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Information content in a separable space

Let (X , ρ) be a separable metric space. Let D be a dense set
and f : {0, 1}∗ � D

What is the information content of x ∈ X?

Definition

Let x ∈ X , n ∈ N. The Kolmogorov complexity of x at precision n
is

Kf
n(x) = inf

{
K(q)

∣∣ q ∈ D, ρ(x , q) ≤ 2−n
}
.
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Effective dimension in a separable space

(X , ρ) is a separable metric space, D is a dense set, and
f : {0, 1}∗ � D

Definition

Let x ∈ X ,

cdimf (x) = lim inf
n

Kf
n(x)

r
.

Definition

Let E ⊆ X ,
cdimf (E ) = sup

x∈E
cdimf (x).

Both definitions relativize to any oracle B by using KB(w)
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Point to set principle for separable X

((X , ρ) is a separable metric space, D is a dense set and
f : {0, 1}∗ � D)

Theorem (ptsp separable spaces)

Let E ⊆ X . Then

dimH(E ) = min
B⊆{0,1}∗

cdimf ,B(E ).
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Let us answer questions on dimH using effective dimension

Questions on dimH(E ) are questions on the randomness of
x ∈ E
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The hyperspace

Let (X , ρ) be a separable metric space

Let K(X ) be the set of nonempty compact subsets of X
together with the Hausdorff metric distH defined as follows

distH(U,V ) = max

{
sup
x∈U

ρ(x ,V ), sup
y∈V

ρ(y ,U)

}
.

(ρ(a,B) = inf{ρ(a, b)|b ∈ B})



Known result

Theorem (McClure 1996)

Let E ⊆ X be self-similar. Let ψs(t) = 2−1/t
s
. Then

dimψ
H(K(E )) ≤ dimH(E ).



Constructive exact dimension

Definition

Let x ∈ X . The f -constructive dimensionϕ of x is

cdimf ,ϕ(x) = inf{s | ∃∞nKf
n(x) ≤ log(1/ϕs(2−n))}.

Definition

Let x ∈ X . The f -constructive strong dimensionϕ of x is

cDimf ,ϕ(x) = inf{s | ∀∞nKf
n(x) ≤ log(1/ϕs(2−n))}.



J. Lutz, N. Lutz, EM 2020

Theorem (Hyperspace dimension theorem)

Let E ⊆ X be an analytic set.
Let ϕ be a gauge family, let ϕ̃s(t) = 2−1/ϕs(t). Then

dimϕ̃
P(K(E )) ≥ dimϕ

P(E ).



Prokhorov metric space

Let P(X ) be the set of Borel probability measures on X

dP(µ, ν) = inf {α > 0 |µ(A) ≤ ν(Aα) + α ∧ ν(A) ≤ µ(Aα) + α}

Aα = {x |ρ(A, x) < α}, ∅α = ∅
Notice that dP(δx , δy ) = min(ρ(x , y), 1).



Information content in Prokhorov metric space

((X , ρ) is a separable metric space, D is a dense set and
f : {0, 1}∗ � D)

M =

α1δa1 + . . .+ αkδak

∣∣∣∣∣∣k ∈ N, ai ∈ D, αi ∈ Q ∩ [0, 1],
k∑

j=1

αk = 1





Why Prokhorov metric space I

Definition

Γ ⊆ P(X ) is tight if for any ε > 0 there is K compact with

µ(K ) ≥ 1− ε

for any µ ∈ Γ.

Theorem (Prokhorov theorem)

For Γ ⊆ P(X ), Γ is compact if and only if Γ is tight
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Why Prokhorov metric space II

Theorem (Riesz representation theorem)

Let (X , ρ) be compact and Hausdorff.
If ϕ : C (X )→ R is positive and ‖ϕ‖ = 1 then there is a unique
µ ∈ P(X ) with

ϕ(f ) =

∫
fdµ

for all f ∈ C (X ).
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