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Effective fractal dimension

Fractal dimensions have been effectivized at many different
computation levels and in all separable metric spaces

Today I will review how this effectivization works and some
results obtained focusing on

Semicomputable dimension, where the point to set principle
gives a way back to classical fractal geometry
Finite-state dimension and its connection with Borel normality
and number theory
More speculative connections
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Resource-bounded fractal dimension

(Lutz 2003) Used in Computational Complexity, every class
has a dimension (E is linear exponential time)

dimp(X ) dim(X |E )

Dimp(X ) Dim(X |E )

dimpspace(X ) dim(X |ESPACE )

Dimpspace(X ) Dim(X |ESPACE )

dim and Dim are dual concepts that correspond to
effectivization of Hausdorff and packing dimension,
respectively

Gambling definition (for space bounds it can be information
theory based)



Resource-bounded fractal dimension results

Theorem (Harkins, Hitchcock 2011)

dim(Pbtt(Pctt(DENSEc)) |E) = 0

Theorem (Harkins, Hitchcock 2011)

E 6⊆ Pbtt(Pctt(DENSEc))

Theorem (Fortnow et al 2011)

Dim(E |ESPACE) = 0 or 1



Constructive dimension

Semicomputable gambling or Kolmogorov complexity [Lutz
2003b, Mayordomo 2002]
K(w) = min {|y | |U(y) = w } (U is a fixed universal Turing
Machine)

Definition

Let x ∈ {0, 1}∞

dim(x) = lim inf
n

K(x � n)

n
,

Dim(x) = lim sup
n

K(x � n)

n
.

Definition

Let E ⊆ {0, 1}∞,
dim(E ) = sup

x∈E
dim(x).



Constructive dimension

Partial randomness when compared to Martin-Löf randomness:
x ∈ {0, 1}∞ is M-L random iff there is a c such that for every
n, K(x � n) > n − c

(Doty 2008) For each x ∈ {0, 1}∞, ε > 0 with dim(x) > 0
there is a y with x ≡T y and Dim(y) > 1− ε
(Downey Hirschfeldt 2006) for other connections to
randomness
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x ∈ {0, 1}∞ is M-L random iff there is a c such that for every
n, K(x � n) > n − c

(Doty 2008) For each x ∈ {0, 1}∞, ε > 0 with dim(x) > 0
there is a y with x ≡T y and Dim(y) > 1− ε

(Downey Hirschfeldt 2006) for other connections to
randomness



Constructive dimension

Partial randomness when compared to Martin-Löf randomness:
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Point to set principle

Definition

Let x ∈ Rn, r ∈ N. The Kolmogorov complexity of x at precision r
is

Kr (x) = inf
{
K(q)

∣∣ q ∈ Qn, |x − q| ≤ 2−r
}
.

dim(x) = lim inf
r

Kr (x)

r
,

Dim(x) = lim sup
r

Kr (x)

r
.

Definition

Let E ⊆ Rn,
dim(E ) = sup

x∈E
cdim(x).



Point to set principle

Theorem (Lutz Lutz 2018)

Let E ⊆ Rn. Then

dimH(E ) = min
B⊆{0,1}∗

dimB(E ).

Theorem (Lutz Lutz 2018)

Let E ⊆ Rn. Then

dimP(E ) = min
B⊆{0,1}∗

DimB(E ).



Application of point to set principle to fractal geometry

Theorem (Marstrand 1954)

Let E ⊆ R2 be an analytic set with dimH(E ) = s. Then for almost
every θ ∈ (0, 2Π), dimH(pθE ) = min{s, 1}

It does not hold for every E (assuming CH). Recently an extension

Theorem (Lutz Stull 2018)

Let E ⊆ R2 be an arbitrary set with dimH(E ) = s. Then for
almost every θ ∈ (0, 2Π), dimP(pθE ) = min{s, 1}
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Application of point to set principle to fractal geometry

Theorem (Lutz Stull 2018)

Let E ⊆ R2 be an arbitrary set with dimH(E ) = s. Then for
almost every θ ∈ (0, 2Π), dimP(pθE ) = min{s, 1}

1 Fix an optimal oracle B (dimH(E ) = dimB(E ) and
dimP(E ) = DimB(E ).

Let θ be random relative to B. Let A
with dimP(pθE ) = DimA(pθE )

)

2 Carefully choose a point (z ∈ E with nearly maximal
dimA,B,θ(z))

3 Use information theory to prove that the point has high
dimension relative to the optimal oracle
(KA,B,θ

r (pθz) > (min{s, 1} − ε)r ,

careful information

theoretical argument on KA,B,θ
r (pθz) vs KA,B,θ

r (z)

)
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PTSP take home message

Kolmogorov complexity arguments are far from trivial

Useful results. There is already a paper [Orponen 2020] with
an alternative (not easier) geometrical proof of [Lutz Stull
2018]

Many open problems in fractal geometry to attack, also in
spaces different from Euclidean



Finite-state dimension

(Dai et al 2004) Finite-state effectivization through gambling
and compression

(Doty Moser 2006) Kolmogorov complexity style definition.
Let x ∈ Σ∞

dimFS(x) = inf
MFS

lim inf
n

KM(x � n)

n

What about R? At FS level different representations are not
equivalent

b ∈ N, Db = {nb−m |n,m ∈ N}
Let x ∈ R, r ∈ N

Kb,M
r (x) = inf

{
KM(q)

∣∣ q ∈ Db, |x − q| ≤ 2−r
}
.

dimb
FS(x) = inf

MFS
lim inf

r

Kb,M
r (x)

r
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Borel normality

Let x ∈ R, b ∈ N, x is b-normal if (bnx) is uniformly
distributed mod 1.
That is, for (u, v) ⊆ [0, 1),

lim
N

# {n ≤ N |bnx ∈ (u, v)}
N

= (v − u)

x is b-normal iff dimb
FS(x) = 1

(based on [Schnorr Stimm 1972])

Borel normality is base-dependent, so finite-state dimension is
too

x is absolutely normal if x is b-normal for every b
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α-Borel normality

For α probability distribution on {0, . . . , b − 1}, x is
α-b-normal if (bnx) is α-distributed mod 1

(Huang et al 2020) extension of [Schnorr Stimm 1972] to
α-normality
Robust gambling characterization of normality, gambling
success on x in terms of divergence between α and empirical
distribution of (bnx)
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How far are Finite-state dimension and constructive dimension?



Fourier dimension

Given a Borel measure µ on R,

µ̂(u) =

∫
e−2πiuxdµ(x)

µ is s-Fourier if µ̂(u) ≤ c |u|−s/2

dimFE = sup {s ≤ 1 | there exists s-Fourier µ with µ(E ) = 1}

dimFE ≤ dimH(E )



Fourier dimension connections

How do we effectivize Fourier dimension?

dimF(E ) > s implies µ-a.e. x ∈ E is absolutely normal (for µ
s-Fourier)

(Lyons 1983) (not quite)

dimF(E ) = 0 implies there is a b s.t. for each x ∈ E there is a
nonuniform γ s.t. x is b-γ-normal
dimF(E ) > 0 implies that for every b there is x ∈ E that is
b-normal or has no b-asymptotic distribution
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Conclusions

Constructive/effective dimension is a useful tool in fractal
geometry through the point to set principle

In particular in spaces different from Euclidean

Finite state dimension gives a very robust characterization of
Borel normality

We need to clarify the connections of Fourier dimension with
normality/finite-state dimension
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