fig. 4. Comparison of times for different examples and sizes

VI. CONCLUSIONS AND FURTHER WORK

In order to avoid control systems going into a situation of
deadlock, some policies require the computation of a set of
configurations named minimal siphons, which has been proved

to be a complex endeavor since the number of these siphons
can be very high even in systems with a small size. This paper
has further worked on a previous attempt to study the problem.

An adaptation of a method based on the incidence matrix
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has been introduced in order to try to explore the use of
genetic algorithms to search for structural components of the
net (siphons).

The method seems to have better performance than the one
presented in a previous work but the question of whether it
is adequate when we need to compute all the siphons is still
open.

Moreover, when the computation of all the siphons becomes
prohibitively expensive, the genetic algorithm can still deal
with bigger problems if it is acceptable for us to have a
partial set of the siphons instead of the whole set provided
by algebraic approaches.

In this sense, our proposal for further work will follow
several ideas: First of all, the genetic algorithm is well suited
for parallelization as in [17]. Second, the problem can be
formulated not only in terms of siphon computation but
in terms of a problem with more information. In the last
years some ideas have been proposed in order to avoid the
computation of all the minimal siphons. The methods rely on
the computation of some special bad siphons together with
bad markings (structural objects and bad states information
is merged): if we introduce the state equation the genetic
algorithm will have more information and, hopefully, it will
be an alternative method to the one proposed in previously
published work [20].
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