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Effective fractal dimension

@ Fractal dimensions have been effectivized at many different
computation levels and in all separable metric spaces

@ Today | will review how this effectivization works and some
results obtained focusing on

e Semicomputable dimension, where the point to set principle
gives a way back to classical fractal geometry

e Finite-state dimension and its connection with Borel normality
and number theory

e More speculative connections



Resource-bounded fractal dimension

@ (Lutz 2003) Used in Computational Complexity, every class
has a dimension (E is linear exponential time)

(X) dim(X|E)
Dim,(X) Dim(X|E)

(X) dim(X|ESPACE)

(X) Dim(X|ESPACE)

@ dim and Dim are dual concepts that correspond to
effectivization of Hausdorff and packing dimension,
respectively

e Gambling definition (for space bounds it can be information
theory based)



Resource-bounded fractal dimension results

Theorem (Harkins, Hitchcock 2011)
dim(Ppyy (Pert(DENSEF)) | E) = 0

Theorem (Harkins, Hitchcock 2011)
E Z Pyt (Pt (DENSE®))

Theorem (Fortnow et al 2011)
Dim(E | ESPACE) =0 or 1




Constructive dimension

@ Semicomputable gambling or Kolmogorov complexity [Lutz
2003b, Mayordomo 2002]

e K(w)=min{|y||U(y) =w} (U is a fixed universal Turing
Machine)

Definition

Let x € {0,1}>

K
dim(x) = lim inf XT

Dim(x) = limsup
n

Definition
Let E C {0, 1},
dim(E) = sup dim(x).

xeE
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Constructive dimension

@ Partial randomness when compared to Martin-Lof randomness:
x € {0,1}* is M-L random iff there is a ¢ such that for every
n,K(x[n)>n—c

o (Doty 2008) For each x € {0,1}*°, € > 0 with dim(x) >0
there is a y with x =1 y and Dim(y) > 1 —¢

o (Downey Hirschfeldt 2006) for other connections to
randomness



Point to set principle

Definition
Let x € R", r € N. The Kolmogorov complexity of x at precision r
is

K,(x) =inf {K(q)| g€ Q" |[x —q| <27"}.
K, (x)

dim(x) = liminf —/=2,
e

r

K

Dim(x) = limsup ﬁ
r r

Definition
Let E C R",

dim(E) = sup cdim(x).
x€eE




Point to set principle

Theorem (Lutz Lutz 2018)
Let ECR". Then

dimy(E) = Bcr'?(i)r}}* dimB(E).

Theorem (Lutz Lutz 2018)
Let ECR". Then

dimp(E) = Bcr?(i)nl . Dim?(E).




Application of point to set principle to fractal geometry

Theorem (Marstrand 1954)

Let E C R? be an analytic set with dimyg(E) = s. Then for almost
every 0 € (0,2M), dimg(pgE) = min{s, 1}
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Theorem (Lutz Stull 2018)

Let E C R? be an arbitrary set with dimyg(E) = s. Then for
almost every 6 € (0,2), dimp(ppE) = min{s, 1}

O Fix an optimal oracle B (dimy(E) = dim?(E) and
dimp(E) = DimB(E). Let 6 be random relative to B. Let A
with dimp(pgE) = Dim”(pyE))

@ Carefully choose a point (z € E with nearly maximal
dim”™B(z))

© Use information theory to prove that the point has high
dimension relative to the optimal oracle
(KB (pgz) > (min{s, 1} — €)r, careful information
theoretical argument on Kf"B’a(pgz) Vs Kf"B’e(z))



PTSP take home message

@ Kolmogorov complexity arguments are far from trivial

@ Useful results. There is already a paper [Orponen 2020] with
an alternative (not easier) geometrical proof of [Lutz Stull
2018]

@ Many open problems in fractal geometry to attack, also in
spaces different from Euclidean



Finite-state dimension

o (Dai et al 2004) Finite-state effectivization through gambling
and compression
o (Doty Moser 2006) Kolmogorov complexity style definition.
Let x € ¥
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equivalent



Finite-state dimension

o (Dai et al 2004) Finite-state effectivization through gambling
and compression

o (Doty Moser 2006) Kolmogorov complexity style definition.
Let x €

Ku(x [ n)
n

dimpg(x) = Al/,anS Iimninf

@ What about R? At FS level different representations are not
equivalent

e beN, Dp={nb""|n,me N}



Finite-state dimension

o (Dai et al 2004) Finite-state effectivization through gambling
and compression

o (Doty Moser 2006) Kolmogorov complexity style definition.
Let x €

Ku(x [ n)
n

dimpg(x) = Al/,anS Iimninf

@ What about R? At FS level different representations are not
equivalent

e beN, Dp={nb""|n,me N}
o letxeR,reN

KPM(x) = inf {Kum(q) | g € Db, |x — gl <277}

K"
dimPg(x) = I\%fs Iimrinf r(X)



Borel normality

o Let x ¢ R, b €N, x is b-normal if (b"x) is uniformly
distributed mod 1.
That is, for (u,v) C [0,1),

im #{n<N|b"x € (u,v)}

N N =(v-u)

o xis b-normal iff dimfg(x) =1
(based on [Schnorr Stimm 1972])
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Borel normality

o Let x ¢ R, b €N, x is b-normal if (b"x) is uniformly
distributed mod 1.
That is, for (u,v) C [0,1),

im #{n<N|b"x € (u,v)}

N N =(v=u)

o xis b-normal iff dimfg(x) =1
(based on [Schnorr Stimm 1972])

@ Borel normality is base-dependent, so finite-state dimension is
too

@ x is absolutely normal if x is b-normal for every b



a-Borel normality

e For « probability distribution on {0,...,b— 1}, x is
a-b-normal if (b"x) is a-distributed mod 1



a-Borel normality

e For « probability distribution on {0,...,b— 1}, x is
a-b-normal if (b"x) is a-distributed mod 1

@ (Huang et al 2020) extension of [Schnorr Stimm 1972] to
a-normality
Robust gambling characterization of normality, gambling
success on x in terms of divergence between « and empirical
distribution of (b"x)



How far are Finite-state dimension and constructive dimension?



Fourier dimension

@ Given a Borel measure i on R,
) = [ &2 du(x)

o 1 is s-Fourier if i(u) < c|u|~5/?

dimpE = sup {s < 1| there exists s-Fourier p with u(E) =1}

o dimpE < dimpy(E)



Fourier dimension connections

@ How do we effectivize Fourier dimension?
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Fourier dimension connections

@ How do we effectivize Fourier dimension?

o dimp(E) > s implies p-a.e. x € E is absolutely normal (for
s-Fourier)
o (Lyons 1983) (not quite)
o dimp(E) = 0 implies there is a b s.t. for each x € E there is a
nonuniform ~ s.t. x is b-y-normal

o dimp(E) > 0 implies that for every b there is x € E that is
b-normal or has no b-asymptotic distribution



Conclusions

e Constructive/effective dimension is a useful tool in fractal
geometry through the point to set principle

@ In particular in spaces different from Euclidean

@ Finite state dimension gives a very robust characterization of
Borel normality

@ We need to clarify the connections of Fourier dimension with
normality /finite-state dimension
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