Effective dimension: from computation to fractal geometry and number theory

Elvira Mayordomo

Universidad de Zaragoza, Iowa State University

CCC, August 31th 2020

- Fractal dimensions have been effectivized at many different computation levels and in all separable metric spaces
- Today I will review how this effectivization works and some results obtained focusing on

- Fractal dimensions have been effectivized at many different computation levels and in all separable metric spaces
- Today I will review how this effectivization works and some results obtained focusing on
 - Semicomputable dimension, where the point to set principle gives a way back to classical fractal geometry

- Fractal dimensions have been effectivized at many different computation levels and in all separable metric spaces
- Today I will review how this effectivization works and some results obtained focusing on
 - Semicomputable dimension, where the point to set principle gives a way back to classical fractal geometry
 - Finite-state dimension and its connection with Borel normality and number theory

- Fractal dimensions have been effectivized at many different computation levels and in all separable metric spaces
- Today I will review how this effectivization works and some results obtained focusing on
 - Semicomputable dimension, where the point to set principle gives a way back to classical fractal geometry
 - Finite-state dimension and its connection with Borel normality and number theory
 - More speculative connections

Resource-bounded fractal dimension

• (Lutz 2003) Used in Computational Complexity, every class has a dimension (E is linear exponential time)

```
\dim_{p}(X) \quad \dim(X|E)
\dim_{p}(X) \quad \dim(X|E)
\dim_{pspace}(X) \quad \dim(X|ESPACE)
\dim_{pspace}(X) \quad \dim(X|ESPACE)
```

- dim and Dim are dual concepts that correspond to effectivization of Hausdorff and packing dimension, respectively
- Gambling definition (for space bounds it can be information theory based)

Resource-bounded fractal dimension results

Theorem (Harkins, Hitchcock 2011)
$$\dim(P_{btt}(P_{ctt}(DENSE^c)) | E) = 0$$

Theorem (Harkins, Hitchcock 2011) $E \nsubseteq P_{btt}(P_{ctt}(DENSE^c))$

Theorem (Fortnow et al 2011) Dim(E | ESPACE) = 0 or 1

- Semicomputable gambling or Kolmogorov complexity [Lutz 2003b, Mayordomo 2002]
- $K(w) = \min\{|y| | U(y) = w\}$ (*U* is a fixed universal Turing Machine)

Definition

Let
$$x \in \{0,1\}^{\infty}$$

$$\dim(x) = \liminf_{n} \frac{K(x \upharpoonright n)}{n},$$

$$Dim(x) = \limsup_{n} \frac{K(x \upharpoonright n)}{n}.$$

Definition

Let
$$E \subseteq \{0,1\}^{\infty}$$
,

$$\dim(E) = \sup_{x \in E} \dim(x).$$

• Partial randomness when compared to Martin-Löf randomness: $x \in \{0,1\}^{\infty}$ is M-L random iff there is a c such that for every n, $\mathrm{K}(x \upharpoonright n) > n-c$

- Partial randomness when compared to Martin-Löf randomness: $x \in \{0,1\}^{\infty}$ is M-L random iff there is a c such that for every n, $\mathrm{K}(x \upharpoonright n) > n-c$
- (Doty 2008) For each $x \in \{0,1\}^{\infty}$, $\epsilon > 0$ with $\dim(x) > 0$ there is a y with $x \equiv_T y$ and $\mathrm{Dim}(y) > 1 \epsilon$

- Partial randomness when compared to Martin-Löf randomness: $x \in \{0,1\}^{\infty}$ is M-L random iff there is a c such that for every n, $\mathrm{K}(x \upharpoonright n) > n-c$
- (Doty 2008) For each $x \in \{0,1\}^{\infty}$, $\epsilon > 0$ with $\dim(x) > 0$ there is a y with $x \equiv_T y$ and $\mathrm{Dim}(y) > 1 \epsilon$
- (Downey Hirschfeldt 2006) for other connections to randomness

Point to set principle

Definition

Let $x \in \mathbb{R}^n, r \in \mathbb{N}$. The Kolmogorov complexity of x at precision r is

$$\mathrm{K}_r(x) = \inf \left\{ \mathrm{K}(q) \, \middle| \, q \in \mathbb{Q}^n, |x-q| \leq 2^{-r} \right\}.$$

$$\dim(x) = \liminf_r \frac{\mathrm{K}_r(x)}{r},$$

$$\mathrm{Dim}(x) = \limsup_r \frac{\mathrm{K}_r(x)}{r}.$$

Definition

Let
$$E \subseteq \mathbb{R}^n$$
,

$$\dim(E) = \sup_{x \in E} \operatorname{cdim}(x).$$

Point to set principle

Theorem (Lutz Lutz 2018)

Let $E \subseteq \mathbb{R}^n$. Then

$$\dim_{\mathrm{H}}(E) = \min_{B \subseteq \{0,1\}^*} \dim^B(E).$$

Theorem (Lutz Lutz 2018)

Let $E \subseteq \mathbb{R}^n$. Then

$$\dim_{\mathrm{P}}(E) = \min_{B \subseteq \{0,1\}^*} \mathrm{Dim}^B(E).$$

Theorem (Marstrand 1954)

Theorem (Marstrand 1954)

Let $E \subseteq \mathbb{R}^2$ be an analytic set with $\dim_H(E) = s$. Then for almost every $\theta \in (0, 2\Pi)$, $\dim_H(p_\theta E) = \min\{s, 1\}$

It does not hold for every E (assuming CH). Recently an extension

Theorem (Marstrand 1954)

Let $E \subseteq \mathbb{R}^2$ be an analytic set with $\dim_H(E) = s$. Then for almost every $\theta \in (0, 2\Pi)$, $\dim_H(p_\theta E) = \min\{s, 1\}$

It does not hold for every E (assuming CH). Recently an extension

Theorem (Lutz Stull 2018)

Theorem (Lutz Stull 2018)
Let $E \subseteq \mathbb{R}^2$ be an arbitrary set with $\dim_H(E) = s$. Then for

almost every $\theta \in (0, 2\Pi)$, $\dim_{\mathbb{P}}(p_{\theta}E) = \min\{s, 1\}$

Theorem (Lutz Stull 2018) Let $E \subseteq \mathbb{R}^2$ be an arbitrary set with $\dim_H(E) = s$. Then for almost every $\theta \in (0, 2\Pi)$, $\dim_P(p_\theta E) = \min\{s, 1\}$

• Fix an optimal oracle B $(\dim_{\mathbf{H}}(E) = \dim^B(E)$ and $\dim_{\mathbf{P}}(E) = \dim^B(E)$.

Theorem (Lutz Stull 2018)

Let $E \subseteq \mathbb{R}^2$ be an arbitrary set with $\dim_H(E) = s$. Then for

almost every $\theta \in (0, 2\Pi)$, $\dim_{\mathbb{P}}(p_{\theta}E) = \min\{s, 1\}$

1 Fix an optimal oracle B ($\dim_{\mathrm{H}}(E) = \dim^{B}(E)$ and $\dim_{\mathrm{P}}(E) = \dim^{B}(E)$. Let θ be random relative to B. Let A with $\dim_{\mathrm{P}}(p_{\theta}E) = \dim^{A}(p_{\theta}E)$)

Theorem (Lutz Stull 2018)

- **•** Fix an optimal oracle B $(\dim_H(E) = \dim^B(E)$ and $\dim_P(E) = \dim^B(E)$. Let θ be random relative to B. Let A with $\dim_P(p_\theta E) = \dim^A(p_\theta E)$)
- **2** Carefully choose a point $(z \in E \text{ with nearly maximal } \dim^{A,B,\theta}(z))$

Theorem (Lutz Stull 2018)

- Fix an optimal oracle B ($\dim_{\mathrm{H}}(E) = \dim^{B}(E)$ and $\dim_{\mathrm{P}}(E) = \dim^{B}(E)$. Let θ be random relative to B. Let A with $\dim_{\mathrm{P}}(p_{\theta}E) = \dim^{A}(p_{\theta}E)$)
- **2** Carefully choose a point $(z \in E \text{ with nearly maximal } \dim^{A,B,\theta}(z))$
- ① Use information theory to prove that the point has high dimension relative to the optimal oracle $(\mathbf{K}_r^{A,B,\theta}(p_{\theta}z)>(\min\{s,1\}-\epsilon)r,$

Theorem (Lutz Stull 2018)

- Fix an optimal oracle B ($\dim_{\mathrm{H}}(E) = \dim^{B}(E)$ and $\dim_{\mathrm{P}}(E) = \dim^{B}(E)$. Let θ be random relative to B. Let A with $\dim_{\mathrm{P}}(p_{\theta}E) = \dim^{A}(p_{\theta}E)$)
- **2** Carefully choose a point $(z \in E \text{ with nearly maximal } \dim^{A,B,\theta}(z))$
- ① Use information theory to prove that the point has high dimension relative to the optimal oracle $(K_r^{A,B,\theta}(p_\theta z) > (\min\{s,1\} \epsilon)r$, careful information theoretical argument on $K_r^{A,B,\theta}(p_\theta z)$ vs $K_r^{A,B,\theta}(z)$)

PTSP take home message

- Kolmogorov complexity arguments are far from trivial
- Useful results. There is already a paper [Orponen 2020] with an alternative (not easier) geometrical proof of [Lutz Stull 2018]
- Many open problems in fractal geometry to attack, also in spaces different from Euclidean

Finite-state dimension

- (Dai et al 2004) Finite-state effectivization through gambling and compression
- (Doty Moser 2006) Kolmogorov complexity style definition. Let $x \in \Sigma^{\infty}$

$$\dim_{\mathrm{FS}}(x) = \inf_{M \in \mathrm{FS}} \liminf_{n} \frac{\mathrm{K}_{M}(x \upharpoonright n)}{n}$$

ullet What about \mathbb{R} ? At FS level different representations are not equivalent

Finite-state dimension

- (Dai et al 2004) Finite-state effectivization through gambling and compression
- (Doty Moser 2006) Kolmogorov complexity style definition. Let $x \in \Sigma^{\infty}$

$$\dim_{\mathrm{FS}}(x) = \inf_{M \in \mathrm{FS}} \liminf_{n} \frac{\mathrm{K}_{M}(x \upharpoonright n)}{n}$$

- \bullet What about $\mathbb{R}?$ At FS level different representations are not equivalent
- $b \in \mathbb{N}$, $D_b = \{nb^{-m} | n, m \in \mathbb{N}\}$

Finite-state dimension

- (Dai et al 2004) Finite-state effectivization through gambling and compression
- (Doty Moser 2006) Kolmogorov complexity style definition. Let $x \in \Sigma^{\infty}$

$$\dim_{\mathrm{FS}}(x) = \inf_{M \in S} \liminf_{n} \frac{\mathrm{K}_{M}(x \upharpoonright n)}{n}$$

- \bullet What about $\mathbb{R}?$ At FS level different representations are not equivalent
- $b \in \mathbb{N}$, $D_b = \{nb^{-m} | n, m \in \mathbb{N}\}$
- Let $x \in \mathbb{R}, r \in \mathbb{N}$

$$\mathrm{K}^{b,M}_r(x) = \inf\left\{\mathrm{K}_M(q) \, \big| \, q \in \mathcal{D}_b, |x-q| \leq 2^{-r} \right\}.$$

$$\dim_{\mathrm{FS}}^{b}(x) = \inf_{M \in S} \liminf_{r} \frac{\mathrm{K}_{r}^{b,M}(x)}{r}$$

Borel normality

• Let $x \in \mathbb{R}$, $b \in \mathbb{N}$, x is b-normal if $(b^n x)$ is uniformly distributed mod 1.

That is, for $(u, v) \subseteq [0, 1)$,

$$\lim_{N} \frac{\# \{ n \leq N | b^{n} x \in (u, v) \}}{N} = (v - u)$$

• x is b-normal iff $\dim_{FS}^b(x) = 1$ (based on [Schnorr Stimm 1972])

Borel normality

• Let $x \in \mathbb{R}$, $b \in \mathbb{N}$, x is b-normal if $(b^n x)$ is uniformly distributed mod 1.

That is, for $(u, v) \subseteq [0, 1)$,

$$\lim_{N} \frac{\# \{ n \leq N \, | \, b^{n} x \in (u, v) \}}{N} = (v - u)$$

- x is b-normal iff $\dim_{FS}^b(x) = 1$ (based on [Schnorr Stimm 1972])
- Borel normality is base-dependent, so finite-state dimension is too

Borel normality

• Let $x \in \mathbb{R}$, $b \in \mathbb{N}$, x is b-normal if $(b^n x)$ is uniformly distributed mod 1.

That is, for $(u, v) \subseteq [0, 1)$,

$$\lim_{N} \frac{\#\left\{n \leq N \mid b^{n}x \in (u,v)\right\}}{N} = (v-u)$$

- x is b-normal iff $\dim_{FS}^b(x) = 1$ (based on [Schnorr Stimm 1972])
- Borel normality is base-dependent, so finite-state dimension is too
- x is **absolutely normal** if x is b-normal for every b

α -Borel normality

• For α probability distribution on $\{0, \ldots, b-1\}$, x is α -b-normal if $(b^n x)$ is α -distributed mod 1

α -Borel normality

- For α probability distribution on $\{0, \ldots, b-1\}$, x is α -b-normal if $(b^n x)$ is α -distributed mod 1
- (Huang et al 2020) extension of [Schnorr Stimm 1972] to α -normality
 Robust gambling characterization of normality, gambling success on x in terms of divergence between α and empirical distribution of $(b^n x)$

How far are Finite-state dimension and constructive dimension?

Fourier dimension

ullet Given a Borel measure μ on \mathbb{R} ,

$$\hat{\mu}(u) = \int e^{-2\pi i u x} d\mu(x)$$

• μ is s-Fourier if $\hat{\mu}(u) \leq c|u|^{-s/2}$

$$\dim_{\mathbf{F}} E = \sup \{ s \leq 1 \mid \text{ there exists } s\text{-Fourier } \mu \text{ with } \mu(E) = 1 \}$$

• $\dim_{\mathbf{F}} E \leq \dim_{\mathbf{H}}(E)$

Fourier dimension connections

• How do we effectivize Fourier dimension?

Fourier dimension connections

- How do we effectivize Fourier dimension?
- $\dim_{\mathbf{F}}(E) > s$ implies μ -a.e. $x \in E$ is absolutely normal (for μ s-Fourier)

Fourier dimension connections

- How do we effectivize Fourier dimension?
- $\dim_{\mathbf{F}}(E) > s$ implies μ -a.e. $x \in E$ is absolutely normal (for μ s-Fourier)
- (Lyons 1983) (not quite)
 - $\dim_{\mathbf{F}}(E) = 0$ implies there is a b s.t. for each $x \in E$ there is a nonuniform γ s.t. x is b- γ -normal
 - $\dim_{\mathbf{F}}(E) > 0$ implies that for every b there is $x \in E$ that is b-normal or has no b-asymptotic distribution

Conclusions

- Constructive/effective dimension is a useful tool in fractal geometry through the point to set principle
- In particular in spaces different from Euclidean
- Finite state dimension gives a very robust characterization of Borel normality
- We need to clarify the connections of Fourier dimension with normality/finite-state dimension

References: main

- Rod G. Downey, Denis R. Hirschfeldt, Algorithmic Randomness and Complexity, Springer 2006
- Jack H. Lutz and Neil Lutz, Who asked us? How the theory of computing answers questions about analysis, Ding-Zhu Du and Jie Wang (eds.), Complexity and Approximation: In Memory of Ker-I Ko, pp. 48-56, Springer, 2020
- Jack H. Lutz and Elvira Mayordomo, Algorithmic fractal dimensions in geometric measure theory, Springer, to appear. arXiv:2007.14346
- Patterns of dynamics. Editors: P. Gurevich et al. Springer 2017

References: rest

- Jack J. Dai, James I. Lathrop, Jack H. Lutz, and Elvira Mayordomo, Finite-state dimension, Theoretical Computer Science 310 (2004), pp. 1-33
- David Doty, Dimension extractors and optimal decompression.
 Theory of Computing Systems 43(3-4):425-463, 2008
- David Doty and Philippe Moser, Finite-state dimension and lossy decompressors. Technical Report cs.CC/0609096, arXiv, 2006
- Lance Fortnow, John M. Hitchcock, A. Pavan, N. V.
 Vinodchandran, and Fengming Wang, Extracting Kolmogorov
 Complexity with Applications to Dimension Zero-One Laws.
 Information and Computation, 209(4):627-636, 2011
- Ryan C. Harkins and John M. Hitchcock, Dimension, Halfspaces, and the Density of Hard Sets. Theory of Computing Systems, 49(3):601-614, 2011

References: rest

- X. Huang, J.H. Lutz, E. Mayordomo, and D. Stull. Asymptotic Divergences and Strong Dichotomy. arXiv:1910.13615, 2019
- Jack H. Lutz, Dimension in complexity classes, SIAM Journal on Computing 32 (2003), pp. 1236-1259
- Jack H. Lutz, The dimensions of individual strings and sequences, Information and Computation 187 (2003), pp. 49-79
- Jack H. Lutz and Neil Lutz, Algorithmic information, plane Kakeya sets, and conditional dimension, ACM Transactions on Computation Theory 10 (2018), article 7
- N. Lutz and D. M. Stull, Projection Theorems Using Effective Dimension. International Symposium on Mathematical Foundations of Computer Science (MFCS), 2018
- R. Lyons: Characterizations of measures whose Fourier-Stieltjes transforms vanish at infinity, Ph.D. thesis (1983), University of Michigan.

References: rest

- J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. London Math. Soc. (3), 4:257–302, 1954
- E. Mayordomo, A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters, 84, 1-3 (2002)
- Tuomas Orponen, Combinatorial proofs of two theorems of Lutz and Stull, arXiv:2002.01743, 2020
- Claus-Peter Schnorr and Hermann Stimm, Endliche Automaten und Zufallsfolgen. Acta Informatica, 1(4):345–359, 1972