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Chapter �� Introduction and preliminaries

��� Introduction

The notion of �e�ective procedure� or algorithm was born in the early thirties� building on
the work of Church� G�odel� Kleene� Post and Turing ��Chur���� �Chur���� �G�ode�� �Klee��
�Post���� �Turi���� �Turi����	 They developed several formalizations of this concept� such
as �calculus� partial recursive functions and the Turing Machine formalism	 This was the
base of Recursive Function Theory� where recursive problems were de�ned as those that
are solvable by an algorithm	

The construction of actual computers led to the consideration of feasibly solvable prob
lems instead of recursive or theoretically solvable ones	 This distinction was related to
the explosive growth of the exponential function� which implies that algorithms based on
exhaustive search may be infeasible in practice	 Therefore an increasing attention was paid
in the sixties to the amount of computational resources used in the solution of a recursive
problem	 Speci�cally� the resources considered were mainly time and space	

With the work of Hartmanis� Stearns and Lewis ��HartSt�� �LewiStH�� �SteaHaL�� Com
plexity Theory started a division of recursive problems into complexity classes according
to the amount of resources used in their resolution	 The computing model used here
was the Turing Machine� which corresponds to a simple mathematical representation of a
computer �see �HopcUl� for a complete description�	 The problems that can be solved in
time polynomial in the length of the input are considered feasibly solvable� and form the
class denoted P	 But there exist many problems for which no polynomial time algorithm
is known� many important ones� among them� have the property of being easy to check�
that is� once a solution is found� it can be checked in polynomial time that it is indeed a
solution	 This leads to the de�nition of the class NP as the class of �easytocheck� prob
lems� there are many important problems in this class� for instance those dealing with the
satisfability of boolean formulas or with the existence of a hamiltonian path in a graph� and
some practical operation research problems such as the distribution of crews into planes	
It would be very interesting to know whether P and NP coincide	 In the seventies� some
techniques analogous to those in Recursive Function Theory� for instance the concept of
�completeness� ��Cook�� �Karp��� started to be developed and then used to attack the P
versus NP problem	 This constitutes the beginning of the �eld of Structural Complexity�
which we develop next	

Structural Complexity describes complexity classes using various types of resources in
cluding time� space� nondeterministic time and space� Boolean circuit size and depth� and
alternating time and space	 We will not de�ne here all the mentioned resources� let us just
say that the word �nondeterministic� refers to the use of nondeterministic algorithms� that

�
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are a generalization of the usual algorithms with the extra possibility of choosing among
several instructions that follow a given one� and that the word �alternating� is �indirectly�
related to the use of parallel algorithms� in which several instructions can be run at the
same time	 The problems considered are mainly decisional ones� which are denoted as
languages� and we say that an algorithm recognizes a language when it solves the cor
responding decisional problem	 The main open problems in Structural Complexity have
the form �Is the class of languages that can be recognized with an amount f of resource
� included in the class of those recognized with an amount g of resource ��� The above
mentioned P versus NP problem can be formulated as �Is the class of languages that can be
recognized with nondeterministic polynomial time included in the class of the polynomial
time recognizable languages�� Other examples involve comparisons of polynomial time
�P� versus polylogarithmic parallel time with polynomial size hardware �NC�� exponential
time �E� versus polynomial size circuits �P�poly�� and polynomial space �PSPACE� versus
polynomial time �P�	

The notions of oracle Turing Machine� reduction and complete language are introduced in
order to compare the complexity of speci�c languages	 An oracle Turing Machine is an
ordinary Turing Machine equipped with direct access to a particular language A� which
is called oracle	 The oracle Turing Machine operates as an ordinary one� with the extra
possibility of� given a string q� computing in a single step the answer to �q � A��	 For each
oracle A� we can de�ne complexity classes according to the resources used to recognize a
language� when we can access oracle A	 This means that� for each oracle A� we have a
particular computation universe where the solution of A is given for free	 A great e�ort was
done to �nd out which answers to open problems of the form C � D� hold when translated
into some such universe� trying to get some light on the solution of the open problem �see
�BakeGiS� for the �rst work in this line�	 Given a problem such as C � D�� we say that
it is nonrelativizable when there exist oracles A and B such that C � D using oracle A
and C �� D using oracle B� that is� the solution of the problem is di�erent in the contexts
of oracles A and B	 A nonrelativizable problem is considered di�cult because most of
the techniques used in Structural Complexity are independent of the oracle used	 �Just
a few new results have shown that nonrelativizable problems are not impossible to solve�
for instance� Shamir has shown in �Sham� that PSPACE� IP� while there exist oracles for
which the opposite holds �FortSi�	�

If we can recognize a language A with an oracle B� this means that B is at least as hard to
recognize as A� since an algorithm for B would produce an algorithm for A	 This de�nes a
partial preorder of languages� denoted �T and called Turing reducibility� with the meaning
that A �T B if A can be recognized using B as oracle	 Polynomial time reducibilities
appear when considering only oracle Turing Machines that work in polynomial time	 In
general� given a restriction r on the oracle access� we say that a language L �p

r reduces
to a language A when L can be recognized in polynomial time using A as oracle with the
access restrictions indicated by r	 We say that a language A is �p

r hard for a class C when
every language in C �p

r reduces to A� and that A is �p
r complete for C when A is �p

r hard
and A � C	 Intuitively a complete language A for a class C is the most di�cult language in
the class� since an easy algorithm for A would give an easy algorithm for any language in
C	 The most common polynomial time reducibilities are �p

T� which means no restriction
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on oracle access� �p
tt� which means that each query does not depend on the answers to

previous queries� and �p
m� which allows only one query per input and with the additional

restriction that the input is accepted if and only if the query is in the oracle	 There is
a whole range of polynomial time reducibilities of the form �p

q�n��tt and �
p
q�n��T� where

q�n� is a function bounding the number of queries allowed on inputs of length n	

As Sch�oning explains in the introduction of �Sch�o���� the �rst approach to the theory
of complexity was mainly quantitative� since it corresponds to examining the amount of
resources used in the solution of a particular problem� Structural Complexity became qual
itative with the abstraction to complexity classes	 This qualitative aspect seems inherent
because a complexity class is or is not contained in another� a language is or is not complete
for a class� etc	 Despite that� a quantitative view can be also introduced in the study of
complexity classes� as we explain below	

Consider a random experiment in which a language A is chosen by using an independent
toss of a fair coin to decide whether each string is in A	 This experiment de�nes Lebesgue
probability distribution� usually referred to as Lebesgue measure	 A probabilistic distribu
tion on X can be viewed as a way of size classi�cation of subsets of X� where probability
� subsets are the smallest ones and probability � subsets are the largest ones	 Bennett
and Gill start in ���� to use Lebesgue distribution to add a probabilistic quantitative as
pect to Structural Complexity with results of the form �a language is in the class C with
probability ��	

Let us brie y examine their results	 In �BennGi�� they study the class of oracles for which
the class de�ned by polynomial time is di�erent from that de�ned by nondeterministic
polynomial time� showing that an oracle A separates P from NP with probability one	 In
the same paper they prove that with probability one for an oracle A� P equals the class of
probabilistic polynomial time� denoted as BPP	 After this� other similar results were ob
tained� for instance� an oracle A separates the polynomial time hierarchy from polynomial
space with probability one �Cai �Cai�� Babai �Baba��	 But there is still something missing
in this approach� since our main interest are recursive languages� and a language is recur
sive with probability � using Lebesgue probability distribution	 Thus we know that most
oracles separate P from NP� but we can infer nothing about the behaviour of recursive
oracles from this result	

In ���� Lutz started to remedy this situation	 He de�ned resourcebounded measure
as a way to provide size distinction for recursive classes	 Lutz takes two main classes�
exponential time� denoted E� and exponential space� denoted ESPACE� as comparison
patterns� and� for each class X� tries to establish a size comparison between X �E and E�
or between X � ESPACE and ESPACE	

The main concepts in Lutz�s theory are measure � in C and measure � in C� the class C being
either E or ESPACE	 Intuitively� a class X has measure � in C when X � C is negligibly
small compared to C� and a class X has measure � in C when X � C and C have similar
sizes	 �We will give the precise de�nitions in section �	�	� Intermediate values � � � � �
of measure in E �ESPACE� could also be de�ned� but it is not necessary because all the
complexity classes we are interested in� if at all measurable� have always either measure �
or �	 This is a consequence of a variant of the Kolmogorov �� law� which states that a class
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that is closed under �nite variations can only be in one of three cases for both measure in
E and in ESPACE� namely being nonmeasurable� having measure � and having measure
� �Lutz���	 Indeed� all the classes studied in Complexity Theory are closed under �nite
variations� since membership of a language into a class is not a�ected by adding or deleting
a �nite number of strings	

Lutz gave a �rst de�nition of resourcebounded measure in his Ph	D	 dissertation in ����
�see �Lutz����� and a new one in ���� generalizing it �see �Lutz����	 Due to some technical
inconveniences� the �rst formulation was mainly useful to prove results in ESPACE� while
with the second one results in both E and ESPACE are easier to obtain	

The �rst goal of Lutz�s approach is to extend existence results� of the form �there is a
language in C that is not in X�� to abundance results of the form �most languages in C
are not in X�� formally expressed as �the class X has measure � in C�	 The interest of
an abundance result is that it shows the typical behaviour of languages in a class� and
therefore is more informative than an existence result that could as well correspond to an
exception in the class	 For instance the results in �Lutz��� extend Kannan�s result that
�there is a language in ESPACE that does not have polynomial size circuits� �Kann� to
�the class of languages with polynomial size circuits has measure � in ESPACE�� which
means that most languages in ESPACE do not have polynomial size circuits	 Abundance
results in E are treated in Chapters � and � of this dissertation	

Another application of resourcebounded measure is in relation with the probabilistic
method �developed in �AlonSp�� �Erd�o�� �Erd�oSp�� �Spen��	 Let A be a set where a prob
ability distribution has been de�ned	 If we want to prove an existence result of the form
�there exists x � A such that property ! holds for x�� it may be easier to prove that the
subset of the elements of A for which the property holds does not have probability �i	e	
measure� �	 The easiness here comes from the use of powerful measure techniques that
involve proving abundance� as opposed to constructing a particular object	

We can consider resourcebounded measure as a probabilistic method for a class C	 In
order to prove that there exists a language in C with property !� it may be easier to prove
that the class fL

�� L has property !g does not have measure � in C	 We will see a case
where this is indeed true in Chapter �	

A third aspect of resourcebounded measure is as a formal tool in Structural Complexity
for the construction of new working hypothesis� characterization of complexity classes� etc	
A �rst example is Lutz�s characterization of the class BPP in terms of measure in ESPACE
in �Lutz��a�	 There exist resourcebounded measure hypothesis implying widely believed
results that could not be obtained from reasonable classical complexity hypothesis	 For
instance Lutz shows in �Lutz��b� that if E does not have measure � in ESPACE then
P " BPP	 In Chapter � we discuss another useful resourcebounded measure hypothesis
and its consequences	

The objective of this work is to study in deep resourcebounded measure� its possible
generalizations to other complexity classes and its applications in the three exposed ways�
namely the extension from existence to abundance results� the probabilistic method� and
the identi�cation of useful Structural Complexity hypothesis	

These applications concern mainly measure in E� for which very few results existed before
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the new formulation of Lutz�s measure in ����	 The classes E �de�ned by linear exponential
time� and E� �polynomial exponential time� have a rich and well studied reducibility
structure� and are known to contain intractable problems� which makes them very suitable
as base of comparison to other less known classes� such as NP	 There is an interesting
survey of measure in these classes in �Lutz���	 There� the results in Chapters �� � and �
are described in a broader context	 A great part of the results to be described from now
on are joint work with J	H	 Lutz� as indicated in the references	

In this chapter we start by summarizing the main contributions of this Ph	D	 dissertation	
Then we review some common notation from Structural Complexity and �nally we give a
complete introduction to resourcebounded measure in sections �	�� �	� and �	�	

��� Main contributions

Extension to new classes

We have already mentioned Lutz�s measure for the classes E and ESPACE as base classes�
to which the other classes are compared	 In the introduction we explained the interest
of comparing with E� as developed in �Lutz���	 But there is also a technical point in the
de�nition of resource bounded measure that makes it nontrivial to de�ne a measure for
any class below E	 This di�culty is related to the use of characteristic sequences	 Given a
language A and a string x� the partial characteristic sequence �A�x contains the answer to
y � A� for every y smaller than x	 The de�nition of resourcebounded measure for a class
C assumes that� given A � C� for each string x� the initial segment �A�x can be computed
within the resources allowed in C for an input of the length of x	 Remark that this last
condition requires at least exponential time	

We study in Chapter � the technical di�culties of translating Lutz�s de�nition into PSPACE�
the class of languages that can be recognized with polynomial space	 We prove that the
natural candidate of measure in PSPACE is not valid unless the unlikely consequence
PSPACE " E� holds	 We then propose a valid de�nition based on online computable
functions� and use it to prove that a class of selfreducible languages has measure � in
PSPACE	 This chapter describes and extends results from �Mayo��b�	

Measure versus Category� the P�bi�immune languages

A language A is Pbiimmune if neither A nor its complement has an in�nite subset in P	
We investigate in Chapter � the abundance of Pbiimmune languages in E	 We prove that
the class of Pbiimmune languages has measure � in E	 This implies that almost every
language in E is Pbiimmune� which extends the existence result in �BermHa�	

Baire Category is a topological theory where there exist a concept of small class �denoted
as meager or �rstcategory� and a concept of big class �comeager�	 This classi�cation
is incomparable with Lebesgue measure in the sense that there exist measure � classes
that are comeager and vice versa	 Lutz de�nes in �Lutz��� a resourcebounded version of
Baire Category	 We prove that category in E and measure in E are incomparable as in the
classical case� since the class of Pbiimmune languages is not meager or comeager in E�
while it has measure � in E� as indicated above	 Notice that in this case the incomparability
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example is a naturally de�ned class� while in the classical case the examples were more
arti�cial	 The results described in this chapter appear in �Mayo��a�	

Application to nonuniform models

Structural Complexity also studies nonuniform complexity classes as a way of comparing
uniform and nonuniform computation models	 A nonuniform computing model� for exam
ple a Boolean circuit� works only with inputs of a �xed length	 In order to recognize an
in�nite language A� a countable family of nonuniform devices is needed� such that for each
natural n� an element of the family recognizes exactly the words of length n in A	 We
can then de�ne nonuniform complexity classes by measuring the resources used by these
families� for instance we can consider Boolean circuit size or depth� number of states in
�nite automata� branching program depth� etc	

In this context� we start by studying the class P� log� de�ned as the class of languages that
can be recognized in polynomial time with a nonuniform advice of logarithmic length	 We
characterize this class in terms of Boolean circuits and then show that it has measure � in
E	

The class P#poly contains those languages that can be recognized by a family of polynomial
size circuits	 In �KarpLi�� P#poly is also characterized as the class of languages that are
�p
Treducible to a sparse language� where a language is sparse when it has at most a

polynomial number of strings for each length	

The open problem of whether exponential time is included in P#poly is hard since it
does not relativize	 In Chapter � we �rst study the relation between E and a subclass
of P#poly� namely the subclass of languages that are �p

n��ttreducible to a sparse set for
� � � �denoted as Pn��tt�SPARSE��	 This class is almost the largest subclass of P#poly
for which we can use techniques that relativize in order to investigate its relation with
E� since the question E � Pn�tt�SPARSE�� is already nonrelativizable	 In fact we prove
that Pn��tt�SPARSE� has measure � in E� that is� almost every language in E is not
in Pn��tt�SPARSE�	 Applying the probabilistic method� this shows that there exists a
language in E that is not in Pn��tt�SPARSE�� thus E does not have sparse �p

n��tthard
languages	 This result� which had not been proven before and that strengthens Watanabe�s
���� result for �p

O�log n��ttcomplete languages �Wata��c� is� to our knowledge� the �rst

application of resourcebounded measure as a probabilistic method	

We also study P#poly inside the exponential time hierarchy that lies between the classes
E and ESPACE� and is de�ned in �HartImS� as a family of classes with an increasing
nondeterministic power	 We use the �approximate counting� techniques from Stockmeyer
�Stoc���� to obtain the result that P#poly has measure � in the third level of the exponential
time hierarchy	 Some of the results involving P� log appear in �HermMa�� the results
involving the class Pn��tt�SPARSE� appear in �LutzMa��a�	

Measure of the class NP

The hypothesis �NP does not have measure � in E� �roughly� that NP contains more than
a negligible subset of exponential time�� cannot be proven or refuted from our present
knowledge	 Even more� both by proving and by refuting it one would obtain solutions to
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nonrelativizable open problems on the relations between NP� P and E	 In Chapter � we
present evidence that �NP does not have measure � in E� is a reasonable hypothesis with
many credible consequences	

The �rst such consequence deals with the di�erence in NP of the completeness notions
corresponding to the reducibilities �p

T �Cook� and �p
m�KarpLevin�	 Since these are re

spectively the least and most restrictive reductions� the corresponding complete languages
are believed to be di�erent for many classes� and indeed it is known that there are �p

T
complete languages for E and NE that are not �p

mcomplete �see �BuhrHoT�� �KoMo� and
�Wata��b��	

Under the hypothesis that NP does not have measure � in E� we show in Chapter � that
there is a language that is �p

Tcomplete but not �p
mcomplete� for NP	 This conclusion�

widely believed to be true �see �LongYo��� is not known to follow from P �" NP or other
traditional complexitytheoretic hypotheses	

We prove additional consequences of NP does not have measure � in E� including the
separation of many truthtable reducibilities in NP �e	g	� k queries versus k $ � queries��
the class separation E �" NE� and the existence of NP search problems that are not reducible
to the corresponding decision problems	

Our results in Chapter � give us yet another consequence of the hypothesis that NP does
not have measure � in E� namely that� for every real � � �� no �p

n��tthard language for
NP is sparse	 All this chapter is from �LutzMa��b�	

R�Cones

Given a reducibility R� we can picture the upper semilattice de�ned by the preorder
relation R on the class of all languages	 Fix a language A and look at the two classes
formed respectively by languages that are Rreducible to A and languages to which A is
Rreducible	 These two classes can be viewed as the two parts of the cone starting in vertex
A	 We call the �rst one the Rlower cone of A� and the second one the Rupper cone of A	
We want to study the size of the upper and lower cones of a language A as a way of having
information on the usefulness of A as oracle and on the amount of oracles A reduces to	 In
this line� Tang and Book study in �TangBo� the Lebesgue measure of Rcones for various
reducibilities R� and Juedes and Lutz study in �JuedLu��a� the resourcebounded measure
of �p

mcones in E	

We say that a language A is Rweaklyhard for a class C when the Rlower cone of A
does not have measure � in C� and that A is Rweaklycomplete when A is Rweaklyhard
and A � C	 Intuitively� A is weaklyhard when a nonnegligible subclass of C is reducible
to A	 Clearly every complete set A is weaklycomplete� since its lower cone contains the
whole C	 It is interesting to know whether the opposite holds� that is� whether every
weaklycomplete problem is complete	 Since complete problems are considered the most
intractable in a class� a negative answer would imply the existence of a third level of
intractability in C� between the lowest level and the level of complete sets	 Lutz�s new
technique of �martingale diagonalization� �Lutz��a� gives a construction of a language that
is weaklycomplete but not complete in the usual sense for the class E with reducibility
�p
m	 In joint work with S	 Fenner and J	H	 Lutz we have extended this technique to the
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class of all recursive languages with reducibility �T �FennLuM�	

Given a reducibilityR� the class ALMOSTR is de�ned as the class of languagesA such that
the Rupper cone of A has Lebesgue probability �	 The �ALMOSTR� formalism� studied
for instance in �Book��� and �BookLuW�� provides characterizations of some interesting
complexity classes� among others� P"ALMOST�p

m�Ambo�� P"ALMOST�p
btt �TangBo��

BPP"ALMOST�p
T ��Ambo�� �BennGi��� BPP"ALMOST�p

tt �TangBo�� AM"ALMOST
�NP
T ��Cai�� �NisaWi��� PH"ALMOST�PH

T ��Cai�� �NisaWi�� and IP"ALMOSTIP �Breu�	
The notion of MartinL�of algorithmically random language is the strongest de�nition of
random language that is considered to represent randomness of individual in�nite se
quences	 Book� Lutz and Wagner ��Book���� �BookLuW�� have characterized the classes
of the form ALMOSTR as the class of recursive languages that can be Rreduced to
MartinL�of algorithmically random languages	 For each natural n� we consider a subclass
of MartinL�of random languages� denoted nrandom languages� and obtain new charac
terizations of the ALMOSTR classes �joint work with R	 Book�	 These characterizations
have the form �A language A in %�

n �the nth level of the Kleene arithmetical hierarchy� is
in ALMOSTR if and only if A is Rreducible to an nrandom language�	 This gives us an
idea of� for instance� how di�cult can �p

Toracles for BPP be	 We also see that nrandom
oracles are useless for the class %�

n � REC	 These results are described in �BookMa�	

There is an active ongoing research on the topics in this chapter ��AmboNeT�� �AmboTeZ��
�JuedLu��b��� we include a summary of the new results and a description of the open
problems	

��� Preliminaries

We start by �xing some notation on strings and languages	 We will use the alphabet
& " f�� �g	 A string is a �nite sequence x � f�� �g�	 We write jxj for the length of x	 The
unique string of length � is �� the empty string	 If x and y are two strings� then x � y if
jxj � jyj or jxj " jyj and x precedes y in alphabetical order	 We call this order relation on
strings lexicographical order	 Let s�� s�� s�� � � � be the standard enumeration of the strings
in f�� �g� in lexicographical order	 A sequence is an element of f�� �g� 	 If x is a string
and y is a string or sequence� then xy is the concatenation of x and y	 If x is a string and
k � IN�f�g� then xk is the kfold concatenation of x with itself	 If x is a string and y is a
string or sequence� then x v y i� there exists a string or sequence z such that y " xz� and
x v y if x v y and x �" y	 If w is a string or sequence and � � i � jwj then w�i� denotes
the ith bit of w	

A language is a set of strings	 A class is a set of languages	 For each language A and
n � IN we denote as A�n the set of all strings in A of length n� and as A�n the set of all
strings in A of length less or equal to n	

Given a set A� we denote as P�A� the power set of A� that is� the set of all subsets of A	

We will use the characteristic sequence �L of a language L� de�ned as follows�

�L � f�� �g
� and �L�i� " � i� si belongs to L�
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We identify through characteristic sequences the class P�f�� �g�� of all languages over
f�� �g with the set f�� �g� of all sequences	 Let w � f�� �g�	 We de�ne Cw� the cylinder
generated by w� as the class of languages fx � f�� �g� j w v xg	

The complement of a class of languages X is Xc " f�� �g� � X	 The complement of
a language L � f�� �g� is 'L " f�� �g� � L� using characteristic sequence notation� if
L � f�� �g� then 'L � f�� �g� is such that for each i � IN� 'L�i� �" L�i�	 For a class
X � f�� �g� we de�ne the class of complements as coX " f'L

�� L � Xg	

The symmetric di�erence of two sets A and B� denoted A%B� is de�ned by A%B "
�A �B�� �A �B�	

Next we introduce Lebesgue measure on f�� �g� 	 Consider a random experiment in which
a language A is chosen by using independent tosses of a fair coin to decide whether each
string x � f�� �g� is in A	 This experiment de�nes Lebesgue probability distribution on
f�� �g� 	 Given a class X � f�� �g�� we denote as Pr�X� the probability associated to the
event A � X� when A is randomly chosen according to Lebesgue distribution	 The value
Pr�X� is not de�ned for every subset of f�� �g� � and we say that a set X is Lebesgue
measurable if Pr�X� is de�ned	 The partial function Pr�P�f�� �g�� � ��� �� is called
Lebesgue measure on f�� �g� 	 In the next section we give an equivalent constructive
de�nition of Lebesgue measure on f�� �g� to be used in the formulation of resource
bounded measure	

Although Lebesgue measure is usually de�ned on subsets of real numbers� notice that we
can identify f�� �g� with the unit interval ��� �� by associating to each x � f�� �g� the real
number that has ��x as its standard binary representation	 Via this identi�cation Lebesgue
measure on f�� �g� can be translated into Lebesgue measure on ��� ��	

Given two properties of languagesQ� R� we will denote as PrC �Q�C�� the Lebesgue measure
of the class fC

�� Q�C�g� that is
Pr
C
�Q�C�� " Pr�fC

�� Q�C�g��
and we will denote as PrC �Q�C�

�� R�C�� the conditional probability of Q�C� given R�C��
that is�

Pr
C
�Q�C�

�� R�C�� " Pr�fC
�� Q�C�g � fC �� R�C�g�
Pr�fC

�� R�C�g� �

Let X be a class of languages	 We say that X is closed under �nite variations if when
A � X and jA%Bj �� then B � X	 We say that X is closed under �nite translations if
B � X when A � X and there exists w � f�� �g� such that A " w 	B	

Next we �x some notation on Complexity Classes	 For a complete introduction to Turing
Machines and Complexity Classes see for instance �BalcD�
G�	

Our computation model is the multitape oracle Turing machine� with a readonly input
tape and a writeonly oracle tape	 We will work with oracle Turing machines that halt on
every oracle and every input	 For a Turing machine M and a language A� L�M� denotes
the set accepted by M with the empty oracle� and L�M�A� stands for the set accepted by
machine M with oracle A	 Given t� IN� IN� we say that a Turing machine M recognizes



�� �	 INTRODUCTION

a language L in time t when on each input x� M halts with output L�x� in time less or
equal than t�jxj�	 Analogously� M recognizes a language L in space t when on each input
x� M halts with output L�x� using memory space less or equal than t�jxj�	 fMi

�� i � INg
is a standard enumeration of all deterministic oracle Turing machines	

For each nondecreasing function t� IN � IN� we denote as DTIME�t� the class of all lan
guages that can be recognized by a deterministic machine in time t� and as DSPACE�t�
the class of all languages that can be recognized by a deterministic machine in space t	
Let NTIME�t� be the class of languages than can be recognized by a nondeterministic
machine in time t� and let NSPACE�t� be the class of languages that can be recognized by
a nondeterministic machine in space t	 DTIMEF�t� and DSPACEF�t� are the correspond
ing classes of functions that can be computed in time t and space t� respectively	 Unless
indicated otherwise� when we bound the space used in the computation of a function we
are also bounding the output space	 For each language A� let DTIMEFA�t� be the class
of all fuctions that can be computed by a deterministic machine in time t when having
access to oracle A� and analogously we de�ne DSPACEFA�t�	

For each class F of functions from IN to IN� we write DTIME�F� for
S
t�F DTIME�t�� and

analogously for NTIME�F�� DSPACE�F�� NSPACE�F�� DTIMEF�F� and DSPACEF�F�	
For each language A� DTIMEFA�F� denotes

S
t�F DTIMEFA�t�� and in the same way we

have DSPACEFA�F�	 Let C be a class of languages	 Then

DTIMEFC�F� "
�
A�C

DTIMEFA�F�

and with a similar meaning DSPACEFC�F� is de�ned	

Let RE be the class of recursively enumerable languages� and REC be the class of recursive
languages	 We use the following notation for classes of languages

P "
S

k�IN
DTIME�nk� E "

S
c��

DTIME��cn�

E� "
S

k�IN
DTIME��n

k

�

NP "
S

k�IN
NTIME�nk� NE "

S
c��

NTIME��cn�

LINSPACE "
S
c��

DSPACE�cn�ESPACE "
S
c��

DSPACE��cn�	

PSPACE "
S

k�IN
DSPACE�nk� E�SPACE "

S
k�IN

DSPACE��n
k

�

Let all be the class of all functions f � f�� �g� � f�� �g�� and rec be the class of recursive
functions in all	 We will denote di�erent classes of functions as follows�

p "
S

k�IN
DTIMEF�nk� pspace "

S
k�IN

DSPACEF�nk�

p� "
S

k�IN
DTIMEF���logn�

k

� p�space "
S

k�IN
DSPACEF���logn�

k

�	
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For each class C� p�C� "
S
k�IN DTIMEFC�nk�	

We �x a one to one pairing function h� i from f�� �g� 
 f�� �g� onto f�� �g� such that the
pairing function and its associated projections� hx� yi �� x and hx� yi �� y are computable
in polynomial time� and such that for x� y � f�� �g�� x � hx� yi� y � hx� yi	 For k � � and
strings y�� � � � � yk� hy�� � � � � yki stands for hhh� � � y�� y�i� � � �i� yki	

For a function f � f�� �g� � f�� �g�� we write fn for the nfold composition of f with itself	

The boolean value of a condition 	 is denoted with ��	��	

A relativized class is a function C � f�� �g� �� P�f�� �g��	 A recursive presentation of
a relativized class C of languages is a total recursive function f � IN �� IN such that
for every language A and every i � IN� every computation of Mf�i��A� is halting and
C�A� " fL�Mf�i�� A� j i � INg	 A relativized class is recursively presentable if it has a
recursive presentation	

A reducibility is a relativized class	 A bounded reducibility is a relativized class that is
recursively presentable	 If R is a reducibility� then we use the notation A �R B to indicate
that A � R�B�	

If R is a reducibility and C is a set of languages� write R�C� for
S
A�C R�A�	

Given a reducibility R� we say that a language A is Rhard for a class C if C � R�A�� and
that A is Rcomplete for C if A � C and A is Rhard for C	

We will discuss a variety of specialized polynomialtime reducibilities� in addition to the
wellknown reducibilities �p

T and �p
m	 These include �p

q�n��T �Turing reducibility with

q�n� queries on inputs of length n�� �p
q�n��tt �truth�table reducibility with q�n� queries

on inputs of length n� where q� IN � IN is a querycounting function�� �p
tt�truth�table

reducibility�� and �p
btt �bounded truth�table reducibility�	 We now indicate the meanings

of these specialized reducibilities	

Let A�B � f�� �g�	 The condition A�p
TB means that there is a polynomial timebounded

oracle Turing machine M such that A " L�M�B�	 For q� IN� IN� the condition A�p
q�TB

means that there is a polynomial timebounded Turing machineM such that A " L�M�B�
and M makes � q�jxj� oracle queries on each input x � f�� �g�	

Given a querycounting function q� IN� IN� a q�query function is a function f with domain
f�� �g� such that� for all x � f�� �g��

f�x� " �f��x�� ���� fq�jxj��x�� � �f�� �g��q�jxj��

Each fi�x� is called a query of f on input x	 A qtruth table function is a function g with
domain f�� �g� such that� for each x � f�� �g�� g�x� is the encoding of a boolean function
g�x�� f�� �gq�jxj� � f�� �g	 A �p

q�n��ttreduction is an ordered pair �f� g� such that f is a

qquery function� g is a qtruth table function� and f and g are computable in polynomial
time	

Let A�B � f�� �g�	 A �p
q�n��ttreduction of A to B is a �p

q�n��ttreduction �f� g� such

that� for all x � f�� �g��

��x � A�� " g�x����f��x� � B�������fq�jxj��x� � B����
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In this case we say that A �p
q�n��ttB via �f� g�� and denote it A " �f� g��B�	 We say

that A is �p
q�n��ttreducible to B� and write A �p

q�n��ttB� if there exists �f� g� such that

A " �f� g��B�	

The condition A�p
ttB means that there exists a polynomial q such that A�p

q�n��ttB	 The

condition A�p
bttB means that there exists a constant k such that A�p

k�ttB	 �This is
equivalent to saying that there exists a possibly di�erent constant k such that A�p

k�TB	�

PH is the polynomial time hierarchy� de�ned as follows

�i� &p
� " NP�

�ii� for every n 
 �� &p
n�� " NP�&p

n��

�iii� for every n 
 �� !p
n " co&p

n�

�iv� for every n 
 �� %p
n " P�&p

n����

�v� PH"
S
n�� &

p
n	

We will denote with AH the arithmetical hierarchy of languages� that is�

�i� &�
� " RE " fA � f�� �g� j A is recursively enumerableg�

�ii� for every n 
 �� &�
n�� " RE�&�

n��

�iii� for every n 
 �� !�
n " co&�

n�

�iv� for every n 
 �� %�
n " &�

n �!�
n�

�v� AH "
S
n�� &

�
n	

We use the following form of the Cherno� bound	

Lemma ���	 �Cher�� �HageR�u�� Let � 
 �� let N � IN	 Then

�N�X
k��

�
N

k

�
� �N 	 e�

��N
� �

In particular� taking � " �
j�� � where j � IN�

N
j��X
k��

�
N

k

�
� �N 	 e

� N

��j���� �

Proof � See �HageR�u�	

Finally� we introduce the concept of Kolmogorov complexity	 We �x a Universal Turing
Machine U 	 Using it we can denote the unbounded Kolmogorov Complexity of a word w
as follows

De�nition ���	 K�w� " minfjxj�U�x� " wg�

The Kolmogorov complexity of a string w is the length of the shortest program� which�
when given as input to U � will lead U to write down w as output	 The choice of U as
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the base Universal Machine is irrelevant� as long as a Universal Machine is used� since the
Kolmogorov complexity would change only by an additive constant	

Hartmanis introduces in �Hart� a tool we will use in Chapter �� timebounded Kolmogorov
Complexity	 We follow the notation in �Hart�	 Using U and functions f and g � N � N
de�ne the class of timebounded Kolmogorov complexity sets K�f� g� as follows

De�nition ���	 L � K�f� g� i� x � L �w� jwj � f�jxj� such that U�w� " x in time
� g�jxj�	

Thus� K�f� g� is the class of the sets whose strings can be compressed by a factor of f � and
which can also be recovered from their compressed form within the time bound g	

Observe that� despite the similarity of notation� K�w� denotes a function from words to
nonnegative integers� while K�f� g� is a class of languages	

For families of functions F � G we have

De�nition ���	 L � K�F �G� i� there exists f � F � g � G such that L � K�f� g�	

We will use the class K�log� poly�� where log " O�logn� and poly " fnO���g	

��� Resource�bounded measure

In this section we present resourcebounded measure� a method to classify complexity
classes depending on their size	 Resourcebounded measure was introduced by Lutz in
�Lutz���	 �The earlier formulation of �Lutz��� has a number of technical inconveniences�
and is not used anymore	� This theory is a generalization of a powerful mathematical tool�
Lebesgue measure	 Let us explain the meaning of �generalization� here	

Our goal is to de�ne a measure in C� where C can take one of the following values E� E��
ESPACE� E�SPACE and REC	 Intuitively� a measure in C is a function ��P�C� � ��� ��
with some additivity properties� whose main purpose is to classify by size criteria the
subclasses of C	 Given a recursive class C� we could de�ne a measure � in C as a restriction
of Lebesgue measure to P�C�	 But this would be useless� because since every countable class
has Lebesgue measure � �that is� minimal size� and recursive classes are always countable�
� would be identically �	

In order to obtain a nontrivial measure on the mentioned recursive classes� Lutz takes
a constructive de�nition of Lebesgue measure and bounds the resources allowed in the
process	 Intuitively� we restrict the measurable sets to those from the Lebesgue measurable
ones that can be �feasibly measured�	 We next give this constructive de�nition of Lebesgue
measure by using betting games� where we will be able to bound the resources used by the
player	

We consider a game in which there is a player with starting capital � � c� � R and a
hidden language L	 The player bets part of his money on the successive bits of �L� making
money on a double or nothing fashion	 The game goes as follows

Step �	 The player bets a�� a part of c�� either that � � L or that � �� L	 If he wins� he
gets double� that is �
 a�� and his capital is now c� " c�$ a�	 If he loses� he gets nothing
and his capital is now c� " c� � a�	
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Step n� n 
 �	With the information ��s� � L�� � � � ��sn�� � L��� the player bets an� a part
of cn� either that sn � L or that sn �� L	 If he wins� he gets double� that is � 
 an� and
his capital is now cn�� " cn $ an	 If he loses� he gets nothing and his capital is now
cn�� " cn � an	

The game goes on eternally� and we say that the player succeeds if he gets in�nite money�
that is to say� if the upper limit of fcng is in�nite as n goes to in�nity	

The player tries to �nd a betting strategy that is always useful	 A strategy for this game is
a function a� f�� �g� � f�� �g
 ����� that tells the player how much to bet� depending on
the information the player has	 That is� if ��s� � L�� � � � ��sn�� � L�� " w� w � f�� �g�� and
a�w� " �b � u�� the player should bet an amount of an " u that ��sn � L�� " b� according to
the strategy a	

We can now compute the capital a player has when using this strategy a and represent it
via a function da� f�� �g� � ������ with the meaning that� if ��s� � L�� � � � ��sn�� � L�� "
w� w � f�� �g�� then the player�s capital� after having bet on s�� � � � � sn�� according to a�
is cn " da�w�	 The value da��� thus represents the starting capital c�	

From a we can compute da and vice versa�

a�w� "

� �
�� da�w��� da�w�

��
�� da�w��� da�w�

� if da�w�� � da�w�
if da�w�� � da�w�

Let b � f�� �g�

da�wb� "

�
da�w� $ u
da�w�� u

if a�w� " �b � u�
if a�w� " ��� b � u�	

From now on we will represent a strategy a by its capital function da� which we call a
martingale	

De�nition ���	 A martingale is a function d� f�� �g� � ����� satisfying

d�w� "
d�w�� $ d�w��

�
�����

for all w � f�� �g�	

Martingales were extensively used by Schnorr ��Sch���� �Sch��a�� �Sch��b�� �Sch���� in his
investigation of random and pseudorandom sequences	

��	�� is the only condition that a function must ful�ll to be a martingale and it is imposed
by the double or nothing fashion in which we de�ned the game	 Notice that if d is a
martingale then for each w � f�� �g�� d�w� � �jwj 	 d���	

A martingale will be successful for a language L if the player using this martingale is
successful when playing with L as the hidden language	

De�nition ���	 A martingale d is successful for a language x � f�� �g� i�

lim sup
n��

d�x�� � � � n�� "��
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For each martingale d� we denote the set of all languages for which d is successful as S��d��
that is

S��d� "
�
x
�� lim sup

n��
d�x�� � � �n�� "�

�
�

�This notation is chosen for consistency with other measure values� see section �	�	�

We are now ready to de�ne Lebesgue measure	

De�nition ���	 A class X � f�� �g� has Lebesgue�measure � i� there exists a martingale
d such that X � S��d�� that is� for any L � X� d is successful for L	

Intuitively� a class X has measure � when there exists a single strategy that is good for
predicting any language in the class X	

De�nition ��		 A class X � f�� �g� has Lebesgue�measure 
 i� Xc �the complement of
X� has Lebesgue measure �	

We only de�ne measure � and measure � because we are always interested in classes that
are closed under �nite variations� and from the Kolmogorov �� law �Theorem ��	� in
�Oxto��� these classes can only have measure � or measure �� if they are measurable at all	

The de�nition we just introduced is just a restatement of more classical formulations of
Lebesgue measure� for instance the one we sketched in the preliminaries	

Going back to the initial problem of de�ning a non trivial measure inside REC� E� E��
ESPACE or E�SPACE� what we do next is to restrict the martingales that can witness
that a class has measure �	 We will require the martingales to be recursive and computable
within certain time and space bounds� depending on the class where we are de�ning a
measure	

Since martingales are realvalued functions and we want to use restrictions based on com
puting resources� we start by showing that rational valued martingales are su�cient to
de�ne Lebesgue measure	 In fact we use dyadic rationals� that is� rational numbers with a
�nite binary expansion	

Let D " fm��n j m�n � INg be the set of nonnegative dyadic rational numbers	 For
purposes of computational complexity we represent each q � D as hu� vi� where u and v
are the binary representations of the integer and fractional parts of q� respectively	 In the
same way� when we consider k � IN� we are assuming the unary representation �k	

We will use the next auxiliary lemma in the proof of Lemmas �	�� and �	��	 The lemma
states that if c is a function that is very close to a martingale d� then we can de�ne from
c a martingale d� that acts exactly as d	

Lemma ��
	 Let d be a martingale	 Let c� f�� �g� � ����� be a function such that for
each w � f�� �g� jc�w�� d�w�j � ��jwj	 Let d� be recursively de�ned as follows

d���� " c��� $ �

d��wb� " d��w� $
c�wb�� c�w'b�

�
�

Then d� is a martingale and S��d� " S��d��	
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Proof � Let d� c and d� be as in the hypothesis	 d� ful�lls trivially equality ��	��	 In
order to see that d� is a martingale� we have to show that it takes only nonnegative values	
For this we prove by induction on jwj that d��w� � d�w� $ ��jwj for every w � f�� �g�	

For w " �� d���� " c��� $ � � d��� � � $ �	 For w � f�� �g�� b � f�� �g we have that� by
induction hypothesis�

d��wb� " d��w� $
c�wb�� c�w'b�

�
� d�w� $ ��jwj $

c�wb�� c�w'b�

�

thus by our hypothesis on c�

d��wb� � d�w� $ ��jwj $
d�wb�� d�w'b�

�
� ��jwj�� " d�wb� $ ��jwj���

the last equality following from d being a martingale	

Next we show by induction on jwj that for every w�

jd�w�� d��w�j � �� ��jwj�

once this is done� the result follows immediately� since then for each x � f�� �g�

��lim sup
m��

d�x����m��� lim sup
m��

d��x����m��
�� � �

which implies that S��d� " S��d��	

For w " �� jd���� c���� �j � ��� $ �	 For w � f�� �g�� b � f�� �g�

jd��wb�� d�wb�j �

jd��w�� d�w�j$
���d�w� $ c�wb�� c�w'b�

�
� d�wb�

��� "
jd��w�� d�w�j$

���d�w'b�� c�w'b�

�
$
c�wb�� d�wb�

�

��� �
jd��w�� d�w�j$

���d�w'b�� c�w'b�

�

���$ ���c�wb�� d�wb�

�

��� �
jd��w�� d�w�j$ ��jwj��

and by induction hypothesis this implies that

jd�wb�� d��wb�j � �� ��jwj $ ��jwj�� " �� ��jwj���
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Lemma ����	 For each martingale d� there exists a martingale d�� f�� �g� � D such that
S��d� " S��d��	

Proof � Let d be a martingale	 Using the fact thatD is dense in R� we de�ne c� f�� �g� �
D a function with values in D that is very close to d	 For each w � f�� �g� we �x c�w� � D
such that jc�w�� d�w�j � ��jwj	

We de�ne recursively d� as follows

d���� " c��� $ �

d��wb� " d��w� $
c�wb�� c�w'b�

�
�

Notice that d� takes only values inD	 By Lemma �	�� d� is a martingale and S��d� " S��d���
which completes the proof	

We now de�ne the concept of measure resourcebounds� that are classes of recursive func
tions	 By requiring the martingales to be in a certain measure resourcebound we will
de�ne measures for di�erent classes	

We say that a set F of functions from IN to IN is a family of bounds if all functions in F
are nondecreasing and for each f� g � F � f � g is also in F 	

De�nition ����	 A class � � all is a measure resource�bound if p � � and � is in one of
the following cases

a� � " all�

b� � " DTIMEFC�F� for F a family of bounds and C a family of languages�

c� � " DSPACEFC�F� for F a family of bounds and C a family of languages	

We are specially interested in the following measure resourcebounds� p� p�� pspace�
p�space and rec� as we will see below	

We use � to denote a measure resourcebound in this dissertation� with the exception of
Chapter � where � can be any class inside rec	

Now for each measure resourcebound �� we de�ne �� as a restriction of Lebesgue measure
to martingales in �	 We then use �� to de�ne a nontrivial measure on a suitable recursive
class C	

De�nition ����	 A class X � f�� �g� has �measure � �and we denote it ���X� " �� i�
there exists a martingale d � � such that� X � S��d�	

Thus a class X has �measure � when there exists a strategy in � that is good for predicting
any language in the class X	

De�nition ����	 A set X � f�� �g� has �measure 
 �and we denote it ���X� " �� i�
Xc has �measure �	

Originally Lutz �Lutz��� de�ned �measure using a type of �approximable martingales	
We will see in section �	� that his de�nition is equivalent to the one we just introduced	

Notice that taking � " all we again obtain Lebesgue measure	
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As in the case of Lebesgue measure� there exists a resourcebounded generalization of the
Kolmogorov �� law �Lutz��b� by which classes that are closed under �nite variations can
only be in one of three cases� namely being �measure �� being �measure � and being
non�measurable	 For this reason we only de�ne �measure � and �measure �	 For
the sake of completeness� we give a proof of the resourcebounded Kolmogorov �� law in
section �	�	

The following step is to �nd the appropriate � such that from �� we can de�ne a non
trivial measure in each of the classes E� E�� ESPACE� E�SPACE and REC	 For C each
of these classes� it is enough to �nd � such that C does not have �measure �� because
then the restriction of �� to P�C� will be nontrivial	 Since we want to have the biggest
possible amount of measurable subclasses of C� we are looking for the largest measure
resourcebound � such that C does not have �measure �	

Notice that the complexity of a martingale is given in terms of the length of initial parts of
characteristic sequences� while the complexity of a language is given in terms of the length
of strings	 We next develop the constructor formalism that establishes a relationship
between both approaches	 We associate with each measure resourcebound � a class of
languages R���	

De�nition ����	 f � � is a constructor i� w � f�� �g�� w v f�w�	

De�nition ����	 If h is a constructor in �� then R�h� is the unique element in f�� �g�

such that i hi��� v R�h�	

De�nition ����	 R��� is the class of languages fR�h� j h a constructor in �g	

From the measure resourcebounds we mentioned� we obtain wellknown classes as proven
in the next lemma from �Lutz���	

Lemma ����	 �Lutz����
R�all� " f�� �g�� R�p�� " E��
R�rec� " REC� R�pspace� " ESPACE�
R�p� " E� R�p�space� " E�SPACE	

Proof � We show that R�p� " E� the rest of the cases being analogous	

Let � be a constructor in p	 Let c 
 � be such that � � DTIMEF�nc�	 The next algorithm
recognizes R���	 On input x " si the algorithm computes �k��� for successive values of k�
until j�k���j 
 i	 In this moment the algorithm outputs �k����i� that is exactly R����x�	

BEGIN

INPUT x " si
w �" �
WHILE jwj � i DO

w �" ��w�
END WHILE
OUTPUT w�i�

END

This algorithm on input x computes �k��� for k such that j�k�����j � i � j�k���j	 Since
by the de�nition of constructor� w v ��w� for every w� we know that k � i$ �	 Thus the
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algorithm computes at most i $ � values of the form ��w� with jwj � i� taking time less
than �i$ �� 	 ic	 Since i $ � � �jxj��� then R��� � DTIME���c����jxj����	 We have shown
that R�p� � E	

To see the converse� let L � E	 Let c 
 � be such that L � DTIME��cn�	 Consider the
constructor � computed by the following algorithm

BEGIN

INPUT w
n �" jwj
b �" L�sn�
OUTPUT wb

END

Clearly R��� " L	 The time used by the algorithm on input w is �cjsnj� for n " jwj	 Since
jwj � �sn � then � � DTIMEF�nc� and we have �nished the proof of R�p� " E	

We will use now �measure to de�ne a non trivial measure on the class R���	 The justi�
cation of why it is a non trivial measure is given by next theorem� which states that R���
does not have �measure �	

Theorem ���		 �Lutz��� Measure Conservation Theorem� For every martingale d � ��
there exists a language L � R��� such that d is not successful for L	

Proof � Let d be a martingale in �	

We de�ne �� a constructor in �� such that R��� �� S��d� as follows

��x� "
n
x� if d�x�� � d�x�
x� otherwise	

Then for each x� d���x�� � d�x�� and d��k������ � d��k���� for every k � IN	 This implies
that

lim sup
m��

d��R�������m�� � d����

and R��� �� S��d�	

After technical Lemma �	�� in section �	�� we will be able to show that � is� in a precise
sense� the largest measure resourcebound such that R��� does not have �measure �	

We �nally de�ne a meaningful measure in R��� that is based on the restriction of �measure
to R���	

Although we were looking for a measure in R���� in order to simplify notation what we
really do is to de�ne a measure on f�� �g� 	 For each X � f�� �g� we look at the subclass
X � R���	

De�nition ���
	 A set X � f�� �g� has measure � in R��� i� X �R��� has �measure �	
This is denoted as ��X j R���� " �	

De�nition ����	 A set X � f�� �g� has measure 
 in R��� i� Xc has measure � in R���	
This is denoted as ��X j R���� " �	
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Since taking � " p� p�� pspace� p�space and rec we obtain R��� " E� E�� ESPACE�
E�SPACE and REC� respectively� we have de�ned a nontrivial measure on those classes	

The following lemmas contain the �rst elementary properties of resourcebounded measure	
Their proofs are straightforward from the above de�nitions	

Lemma ����	 Let X� Y � f�� �g�	

a� If Y � X and X has �measure � then Y has �measure �	

b� If Y � X and X has measure � in R��� then Y has measure � in R���	

c� If X has �measure � then X has measure � in R���	

We show next that a �nite union of �measure � sets has �measure �	 We will generalize
this result to more general unions in section �	�	

Lemma ����	 Let n � IN	 If X�� � � � � Xn have �measure � then
nS
i��

Xi has �measure �	

If X�� � � � � Xn have measure � in R��� then
nS
i��

Xi has measure � in R���	

Proof � Given d�� � � � � dn martingales in � witnessing that X�� � � � � Xn have �measure ��
let d be the martingale in � de�ned as d�w� "

Pn
i�� di�w�� for each w � f�� �g�	 Clearly

nS
i��

Xi � S��d�	

Lemma ����	 Let X � f�� �g�	 Let ���� be two measure resourcebounds such that
� � ��	 If X has �measure � then X has ��measure �� and if X has �measure � then X
has ��measure �	

In general� the implication

��X j R���� " �
�

"� ��X j R����� " ��

is false	 A counterexample is provided by Corollary �	�� in section �	�� stating that if ��

contains a universal function for � then ��R��� j R����� " �	 In this case if X " R���c�
then ��X j R���� " � and ��X j R����� " �	 The implication

��X j R���� " �
�

"� ��X j R����� " �

is also false	 �For a counterexample� take X " R��� if �� contains a universal function for
�	�

In particular� for the classes we are more interested in we have the following corollary

Corollary ����	 Let X � f�� �g�	 The following implications hold

�p�X� " � "� ��X j E� " ��

�p��X� " � "� ��X j E�� " ��

�pspace�X� " � "� ��X j ESPACE� " ��

�pspace��X� " � "� ��X j E�SPACE� " ��
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�p�X� " � "� ��X j E� " ��

�p��X� " � "� ��X j E�� " ��

�pspace�X� " � "� ��X j ESPACE� " ��

�pspace��X� " � "� ��X j E�SPACE� " ��

The implications summarized by the next two diagrams hold

�p�X� " � "� �p��X� " �ww	 ww	
�pspace�X� " � "� �pspace��X� " � "� Pr�X� " ��

�p�X� " � "� �p��X� " �ww	 ww	
�pspace�X� " � "� �pspace��X� " � "� Pr�X� " ��

By the observation after Lemma �	��� implications such as

��X j E� " �
�

"� ��X j E�� " �

or
��X j E� " �

�
"� ��X j E�� " �

are both false in general	

As a curiosity� we include a very recent result by Juedes and Lutz �JuedLu��b� showing
an interesting relationship between measure in E and measure in E�	

Theorem ����	 Lemma ��� in �JuedLu��b��� Let X be a class of languages	 The following
holds

��Pm�X� j E�� " � "� ��X j E� " �

and
��Pm�X� j E�� " � "� ��X j E� " ��

Notice that E� is the closure of E under polynomialtime manyone reductions	

Corollary ����	 If X is closed downwards under polynomialtime manyone reductions�
that is� X " Pm�X�� then

��X j E�� " � "� ��X j E� " �

and
��X j E�� " � "� ��X j E� " ��
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We now give easy examples of classes that are measure � and measure � in E	 More
interesting and elaborated proofs of measure � and measure � in di�erent classes require
the additivity lemmas we will prove in section �	�	

Example � The class

X " fA
�� there exist n such that jA�nj is not a multiple of �g

has measure � in E	

Proof � By De�nition �	��� we have to show that the class Y " Xc has measure � in E	

Let A be a language in Y 	 For every n � IN� jA�nj is a multiple of �	 If we know the value
of jA�n�f�ngj we can guess A��n� because if jA�n�f�ngj is a multiple of � then �n must
be out of A� if jA�n � f�ngj is a multiple of � plus two� then �n must be in A	 The case
when jA�n � f�ngj is a multiple of � plus two is impossible for A a language in Y 	

Thus a successful strategy for Y will be to bet only on the bits corresponding to strings of
the form �n� if jA�n�f�ngj is a multiple of � we bet all our money to �n �� A� else we bet
all our money to �n � A	

Notice that si is of the form �n if and only if i is of the form �m � �	

We de�ne a martingale d that corresponds to the described strategy	 Let d��� " �	 For
each w � f�� �g�� assume that d�w� has been already de�ned� then let d�w�� and d�w�� be
as follows

If jwj " �m � � for some m then

d�w�� "


�� � 	 d�w� if
jwj��P
i��

w�i� is a multiple of �

� otherwise

d�w�� "


�� � if
jwj��P
i��

w�i� is a multiple of �

� 	 d�w� otherwise

Else� if jwj is not of the form �m � � then d�w�� " d�w�� " d�w�	

Let us see that d is successful on all languages in Y 	 Let A � X� n � IN	 Then jA�nj "P�n����
i�� A�i� is a multiple of �	 If jA�n � f�ngj "

P�n���	
i�� A�i� is a multiple of three�

then �n �� A� and A��n�� � �� " �	 By the de�nition of d then d�A�����n�� � ��� "
�	d�A�����n�����	 If jA�n�f�ngj is not a multiple of three then �n � A and d�A�����n���
��� " � 	 d�A�����n�� � ���	

Since we only bet on bits of the form �m � �� then for each n � �� d�A�����n�� � ��� "
d�A�����n� ���	 Thus d�A�����n��� ��� " � 	 d�A�����n� ���� lim supm d�A����m�� "� and
X � S��d�	

Also� d is a martingale in p� because for each input w we can compute d�w� from d�w����jwj�

��� just by checking whether jwj is of the form �m � �� and computing
Pjwj��

i�� w�i�� all of
which which can be done in time linear in jwj� computing d�w� requires computing d�u�
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for each u pre�x of w� and can thus be done in time quadratic in jwj	 This proves that Y
has pmeasure � and by Lemma �	�� c� we have that X " Y c has measure � in E	

Example �

The class

X "
n
A
�� for every n � IN� jA�nj �

�

�
�n
o

has measure � in E	

Notice that for every A� jA�nj � �n for every n	

Proof � Let us show that X has pmeasure �	 This time the betting strategy cannot
concentrate on certain bits for which we can guess the answer� since all we know about the
languages in X is that they have many strings	 The trick is that for each i � IN� we bet
more money on si � A than on si �� A� thus making more money if si � A happens more
often	

We de�ne a martingale d as follows	 d��� " � For each w � f�� �g��

d�w�� "
�

�
d�w� d�w�� "

�

�
d�w��

Let us see that d is successful on every language in X	 If A � X then for each n � IN we
have that

d�A�����n�� � ��� "

�
�

�

�jA�nj�
�

�

�j�Ac��nj

	 d�A�����n � ��� �

�

�
�

�

� �
��

n �
�

�

� �
��

n

	 d�A�����n � ��� "

�
�

�

� �
��

n

	 d�A�����n � ����

This implies that lim supm d�A����m�� "�	

Clearly d is computable in linear time� thus X has pmeasure �	 Therefore X has measure
� in E	

As a last measure concept� we introduce the pseudorandom languages� which represent
the notion of �typical� language in this setting	 Lutz uses this concept in �Lutz��a� to
characterize the class BPP	

De�nition ����	 A language L is �random i� it belongs to every class that has �
measure �	 We denote as �rand the class of all �random languages	

There exist several de�nitions of �random language�� for individual languages	 Each of
them intuitively tries to capture those languages whose characteristic sequences have been
obtained by some random process� for instance independent tosses of a fair coin	 The
strongest notion of randomness that is widely accepted is MartinL�of randomness� discussed
in Chapter �	 But every MartinL�of random language is nonrecursive� and the interest of
�random languages is that they can be recursive and still be useful as a source of random
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bits� in fact if we have computing power � to check whether a certain language is random�
then a �random language looks truly random to us	

We remark next that languages in R��� cannot be �random	 We will show in section
�	� that most languages in E� are prandom and that most languages in E�SPACE are
pspacerandom	

Proposition ���		 If A � R���� then fAg has �measure � and thus A is not �random	

Proof � Use martingale d� where d��� " � and for w � f�� �g�� b � f�� �g

d�wb� "
n
� 	 d�w� if A�sjwj� " b
� otherwise	

Notice that every singleton set has Lebesguemeasure �� so we cannot de�ne in this way a
Lebesgue concept of randomness for individual languages	

��� Some technical lemmas

In this section we develop some technical tools that will help us in the proofs that a given
class has measure � or measure � in R���	

The formulation and proof of these lemmas will be simpli�ed by the use of ��approximable�
martingales� in the place of martingales in �	 For instance� the use of ��approximable�
functions helps us to deal with an in�nite sum of martingales in �	 This sum may not be
in �� but is �approximable if the martingales have a uniform enumeration in �	

We start by proving that� for our purposes� using martingales that are ��approximable�
is equivalent to using martingales in �� that is� if a class has measure � using a ��
approximable� martingale then it has �measure �	 Let us formalize our de�nition of
�approximable	

Notation� Given two sets X� Y � we consider each function f � IN
X � Y as an enumeration
of the functions fk� k � IN where for each k � IN� fk�X � Y is de�ned as fk�x� " f�k� x�
for every x � X	 In the same way we consider each function f � INn 
 X � Y as an
enumeration of the functions f�k for k � INn	

De�nition ���
	 Let X be the cartesian product of a �nite number of factors of the form
IN and f�� �g� 	 A function bf � �� bf � IN 
 X � D is a ��computation of a function
f �X � ����� i�

j bfk�w�� f�w�j � ��k

for all w � X and k � IN	

De�nition ����	 A function f �X � ����� is �computable i� there exists a �computation
of f 	

Notice that if f takes only values in D and f � � then f is trivially �computable	 This
simple case will often happen in our applications	
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�computable martingales do not give additional measuringpower� as shown in the next
lemma	 The proof uses the techniques for pcomputations developed by Lutz in �Lutz��a�	
A similar result has been independently proven by Juedes and Lutz in �JuedLu��b�� where
they adopt the name Exact Computation Lemma	

Lemma ����	 Exact Computation Lemma� For each �computable martingale d there
exists a martingale d� in � such that S��d� " S��d��	

Proof � Let bd be a �computation of d	 We de�ne c� f�� �g� � D a function that is very

close to d as c�w� " bdjwj�w� for each w � f�� �g�	 Since bd is a �computation of d we have

that c � � and jd�w�� c�w�j � ��jwj for each w � f�� �g�	

We de�ne recursively d� as follows

d���� " c��� $ �

d��wb� " d��w� $
c�wb�� c�w'b�

�
�

Since c is in �� then d� is also in �	

By Lemma �	�� d� is a martingale and S��d� " S��d��� which �nishes our proof	

Using the lemma we just proved� to see that a class X has �measure � it will be enough
to �nd a �computable martingale d such that X � S��d�	 This will be useful mainly in
the proofs of more sophisticated tools in this section	

Corollary ����	 Let X be a class of languages	 X has �measure � if and only if there
exists a �computable martingale d such that X � S��d�	

In Lebesgue measure� a countable union of measure � sets has measure �	 This additivity
property is a useful tool when proving that a certain set has Lebesgue measure �	 Notice
that a countable union of �measure classes is not necessarily �measure �� because for
each A � R���� fAg has �measure � and still R��� does not have �measure �	 Therefore�
we want to �nd a weaker additivity property for �measure that helps us to prove that
some classes have measure � in R���	

We �nd next a weak version of countable additivity that corresponds to the idea of uni
formity and is useful in �measure	 This additivity notion implies uniform families of
martingales that are called martingale systems	

De�nition ����	 An n�dimensional martingale system �nMS� is a function

d� INn 
 f�� �g� � �����

such that d�k is a martingale for every k � INn	

We now de�ne a restricted notion of countable union� that is called �union	 This concept
is only de�ned for �measure � sets	

De�nition ����	 A set X is a ��union of the �measure � sets X�� X�� X�� � � � i�

X "
��
j��

Xj
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and there exists a �computable �MS d such that for every j� Xj � S��dj �	

Notice that by Corollary �	��� each Xi in the de�nition has �measure �� because each dj
is �computable	

Lemma ����	 �Lutz��� ��additivity Lemma� If X is a �union of �measure � sets� then
X has �measure �	

Proof � Let d be given by the de�nition of �union	 Let bd be a �computation of d	

We �rst construct a �computable �MS D such that

i� For all j � IN� S��Dj � " S��dj �	

ii� For all j � IN� Dj��� � ��j 	

For j � IN� w � f�� �g� we de�ne

Dj�w� " �minf��� log�bdj���������jg 	 dj�w�
that clearly ful�lls i� and ii�	

To see that D is �computable we de�ne bD � � as follows	 For j� k � IN� w � f�� �g�

bDj�k�w� " �minf��� log�bdj���������jgdj�k�w��
For j� k � IN� w � f�� �g� we have that

jDj�w�� bDj�k�w�j " �minf��� log�bdj���������jgjdj�w�� bdj�k�w�j � jdj�w�� bdj�k�w�j � ��k�

which shows that bD is a �computation of D	

It is straightforward to show that condition i� above holds� since for each j � IN� the
function Dj is just dj multiplied by a constant c 
 �� thus for each x � f�� �g��
lim supmDj�x����m�� " c 	 lim supm dj�x����m��� and S��Dj � " S��dj �	

Since dj��� � bdj����� $ ��� we have that

Dj��� " �minf��� log�bdj���������jgdj��� � ��j �

and thus condition ii� above holds	

To prove that X has �measure � we de�ne the martingale d�� f�� �g� � ����� by

d��w� "
�X
j��

Dj�w��

d� is well de�ned because Dj��� � ��j which implies that d���� ��� and for other values
w � f�� �g� d��w� �

P�
j�� �

jwjDj��� � d�����jwj	 d� is trivially a martingale such that
X � S��d��� since Xj � S��Dj �	
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All that remains to be shown is that d� is �computable	 By Corollary �	�� this will show
that X has �measure �	 De�ne a function bd�� IN
 f�� �g� � D such that bd� � � by

bd�k�w� " k�jwj��X
j��

bDj�j�k���w��

Let us see that bd� is a �computation of d�	 For each k � IN� w � f�� �g�

jbd�k�w�� d��w�j �

k�jwj��X
j��

j bDj�j�k���w��Dj�w�j $
�X

j�k�jwj��

Dj�w� �

�

k�jwj��X
j��

��j�k�� $
�X

j�k�jwj��

�jwj 	Dj��� �

�
�X
j��

��j�k�� $ �jwj 	 ��k�jwj�� " ��k�� $ ��k�� " ��k�

This completes the proof that X has �measure �	

As a corollary we have a similar result for measure in R���	

De�nition ����	 A set X is a ��union of the measure � in R��� sets X�� X�� X�� � � � i�
X � R��� is a ��union of the �measure � sets X� � R���� X� � R���� X� � R���� � � �

Corollary ����	 If X is a �union of measure � in R��� sets� then X has measure � in
R���	

With these �additivity lemmas we can show now more elaborated results	 We start with
an easy example of application and then prove a number of interesting consequences	

Example �

The class

X "
n
A
�� for almost every n � IN� jA�nj �

�

�
�n
o

has measure � in E	

Proof � We start by writing X as a countable union of classes	 For each i � IN let

Xi "
n
A
�� for every n � i� jA�nj �

�

�
�n
o
�

It is clear that X "
S
iXi	

We want to show that X has pmeasure � by proving that X is a punion of the measure
� sets Xi and then using Lemma �	��	 Therefore we have to de�ne a pcomputable �MS
d such that for each i� Xi � S��di�	
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Our de�nition of d is based in the martingale in Example �	 For each i � IN� di��� " ��
and for each w � f�� �g��

If jwj � �i � � then

di�w�� "
�

�
di�w� di�w�� "

�

�
di�w��

else� if jwj � �i � � then di�w�� " di�w�� " di�w�	

�We remind the reader that di�w� denotes d�i� w�	�

For each i � IN� di is a martingale that works as the one in Example � on inputs of length
bigger than �i � �� that is� on bits corresponding to strings of length at least i	 By the
same reasoning of that example we can show that for each i� Xi � S��di�	

To check whether jwj � �i � � we just need to write jwj in binary and count the number
of bits used� comparing it with i	 Thus d can be computed in time linear in jwj $ i� is
trivially pcomputable and X has pmeasure �	

The next Theorem has a number of interesting corollaries	

Theorem ���		 Let � and �� be two measure resourcebounds such that �� contains a
universal function for �� that is� there exist f � �� with � " ffi

�� i � INg	 Then the class
X "

S
���Y ���

Y has ��measure �	

Proof � Let � and �� be as in the hypothesis	 Let f � �� be a universal function for �	

We de�ne g� IN
 f�� �g� � D as follows	 For each i � IN� gi��� " fi���� for w � f�� �g��
and b � f�� �g�

gi�wb� "

�
fi�wb� if gi�w� " fi�w� and

fi�w���fi�w��
� " fi�w�

gi�w� otherwise	

Notice that if fi is a martingale then fi � gi� and that for every i� gi is a martingale	 It is
also clear that g � ��	 Then g is a �MS in ��� thus trivially ��computable	

By Lemma �	���
S
i S

��gi� has ��measure �	 We �nish the proof by seeing that X �S
i S

��gi�	

Let Y be such that ���Y � " �� there exists a martingale d in � such that Y � S��d�	
Since f is universal for �� d � fi for some i	 Thus fi is a martingale and fi � gi� which
implies Y �

S
i S

��gi�	

We can show now that � is in a sense the largest measure resourcebound such that R���
does not have �measure �	

Corollary ���
	 Let � and �� be two measure resourcebounds such that �� contains a
universal function for �	 Then R��� has ��measure �	

Proof � From Proposition �	�� we know that for each L � R���� fLg has �measure �	
Thus this is a direct consequence of the last theorem	
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Corollary ����	 The class

X "
�

�p�Y ���

Y

has p�measure �	 The class

X "
�

�pspace�Y ���

Y

has p�spacemeasure �	

Corollary ����	 E has measure � in E�	 ESPACE has measure � in E�SPACE	 The class
of prandom languages has measure � in E�	 The class of pspacerandom languages has
measure � in E�SPACE	

Proposition ����	 For every c 
 ��

��DTIME��cn� j E� " �

and

��DSPACE��cn� j ESPACE� " ��

Proof � We show the �rst part� the second part being analogous	

Let c 
 �	 Let fMi

�� i � INg be a recursive enumeration of the Turing Machines that
work in time �cn	 We can assume that the enumeration is e�cient� and for each i � IN�
x � f�� �g� we can compute Mi�x� in time �cjxj 	 i	

For each i � IN we de�ne Xi " fL�Mi�g� the class containing only the language L�Mi�	
Then DTIME��cn� "

S
iXi	 Let us see that DTIME��cn� is a punion of the pmeasure �

classes Xi	

Let d be the following	 For each i � IN� di��� " �	 For w � f�� �g�� b � f�� �g

di�wb� "
n
� 	 di�w� if Mi�sjwj� " b
� otherwise	

We leave to the reader to see that d is the �MS in p that witnesses the result	

The classical �rst BorelCantelli Lemma deals with countable families of sets fXng such
that Pr�Xn� decreases very quickly and goes to � in the limit	 For those families the lemma
states that the set of all x that belong to Xn for in�nite many n�s has Lebesgue measure
�	 The exact formulation follows�

Lemma ����	 Classical �rst Borel�Cantelli Lemma� Let fXj � f�� �g�
�� j � INg be a

sequence of Lebesguemeasurable sets such that

�X
j��

Pr�Xj�
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is convergent� then

Pr

� ��
t��

��
j�t

Xj

�A " ��

Notice that the class
��
t��

��
j�t

Xj

consists exactly of those x that belong to Xn for an in�nite number of n	

We are interested in classes of languages that can be represented with this kind of expres
sions	 To study their measure we want an appropriate resourcebounded formulation of the
BorelCantelli Lemma	 Since countable unions of �measure � sets are not always measure
�� it will be useful to have a more elaborated property that for each family fXi�j

�� i� j � INg
ful�lling certain restrictions derives a consequence for

��
i��

��
t��

��
j�t

Xi�j �

For a translation of the classical BorelCantelli Lemma to �measure we need a resource
bounded version of the idea of a family of classes with Lebesgue measure decreasing quickly
to �	 To do this we introduce a way of saying �X has �measure smaller than ��� for a
class X and � 
 �	

For each martingale d and r 
 �� we de�ne the set Sr�d� with those languages for which d
succeeds in multiplying by at least r the starting capital d���	 We interpret X � Sr�d� as
�X has �measure smaller than ��r�	

De�nition ����	 Let d be a martingale� and r 
 �	 We de�ne the class

Sr�d� " fA
�� lim
m��

d�A����m�� � d��� 	 rg�

Notice that if X is a class that is closed under �nite variations�

X "
��
t��

��
j�t

Xj �

the corresponding Xj are not necessarily closed under �nite variations� thus the �� law
stating that �measurable classes that are closed under �nite variations can only have
�measure � and �measure � does not apply to them	 For instance let X be the class of
A such that for in�nitely many n� A�n has less that �n�� strings� if for each n we de�ne
Xn " fA

�� jA�nj � �n��g then

X "
��
t��

��
n�t

Xn�
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and each Xn is not closed under �nite variations	

For our resourcebounded version of the BorelCantelli Lemma we also need to substitute
in the classical formulation the usual convergence of series by a more restrictive notion	

De�nition ����	 Let fan
�� n � INg be a sequence of nonnegative real numbers	 A modulus

for the series
�P
n��

an is a function m� IN� IN such that

�X
n�m�j�

an � ��j

for all j � IN	 A series is �convergent if it has a modulus that is in �	

De�nition ����	 Let faj�k
�� j� k � INg be a sequence of nonnegative real numbers	 A

sequence
�X
k��

aj�k �j " �� �� �� � � ��

of series is uniformly ��convergent if there exists a function m� IN� � IN such that m � �

and for each j � IN� mj is a modulus for the series
�P
k��

aj�k	

Finally� we state the following uniform� resourcebounded generalization of the classical
�rst BorelCantelli Lemma that will greatly simplify the proof of several measure results
in the following chapters	

Lemma ����	 �Lutz���� Let fXi�j � f�� �g�
�� i� j � INg be a sequence of classes	 If there

exists d a �computable �MS such that

�i� i� j � IN� Xi�j � S
�

di�j
���

�di�j �	 and

�ii� the series
�X
j��

di�j��� �i " �� �� �� � � ��

are uniformly �convergent�

then

��

� ��
i��

��
t��

��
j�t

Xi�j

�A " ��

Proof of Lemma ����� Assume the hypothesis	 Fix a function m� IN� � IN witnessing
that the series

�X
j��

di�j��� �i " �� �� �� � � ��
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are uniformly �convergent	 Without loss of generality� assume that mi is nondecreasing
and mi�n� � � for all i� n � IN	 De�ne

Yi "
��
t��

��
j�t

Xi�j �

Y "
��
i��

Yi�

Our task is to prove that ���Y � " �	 For this we will use the �additivity Lemma
�Lemma �	��� de�ning d�� IN
 f�� �g� � ����� by

d��i� w� "
�X

j�mi�i�

di�j�w�

for all i � IN� w � f�� �g�	 We show that d� testi�es that Y is a �union of the �measure
� sets Y�� Y�� Y�� � � �� whence ���Y � " � by the �additivity Lemma	

Each d�i is trivially a martingale� so d� is a �MS	 We want to see that Yi � S��d�i�	 Fix

i � IN� x � Yi	 Since Xi�j � S
�

di�j
���

�di�j � for every j � IN and there are in�nitely many j
for which x � Xi�j � then for each k � IN there exist n � IN� j�� � � � � jk�� bigger than mi�i��
with djr �x����n�� 
 �� �

k�� for r " �� � � � � k $ �� and

d�i�x����n�� "

�X
j�mi�i�

di�j�x����n�� 
 k�

We conclude that lim supn d
�
i�x����n�� "� and x � S��d�i�	

Next we have to show that d� is �computable	 For this we use the �convergence of the
cited series	 Let (d� IN	
f�� �g� � D be a �computation of d	 We de�ne bd� IN�
f�� �g� �
D by

bd�i� n� w� " mi�n�jwj�����X
j��

(di�j�n���j�w�

for all i� n � IN� w � f�� �g�	 Let�s see that bd is a �computation of d�	

jbd�i� n� w�� d��i� w�j �

�

mi�n�jwj�����X
j��

jd�i� j� w�� (d�i� j� n$ � $ j� w�j$
�X

j�mi�n�jwj���

jbd�i� j� w�j �
� ��n�� $ ��n�� " ��n�
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In order to take full advantage of this lemma we will use the following su�cient condition
for uniform �convergence	 �This wellknown lemma is easily veri�ed by routine calculus�
remarking that polynomials can be computed in �� for � any measure resourcebound	�

Lemma ���		 Let aj�k � ����� for all j� k � IN	 If there exist a real � 
 � and a polynomial
g� IN� IN such that aj�k � e�k

�

for all j� k � IN with k � g�j�� then the series

�X
k��

aj�k �j " �� �� �� � � ��

are uniformly �convergent	

We �nish this chapter with an application of the resourcebounded BorelCantelli Lemma
�Lemma �	���	

Example � The class

X "

�
A
�� jA�nj � �n

�
�

�
$

�

n

�
for in�nitely many n

�
has measure � in E	

Proof � For each n � IN� let

X�n "

�
A
�� jA�nj � �n

�
�

�
$

�

n

��
�

and let Xj " � if j is not a power of �	 Then by de�nition of X�

X "
��
t��

��
j�t

Xj �

We want to apply Lemma �	�� to this expression of X	 Notice that we do not have the

outermost union	 It is enough to de�ne a �MS d such that for each j� Xj � S
�

dj ��� �dj �	
For each j � IN such that j is a power of �� w � f�� �g� let

d�j� w� " Pr
x
�x � Xj

�� x � Cw��

for the rest of j let dj � ��j 	

By de�nition of conditional probability� d is a �MS	 We have to show that d is p
computable and that conditions �i� and �ii� in Lemma �	�� hold	

To see that condition �i� holds� �x j � IN a power of � and x � Xj 	 Since the condition
x � Xj is only based on the pre�x x�����j � ��� any y � f�� �g� such that y � Cx
����j���

is also in Xj � and d�j� x�����j � ��� " �� thus x � S
�

dj ��� �dj �	
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To see that condition �ii� holds� we have to look at the series

�X
j��

dj��� "
�X
j��

Pr
x
�x � Xj ��

For each n � IN�

Pr
x
�x � X�n � "

�nX
i�d�n�������n�e

�
�n

i

�
"

�n�������n�X
i��

�
�n

i

�

The Cherno� bound �Lemma �	�� tells us that� if j " �n

Pr
x
�x � Xj � � e�

j

�n� �

thus there exists c 
 o such that if j 
 c then

Pr
x
�x � Xj � � e�j

	�


�

This� together with Lemma �	��� tells us that
�P
j��

dj��� is pconvergent and condition �ii�

holds	

We need to check that d is pcomputable	 We can use binomial coe�cients to exactly
compute Prx�x � Xj

�� x � Cw� in time polynomial in jwj$ j� thus d � p and we have the
result	

��� ��measurability and the Kolmogorov ��� law

In this section we develop the concept of �measurability and consider classes that have
�measure �� for � any value between � and �	 Then we prove that these new concepts
are not useful for classes that are closed under �nite variations� for instance most of the
classes de�ned in Structural Complexity	 This is stated as the resourcebounded version
of the Kolmogorov �� law� which is a consequence of the classical Kolmogorov �� law	

The material in this section has been included for the sake of completeness	 The whole
section can be skipped without losing continuity with the rest of the chapters	

In order to de�ne �measurability� we start by de�ning a function ��� that associates to
each class of languages X the set of upper bounds of its possible �measure	 A class X
will be �measurable when one of these bounds is tight	

De�nition ���
	 Let ���� f�� �g
� � P���� ��� be the function that for each X � f�� �g� is

de�ned as follows

����X� "
�
	 � �

�� there exists a �MS d � � such that for each k � IN� X � S
�

����k �dk�
�
�
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Remember from section �	� that for each martingale d and r 
 �� the class Sr�d� contains
those languages for which d succeeds in multiplying by at least r the starting capital d���	

The next lemma states some basic properties of ���	 Since this section is not critical� we
prefer to state strictly the properties needed in the proof of Theorem �	��	

Lemma ����	

�i� If X � Y then ����Y � � ����X�	

�ii� Let fY�� � � � � Yng be a �nite sequence of pairwise disjoint classes	 If 	i � ����Yi� for
each i then

nX
i��

	i � ���

� n�
i��

Yi

�
�

�iii� For very X� ����X� $ ����X
c� � �	

�iv� Let fYi
�� i � INg be a sequence of pairwise disjoint classes	 If 	i � ��

all
�Yi� for each i

then X
i�IN

	i � ��
all

� �
i�IN

Yi
�
�

�v� If fan
�� n � INg is a decreasing sequence such that fan

�� n � INg � ��
all
�X� and

l " limn�� an then l � ��
all
�X�	

Proof � Part �i� is straightforward from the de�nition	 For �ii�� let fY�� � � � � Yng be as
in the hypothesis	 For each i � IN� let 	i � ����Yi�	 All we need to do is to de�ne a �MS

d such that for each k � IN�
S
i Yi � S

�

�i�i��
�k �dk�	

For each i � IN� let di be a �MS in � such that for each k Yi � S
�

�i��
�k �dik�	 For each

w � f�� �g�� k � IN�

dk�w� "
X
i

	i $ ��k�log n

dik�logn���
dik�log n�w��

By de�nition dk��� "
P

i 	i $ ��k� and for each i� Yi � S
�

dk��� �dk�	

For �iii�� assume that there exist 	 � ����X�� 	� � ����X
c� such that 	 $ 	� � �	 Then

by �ii� 	 $ 	� � ����f�� �g
��� and for each k � IN there exists a martingale dk such that

f�� �g� � S
�

�������k � thus there exists a martingale d� and r 
 � such that f�� �g� � Sr�d��	
But this contradicts property ��	�� in the de�nition of martingale	

For �iv�� let fYi
�� i � INg be as in the hypothesis	 For each i � IN� let 	i � ��

all
�Yi�	 We

de�ne a �MS d such that for each k � IN�
S
i Yi � S

�

�i�i��
�k �dk�	

For each i � IN� let di be a �MS such that for every k� Yi � S
�

�i��
�k �dik�	 For each

w � f�� �g�� k � IN

dk�w� "
X
i

	i $ ��i�k

dik�i���
dik�i�w��

By de�nition dk��� " ��k $
P

i 	i� and for each i� Yi � S
�

dk��� �dk�	
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Part �v�	 For each n let dn be a �MS such that for each k� X � S
�

an��
�k �dnk �	 We

construct d� such that X � S
�

l���k �d�k� as follows	 For each k � IN� let nk be such that for
each n � nk� an � l � ���k	 Let d�k � dnk�k 	 Then for each x � X�

lim
m��

d�k�x����m�� " lim
m��

dnk�k �x����m�� �
�

���k $ ank
	 d�k��� �

�

��k $ l
	 d�k����

and l � ��
all
�X�	

From ��� we de�ne �measurability	

De�nition ����	 Let X be a class of languages	 We say that X is �measurable if there
exists 	 � ����X�� 	� � ����X

c� such that 	 $ 	� " �	

Notice that if X is �measurable� then by part �iii� of Lemma �	�� there exist a unique
	 � ����X� and a unique 	� � ����X

c� such that 	 $ 	� " �	 We denote ���X� " 		

For � " all this de�nition corresponds to classical Lebesguemeasurability	

Remark that if X is �measurable then Xc is also �measurable	

We have the following elemental property

Lemma ����	 Let � and �� be two measure resourcebounds such that � � ��	 If X is
�measurable then X is ��measurable and ���X� " ����X�	

Proof � By De�nition �	��� ����X� � �����X�� and ����X
c� � �����X

c�� Thus if 	$ 	� " �
for some 	 � ����X�� 	� � ����X

c�� X is ��measurable	

Let us see that this de�nition is consistent with our de�nitions of �measure � and �
measure � sets in section �	�	 Remember that in those de�nitions we used upperlimits
instead of limits	

Lemma ����	 X has �measure � if and only if X is �measurable and ���X� " �	

Proof � Let X be a class that has �measure �� let d � � such that X � S��d�	

By the de�nition of �measurable� it is enough to see that there exists a �MS d� � � such

that for every k � IN� S��d� � S�
k

�d�k�	

Fix k � IN	 d�k is de�ned as follows

d�k�w� "

�
d�w� if for every i � jwj� d�w����i�� � �k 	 d����
d�w����i�� otherwise� for i � jwj� the �rst such that d�w����i�� � �k 	 d���	

Let x � S��d�	 Since lim supn d
��x����n�� " �� for each k � IN there exists n � IN

such that d�w����n�� � �k 	 d���	 Let n� be the �rst such n	 Then by de�nition of d�k�

d�k�x����n�� � �k 	d�k��� for every n � n�� and limn d
�
k�x����n�� � �k 	d�k���	 Thus x � S�

k

�d�k��
which �nishes the �rst part	

Let X be a class that is �measurable with ���X� " �	 There exists a �MS d such that

for each k� X � S�
k

�dk�	
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Let d� be the following martingale d��w� "
P

k
��k

dk���
dk�w�	 Then X � S��d�� and d� is

�approximable by bd�i� w� "Pi�jwj
k��

��k

dk���
dk�w�� thus X has �measure � by Lemma �	��	

Finally we state the resourcebounded version of the Kolmogorov �� law	 We argue that it
immediately follows from the Kolmogorov �� law for Lebesgue measure� and� for the sake
of completeness� we give a proof of it in terms of martingales	 A classical classical proof�
using the de�nition by covers of Lebesgue measure can be found for instance in �Oxto�	

Theorem ����	 Let X be a class of languages that is closed under �nite variations	 If X
is �measurable then either X has �measure � or X has �measure �	

Proof �

A key observation is that� by Lemma �	��� if X is �measurable� then X is allmeasurable
and ���X� " �all�X�	 Therefore we just need to prove this property for � " all� that is�
for Lebesgue measure	

For each set of strings U � f�� �g�� we denote as CU the class of languages
S
y�U

Cy	

This proof is based on the following claim�

Claim� Let X be a class of languages that is closed under �nite variations	 For each class
Y � if 	 � ��

all
�X� and 	� � ��

all
�Xc� then

	 	 	� � ��all�X � Y ��

Assuming that the claim is true� take Y " X	 We have that �all�X�� � ��
all
�X�� which

implies that �all�X� can only be � or �	 Thus if X is measurable then �all�X� must be
either � or �	

We �nish this proof with the cited claim	

Proof of Claim� Let X be as in the hypothesis	 Let 	 � ��
all
�X�	

Consider the case Y " Cy� for y � f�� �g
�	 It is an easy exercise to see that �all�Cw� "

��jwj	 Let d be a �MS such that X � S
�

����k �dk� for each k	 De�ne a �MS d� as follows

d�k�y� "


������
� if w �v y and y �v wP
jzj�jyj

dk�z� if w " ytP
jzj�jwj

dk�zt� if y " wt	

Then for each x � Cw� d
�
k�x����n�� "

P
jzj�jwj

dk�zx�jwj��n��	

Let x � X � Cw	 For each z with jzj " jwj� since X is closed under �nite variations we

know that zy � X� where y�i� " x�i $ jwj� for every i � �	 Since X � S
�

����k �dk�� then

limn dk�zy����n�� �
dk���
	���k 	 Thus limn d

�
k�x����n�� � �jwj dk���	���k " dk���

��jwj�	���k�
	 This shows

that
	 	 �all�Cw� � ��

all
�X � Y ��



�� �	 INTRODUCTION

Now we consider the case Y " CU � where U is a pre�x code �that is� U is a set of
strings such that there are no x� y � U with x v y�	 We leave to the reader to see that
�all�CU � "

P
w�U

��jwj	

For each pair of strings x� y � U with x �" y� Cx � Cy " �	 By Lemma �	��� if 	w �
��
all
�XCw� then

P
w�U

	w � ��
all
�X � CU �	 Using the case Y " Cw we have that if 	 �

��
all
�X� then 	 	 �all�CU � � ��

all
�X �CU �	

For the general case� let 	� � ��
all
�Y �	 Let d be a �MS such that Y � S

�

�����k �dk�	 Let

Uk "
n
w
��� dk�w� � dk���

	� $ ��k��
and for every y with y v w� dk�w� �

dk���

	� $ ��k��

o
�

Then Uk is a pre�x code� 	� $ ��k�� � ��
all
�CUk� and Y � CUk 	 Therefore�

�all�X� 	 �	� $ ��k��� � ��
all
�X �CUk � � ��

all
�X � Y ��

Since this holds for every k� by Lemma �	�� �v�� �all�X� 	 	� � ��
all
�X � Y � and we have

�nished the general case	



Chapter �� Measuring in PSPACE

��� Introduction

In Chapter � we have de�ned Lutz�s resourcebounded measure for classes such as E� E��
ESPACE and E�SPACE by bounding resources in a constructive de�nition of Lebesgue
measure� in this way the more restrictive is the resourcebound� the smaller is the class
in which we have de�ned a nontrivial measure	 The use of characteristic sequences in
the de�nition of measure causes that� for instance if we impose a time bound F �n� on
Lebesgue measure� we obtain a meaningful measure in the class de�ned by the time bound
F ��n�	 If we impose a linear time bound on Lebesgue measure we already reach the class
of exponential time languages	 Since dealing with sublinear bounds requires a more careful
consideration� all of the classes for which we had the general de�nition of Lutz�s measure
contain E as a subclass	

However� there are interesting problems that can be formulated in terms of estimating the
size of subclasses of P or PSPACE	 For instance� we want to know whether most languages
in P are e�ciently parallelizable� or whether selfreducibility is a typical property for the
languages in PSPACE	 In this chapter we are interested in extending Lutz�s measure to
the class PSPACE of languages recognizable in polynomial space	

To do this� we explore the property that has endowed the mentioned exponential classes
with a nontrivial measure structure� that is� the Measure Conservation Theorem in Chap
ter �	 We want to de�ne a nontrivial measure inside PSPACE by looking for the same
property	 First we see that the natural candidate is not valid unless PSPACE " E�� and
then we get a valid formulation of a measure inside PSPACE	

There is another property of measure in exponential classes� namely �additivity� that it is
interesting to have for any measure	 We prove this property for our measure in PSPACE
and then use it to show that a class of selfreducible languages has measure � in PSPACE	

It remains open how to measure in P� which will probably require a di�erent approach not
dealing with characteristic sequences	 This is because as in polynomial space we could not
store a characteristic sequence� in polynomial time we cannot even compute it)	

The results in section �	� appear in �Mayo��b�	 The results of section �	� are as yet
unpublished	

��� Measure in PSPACE

) While revising the draft of this text� we have been informed that Allender and Strauss
have obtained a reasonable de�nition of measure for P �AlleSt�	

��
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Our de�nition of resource bounded measure in Chapter � was restricted to classes of the
form R���� for � a measure resourcebound	 In particular� since each measure resource
bound contains p� E � R���	 The de�nition of measure in R��� was based in �measure�
de�ned as a ��restriction� of Lebesguemeasure	 The reason why R��� inherits a non
trivial measure from this �measure is that� as shown in Lutz�s Measure Conservation
Theorem �Theorem �	���� R��� does not have �measure �	

Following the same idea� in order to de�ne a measure inside PSPACE we have to �nd
solutions to the equation R��� " PSPACE and check that the corresponding �measure
ful�lls the Measure Conservation Theorem� that is� PSPACE does not have �measure �	
This time we cannot require � to be a measure resourcebound� and through this chapter
we will use � to denote any class of functions inside rec	

Let us have a look at the solutions of the equations R��� " DTIME�F� and R��� "
DSPACE�F� for di�erent families F that we used in Chapter �	 For example for E "S
cDTIME��cn� the solution was � " p and for ESPACE "

S
cDSPACE��

cn�� � " pspace	
In all cases� for R��� " DTIME�F� we use the solution � " DTIMEF�F � log�� and for
R��� " DSPACE�F�� � " DSPACEF�F � log�	

By analogy� the class of polylogarithmic space computable functions is the natural candi
date to de�ne a measure in PSPACE� and we would like to prove that R�polylogspace� "
PSPACE	 We bound polylogarithmically only the working space� and do not pose any
restriction on the output space in this case	

The following lemma proves the �rst part of this equality	

Lemma ���	 PSPACE � R�polylogspace�	

Proof � Given L a language in PSPACE� we have to de�ne a constructor h such that
R�h� " L	 We use the simple idea of just adding a bit of the characteristic string of L as
follows

h�w� " w�L�sjwj��

It is straightforward to check that R�h� " L and that h is in polylogspace	

The other inclusion is more complicated	 Given h � p� in order to check whether an
input x " si is in R�h� we can simulate the computations �� h���� h�h����� h�h������ � � ��
h�hm���� for successive m until jh�hm����j 
 i	 But since the output of some of these
computations will be too big to be kept in space polynomial in jxj� we cannot expect
polynomial space algorithm for R�h� by using this simple approach	 Another idea would
be to simulate the computations of h�hm���� for successive m� but without writing the full
output� that is� recalculating the bits in hm��� needed in the computation of h�hm����	 In
this case the stack of the recursion can be too big for PSPACE �e	g	 in the cases where
jh�w�j " jwj$ � for every input�� and the idea does not work in general	

We see in the next theorem what is really R�polylogspace�	 It corresponds to a class of
selfreducible languages that is expected to be di�erent from PSPACE	

De�nition ���	 A language A is PSPACEwdq�self�reducible �where wdq stands for word
decreasingqueries� if A " L�M�A�� where M is a PSPACE Oracle Turing Machine that
makes only queries strictly smaller than the input �in lexicographical order�	
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Balc�azar de�nes in �Balc� two types of selfreducibility� namely wdqselfreducibility and
ldqselfreducibility� ldq standing for length decreasing queries	 The most restrictive one is
ldqselfreducibility� where all the queries must be strictly shorter than the input	 Notice
that wdqselfreducibility allows exponentially long decreasing chains to exist� while only
linearly long chains can appear for the ldq type	 De�nition �	� is obtained by substituting
PSPACE computations for P computations in the de�nition of �Balc�	

Theorem ���	 R�polylogspace� is exactly the class of PSPACEwdqselfreducible lan
guages	

Proof � We start by proving that every language in R�polylogspace� is PSPACEwdq
selfreducible	 Let h be a constructor in polylogspace	

We de�ne a PSPACEoracle machine M that on oracle A and input si computes
h��A�� � � �m � ��� for a certain m � i$ � such that jh��A�� � � �m � ���j 
 i� and gives as
output the i $ �th bit of h��A�� � � �m � ���	 In the case of A " R�h�� we choose m such
that �A�� � � �m� �� " hl��� for some l� and this ensures that h��A�� � � �m� ��� v A� thus
M�si� A� " A�si�	

For each oracle A� we de�ne the following sequence of natural numbers

a� "jh���j

an�� "jh��A�� � � � an � ���j� for n � ��

The machine M on oracle A works as follows

INPUT si
Find an such that an � i � an��
b �"the i$ �th bit of the output of h��A�� � � � an � ���

OUTPUT b

The computations of the form h��A�� � � �m� ��� are done by machine M by substituting
each access to the input by a query to A	 In this way all queries to A are strictly smaller
than si� since an � i	 The computation of M can be done in space polynomial in the
length of the input� because the working space of the computations of h is polylogarithmic
in i� which is polynomial in si� and for the outputs we only need to write their length and
their �i$ ��th bit if it exists	

When A " R�h� we have seen that M�si� A� " A�si�� thus M performs a PSPACEwdq
selfreduction in this case	 This completes the �rst part of the theorem	

To see that every PSPACEwdqselfreducible language is in R�polylogspace�� �x L
PSPACEwdqselfreducible via a Turing Machine M 	 We can de�ne h as in Lemma �	�

h�w� " wL�sjwj��

where L�y� is � if y � L� � otherwise	

It is clear that R�h� " L	 In the computation of h� to decide whether sjwj is in L we can
use that L is PSPACEwdqselfreducible and simulate the computation of M on input
sjwj� answering to a query si� �i � jwj� by checking the ith bit of w	 This simulation can
be done in space polynomial in the length of sjwj� that is� polylogarithmic in the length of
w� so h is in polylogspace	
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In �Balc� it is proven that E� has �p
mcomplete languages that are Pwdqselfreducible	

Since every Pwdqselfreducible language is clearly PSPACEwdqselfreducible� E� has
�p
mcomplete languages that are PSPACEwdqselfreducible� and we have the following

result	

Theorem ���	 If PSPACE " R�polylogspace� then E� " PSPACE	

Proof � By the comment above� E� has a PSPACEwdqselfreducible complete language
A	 In the hypothesis that PSPACE " R�polylogspace� and using Theorem �	� it is clear
that A is in PSPACE	

Since PSPACE is closed under �p
mreduction� if PSPACE contains A� it contains the whole

class E�	

There are other restrictions we can impose on polylogspace functions and still be able
to construct the full PSPACE	 For instance we can consider only functions that can be
computed with online polylogspace machines� that is to say� machines that read the input
only once and from right to left	

Our model of online machine is based on that of Hartmanis� Immerman and Mahaney in
�HartImM�	

De�nition ���	 An on�line Turing Machine is a machine that on input of length n

�a� starts with logn blank spaces marked on one of the working tapes�

�b� reads the input tape once from left to right� and

�c� writes the output from left to right on a writeonly tape	

De�nition ���	 Let plogon be the class of functions that are computable by online ma
chines with working and output space polylogarithmic in the size of the input	 In this case
and for constructor functions only� we do not bound the output space	

Theorem ���	 PSPACE " R�plogon�	

Proof � �� For this inclusion we use the constructor in Lemma �	�� which can be clearly
computed with an online machine	

�� Given h a constructor in plogon we construct an algorithm for R�h� that simulates the
successive computations h���� h�h����� h�h������� � � � � h�hm����� by couples	 Since we are
using an online machine� the computation of h�hm������ is identical to that of h�hm����
�except for the initially marked blank tapes�� until h�hm������ �nds the end of its input	
We take advantage of this to simulate two of these computations in parallel	 Notice that
online constructors read the whole input before adding new bits to the output �new here
means not a part of the copy of the input�	 We simulate the part of the computation of
h�hm������ when the input has been read and new bits of the output are being produced	
These output bits are being fed as input bits in the computation of h�hm����	 In this
way we do not need to keep long pieces of R�h�� only one bit at a time that as soon as is
produced as output is consumed as input	

The next algorithm recognizes R�h�	 On input si it works as follows
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BEGIN

j �" ��
FOR k �" � to log i DO

Ck
� �"initial con�guration in the computation of h��� with k spaces marked on the output ta

Ck
� �" Ck

� �
END FOR
s �" �
WHILE j � i DO

fFirst we simulate the part of the computation of h�hm������ after the whole
input has been read� getting one bit of output at a time�g
FOR k �" � to log i DO in parallel
simulate the computation of h starting in Ck

�

assuming that the rest of the input is blank�
until getting the jth bit of the output� bk

Ck
� �"last con�guration reached in the simulation

IF bk is not blank
fNow we simulate the part of the computation of h�hm����
after the pre�x of the input hm����� has been read�
reading one bit of input at a time�g
THEN simulate the computation of h starting in Ck

� � assuming that
the jth bit of the input is bk� stopping when accessing this jth bit
Ck
� �"last con�guration reached in the simulation

j �" j $ �
ELSE Ck

� �" Ck
�

IF s " k THEN s� " log j
END FOR

END WHILE
OUTPUT bs fFor this bs� R�h��i� " bsg

END

In this way we only need space to keep � log i con�gurations of size polylogarithmic in i�
which is polynomial space in the length of the input si	 Thus R�h� � PSPACE and we
�nish the proof	

We have proved that plogon is a solution to the equation R��� " PSPACE	 In order to
de�ne a nontrivial measure in PSPACE� we have to check that the class plogon ful�lls the
Measure Conservation Theorem� that is� that PSPACE does not have plogonmeasure �	
This is straightforward from the proof of this theorem in Chapter �	 The proof consisted
of� for each martingale d � �� de�ning a constructor � � � such that R��� �� S��d� as
follows

��w� "
n
w� if d�w�� � d�w��
w� otherwise	

Notice that if d � plogon then the above de�ned � is also in plogon	 Thus there is no
martingale in plogon that succeeds on every language in PSPACE� and we can de�ne a
measure in PSPACE from plogonmeasure	
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In the next section we show that �additivity holds for plogonmeasure� and use it for an
application concerning selfreducible languages	

��� ��additivity in PSPACE

In Chapter � we introduced Lutz�s property of �additivity as a useful tool in the proof
that a certain class has �measure �	 All the measures we de�ned in that chapter had this
property	 We show here that the same holds for plogonmeasure	 We then use it to show
that the class of LINSPACEselfreduciblelanguages for a particular selfreducibility has
measure � in PSPACE	

Let us remind the de�nition of �union of �measure � sets	

De�nition ��		 A set X is a ��union of the �measure � sets Xj � j � IN i� X "
�S
j��

Xj

and there exists a �computable �MS d such that� for every j� Xj � S��dj �	

Lemma ��
	 If X is a plogonunion of plogonmeasure � sets� then X has plogonmeasure
�	

Proof � Let d be given by the de�nition of �union	 Let bd be a plogoncomputation of d	

To prove that X has plogonmeasure � we de�ne the martingale d�� f�� �g� � ����� by

d��w� "
�X
j��

�minf��� log�bdj����������jgdj�w��
d� is well de�ned because since dj��� � bdj����� $ ��� we have that

�minf��� log�bdj����������jgdj��� � ���
j

and thus d���� � �	 For other values w � f�� �g�� notice that d��w� � �jwjd����	 d� is
trivially a martingale such that X � S��d��	

By the same arguments as in the case of � a measure resourcebound �Corollary �	����
de�ning plogonmeasure using only martingales in plogon is equivalent to de�ning it with
plogoncomputable martingales	 In order to see thatX has plogonmeasure �� we then need
only to show that d� is plogoncomputable	 For this� de�ne a function bd�� IN
f�� �g� � D

by

bd�k�w� " log�k�jwj���X
j��

�minf��� log�bdj����������jg bdj�j�k���w��
Let us see that bd� is a plogoncomputation of d�	 For each k � IN� w � f�� �g�

jbd�k�w��d��w�j � log�k�jwj���X
j��

jbdj�j�k���w��dj�w�j $ �X
j�log�k�jwj���

�� log�bdj����������jdj�w�
�

log�k�jwj���X
j��

��j�k�� $
�X

j�log�k�jwj���

�jwj�� log�bdj����������jdj��� � ��k��$��k�� " ��k�
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It is clear that bd� � plogon� because it is de�ned as a sum of O�logn� functions� each of
them computed in space O�logl n�� for a �xed l	

We have studied PSPACEwdqselfreducibility in section �	�� showing that there are lan
guages out of PSPACE that are PSPACEwdqselfreducible� unless PSPACE " E�	 We
now look at a more restrictive form of wdqselfreducibility� where the machine used has a
linear bound on the space and a restriction on the order the queries are made	

De�nition ����	 A languageA is LINSPACEoq�self�reducible �where oq stands for ordered
queries� if A " L�M�A�� where M is a LINSPACEoraclemachine that for each input
makes the queries in lexicographical ascending order� and all of them are strictly smaller
than the input �in lexicographical order�	

Remark than if A is LINSPACEwdqselfreducible via a O�n�truthtable LINSPACE
machine� then A is LINSPACEoqselfreducible� because we can order the queries before
making them	 In particular� most of the known selfreductions for natural problems in
PSPACE are O�n�tt �even O���tt� and computable in LINSPACE	

Theorem ����	 The class of LINSPACEoqselfreducible languages has measure � in
PSPACE	

Proof � Let Y be the class of LINSPACEoqselfreducible languages	 We will prove that
Y has plogonmeasure �	

Let fMi

�� i � INg be a recursive enumeration of all Oracle Turing Machines working in
space jzj� on input z	

Let Xi " fB
�� B " L�Mi� B�g if the queries ofMi on any input and any oracle are ordered

and strictly smaller than the input� let Xi be empty otherwise	 Let X "
S
iXi	 It is clear

that Y � X	 In fact� the techniques in �Balc� show that each selfreduction corresponds to
a single language� that is� for each i � IN either jXij " � or jXij " �	

We are going to see that X is a plogonunion of the plogonmeasure � sets Xi� i � IN	 Let
us de�ne d a plogoncomputable �MS as required by De�nition �	�	

Let i � IN such that Xi �" �	 Let w � f�� �g�� b � f�� �g	

di��� " �

If sjwj � f�g
� then let sk� � sk� � � � � � skl be the queries of Mi on input sjwj	 Let a � f�� �g be

the output ofMi on input sjwj when the queries are answered according to w�k��� � � � � w�kl�	

di�wb� "

�
� � di�w�� if b " a�
�� otherwise	

Otherwise di�wb� " di�w�	

d is in plogon� because for any i we can compute di�w� by simulating in parallel the
computations of Mi����Mi��

��� � � � �Mi��
log�jwj��� answering to the di�erent queries in lex

icographical order while reading the input online	

More precisely� on input w� the following algorithm computes di�w�
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BEGIN

Q �" �
d �" �
FOR m �" � to log�jwj� DO

Cm �"con�guration of machine Mi on input �m when making its �rst query� qm
Q �" Q � f�m� qm�g

END FOR
FOR j �" � to jwj � � DO

FOR m �" � to log�jwj� DO
IF �m� sj� is in Q

THEN Cm �"con�guration of machine Mi on input �m after answering query sj
according to w�j� and making its next query� qm� if it exists

IF Cm is a �nal con�guration �� for accepting� � for rejecting�
THEN IF w��m � �� " Cm
THEN d " �d
ELSE d " �

END IF
Q �" Q � f�m� qm�g � f�m� sj�g

END IF
END FOR

END FOR
END 	

The algorithm works in space plogon because in each step we only need to keep a loga
rithmic number of polylogarithmic size con�gurations	

If B � Xi then di�B�� � � ��
m � ��� " �di�B�� � � ��

m � ��� for each m � IN� so Xi � S�di�	

Using Lemma �	� we have the result	

We could also state a plogon version of the BorelCantelli Lemma in Chapter �	 But in
this case we need a very restrictive notion of uniform convergence of series� which makes
a plogonformulation unattractive and di�cult to apply	

We will use plogonmeasure to study other classes inside PSPACE in the following chapters	



Chapter �

Measure versus category� the P�Bi�immune sets

��� Introduction

In this chapter� we study the class of Pbiimmune languages that are in E	 Informally� a
set A is biimmune for a complexity class C if no nontrivial part of A or of its complement
can be �attacked� by any algorithm of �type C�	 More precisely� a set A is Cbiimmune if
no nontrivial subset of A or its complement is in C	

The notion of immunity was �rst introduced by Post �Post��� in recursive function theory	
Flajolet and Steyaert transformed it into the complexity theoretic setting in �FlajSt��a� and
�FlajSt��b�	 Hartmanis and Berman show that E contains a Pbiimmune set ��BermHa��
observed in �KoMo��� and an application of �GeskHuS� yields that for all c 
 � there exists
a DTIME��cn�biimmune set in E	 Pbiimmunity is also studied in detail by Balc�azar
and Sch�oning in �BalcSc�� where several characterizations are presented� for instance� a
recursive set A � f�� �g� is Pbiimmune if and only if f�� �g� is a complexity core for A	

Our goal here is to study the size of the class X of all Pbiimmune languages inside E�
that is� to compare X �E and E by size criteria	 We would like to generalize �There exists
a Pbiimmune set in E� to �Almost every set in E is Pbiimmune�	

For this purpose we will use two ways of sizeclassi�cation of classes within exponential
time� namely measure in E and category in E	 We have fully introduced the �rst one
in Chapter �	 The second one is de�ned by Lutz in �Lutz��� by bounding resources in
topological Baire category �see section �	� for a revision of resourcebounded category�	

We will prove that the class of Pbiimmune languages has measure � in E	 This implies that
almost every language in E is Pbiimmune� and so it extends the previously mentioned
result from �BermHa� �in fact� it extends �GeskHuS� since we will see that for any c 
 �
almost every language in E is DTIME��cn�biimmune�	 As a corollary� we show that the
class of �p

mcomplete sets for E has measure � in E	

We obtain generalizations of the above result� such as� Ebiimmunity de�nes a measure �
class within E�	 So almost every language in E� is Ebiimmune	

Classical Baire Category di�ers drastically from Lebesgue measure in the sense that �large�
classes for Baire can be �small� for Lebesgue� and vice versa �Oxto�	 We prove here that the
class of Pbiimmune languages is a natural example that witnesses the di�erences between
category and measure for the resourcebounded formulation	 The class of Pbiimmune sets
is not �measurable in E� in the category setting �formally� it does not have the property of
Baire�� whereas it has measure � in E	

The two di�erent approaches of category and measure give us two di�erent concepts of
typical language� namely generic language and random language	 We contrast these in the

��
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resourcebounded setting� observing that a pseudorandom language is necessarily Pbi
immune� while a pseudogeneric language can have an in�nite subset in P	

The main results for the class of Pbiimmune languages inside E in this chapter can be
restated for the class of DLOGbiimmune languages inside PSPACE� as we remark at the
end of each section	

The results in this chapter appear in �Mayo��a�	

��� P�bi�immunity and resource�bounded measure

In this section we prove that the class of Pbiimmune sets has measure � in E	 As
a consequence� almost every set in E is Pbiimmune� that is to say� almost every set
recognizable in linear exponential time has no algorithm that recognizes it and works in
polynomial time on an in�nite number of instances	 Next we explain some consequences
of this result for �p

mcomplete languages	

First� we review the notion of immunity	

De�nition ���	 Let C be a class of languages� and L be a language	 We say that L is
Cimmune i� L does not have an in�nite subset that belongs to C	

De�nition ���	 Let C be a class of languages� and L be a language	 We say that L is
Cbi�immune i� both L and the complement of L are Cimmune	

Next we prove our main result� by using the �additivity property �Lemma �	���	

Theorem ���	 The class of Pbiimmune languages has pmeasure �� and thus measure �
in E	

Proof � Let Y be the class of nonPbiimmune languages	 By De�nition �	��� if we
prove that Y is a pmeasure � class we have the theorem	

Let A � E be a universal language for the class P� that is� if we de�ne for each i � IN�
Ai " fx

�� hx� ii � Ag� then P " fAi

�� i � INg	

For i 
 � we de�ne the classes Y�i�� and Y�i as follows	 If jAij "� then

Y�i�� " fL j Ai � Lg� and

Y�i " fL j Ai � Lcg�

If jAij �� then Y�i�� " Y�i " �	 It is easy to see that Y is contained in the union of all
the classes Ym	

Now we will use Lemma �	�� to prove that Y has pmeasure �	 For this we have to build
a pcomputable �MS d that witnesses that Y is a punion of the pmeasure � classes Ym	

Let m � IN� w � f�� �g�	 dm is de�ned as follows�

dm��� " �

If m " �i� � then
When sjwj � Ai we de�ne
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d�i���w�� " �
d�i���w�� " � � d�i���w�

and when sjwj �� Ai for each b � f�� �g

d�i���wb� " d�i���w�

If m " �i then
When sjwj � Ai we set

d�i�w�� " � � d�i�w�
d�i�w�� " �

and when sjwj �� Ai for each b � f�� �g

d�i�wb� " d�i���w�

It is straightforward to check that d is a �MS	 Since A � E� then there exists c 
 � such
that d can be computed in time �c�log�jwj��logm� on input hm�wi� and thus d � p	

Let us see that for each m � IN� Ym � S��dm�	 Let i 
 � such that jAij " �	 Let
B � Y�i��	 For each n such that sn � Ai we know that� since B � Y�i��� sn � B� and thus
d�i����B����n�� " � 	 d�i����B����n � ���� and for n such that sn �� Ai� d�i����B ����n�� "
d�i����B����n� ���	 But the case sn � Ai happens in�nitely often� thus

limn d�i����B ����n�� "�� and B � S��di���	 The proof of Y�i � S��d�i� is analogous	

Applying Lemma �	�� we have that Y has pmeasure �� then Y c has pmeasure � and we
have completed the proof of the theorem	

Recently� Juedes and Lutz �JuedLu��a� have improved Theorem �	� by looking at strong
Pbiimmunity� a notion de�ned in �BalcSc� that is more restrictive than Pbiimmunity	
They show that the class of strongly Pbiimmune languages has measure � in E	 Since
every stronglyPbiimmune language is Pbiimmune� their result implies Theorem �	�	

Next we look at the complexity cores of languages in E	 A complexity core for a language
L is a set of �infeasible� inputs for every algorithm that recognizes L	 Complexity cores
were introduced by Lynch in �Lync�	

De�nition ���	 An in�nite set U � f�� �g� is a complexity core for a language A if for
every machine M that accepts A and every polynomial p there are at most �nitely many
z � U such that the time of machine M on input z is smaller than p�jzj�	

A characterization of Pbiimmune sets in �BalcSc� says that a language is Pbiimmune if
and only if it has f�� �g� as a complexity core	 Thus we have the next corollary	

Corollary ���	 Almost every set in E has f�� �g� as a complexity core	

In the next Theorem we extend Theorem �	� to the class of Cbiimmune languages� for C
any class such that E has a universal language for C	 The same kind of results hold for
measure in ESPACE	

Theorem ���	

a� Let C be a complexity class such that there exists A � E with C � fAi

�� i � INg	 Then
the class of Cbiimmune languages has pmeasure �� and thus measure � in E	
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b� Let C be a complexity class such that there exists A � E� with C � fAi

�� i � INg	
Then the class of Cbiimmune languages has p�measure �� and thus measure � in E�	

c� Let C be a complexity class such that there exists A � ESPACE with C � fAi

�� i � INg	
Then the class of Cbiimmune languages has pspacemeasure �� and thus measure �
in ESPACE	

The proof is similar to that of Theorem �	�� and therefore is omitted	

Next we look at the class of complete sets in E	 Complete sets are considered the most
di�cult in a class� and for instance in �StocCh�� it is shown that a problem de�ned using a
certain twoperson combinatorial game is intractable because it is �p

mcomplete for E	 We
want to know whether completeness is a typical property in E	 We study �p

mcompleteness�
that coincides with �p

��ttcompleteness as proven in �HomeKuR�	

Corollary ���	 The class of �p
mcomplete languages for E has measure � in E	 The class

of �p
mcomplete languages for NE has measure � in E�	

Proof � As proven in �Berm�� no �p
mcomplete set for E is Pbiimmune� so the class

of �p
mcomplete sets is included in a measure � in E class by Theorem �	�� and from

Lemma �	�� b� it has measure � in E	 The second part is analogous� using Theorem �	�
and the fact that no �p

mcomplete set for NE is Ebiimmune �from �Berm��	

Notice that it is not known whether NE � E�	 Also� from �BuhrSpT� every �p
��ttcomplete

set for NE is �p
mcomplete	 Very recently� AmbosSpies� Terwijn and Zheng �AmboTeZ�

have shown that the class of �p
bttcomplete languages has measure � in E	

Next we see that the typical languages for resourcebounded measure are Ebiimmune	
From Chapter � we know that most languages in E� are prandom and that most languages
in E�SPACE are pspacerandom	

Corollary ��		 Every prandom language is Ebiimmune	 Every pspacerandom language
is ESPACEbiimmune

Proof � For each c 
 �� the class DTIME��cn� has a universal language in E	 Thus
Theorem �	� proves that the class of DTIME��cn�biimmune sets has pmeasure �	 Since
by de�nition prandom languages belong to every pmeasure � class� it follows that they
are DTIME��cn�biimmune for every c� and thus Ebiimmune	 The same argument works
in the proof of pspacerandom languages being ESPACEbiimmune	

We �nish this section by looking at the class of DLOGbiimmune languages inside of
PSPACE	 We have a similar result to that of Theorem �	�	

Theorem ��
	

a� The class of DLOGbiimmune languages has measure � in PSPACE	

b� Let C be a complexity class such that there exists A � PSPACE with C � fAi

�� i � INg	
Then the class of Cbiimmune languages has plogonmeasure �� and thus measure �
in PSPACE	

The proof is similar to that of Theorem �	�	

We also have the following corollary for�log
m complete languages for PSPACE� that coincide
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with �log
��ttcomplete ones by �HomeKuR�	

Corollary ����	 The class of �log
m complete languages for PSPACE has measure � in

PSPACE	

Proof � The results in �BuhrHoT� imply that no �log
m complete set for PSPACE is

DLOGbiimmune� so the class of �log
m complete sets has measure � in PSPACE	

��� P�bi�immunity and resource�bounded category

In this section we introduce resourcebounded category� a topological based way of size dis
tinction for subclasses of E� ESPACE� REC and other recursive classes	 We show that the
class of Pbiimmune languages is neither large nor small in E following resourcebounded
category	 We �nish by proving that for a class that is closed under �nite variations� such
as the class of Pbiimmune languages� the fact of being neither large nor small in E in
the category sense implies that it is nonmeasurable in E in the category setting �formally�
it lacks the property of Baire in E�	 Since we have seen in the last section that the same
class has measure � in E� this shows that resourcebounded measure and resource bounded
category are incomparable	

Classical Baire category was introduced by R	 Baire in ���� �and reviewed for instance
in �Oxto��	 Lutz de�nes a resourcebounded category in �Lutz���� later studied by Fenner
�Fenn�� based on classical category in f�� �g� with the usual topology of cylinders	 Both
classical and resourcebounded category can be characterized in terms of BanachMazur
games� which are a type of two person games	 We present here resourcebounded category
only through BanachMazur games� which are simpler to understand and to use for our
purposes	

Informally� a BanachMazur game is an in�nite game in which two players construct a
language L by taking turns extending an initial characteristic sequence of L	 There is
a distinguished class of languages X such that player I wins if L � X� player II wins
otherwise	

De�nition ����	 Let X be a class of languages� let �� and �� be two measure resource
bounds	 A Banach�Mazur game G�X� ������ is a game with two players I and II such that
player I has chosen a constructor g � �� and player II has chosen a constructor h � ��	
Starting from w �" �� they play inde�nitely as follows

w �" �
REPEAT forever

player I plays setting w �" g�w�
player II plays setting w �" h�w�	

END REPEAT

As they play eternally they build an element of f�� �g� 	 We denote as R�g� h� the
language built in this BanachMazur game	 Notice that following De�nitions �	�� and
�	��� the composition of g and h� h � g� is a constructor and R�g� h� " R�h � g�	
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De�nition ����	 A winning strategy for player II in the game G�X� ������ is a constructor
h � �� such that for every constructor g � ��� R�g� h� �� X	

Intuitively� player II has a winning strategy when he has the ability to� starting with any
�nite pre�x w � f�� �g�� construct a language L with w v L that is not in X	

Now we can de�ne �meager classes� which are the �smallest� ones in category	 �In classical
Baire Category� a meager class is sometimes referred to as a class of �rst category	�

De�nition ����	 Let X be a class of languages	 X is �meager i� player II has a winning
strategy for G�X� all���	

We de�ne comeager classes as �large� classes	

De�nition ����	 Let X be a class of languages	 X is �co�meager i� Xc is �meager	

We can now compare the de�nitions of measure and category �for instance De�nition �	��
and De�nition �	���� to �nd a hint of why category and measure are incomparable	 A
class X is �meager when there exists a function in � that can� starting with any �nite
pre�x w � f�� �g�� construct a language L with w v L that is not in X	 This intuitively
means that X is �meager when � has enough computing power to �nd �holes� in X in
every cylinder	 In the case of measure� X has �measure � when there is a function in �
that� for each w � f�� �g�� predicts reasonably well all languages in X �Cw	 Roughly X
is meager when it is easy to get out of it� and it is measure � when it is easy to predict	

Next we need to translate the last de�nitions into a concept of �category within a class�	

De�nition ����	 Let X be a class of languages	 X is meager in R��� i� X � R��� is
�meager	

De�nition ����	 Let X be a class of languages	 X is co�meager in R��� i� Xc is meager
in R���	

These de�nitions are nontrivial because Theorem �	�� in �Lutz��� implies that R��� is not
�meager	 That theorem is a resourcebounded version of the classical Baire Category
Theorem� in fact when � " all in De�nitions �	�� and �	�� we get classical Baire category	
In that context� typical languages are called generic	 We de�ne here �generic or pseudo
generic languages	

De�nition ����	 Let L be a language	 L is �generic i� L belongs to every �comeager
class	

�There exist di�erent notions of genericity� for instance the one studied by AmbosSpies�
Fleischhack and Huwik in �AmboFlH�� that has been recently connected with resource
bounded measure in �AmboNeT�	�

The following lemma states some basic properties of meager sets� and is proved by Lutz
in �Lutz���	

Lemma ���		 A subset of a �meager set is �meager	 A �nite union of �meager sets is
�meager	 Every �meager set is meager in R���	

Let us show that the class of Pbiimmune languages is neither meager nor comeager in
E	 Even a larger class� the Pimmune languages� is not comeager in E	
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Theorem ���
	 The class of Pbiimmune languages is not meager in E	

Proof � We denote with X the class of Pbiimmune languages	 By De�nition �	�� we
have to see that there is no winning strategy for player II in the game G�X � E� all� p��
that is to say� for every constructor h � p� there exists a constructor g � all� such that
R�g� h� � X � E	

Let us start by introducing some notation for Pbiimmunity� that we use next in the
de�nition of g	

Let A � E be a universal language for the class P� as in Theorem �	�� that is� for each
i � IN� Ai " fx

�� hx� ii � Ag� then P " fAi

�� i � INg	

Given two languages B and L� there exist u� v � B such that L�u� �" L�v� if and only if
B �� L and B �� Lc	 Thus a language L is Pbiimmune if and only if for each i � IN
with jAij "�� there exist u� v � Ai such that u � L and v �� L	 We can express this last
condition in terms of �nite pre�xes of L as follows	 A language L is Pbiimmune if and
only if for each i � IN with jAij "�� there exist 	 � f�� �g�� 	 v L such that

�sn� sm � Ai with � � n�m � j	j and 	�n� �" 	�m�� �����

We say that index i has been diagonalized in 	� and denote it Diagonalized�i� 	�� when
condition ��	�� holds for this i and 	� that is�

Diagonalized�i� 	� � �� �sn� sm � Ai such that � � n�m � j	j and 	�n� �" 	�m� ���

L is Pbiimmune if and only if for each i � IN with jAij " �� there exist 	 � f�� �g��
	 v L� such that Diagonalized�i� 	� "True	

For 	 � f�� �g� and q � j	j� the set Diagonalizable�	� q� contains those indexes that have
not been diagonalized in 	 and can be diagonalized using a string sm in fsj	j� � � � � sqg� that
is

Diagonalizable�	� q� " fi
�� Diagonalized�i� 	� " False and

�sn� sm � Ai such that n � m� j	j � m � qg�

Fix h � p	 Next we de�ne g such that R�g� h� is a Pbiimmune language in E	 On input ��
g tries to get Diagonalized

�
i� g���

�
"True for i in f�� � � � � j�jg	 In order to do this� for each

sk with k � j�j� g checks whether some index in f�� � � � � j�jg can be diagonalized using sk�
and if so the diagonalization is performed	 This process goes on until no diagonalization
of an index in f�� � � � � j�jg can be performed using a string in fsk� � � � � s�kg	 Then g gives
an output of length k	 Since Player II next turn uses only polynomial time� it can only
set values of R�g� h� for strings in fsk� � � � � s�kg and no opportunity of diagonalization for
indexes in f�� � � � � j�jg is jeopardized by Player II	

Formally� g is the function computed by the algorithm in Figure �	

Let us show that R�g� h� is Pbiimmune� that is� for each i � IN if jAij " � then there
exists 	 � f�� �g� such that 	 v R�g� h� and Diagonalized�i� 	�"True	
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BEGIN

INPUT �
	 �" �
IF Diagonalizable��� �j
j� � f�� � � � � j�jg " � THEN 	 �" �� fThis is to ensure � v g���g
k �" j	j
WHILE Diagonalizable�	� �k� � f�� � � � � j�jg �" � DO

IF Diagonalizable�	� k� � f�� � � � � j�jg �" �
THEN

i �" minfj j j � Diagonalizable�	� k�g
n �" minfr j sr � Aig
IF 	�n� " � THEN 	 �" 	�
IF 	�n� " � THEN 	 �" 	�
fAt this point we know that Diagonalized�	� i� "True� since sn� sk � Ai and
	�n� �" 	�k�g

ELSE 	 �" 	�
k �" j	j

END WHILE
OUTPUT 	

END 	

Figure �� Algorithm that computes g	

Remark that by the termination condition of the while loop� for each � � f�� �g�

Diagonalizable�g���� �jg�
�j� � f�� � � � � j�jg " �� �����

For each l � IN� let �l " �h � g�l���	 That is� ��� ��� � � � � are the successive inputs to g in
the game against h� and for every l� �l v R�g� h�	 Since h � p� there is an l� � � such that
jh�x�j � �jxj for each x such that jxj � j�l	 j	

Next we show by induction on i that if jAij " � then there exists 	 � f�� �g� such that
	 v R�g� h� and Diagonalized�i� 	�"True	

For i " �� if jA�j � � then we are done	 If jA�j " �� let sn be the �rst string in A��
let sm be the smallest string in A� such that n � m and j�l	 j � m	 Let l � IN be such
that j�lj � m � j�l��j	 We show that Diagonalized

�
�� g��l�

�
"True	 From equation ��	��

Diagonalizable�g��l�� �
jg�
l�j� � f�� � � � � j�ljg " �� thus � �� Diagonalizable�g��l�� �

jg�
l�j�	
But by the choice of l� �jg�
l�j � jf

�
g��l�

�
j " j�l��j 
 m	 Thus sm is an opportunity of

diagonalizing i " � in the computation of g��l�� this means that either Diagonalized
�
�� �l

�
was already True or g uses sm to get Diagonalized

�
�� g��l�

�
"True	 This �nishes the case

i " �	

For the induction step� if jAij � � then we are done	 If jAij " � then by induc
tion hypothesis for each j � i with jAj j " � there exists 	j v R�g� h� such that
Diagonalized�j� 	j�"True	 Take 	 the longest of these 	j 	 Let F be the union of all
�nite languages in A�� � � � � Ai��� let st be the last string in F 	 Let r be the maximum
of t� j	j� i and j�l	 j	 Let sn be the �rst string in Ai	 Let sm be the smallest string in
Ai such that n� r � m	 Let l � IN be such that j�lj � m � j�l��j	 By equation ��	��
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i �� Diagonalizable�g��l�� �
jg�
l�j�	 But by the choice of m and l�

�jg�
l�j � jf
�
g��l�

�
j " j�l��j 
 m�

and for each 	 v R�g� h� with j	j � j�lj�

minfj j j � Diagonalizable�g��l�� �
jg�
l�j�g � i�

Thus sm is an opportunity of diagonalizing i in the computation of g��l�� this means that ei
ther Diagonalized

�
i� �l

�
was already True or g uses sm to get Diagonalized

�
i� g��l�

�
"True	

In both cases Diagonalized
�
i� g��l�

�
"True� and the induction proof is �nished	 We have

shown that R�g� h� � X	

The language built in this game� R�g� h�� is in E because to see if z � R�g� h� it is enough
to play the game up to obtaining a string of length �jzj�� � �	 In the worst case we have
to recognize languages A�� � � � � A�jzj���� on inputs s�� � � � � s�jzj����� which have length at

most jzj� and to compute h for �jzj�� � � inputs of length � �jzj�� � �	 So the total time
is bounded by �O�jzj�	 This is why� even though g �� p� R�g� h� � E	

Note that using Lemma �	�� we have that the class of Pbiimmune languages is not
pmeager	

Theorem ����	 The class of Pimmune languages is not comeager in E	

Proof � We will denote with Y the class of nonPimmune languages	

By De�nition �	�� we have to see that there is no winning strategy for player II in the
game G�Y �E� all� p�� that is to say� for every constructor h � p� there exists a constructor
g � all� such that R�g� h� � Y � E	

So given h� we have to build g that puts a set in P inside R�g� h�	

For h � p� there exists c with jh�w�j � �jwj for all w � f�� �g� such that jwj � �c	

We de�ne the sequence fang�
a� " c

an " �an�� � n � ��

The set in P that we are going to include in R�g� h� is L " f�an j n � �g	 Note that
�an " san����	

Algorithm for g�

BEGIN

INPUT �

IF � " � THEN 	 " �a����

ELSE compute n such that an�� � j�j � an

	 �" ��an�j
j���

OUTPUT 	

END 	
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To see that L � R�g� h� just notice that if j�j " an then jh���j � �an " an��� so the bits
corresponding to the strings in L are never a�ected by h	

As the exponential function is time constructible� g is in p and since R�g� h� " R�h � g��
R�g� h� � E	

Thus the smaller class of Pbiimmune sets is not comeager in E either� therefore the
Pbiimmune languages form a class that is neither meager not comeager in E	

Using essentially the same techniques we have the following results	

Theorem ����	 The class of Ebiimmune languages is neither meager not comeager in E�	
The class of PSPACEbiimmune languages is neither meager not comeager in ESPACE	

For the class REC we obtain�

Theorem ����	 For any recursively presentable class C with P � C� the class of Cbi
immune languages is neither meager nor comeager in REC	

Lutz �personal communication� has pointed out that these results imply that the class of
Pbiimmune languages lacks the property of Baire in E �and classes up to REC�	 For the
sake of completeness� we now introduce the resourcebounded property of Baire and the
zeroone law for Baire category that supports this inference	

Classically� an open set in f�� �g� is a union of cylinders and a closed set is the complement
of an open set	 Also in the classical sense� a set X has the property of Baire if and only if
there is an open set G such that X%G is meager	 �This is the Baire category analogue of
the fact that a set X is Lebesgue measurable if and only if there is an F� set *equivalently�
a G� set* H such that X%H has measure �	� The extension of this notion to complexity
classes is natural	 We restrict the open sets to those that are �unions of cylinders� and
de�ne the property of Baire in R��� as follows

De�nition ����	 A class X is open in R��� i� �h � � such that X �R��� " �
S
kCh��k���

R���	 A class X is closed in R��� i� it is the complement of an open class in R���	

De�nition ����	 A class X has the property of Baire in R��� i� X " G%Q� where G is
open in R��� and Q is meager in R���	

De�nition ����	 A class X of languages is closed under �nite variations if for all languages
L and L�� if L � X and L%L� is �nite� then L� � X	

The following lemma is a straightforward generalization of Theorem ��	� in �Oxto�� which
is the Baire category analogue of the Kolmogorov zeroone law for measure	 To prove the
lemma we use the next auxiliary proposition	

Proposition ����	 If X is a class of languages that is closed under �nite variations then
X is meager in R��� if and only if there exists w � f�� �g� such that X �Cw is meager in
R���	

Proof � From left to right� just take w " �	

From right to left� let w � f�� �g� be such that X �Cw is meager in R���� then there is a
winning strategy h for player II in the game G��X �Cw� � R���� all���	
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Take y � f�� �g� such that jwj " jyj	 Let us show that X �Cy is meager in R���	

De�ne bh� f�� �g� � f�� �g� as follows	 If y v x� then let z " w 	 x�jwj��jxj � ��� that is� z is

the result of substituting y by w as pre�x of x and let bh�x� " x 	 h�z��jxj��jh�z�j � ��� that

is� bh�x� is the result of substituting w by y as a pre�x of h�z�	 If y �v x� then bh�x� is the
�rst string z � f�� �g� such that x v z and Cy �Cz " �	

We claim that bh is a winning strategy for player II in the game

G�X �Cy � R���� all����

It is clear that bh � �	 To see that bh wins� let g be an arbitrary strategy for player I	 We
have two cases�

�i� Case y v g���	 We de�ne g� a constructor in all such that R�g�� h� is a �nite variation

of R�g�bh�	 g���� " w 	 g����jwj��jg���j � ��	 If w v x� then let z " y 	 x�jyj��jxj � ��� and let
g��x� " x 	 g�z��jxj��jg�z�j � ��	 If w �v x then g��x� " g�x�	 Since h is a winning strategy
for player II in the game G��X �Cw� � R���� all���� R�g�� h� �� X �Cw� but w v R�g�� h�
and then R�g�� h� �� X	 Since y v g��� we always use the �rst part in the de�nition ofbh to compute R�g�bh�� and thus R�g�bh� is the result of substituting w by y as a pre�x of

R�g�� h�	 But X is closed under �nite variations and since R�g�bh� is a �nite variation of

R�g�� h�� then R�g�bh� �� X	

�ii� If y �v g���� then R�g�bh� �� Cy by the de�nition of bh	
Each of �i� and �ii� implies that R�g�bh� �� X �Cy �R���� so bh is indeed a winning strategy
for player II	 Thus X �Cy is meager in R��� for each y with jyj " jwj	 But since

X "
�

y�f���gjwj

�X �Cy��

X is a �nite union of sets that are meager in R���� which by Lemma �	�� implies that X
is meager in R���	 This completes the proof	

Lemma ����	 If X is a class of languages that is closed under �nite variations and has
the property of Baire in R���� then X is either meager in R��� or comeager in R���	

Proof � Assume that X is closed under �nite variations� has the property of Baire in
R���� and is not meager in R���	 It su�ces to prove that X is comeager in R���	

Since X has the property of Baire in R���� there is a class G that is open in R��� such
that X%G is meager in R���	 Since X is not meager in R���� G �" �	 Thus there exists
w � f�� �g� such that Cw � R��� � G � R���	

Xc �Cw is meager in R��� because Xc �Cw � Xc �G � X%G	 By the last proposition
this is equivalent to saying that Xc is meager in R���	 This completes the proof	

The following theorem thus summarizes the results of this section	

Theorem ���		 The class of Pbiimmune languages does not have the property of Baire
in E� E�� ESPACE� or REC	
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Proof � This follows from Theorems �	�� and �	�� �extended to the classes E� E� and
ESPACE�� Theorem �	�� and Lemma �	��	

In contrast with Theorem �	��� it is easy to see that the class of REbiimmune languages
is allcomeager� so Pbiimmunity is comeager in the classical Baire category sense	

From Theorem �	�� and the remark following Lemma �	� in �Fenn� we note that we cannot
assume anything about the immunity of a pseudogeneric language	

+ There exists a pgeneric language in E� that is Ebiimmune	

+ There exists a pgeneric language in E� that is not Pimmune	

We can de�ne a category in PSPACE from the notion of plogoncategory� simply by using
De�nitions �	�� to �	��	 For this category we can study the class of DLOGbiimmune sets
in PSPACE� and prove the following results that are analogous to Theorems �	��� �	�� and
�	��	

Theorem ���
	 The class of DLOGbiimmune languages is neither meager nor comeager
in PSPACE	 Thus it does not have the property of Baire in PSPACE	

The proof is a translation of those of Theorems �	��� �	�� and �	�� to plogon bounds	 This�
together with Theorem �	�� witnesses the di�erences of measure and category in PSPACE	



Chapter �� Measure of nonuniform complexity classes

��� Introduction

The models of computation can be classi�ed into uniform and nonuniform	 In a uniform
model� programs are valid for arbitrarily long inputs� while in a nonuniform one each
program is valid only for inputs of a �xed length	 Examples of uniform models are the
Turing Machine and the RAM� and the main example of nonuniform model is the Boolean
Circuit	

Nonuniform complexity classes are de�ned in connection with nonuniform complexity mod
els and the associated complexity measures	 In this context appears the concept of advice
class� introduced by Karp and Lipton in �KarpLi�	 An advice class is de�ned by adding
nonuniform advice to a uniform complexity class	 In section �	� we review the concept of
advice class and study P�log� the class of languages recognized in polynomial time with
the help of a logarithmic advice	 The characterization of P�log that we use in this section
is a part of the material in �HermMa� and �BalcHeM�	

P�poly is the most thoroughly studied nonuniform class� de�ned as those languages that
can be recognized in P with the help of a polynomially long advice	 P�poly can also be
characterized as the class of languages decidable by boolean circuits whose size is polyno
mial on the length of the input �see �BalcD�
G� and the references there for a full study of
this class�	

Regarding the comparison of uniform and nonuniform complexity classes� we know that P
is a subclass of P�poly �Sava�� and that ESPACE is not included in P�poly �Kann�	 What
is more� Lutz has shown in �Lutz��� that P�poly has measure � in ESPACE� that is to say�
most languages in ESPACE are out of P�poly	

The main open problem in this context is the relationship of P�poly with E	 There exists
an oracle A for which EA is not included in PA�poly �for instance� any oracle for which
E equals ESPACE�� and there exists an oracle B for which EB is included in PB�poly
�Wils�	 This means that if we want to settle whether E is a subclass of P�poly we must
use nonrelativizing techniques	 Thus our work deals with a subclass of P�poly and with a
superclass of E	

There is a characterization of P�poly as the class of languages that are Turing reducible in
polynomial time to a sparse set� where A is sparse� and we write A � SPARSE� if there is a
polynomial p such that jA�nj � p�n� for all n � IN	 It is also known that the weaker truth
table reducibility can be substituted for the Turing reducibility in this characterization	
Such result suggests the reformulation of the question of whether E is included in P�poly
to �how dense must a language A � f�� �g� be in order to be hard for E�� �see �HemaOgW�
for a thorough survey�	 As a consequence of the cited result for P�poly� we cannot expect

��
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to solve this question with relativizable techniques for polynomialtime Turing reducibility	
The �rst result on the density of hard languages was the following	

Let us say a language A is dense� and we write A � DENSE� if there is a real number � 
 �
such that jA�nj � �n

�

for all su�ciently large n � IN	 It is clear that SPARSE � DENSEc	

Theorem ���	 �Meye�� Every �p
mhard language for E�or any larger class� is dense	 That

is� E �� Pm�DENSE
c�	

Theorem �	� was subsequently improved to truthtable reducibility with O�logn� queries

Theorem ���	 �Wata��a�� �Wata��c�� Every �p
O�log n��tthard language for E is dense	

That is� E �� PO�log n��tt�DENSE
c�	

The Main Theorem in section �	�� Theorem �	��� extends Theorems �	� and �	� above
by showing that� for every real � � � �e	g	� � " ������ only a measure � subset of the
languages in E are �p

n��ttreducible to nondense languages� that is

��Pn��tt�DENSE
c� j E� " �� �����

This means that Pn��tt�DENSE
c� � E is a negligibly small subset of E	

In particular� this implies that

E �� Pn��tt�DENSE
c�� �����

i	e	� that every �p
n��tthard language for E is dense	 This strengthens Theorem �	� above

by extending the truth table reducibility from O�logn� queries to n
 queries �� � ��	 Very
recently� and independently� Fu �Fu� has used resource bounded Kolmogorov complexity
to prove that for every � � �

� � E �� Pn��T�DENSE
c�� which generalizes ��	�� to Turing

reducibilities instead of truthtable reducibilities� although with a slightly worse query
bound	

It is worth noting that the combinatorial technique used to prove ��	�� and ��	��*the
sequentially most frequent query selection*is simpler than Watanabe�s direct proof of
Theorem �	�	 This is not surprising� once one considers that our proof of ��	�� via ��	��
is a resourcebounded instance of the probabilistic method reviewed in Chapter �� which
exploits the fact that it is often easier to prove the abundance of objects of a given type
than to construct a speci�c object of that type	

The proof of Theorem �	��� is based on a very general result� the Weak Stochasticity
Theorem proven in section �	�	 In very brief terms� this result says that almost every
language in E is �weakly stochastic�� in the sense that it is statistically unpredictable by
feasible deterministic algorithms� even with linear nonuniform advice	 �See section �	� for
precise de�nitions	� This result enables us to prove Theorem �	��� that

��Pn��tt�DENSE
c� j E� " �

for all � � �� by a simple combinatorial technique� without reference to measuretheoretic
notions	 Speci�cally� in section �	� below� this combinatorial technique+the sequentially
most frequent query selection+is introduced and used to prove that no language in
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Pn��tt�DENSE
c� is weakly stochastic	 Theorem �	�� follows immediately from this and

the Weak Stochasticity Theorem	

This use of weak stochasticity in E is analogous to earlier uses of spacebounded Kol
mogorov complexity in ESPACE	 It is known ��Lutz���� �JuedLu���� that almost every
language in ESPACE has very high spacebounded Kolmogorov complexity	 Using this
fact� a variety of sets X have been shown to have measure � in ESPACE� simply by prov
ing that every element of X has low spacebounded Kolmogorov complexity ��Lutz��b��
�Lutz���� �LutzSc�� �JuedLu����	 Informally� we say that high spacebounded Kolmogorov
complexity is a �generalpurpose randomness property of languages in ESPACE�	 This
expression� which is heuristic� means the following two things	

�a� Almost every language in ESPACE has the property �high spacebounded Kolmogorov
complexity�	

�b� It is often the case that� when one wants to prove a result of the form ��XjESPACE� "
�� it is convenient to prove that no language in X has the property� and then appeal
to �a�	

It is natural to hope that high timebounded Kolmogorov complexity would be� in the
analogous sense� a generalpurpose property of languages in E	 Unfortunately� however�
the strongest known lower bound on timebounded Kolmogorov complexity in this class
�Lutz ��� is far too weak to provide a useful timebounded analogue of condition �a� above	
Moreover� improving these bounds appears to require a major breakthrough in complexity
theory	

Our results suggest that� even without such a breakthrough� weak stochasticity may be a
�generalpurpose randomness property of languages in E�	 This would entail the following
two heuristic conditions	

�a�� Almost every language in E is weakly stochastic	

�b�� It is often the case that� when one wants to prove a result of the form ��XjE� " �� it
is convenient to prove that no language in X is weakly stochastic� and then appeal to
�a��	

The Weak Stochasticity Theorem gives us condition �a�� immediately	 The proof of The
orem �	�� gives us the instance X " Pn��tt�DENSE

c� of condition �b��	 It appears likely
that more such instances will arise� i	e	� that weak stochasticity is a generalpurpose ran
domness property of languages in E that will be useful in future investigations	 Sections
�	� and �	� are contained in �LutzMa��a�	

In section �	�� we study the size of P�poly inside the exponential time hierarchy	 Kannan
showed in �Kann� that there exists a language in the second level of the exponential hier
archy that is not in P�poly	 We de�ne a measure in each level of the exponential hierarchy
and show that P�poly has measure � in the third level	 This last result is unpublished	

��� Advice complexity classes

In this section we review the de�nition of advice complexity classes and show that P�log has
measure � in E� that is� almost every language in E is not in P�log	 To prove this measure
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result we use a circuitbased characterization of P�log given by Hermo and Mayordomo in
�HermMa�	

The notion of advice function was introduced in �KarpLi� to provide connections between
uniform and nonuniform computation models	

De�nition ���	 Given a class of sets C and a class of bounding functions F � the class C�F
is formed by the sets A such that

n �w �jwj � h�n�� x �jxj " n� x � A �� hx�wi � B

where B � C and h � F 	

The words w mentioned in the de�nition are frequently called �advice words�	 The corre
sponding Skolem function mapping each n into an appropriate advice wn for length n is
called �advice function�	 Thus we de�ne

De�nition ���	 Given a language A � f�� �g� and a function f � IN � f�� �g�� we de�ne
the language A�f ��A with advice f�� by

A�f " fx � f�� �g�
�� hx� f�jxj�i � Ag�

In De�nition �	�� C is usually a uniform complexity class� most frequently P� whereas the
class poly " fnO���g of polynomials and the class log " O�logn� of logarithms are the
most frequent bounding functions	 In particular� �KarpLi� focused on the study of the
classes P�poly and P�log� and proved that for certain problems� the hypothesis of being
in nonuniform classes has implications on the structure of uniform classes	

The class P�poly can be characterized in various manners� one of them as the class of
languages decidable by boolean circuits whose size grows polynomially on the length of
the input	 This important class has been studied in depth �see for instance �BalcD�
G� and
the references there�	 On the contrary� the class P�log� corresponding to polynomial time
with the help of a logarithmically long advice string� has received up to now much less
attention	 We address here the question of �nding a characterization of the class P�log in
terms of circuits	

We �rst settle our notions of Boolean circuit and size of a boolean circuit	 We �x the
following family of boolean functions� the �ary functions �true� and �false�� the unary
function of negation� denoted �� and the binary functions � and �	 With these functions
as basis� we can compute any nary boolean function	

De�nition ���	 Given a set � " fx�� x�� � � � � xng of n boolean variables� a computation
chain over � is a sequence g�� g�� � � � � gk� in which each gj is

 either a source element� an element of � or a boolean constant�

 or a gate� a pair ��� gl� for � � l � j � �� or a triple �b� gl� gm� for � � l�m � j � �
and b � f���g	 The inputs to a gate gj are the �one or two� smaller elements of the
computation chain which appear in gj 	

With each element gj of a computation chain over � " fx�� x�� � � � � xng� we can associate
an nary function result�gj� which represents the boolean value computed at element gj 	
It is de�ned as follows	
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De�nition ���	

result�gj� "


����
gj if gj is a source
�result�gl� if gj " ��� gl�
result�gl� � result�gm� if gj " ��� gl� gm�
result�gl� � result�gm� if gj " ��� gl� gm�	

Representing computation chains by acyclic graphs� circuits are obtained

De�nition ���	 A boolean circuit is an acyclic graph representation of a computation
chain� which is constructed by associating to each step gj of the chain a node labeled with
the variable� constant� or function present in gj � and joining node gj to node gi by a
directed edge if gj is an input to gi	

De�nition ��		 Given a boolean function f � &n � &m� which can be expressed as an m
tuple f " �f�� � � � � fm� of boolean functions from &n to &� we say that a circuit C computes
f if for every r� � � r � m� there exists an s� such that fr " result�gs�	

The cost or size of a circuit is the number of gates it has	 Given a boolean function f � its
boolean cost is the size of the smallest circuit computing it	 A set A has polynomial size
circuits if and only if there is a polynomial p such that for each length n the boolean cost
of the characteristic function of A�n is bounded by p�n�	

In our characterization of P�log we use the next theorem from Savage that relates size
complexity and the time of a Turing machine computation	

Theorem ��
	 �Sava�� If a function f is computed by a Deterministic Turing Machine
�DTM� in time T �n�� then the restriction of f to f�� �gn can be computed by a circuit of
size O�T �n���	

We will also use the following result stating that the evaluation of a circuit on a given
input can be done in time bounded by a polynomial in the size of the circuit	

De�nition ����	 The circuit value problem� CVP for short� is the set of all pairs hx� yi
where x � &� and y encodes a circuit with jxj source elements which outputs � on input
x	

It is known that CVP� P and� as a consequence of Theorem �	�� it was shown that CVP is
complete for P under very weak reductions �Ladn�	 In �HermMa� we obtain the following
characterization of P�log in terms of resourcebounded Kolmogorov complexity	

Theorem ����	 The following are equivalent�

�i� A � P� log	

�ii� A is accepted by a family fCng of polynomial size circuits such that fCng � K�log� poly�	

Proof �

i# � ii#�

Let A � P� log	 This is to say� we have B �P such that �c n �wn such that x�jxj "
n�� x � A i� hx�wni � B� with jwnj � c logn	
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Using Theorem �	� it is possible to construct the polynomial size circuit Cn that recognizes
A�n as follows	 For each x� y the pairing function hx� yi is polynomial time computable	
We take the circuit that computes it according to Theorem �	�	 The inputs corresponding
to y are then �xed to the bits of wjxj	

Next� since B �P� another circuit generated in the same way simulates the DTM that
recognizes B for inputs of size jhx�wjxjij	

Composing both circuits we obtain Cn	

An interesting characteristic of the circuits constructed in the proof of Theorem �	� is that
they are generated having a very regular interconnection pattern� in fact from the number
of a gate we know its exact position in the circuit *a full construction is given in Balc�azar�
D�
az� and Gabarr�o �BalcD�
G�*	

The gates of Cn are of two types� namely the constant gates corresponding to the advice
and the gates produced by Savage�s simulation of a DTM� with a regular interconnection
pattern	 These gates can be codi�ed placing the constant gates �rst� so that the two types
can be distinguished easily	 This is why Cn can be generated by a DTM in O�p�n��� time
for a polynomial p� from seeds n and wn	 Thus fCng � K�log� poly�	

ii# � i#�

Let fCng be the polynomial size family that accepts A	 Since fCng � K�log� poly�� then
for all n �wn� jwnj � c logn� such that U�wn� " Cn in time bounded by nk	 We de�ne
B " fhx� yi�hx� zi � CVP� where z " U�y� in time � jzjkg	

As CVP is in P it is clear that B is in P	 Finally� x � A i� hx�wjxji � B	

Karp and Lipton made an attempt of characterizing P�log in terms of Boolean circuits
in �KarpLi�	 With this purpose they introduce the concept of �small circuits with easy
descriptions� where an easy description of a circuit C is again a circuit of size logarithmic
in the size of C that describes the interconnection pattern of C	 As proven in �HermMa�� the
family of languages that have �small circuits with easy descriptions� corresponds exactly
to the class P�O�logn � log�logn��� which can be proven to be di�erent from P�log	 Thus
Theorem �	�� is the �rst known characterization of P�log in terms of circuits	

This characterization is useful to give an elegant proof of the fact that P�log has measure
� in E	

Theorem ����	 P�log has measure � in E	

Proof � The idea is that we can only produce �log
� n circuits from seeds of length log� n�

and thus a pmartingale with input of length �n has enough time to compute all the
di�erent ninput nlognsize circuits in K�log� n� nlogn�� which includes all polynomial size
circuits in K�O�logn�� poly�� for n large enough	

Let k � IN be a power of �� k " �i	 We de�ne

Xk " fA
�� for each n 
 i� there exists a nlog nsize boolean circuit

Cn � K�log� n� nlogn� that recognizes A�ng�
�
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By Theorem �	��� we know that P� log �
�S
k��

Xk	 We use the �additivity Lemma

�Lemma �	��� to show that �p�
S
kXk� " �	

The function f � IN
 f�� �g� � IN counts the number of nlog n circuits in K�log� n� nlogn�
and is de�ned as follows� for m " �n and w � f�� �g��

fm�w� " ,fC
��C is an ninput boolean circuit of size nlog n in K�log� n� nlogn�

such that for each sj � f�� �g
n� j � jwj� C�sj� " w�j�g�

Clearly f can be computed in polynomial time	

Let us de�ne d� IN
 f�� �g� � ����� as follows	 Let w � f�� �g�� b � f�� �g

dk�wb� "


�� ��k� if jwj � �k � ��

dk�w�
� 	 fm�wb�

fm�w�
� otherwise� for m " �n such that m� � � jwj � �m� �	

Since we can compute f in polynomial time and fm�w�� $ fm�w�� " fm�w� for each m
and w� d is clearly a �MS in p	

By Lemma �	��� if we see that Xk � S��dk�� we have the theorem	 Let k " �i� A � Xk	
From the de�nition of Xk we know that for any m 
 k� m " �n� fm��A�����

n�� � ��� � �	

The fact that ,K�log� n� nlogn� � �log
� n implies that for any w � f�� �g�� fm�w� � �log

� n	
We have then the following inequalities

dk��A�����
n�� � ��� � dk��A�����

n � ��� 	 ���
n� �

�log
� n

� dk��A�����
n � ������

n����

thus by induction

dk��A�����
n�� � ��� � dk��� 	 �

�n�k " ��
n��k�

which implies that lim sups dk��A����s�� "�� and A � S�dk�	

In fact� if f � o�n� then from �HermMa� we have a circuit based characterization of
P�O�f�� and it can be proven that P�O�f� has measure � in E with the same technique
as in Theorem �	��	

��� Weak stochasticity

In this section we prove the Weak Stochasticity Theorem	 This theorem will be useful
in the proof of our main result in section �	�	 We also expect it to be useful in future
investigations of the measure structure of E and E�	

Let us formulate our notion of weak stochasticity	
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De�nition ����	 Let t� q� �� IN � IN and let A � f�� �g�	 Then A is weakly �t� q� ��
stochastic if� for all B � DTIME�t��fqg and all C � DTIME�t� such that jC�nj � ��n� for
all su�ciently large n�

lim
n��

j�A�B� � C�nj

jC�nj
"

�

�
�

Intuitively� B and C together form a �prediction scheme� in which B tries to guess the
behavior of A on the set C	 A is weakly �t� q� ��stochastic if no such scheme is better in
the limit than guessing by random tosses of a fair coin	

Our use of the term �stochastic� follows Kolmogorov�s terminology ��KolmUs�� �UspeSeS��
for properties de�ned in terms of limiting frequencies of failure of prediction schemes	 The
adverb �weakly� distinguishes our notion from a stronger stochasticity property considered
in �Lutz��c�� but weak stochasticity is a powerful and convenient tool	

The following lemma captures the main technical content of the Weak Stochasticity The
orem	

Lemma ����	 Fix c � IN and � � 	 � R and let

WSc�	 " fA � f�� �g�jA is weakly ��cn� cn� �	n�� stochasticg�

Then �p�WSc�	� " �	

Proof � Assume the hypothesis	 Let U � DTIME���c���n� be a language that is universal
for DTIME��cn�
 DTIME��cn� in the following sense	 For each i � N� let

Ci "fx � f�� �g
�jh�i� �xi � Ug�

Di "fx � f�� �g
�jh�i� �xi � Ug�

Then DTIME��cn�
DTIME��cn� " f�Ci� Di�ji � Ng	

Our objective is to use Lemma �	�� to prove that WScc�	� the complement of WSc�	 � has
pmeasure �	 In order to do this� for all i� j� k � IN� de�ne the set Yi�j�k of languages as
follows	 If k is not a power of �� then Yi�j�k " �	 Otherwise� if k " �n� where n � IN� then

Yi�j�k "
�

z�f���g�cn

Yi�j�k�z�

where each

Yi�j�k�z "

�
A � f�� �g�

��� j�Ci��nj � �	n and

���� j�A� �Di�z�� � �Ci��nj

j�Ci��nj
�

�

�

���� � �

j $ �

�
�

�The notation Di�z here denotes Di�h� where h� IN � f�� �g� is the constant function
h�n� " z	� The point of this de�nition is that� if a language A � f�� �g� is not an element
ofWSc�	 � then the de�nition of weak stochasticity says that there exists i� j � IN such that
A � Yi�j�k for in�nitely many k	 That is�

WScc�	 �
��
i��

��
j��

��
m��

��
k�m

Yi�j�k�
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It follows by Lemma �	�� that it su�ces to exhibit a pcomputable �MS d with the
following two properties	

�I� The series
�P
k��

dm�k���� for m � IN� are uniformly pconvergent	

�II� For all i� j� k � IN� Yi�j�k�w� � S
�

dhi�ji�k
���

�dhi�ji�k�	

De�ne the function d� IN� 
 f�� �g� � ����� as follows	 If k is not a power of �� then
dm�k�w� " �	 Otherwise� if k " �n� where n � IN� and m " hi� ji then

dm�k�w� "
X

z�f���g�cn

Pr
C
�C � Yi�j�k�zjC � Cw��

It follows immediately from the de�nition of conditional probability that d is a �MS	 Since
U � DTIME���c���n� and c is �xed� we can use binomial coe�cients to �exactly� compute
dm�k�w� in time polynomial in m$ k $ jwj	 Thus d is pcomputable	

To see that d has property �I�� note �rst that the Cherno� bound� Lemma �	�� tells us
that� for all i� j� k � IN and z � f�� �g�cn �writing k " �n and N " k	 " �	n��

Pr
C
�C � Yi�j�k�z� � �e

� N

��j���� �

whence
dhi�ji�k��� "

X
z�f���g�cn

Pr
C
�C � Yi�j�k�z�

� �cn�� 	 �e
� N

��j����

� e
cn��� N

��j���� �

Let a "
l
�
	

m
� let � " 	

� � and �x k� � IN such that

k�� � k� $ c log k $ �

for all k � k�	 De�ne g� IN� IN by

g�j� " �a�j $ ���a $ k��

Then g is a polynomial and� for all i� j� n � IN �writing k " �n and N " k	 " k����

k � g�j� "�


������
N " k��k��

� ��a�j $ ���a�
��
�k� $ c log k $ ��

� ��j $ ����k� $ cn$ ��

"� dhi�ji�k��� � e�k
�

�

Thus dhi�ji�k��� � e�k
�

for all i� j� k � IN such that k � g�j�	 Since � 
 �� it follows by
Lemma �	�� that �I� holds	
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Finally� to see that �II� holds� �x i� j� k � IN	 If k is not a power of �� then �II� is trivially
a�rmed� so assume that k " �n� where n � IN	 Let A � Yi�j�k	 Fix z � f�� �g

�cn such that
A � Yi�j�k�z and let w be the ��n�� � ��bit characteristic string of A�n	 Then

dhi�ji�k�w� � Pr
C
�C � Yi�j�k�zjC � Cw� " ��

so A � Cw � S
�

dhi�ji�k
���

�dhi�ji�k�	 This completes the proof of Lemma �	��	

We now have the main theorem of this section	

Theorem ����	 Weak Stochasticity Theorem�

��� For each c � IN and 	 
 �� WSc�	 has measure � in E� that is� for each c � IN and
	 
 �� almost every language A � E is weakly ��cn� cn� �	n�stochastic	

���
T
c�	WSc�	 has measure � in E�� that is� almost every language A � E� is� for every

c � IN and 	 
 �� weakly ��cn� cn� �	n�stochastic	

Proof � Part ��� follows immediately from Lemma �	�� via Lemma �	��	 Part ��� follows
from Lemma �	�� via Lemmas �	�� and �	��	

��� Measure of Pn��tt�DENSE
c�

In this section we show that for every real � � �� the set Pn��tt�DENSE
c� has measure �

in E and in E�	

Our proof is based on the Weak Stochasticity Theorem from the last section� stating that
almost every language in E and almost every language in E� is weakly stochastic	 We give a
simple combinatorial proof that no language in Pn��tt�DENSE

c� is weakly ��	n� �n� �
�
�n�

stochastic� thereby proving that ��Pn��tt�DENSE
c� j E� " �	

The sequentially most frequent query selection is the main construction in the combinato
rial proof of Lemma �	��	 Let f be an n
query function and let n � IN	 Our objective is
to obtain a set S � f�� �gn of a reasonable size such that there exist as many as possible
queries that are made by f on every input in S	 For this we construct S�� � � � � Sn� � f�� �gn

and y�� � � � � yn��� � f�� �g� such that for every k � n
� y�� � � � � yk�� are queries of f on
every string in Sk	

Let us formalize	 Given an n
query function f and n � IN� the sequentially most frequent
query selection smfq selection� for f on inputs of length n is the sequence

�S�� Q�� y��� �S�� Q�� y��� � � � � �Sn� � Qn� � yn��

de�ned as follows	 Each Sk � f�� �gn	 Each Qk is an jSkj
n
 matrix of strings� with each
string in Qk colored either green or red	 The rows of Qk are indexed lexicographically by
the elements of Sk	 For x � Sk� row x of Qk is the sequence f��x�� � � � � fn��x� of queries of
f on input x	 If Qk contains at least one green string� then yk is the green string occurring
in the greatest number of rows of Qk	 �Ties are broken lexicographically	� If Qk is entirely



�	� Measure of Pn��tt�DENSE
c� ��

red� then yk " � ��bottom�� i	e	� unde�ned�	 The sets Sk and the coloring are speci�ed
recursively	 We set S� " f�� �gn and color all strings in Q� green	 Assume that Sk� Qk� and
yk have been de�ned� where � � k � n
	 If yk " �� then �Sk��� Qk��� yk��� " �Sk� Qk� yk�	
If yk �" �� then Sk�� is the set of all x � Sk such that yk appears in row x of Qk	 The
strings in Qk�� are then colored exactly as they were in Qk� except that all yk�s are now
colored red	 This completes the de�nition of the smfq selection	

For � � k � n
� it is clear that every row of Qk contains at least k red strings	 In
particular� the matrix Qn� is entirely red	

Our main results follow from the following lemma	

Lemma ����	 For every real � � �� Pn��tt�DENSE
c� �WS	� �� " �	

Proof � Let � � � and assume that A�p
n��ttL via �f� g�� where L �� DENSE	 It su�ces

to show that A �� WS	� �� 	 Intuitively� in order to do this we consider a language C such
that for each n � IN there exist several queries that are made by f for all inputs in C�n	 We
will construct C using the smfq selection	 We then want to predict A�C� for which we use
a language B � DTIME��	n��f�ng� that is obtained from �f� g� by answering according
to the advice to those queries that appear more often and answering no to the rest of
the queries	 This prediction scheme of A will work well because of the low density of the
oracle� as proven below	

Fix a polynomial p such that jfi�x�j � p�jxj� for all x � f�� �g� and � � i � jxj
	 Let
� " ��


� and �x n� � IN such that the following conditions hold for all n � n�	

�i� n � � 	 n�����

�ii� n�� � n� � ��

Let
K " fn � IN

���n � n� and jL�p�n�j � �n
�

g�

Note that K is in�nite because L is not dense	

De�ne languages B� C� D and an advice function h� IN � f�� �g� as follows	 C "
S
n Cn�

D "
S
nDn	 For all n � n�� Cn " Dn " f�� �gn and h�n� " �	 For all n � n�� Cn� Dn�

and h�n� are de�ned from the smfq selection for f on inputs of length n as follows� Let

k " k�n� be the greatest integer such that � � k � n
 and jSkj � �n�kn
��

	 �Note that k
exists because jS�j " �n	� We then de�ne

Cn " Sk�

h�n� " ��y� � L�� � � � ��yk�� � L���

and we let Dn be the set of all coded pairs hx� zi such that x � Sk� z � f�� �gk� and
g�x��b� � � � bn�� " �� where each

bi "

�
z�j� if fi�x� " yj � � � j � k�
� if fi�x� �� fy�� � � � � yk��g	
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Finally� we let B " D�h	 For each n � n� and each x � Cn " Sk� the bit ��x � B�� is a
�guessed value� of the bit ��x � A��	 The actual value� given by the reduction �f� g� to L� is

��x � A�� " g�x����wi � L�� � � � ��wn� � L����

where w�� � � � � wn� are the entries in row x of the matrix Qk	 The guessed value ��x � B�� "
g�x��b� � � � bn�� uses the advice function h to get the correct bit bi " ��wi � L�� when the
string wi is red in Qk� and guesses that wi �� L when the string wi is green in Qk	

To construct C we just have to perform the smfq selection� by listing all strings of length
n and their corresponding queries� and keeping a list of the repetitions according to the
de�nition of �Sj � Qj � yj� in the smfq selection	 This can be done in time ��np�n�� which
implies that C � DTIME��	n�	 An algorithm for D on input hx� zi checks whether x � C
in time ��np�n� and then computes y�� � � � � yk�� in time ��np�n�	 The algorithm �nishes
with the simulation of g�x�� with total time less than �	n	 Thus C � DTIME��	n� and
B � DTIME��	n��fn
g � DTIME��	n��f�ng�

Also� by condition �i� in our choice of n��

jCnj � �n�n
�n�� � �

n
�

for all n � n�� whence jCnj � �
n
� for all n � IN	

We now show that B does a good job of predicting A on Cn� for all n � K	 Let n � K	
We have two cases	

�I� If k " k�n� " n
� then all strings in Qk are red� so all the guesses made by B are
correct� so

j�A�B� � Cnj " ��

�II� If k " k�n� � n
� let r be the number of rows in Qk� i	e	� r " jSkj " jCnj	 By our
choice of k� we have

jSk��j � �n��k���n
��

� ��n
��

r�

That is� no green string appears in more than ��n
��

r of the rows of Qk	 Moreover�
since jL�p�n�j � �n

�

� there are at most �n
�

di�erent strings w in Qk such that w � L	

Thus there are at most �n
�

	 ��n
��

r " �n
��n��r rows of Qk in which B makes an

incorrect guess that a green string is not in L� the guesses made by B are correct in
all other rows- By condition �ii� in our choice of n�� then� B is incorrect in at most
�
�r rows of Qk	 That is�

j�A�B� � Cnj �
�

�
r�

In either case� �I� or �II�� we have

j�A�B� � Cnj �
�

�
jCnj�

Since this holds for all n � K� and since K is in�nite�

j�A�B� � Cnj

jCnj
��

�

�
�

Thus B and C testify that A is not weakly ��	n� �n� �
n
� �stochastic� i	e	� that A �� WS	� �� 	
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c� ��

Our main results of this chapter are now easily derived	 We start with the fact that most
languages decidable in exponential time are not �p

n��ttreducible to nondense languages	

Theorem ����	 For every real number � � ��

�p�Pn��tt�DENSE
c�� " ��Pn��tt�DENSE

c� j E� " ��Pn��tt�DENSE
c� j E�� " ��

Proof � This follows immediately from Theorem �	�� and Lemma �	��	

The Main Theorem yields the following separation result	

Theorem ���		 For every real � � ��

E �� Pn��tt�DENSE
c��

That is� every �p
n��tthard language for E is dense	

Proof � By the Measure Conservation Theorem �Theorem �	���� ��E j E� �" �� so this
follows immediately from Theorem �	��	

Note that Theorem �	�� strengthens Theorem �	� by extending the number of queries from
O�logn� to n
� where � � � �e	g	� � " �����	

We can generalize the concept of dense language and obtain the following generalizations
of Lemma �	��� Theorem �	�� and Theorem �	��� where the number of queries we allow
in the truthtable reduction is related to the density of the oracles	

De�nition ���
	 Let f � IN � IN with f � o�n�	 The class DENSEf contains those lan
guages A such that there exists � 
 � such that for almost every n� jA�nj � �f�n�

�

	

Notice that for each c 
 �� DENSEnc " DENSE	

Theorem ����	 For every f � o�n�� Pn�f�n��tt�DENSE
c
f � �WS	� �� " �	 Thus

��Pn�f�n��tt�DENSE
c
f � j E� " ��Pn�f�n��tt�DENSE

c
f � j E�� " ��

and
E �� Pn�f�n��tt�DENSE

c
f ��

That is� every n�f�n�tthard language for E is in DENSEf 	

The proof uses the smfq selection technique in the same way as Lemma �	��	

In particular� for the class of sparse sets we have

Corollary ����	 For every g � o�n� logn� the following holds

��Pg�n��tt�SPARSE� j E� " ��Pg�n��tt�SPARSE� j E�� " ��

and
E �� Pg�n��tt�SPARSE��
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Therefore� no sparse set is g�n�tthard for E	

It is worthwhile to examine the roles played by various methods	 Theorem �	��� a measure
theoretic result concerning the quantitative structure of E and E�� yields the qualitative
separation result Theorem �	��	 From a technical standpoint� this proof of Theorem �	��
has the following three components	

�i� The sequentially most frequent query selection �Lemma �	���	 This is used to prove
that every language in Pn��tt�DENSE

c� is predictable� i	e	� fails to be weakly stochas
tic �with suitable parameters�	

�ii� The Weak Stochasticity Theorem �Theorem �	���	 This shows that only a measure �
subset of the languages in E are predictable	

�iii� The Measure Conservation Theorem �Theorem �	���	 This shows that E is not a
measure � subset of itself	

Of these three components� �ii� and �iii� are general theorems concerning measure in E	
Only component �i� is speci�c to the issue of the densities of �p

n��tthard languages	
That is� given the general principles �ii� and �iii�� the proof of Theorem �	�� is just the
sequentially most frequent query selection� i	e	� the proof of Lemma �	��	 The latter proof
is combinatorially much simpler than Watanabe�s direct proof of Theorem �	�	 This is
not surprising� once it is noted that our proof of Theorem �	�� is an application of �a
resourcebounded generalization of� the probabilistic method� ��Erd�o�� �Shan���� �Shan����
�Erd�oSp�� �Spen�� �AlonSp�� which exploits the fact that it is often easier to establish the
abundance of objects of a given type than to construct a speci�c object of that type	 Much
of our proof of Theorem �	�� is �hidden� in the power of this method �i	e	� in the proofs
of the Measure Conservation and Weak Stochasticity Theorems�� freeing us to apply the
sequentially most frequent query selection to the problem at hand	

An important feature of this general method is that it is uniformly constructive in the fol
lowing sense	 Taken together� the proofs of the Measure Conservation and Weak Stochas
ticity Theorems give a straightforward� �automatic� construction of a language A �
E �WS	� �� 	 By Lemma �	��� it follows immediately that A � EnPn��tt�DENSE

c�	 Thus
one can apply this complexitytheoretic version of the probabilistic method with complete
assurance that the resulting existence proof will automatically translate into a construc
tion	

Remember though that the primary objective of resourcebounded measure theory is to
give a detailed account of the quantitative structure of E� E� and other complexity classes	
The derivation of qualitative separation results� such as Theorems �	�� and �	�� is only a by
product of this quantitative objective	 �By analogy� the value of classical Lebesgue measure
and probability far surpasses their role as tools for existence proofs	� In the case of E� for
example� the quantitative content of Theorem �	�� is that the set Pn��tt�DENSE

c��E is
a negligibly small subset of E	

The density criterion in Theorem �	�� cannot be improved� since using padding it can
be shown that for every � 
 � there is a language A � E that is �p

mhard for E� and
satis�es jA�nj � �n

�

for all n	 It is an open question whether the query bound n
 can be
signi�cantly relaxed	 A construction of Wilson �Wils� shows that there is an oracle B such



�	� P�poly inside the E	 H	 ��

that EB � PBO�n��tt�SPARSE�� so progress in this direction will require nonrelativizable
techniques	 �The proof of Theorem �	�� relativizes in a straightforward manner	�

��� P�poly inside the Exponential Hierarchy

We �nish the study of nonuniform complexity classes from the measure point of view by
looking at the measure of P�poly inside the exponential hierarchy	 Kannan proved in
�Kann� that there is a set in the second level of the exponential hierarchy �&E

� � !E
� � that

is not in P�poly	 In this section we prove that P�poly has measure � in the third level
�%E

	 �� that is� almost every language in %E
	 is out of P�poly	

We start by reviewing the de�nition of the exponential hierarchy �weak exponential hier
archy in �Hema�� de�ned in �HartImS�� and de�ning a resource bounded measure in each
level of the hierarchy	

De�nition ����	 Let the exponential hierarchy be the class EH de�ned as follows

EH " NE � NE�NP� �NE�NP�NP�� � � � �NE�&P
k � � � � �

By a standard argument� it can be shown that for each k � IN� NE�&P
k � � E�&P

k��� which
implies that

EH " E � E�NP� � E�NP�NP�� � � � �E�&P
k � � � � �

De�nition ����	 For each k � IN� we de�ne

%E
k "E�&P

k����

&E
k "NE�&P

k���� and

!E
k "coNE�&P

k����

For each k the following holds

%E
k � &E

k �!E
k � %E

k���

For each k � IN� let %P
k be the class of functions that can be computed in polynomial time

when having access to an oracle in &P
k��	 Notice that %

P
k is a measure resourcebound as

de�ned in Chapter �� thus we can de�ne a measure in %E
k using %P

k measure because of
next Lemma	

Lemma ����	 R�%P
k � " %E

k 	

Proof � Remark that the proof of R�p�"E �Lemma �	��� relativizes	
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We now show that P�poly has measure � in %E
	 � by using an approximation of the number

of polynomial size circuits that agree with a pre�x of a language	 This approximation is
in %	� and is given for any counting function by Stockmeyer in �Stoc���	

We give the formal de�nition of the class of counting functions� ,P	

De�nition ����	 We say that a function f � f�� �g� � IN is in ,P when there exists a
nondeterministic polynomial time Turing machine M such that� for any x � f�� �g�� f�x�
is the number of accepting paths of M on input x	

It is an open problem whether ,P is contained in p�PH�� that is� if we can count with
the help of an oracle in PH	 Indeed� Toda�s results in �Toda� show that PH � BPP�,P��
which means that counting is at least as hard as the polynomial hierarchy	 But even if we
do not know how to count in PH� Stockmeyer shows that we can approximate counting in
%P
	 	 The next theorem is a particular case of Theorem �	� in �Stoc���	

Theorem ����	 Let f � ,P and let � 
 �	 There is a function g � %P
	 such that� for any

x � f�� �g�� ���� g�x�f�x�
� �

���� � ��

We �nish this chapter showing that P�poly has measure � in %E
	 	

Theorem ����	 P�poly has measure � in %E
	 	

Proof � Let k � IN be a power of �	 We de�ne

Xk " fA
�� for each n 
 log k� there exists a

nlognsize boolean circuit Cn that recognizes A�ng�

We know that P�poly �
�S
k��

Xk	 We use the �additivity Lemma �Lemma �	��� to show

that �p��Xk� " �	

Let f � IN
 f�� �g� � IN be the following function	 For m " �n� w � f�� �g�

fm�w� " ,fC
��C is an ninput circuit of size bounded by nlogn such that

for each sj � f�� �g
n� j � jwj� C�sj� " w�j�g�

Clearly f is in ,P� because each ninput circuit of size bounded by nlogn can be viewed as
a path for a nondeterministic polynomial time Turing machine that on input h�n� wi checks
whether there is a circuit with the mentioned sizebound that agrees with w �remember
that natural numbers are codi�ed in unary�	 By the de�nition of f � for any m " �n�
w � f�� �g�� fm�w�� $ fm�w�� " fm�w�	

By Theorem �	�� and �xing � " �
 � we know that there exists g � %P

	 such that for any
m " �n� w � f�� �g�� ���� g�m�w�f�m�w�

� �

���� � ��



�	� P�poly inside the E	 H	 ��

Now we de�ne a �MS in a similar way to the proof of Theorem �	��	 In that theorem�
we used a function de�ned as f here� but looking only at circuits with a certain property	
That function was in p� thus we could use it in the de�nition of a martingale in p	 Here f
is not in %P

	 � and in order to de�ne a martingale in %P
	 we use the approximation g	

Since gm�w�� $ gm�w�� can be bigger than gm�w�� we use

�� �

� $ �
	
gm�wb�

gm�w�

instead of gm�wb�
gm�w� in the de�nition of the next �MS	 Notice that

�� �

� $ �
	
gm�wb�

gm�w�
�

fm�wb�

fm�w�

and then
�� �

� $ �
	
gm�w��

gm�w�
$

�� �

� $ �
	
gm�w��

gm�w�
� ��

We de�ne d� IN 
 f�� �g� � ����� as follows	 Let w � f�� �g�� b � f�� �g	 We have two
cases�

If jwj � k � � then dk�wb� " ��k	

If jwj � k � �� let m be a power of � such that m� � � jwj � �m� �� then

dk�wb� " dk�w� 	
�
�
�� �

� $ �
	
gm�wb�

gm�w�
$ ��

�� �

� $ �
	
gm�w�� $ g�w��

gm�w�

�
�

The second term in the second case of the de�nition�

��
�� �

� $ �
	
gm�w�� $ g�w��

gm�w�

is nonnegative by the above notice and makes dk ful�ll dk�w��$ dk�w�� " � dk�w�� thus d
is a �MS	 Since we can compute g in %P

	 � d is a �MS in %P
	 	

Now we check that for each k " �i� Xk � S��dk�	 For this we use that g approximates f
and thus

� 	
�� �

� $ �
	
gm�wb�

gm�w�
� � 	

�� �

� $ �
	
��� ��fm�wb�

�� $ ��fm�w�
" � 	

��

��

fm�wb�

fm�w�
�

since we had �xed � " �
 	

Let k " �i� A � Xk	 From the de�nition of Xk we know that for any n 
 i� m " �n�
fm��A�����

n�� � ��� � �� and from the de�nition of f � for any w � f�� �g�� fm�w� �

���
log� n�	 We have then the following inequalities

dk��A�����
n��� ��� � dk��A�����

n� ��� 	 ���
n�

�
��

��

��n
�

���log
� n�

� dk��A�����
n� ����c�

n��

�

for some constant c 
 �� independent of k and n	 By induction�

dk��A�����
n�� � ��� � dk��� 	 �

c��n�k� " �c��
n�k��k

for any n 
 i	 This implies that lim sups dk��A����s�� "�� and A � S�dk�	
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Remark that Kannan showed that there exists a language out of P�poly in the class &E
��!

E
� �

while our techniques can only get the measure result for %E
	 	 A measure in &E

� �!
E
� can be

de�ned �using the class of singlevalued functions that are computable in &P
� � but in order

to get that P�poly has measure � in &E
� �!

E
� with our techniques� we need to approximate

,P using singlevalued functions in &P
� � which has not been obtained so far	



Chapter �

If NP is not small

��� Introduction

Many of the main open problems in Structural Complexity� such as whether the class NP
coincides with one of the classes P or E�� are instances of a more general problem� the
relationship between deterministic and nondeterministic time	 There is a strong belief in
the area that NP is di�erent from both P and E�� and that nondeterministic time de�nes
classes whose structure is essentially di�erent from that of deterministic time classes� for
instance it is widely believed that NP is not closed under complement	

In this chapter we study NP inside the classes E and E� from the measure point of view	
A reason to choose E and E� as measure environments for NP is that P has measure � in
both E and E�� and we want to give some light on whether the same holds for NP	

We study the hypothesis �NP does not have pmeasure ��� denoted �p�NP� �" �� and
meaning that either NP is not pmeasurable or NP has pmeasure �	 We are unable to prove
or disprove it at this time� because �p�NP� �" � implies P �" NP� and �p�NP� " � implies
NP �" E�	 Until such a mathematical resolution is available� the condition �p�NP� �" �
is best investigated as a scienti�c hypothesis� to be evaluated in terms of the extent and
credibility of its consequences	

In section �	� below it is argued that �NP does not have pmeasure �� is a reasonable
hypothesis for two reasons� First� its negation would imply the existence of a surprisingly
e�cient algorithm for betting on all NP languages �the corresponding martingale witness
ing that NP has pmeasure ��	 Second� the hypothesis has a rapidly growing body of
credible consequences	 We �rst summarize those that are consequence of the results in
previous chapters� dealing with the existence of Pbiimmune languages in NP and with
the density of hard languages for NP	 We then mention another consequence by Juedes
and Lutz �JuedLu��a� that deals with the density of complexity cores of NPcomplete lan
guages	 Finally we prove two new consequences� namely the class separation E �" NE and
�building on recent work of Bellare and Goldwasser �BellGo�� the existence of NP search
problems that are not reducible to the corresponding decision problems	

In section �	� we use the hypothesis �NP does not have pmeasure �� to separate dif
ferent types of NPcompleteness	 The NPcompleteness of decision problems has two
principal� wellknown formulations	 These are the polynomialtime Turing completeness
��p

Tcompleteness� introduced by Cook in �Cook� and the polynomialtime manyone com
pleteness ��p

mcompleteness� introduced by Karp in �Karp� and by Levin in �Levi�	 These
two completeness notions� sometimes called �Cook completeness� and �KarpLevin com
pleteness�� have been widely conjectured� but not proven �even under the hypothesis that
P �" NP� to be distinct	

��
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It is clear that A �p
m B implies A�p

TB� and hence that every �p
mcomplete language for

NP is �p
Tcomplete for NP	 Conversely� all known� natural �p

Tcomplete languages for NP
are also �p

mcomplete	 Nevertheless� it is widely conjectured �e	g	� �LadnLyS�� �LongYo��
�Home�� �Youn�� that Cook completeness is more general than KarpLevin completeness�

CvKL Conjecture ��Cook versus KarpLevin��	 There exists a language that is �p
T

complete� but not �p
mcomplete� for NP	

The CvKL conjecture immediately implies that P �" NP� so it may be very di�cult to
prove	 We mention �ve items of evidence that the conjecture is reasonable	

�	 Selman �Selm��� proved that the widelybelieved hypothesis E �" NE implies that the
reducibilities �p

T and �p
mare distinct in NP � coNP	 That is� if E �" NE� then there

exist A� B � NP � coNP such that A�p
TB but A ��p

m B	 Under the stronger hypothesis
E �" NE � coNE� Selman proved that the reducibilities �p

T and �p
mare distinct in NP	

�	 Watanabe and Tang �WataTa� exhibited reasonable complexitytheoretic hypotheses
implying the existence of languages that are �p

Tcomplete� but not �p
mcomplete� for

PSPACE	

�	 Ko and Moore �KoMo� constructed a language that is �p
Tcomplete� but not �p

m
complete� for E	 Watanabe re�ned this in �Wata��a�� �Wata��b� by separating a spectrum
of completeness notions in E	

�	 Buhrman� Homer� and Torenvliet �BuhrHoT� constructed languages that are �p
T

complete� but not �p
mcomplete� for NE	

�	 Longpr�e and Young �LongYo� showed that� for every polynomial time bound t� there
exist languages A and B� both �p

Tcomplete for NP� such that A is �p
Treducible to B in

linear time� but A is not �p
mreducible to B in t�n� time	

Item � above indicates that the reducibilities �p
T and �p

mare expected to di�er in NP	 Item
� indicates that the CvKL conjecture is expected to hold with NP replaced by PSPACE	
Items � and � indicate that the CvKL Conjecture de�nitely holds with NP replaced by E
or by NE	 Item � would imply the CvKL Conjecture� were it not for the dependence of
A and B upon the polynomial t	 Taken together� these �ve items suggest that the CvKL
Conjecture is reasonable	 �See �BuhrTo� for an updated survey of the work on completeness
notions	�

The CvKL Conjecture is very ambitious� since it implies that P �" NP	 The question has
thus been raised ��LadnLyS�� �Selm���� �Home�� �BuhrHoT�� whether the CvKL Conjecture
can be derived from some reasonable complexitytheoretic hypothesis� such as P �" NP or
the separation of the polynomialtime hierarchy into in�nitely many levels	 To date� even
this more modest objective has not been achieved	

The Main Theorem of this chapter� Theorem �	�� below� says that the CvKL Conjecture
follows from the hypothesis that �NP does not have pmeasure ��	 We even achieve a
stronger result� namely that �p

��tt and �
p
��Tcompleteness are di�erent for NP� that is�

there is a set that is Turing complete using two adaptive queries but� using only two
nonadaptive ones� it is not	

In section �	�� we prove that� if NP is not small� then most truthtable reducibilities
are distinct in NP� and in section �	� we mention the hypothesis of NP not being small
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in PSPACE and give some consequences that are corollaries of the results in previous
chapters	 Section �	� also has some open problems	 Most of the results in this chapter are
contained in �LutzMa��b�	

Observe that� for each of the treated questions� the hypothesis �NP does not have p
measure �� gives the answer that seems most likely� relative to our current knowledge	
Taken together� our results suggest that it is a reasonable scienti�c hypothesis� which may
have the explanatory power to resolve many questions that have not been resolved by
traditional complexitytheoretic hypotheses	

��� If NP does not have p�measure �

We study here the consequences and reasonableness of the hypothesis that NP does not
have pmeasure �	

Let us summarize the known implications among various conditions asserting the smallness
of NP	

P " NP "� ��c�NP � DTIME��cn� "� �p�NP� " ��

�p�NP� " � "� �p��NP� " ��� ��NP j E�� " � "� ��NP j E� " ��

The last implication is a consequence of Corollary �	��	 The second one was proven in
Proposition �	��� the third and fourth follow from Corollary �	��	

Lutz has conjectured that NP does not have measure � in E �denoted ��NP j E� �" �� and
that NP does not have measure � in E� �denoted ��NP j E�� �" ��	 From the previous
implications we have

��NP j E� �" � "� ��NP j E�� �" ��� �p��NP� �" � "� �p�NP� �" ��

This means that �p�NP� �" � is the weakest measuretheoretic hypothesis asserting that
NP is not small in exponential time	

By the de�nition of pmeasure� we know that NP has pmeasure � if and only if there is
a single martingale d � p that succeeds on every language A � NP	 Since d � p� when
betting on the condition �x � A� d requires only �cjxj time for some �xed constant c	 On
the other hand� for all k � IN� there exist languages A � NP with the property that the

apparent search space �space of witnesses� for each input x has �jxj
k

elements	 Since c

is �xed� we have �cn � �n
k

for large values of k	 Such a martingale d would thus be a
very remarkable algorithm- It would bet successfully on all NP languages� using far less
than enough time to examine the search spaces of most such languages	 It is reasonable
to conjecture that no such martingale exists� i	e	� that NP does not have pmeasure �	

Kautz and Miltersen have recently proven in �KautMi� that for a randomly chosen A� with
probability � NP�A� does not have p�A�measure �	

Next we describe some consequences of the hypothesis that NP does not have pmeasure �	
The �rst one concerns Pbiimmunity and is a corollary of the results in Chapter �	 Note
that the existence of Pbiimmune sets inside NP has been proven in certain relativizations�
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see for instance the oracle constructed by Gasarch and Homer in �GasaHo�	 Recall also
that E� is the smallest deterministic time complexity class known to contain NP	

Theorem ���	 If NP does not have pmeasure � then NP contains a Pbiimmune set	 If
NP does not have measure � in E� then NP contains an Ebiimmune set	

Proof � From Theorem �	� we know that the class of Pbiimmune sets has pmeasure
�� so if NP does not have pmeasure � then NP is not included in the class of nonPbi
immune languages� and we have the �rst part	 For the second part the argument is the
same this time using Theorem �	�	

The next known consequence of �p�NP� �" � is proven by Juedes and Lutz in �JuedLu��a��
and involves exponential complexity cores of NPcomplete languages� de�ned as follows�

De�nition ���	 An in�nite setK � f�� �g� is an exponential complexity core for a language
A if there is a real number � 
 � such that for every machine M that accepts A there are
at most �nitely many x � K such that the time of machine M on input x is smaller than
�jxj

�

	

�Intuitively� an exponential complexity core for a language L is a set of �very infeasible�
inputs for every algorithm that correctly recognizes L	�

Theorem ���	 �JuedLu��a�� If NP does not have pmeasure �� then every �p
mcomplete

language A for NP has a dense exponential complexity core	

Thus� for example� if NP is not small� then there is a dense set K of Boolean formulas in
conjunctive normal form such that every machine that is consistent with SAT performs
exponentially badly �either by running for more than �jxj

�

steps or by giving no output� on
all but �nitely many inputs x � K	 �The weaker hypothesis P �" NP was already known
�OrpoSc� to imply the weaker conclusion that every �p

mcomplete language for NP has a
nonsparse polynomial complexity core	�

The third consequence of �p�NP� �" � to be mentioned here concerns the density of hard
languages for NP	 Let us consider the usual polynomialtime reducibilities ranging from
�p
m to �p

T	 If �p
r is any of these reducibilities� all known �p

r hard languages for NP are
dense	 E�orts to explain this observation �and similar observations for other classes and
reducibilities� have yielded many results	 �See �HemaOgW� for a thorough survey	� Berman
and Hartmanis �BermHa� conjectured that no sparse language is �p

mhard for NP� unless
P " NP	 This conjecture was subsequently proven correct�

Theorem ���	 �Maha�� If P �" NP� then no sparse language is �p
mhard for NP	 That is�

P �" NP "� NP �� Pm�SPARSE��

Theorem �	� was extended much later to truthtable reducibility with a bounded number
of queries�

Theorem ���	 Ogihara and Watanabe �OgihWa��� If P �" NP� then no sparse language
is �p

btthard for NP	 That is�

P �" NP "� NP �� Pbtt�SPARSE��
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One is thus led to ask whether there is a reasonable hypothesis � such that we can prove
results of the form

� "� NP �� Pr�DENSE
c�� �����

for various choices of the reducibility �p
r 	 �Such a result is much stronger than the corre

sponding result
� "� NP �� Pr�SPARSE��

because there is an enormous gap between polynomial and �n
�

growth rates	�

Ogihara and Watanabe�s proof of Theorem �	� does not appear to allow signi�cant re
laxation of either the query bound or the sparseness criterion	 In fact� it appears to be
beyond current understanding to prove results of the form ��	�� if � is �P �" NP	� Karp
and Lipton �KarpLi� have proven that

&P
� �" !P

� "� NP �� P�SPARSE��

That is� the stronger hypothesis &P
� �" !P

� gives a stronger conclusion than those of Theo
rems �	� and �	�	 However� Karp and Lipton�s proof does not appear to allow relaxation
of the sparseness criterion� and results of the form ��	�� do not appear to be achievable at
this time if � is taken to be �&P

� �" !P
� 	�

As a corollary of the main result in Chapter � the following holds

Theorem ���	 If NP does not have pmeasure � then� for every real number � � �� every
�p
n��tthard language for NP is dense	

Proof � The result follows trivially from Theorem �	��� stating that Pn��tt�DENSE
c�

has pmeasure �	

This last conclusion of the hypothesis NP does not have pmeasure �� which is credible
and consistent with all observations to date� is not known to follow from P �" NP or other
traditional complexitytheoretic hypotheses	

Note that the hypothesis and conclusion of Theorem �	� are both stronger than their
counterparts in Ogihara and Watanabe�s result that

P �" NP "� NP �� Pbtt�SPARSE��

Note also that our proof of Theorem �	� �based on Theorem �	��� actually shows that

NP �WS	� �� �" � "� NP �� Pn��tt�DENSE
c��

We conclude this section by noting some new consequences of the hypothesis that �p�NP� �"
�	 The following lemma does not depend on this hypothesis� it involves the exponential
complexity classes E and NE� and also the doubly exponential complexity classes� EE "
�S
c��

DTIME���
n�c

� and NEE "
�S
c��

NTIME���
n�c

�	

Lemma ���	
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�	 If NP contains a Pbiimmune language� then E �" NE and EE �" NEE	

�	 If NP � coNP contains a Pbiimmune language� then E �" NE � coNE and EE �"
NEE � coNEE	

Proof � Let T " f��
n

jn � INg	 For each A � f�� �g�� let

��A� " fsnj�
�n � Ag�

It is routine to show that� for all A � f�� �g��

��A� � EE i� A � T � P�

��A� � NEE i� A � T � NP� and

��A� � coNEE i� A � T � coNP�

�	 Let A � NP be Pbiimmune	 Then A�T � NP� so ��A� � NEE	 Since Ac is Pimmune�
A�T is in�nite	 Since A is Pimmune� it follows that A�T �� P� whence ��A� �� EE	 Thus
��A� � NEE � EE� so EE �" NEE	 Note also that A � T is a tally language in NP � P	
The existence of such a language is known �Book��� to be equivalent to E �" NE	

The proof of � is similar	

Theorem ��		

�	 If NP does not have pmeasure �� then E �" NE and EE �" NEE	

�	 If NP � coNP does not have pmeasure �� then E �" NE � coNE and EE �" NEE �
coNEE	

Proof � This follows immediately from Theorem �	� and Lemma �	�	

Corollary ��
	 If NP does not have pmeasure �� then there is an NP search problem that
does not reduce to the corresponding decision problem	

Proof � Bellare and Goldwasser �BellGo� have shown that� if EE �" NEE� then there is
an NP search problem that does not reduce to the corresponding decision problem	 The
present corollary follows immediately from this and Theorem �	�	

��� Separating completeness notions in NP

In this section we prove our main consequence of �p�NP� �" �� that is�

Theorem ����	 If NP does not have pmeasure �� then there is a language C that is
�p
��Tcomplete� but not �p

��ttcomplete� for NP	

This theorem implies that if �p�NP� �" � then the CvKL conjecture holds� that is

Corollary ����	 If �p�NP� �" � then there is a language that is �p
Tcomplete� but not

�p
mcomplete� for NP	
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Our proof of Theorem �	�� uses the following de�nitions and lemma	

De�nition ����	 The tagged union of languages A�� 	 	 	 � Ak�� � f�� �g� is the language

A� � 	 	 	 � Ak�� "
�
x��i j� � i � k and x � Ai

�
�

De�nition ����	 For each languageA � f�� �g� letA��� andA��� be the following languages

A��� "
�
x
�� x � A and x " y�

�
�

A��� "
�
x
�� x � A and x " y�

�
�

Lemma ����	 For any language S � E� the set

X "
�
A � f�� �g�

��A����
p
��ttA��� � �A��� � S�� �A��� � S�

�
has pmeasure �	

Before proving Lemma �	��� we use it to prove the Main Theorem	

Proof of Theorem ����� Assume that NP does not have pmeasure �	 Let

X "
�
A
��A����

p
��ttA��� � �A��� � SAT�� �A��� � SAT�

�
�

By Lemma �	��� X has pmeasure �� so there exists a language A � NP�X	 Fix such a
language A and let

C " A��� � �A��� � SAT�� �A��� � SAT��

Since A � NP� we have A���� A��� � NP	 Since A���� SAT � NP and NP is closed under ��
�� and �� we have C � NP	 Also� the algorithm
BEGIN

INPUT x�
IF x� � C

THEN IF x�� � C
THEN accept
ELSE reject

ELSE IF x��� � C
THEN accept
ELSE reject

END

clearly decides SAT using just two �adaptive� queries to C� so SAT�p
��TC	 Thus C is

�p
��Tcomplete for NP	 On the other hand� A �� X� so A��� ��

p
��ttC	 Since A��� � NP� it

follows that C is not �p
��ttcomplete for NP	
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Next we prove Lemma �	��	

Proof of Lemma �����

Let S and X be as in the hypothesis	 Our objective is to prove that �p�X� " �	 Let c 
 �
be such that S � DTIME��cn�	

For each language A� we denote as AS the language

AS " A��� � �A��� � S�� �A��� � S��

Using this notation�
X "

�
A � f�� �g�

�� A����
p
��ttAS

�
�

Let fMi

�� i � INg be a feasible enumeration of all oracle Turing machines performing

�
DTIME���c���n�
��tt reductions	 �The reason to allow time ��c���n to the reductions is to be

able to simulate the computation of S�y� for strings y shorter than the input� as we will
see below	� For each i � IN� let �f i� gi� be the �tt reduction performed by Mi �we use the
notation for truthtable reducibilities introduced in Chapter ��	

For each i � IN� for each x � f�� �g�� l � f�� �g� if f il �x� " w��a with a � f�� �� �g� we write
qil �x� for w� and ail�x� for a	 Notice that if Mi performs a reduction to AS� then qil �x� is
the actual query to either A���� A��� � S or A��� � S and ail�x� tells us which part of AS is
being queried	

Let A � X� and M be a polynomial time machine witnessing that A����
p
��ttAS 	 Then

there exists an i � IN such that A��� " L�Mi� AS� and the following conditions hold

�i� for every x � f�� �g� and l � f�� �g� f il �x� has the form w��a� for a � f�� �� �g�

�ii� for every x � f�� �g�� qi��x� � qi��x� in lexicographical order� and if qi��x� " qi��x� then
ai��x� � ai��x��

�iii� for every x � f�� �g� and l � f�� �g� qil �x� �" x� jqil �x�j � �jxj�

�iv� for every x � f�� �g� and l � f�� �g� either jqil �x�j 
 jxj or ail�x� " �	

Conditions �i� to �iii� can be induced because we are dealing with a polynomialtime
reduction from A��� to AS 	 Condition �iv� holds because we can simulateM�x� computing

S�q� for all queries q with jqj � jxj in time �cjxj� and transform these queries into queries
to A���	

For each i � IN we de�ne the set Xi as follows�

If i ful�lls conditions �i� to �iv� then

Xi " fA � f�� �g�
�� A��� " L�Mi� AS�g�

Otherwise� Xi " �	

By the above observation� X �
�S
i��

Xi	

In order to prove that X has pmeasure �� by Lemma �	��� it is enough to de�ne a p
computable �MS d� such that Xi � S��di�� for all i � IN	
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The clue in the de�nition of d is the next claim	

Claim �� Let i � IN� let A � Xi	 For every x � f�� �g� one of the following holds

�a� There exists a language B such that A�x " B�x and for every R� L�Mi� BR��x� "
L�Mi� BS��x�	

�b� qi��x� 
 x and A����x� " L�Mi� ���x�� A�qi��x�� " S�qi��x��	

Assuming Claim �� we can de�ne d� IN
 f�� �g� � ����� as follows	 We use the sequence

of strings fxn
�� n � INg� where x� " �� xn " ��

jxn��j

for n 
 �	

Let i � IN� w � f�� �g�	 Let n be such that xn � sjwj � xn��	

��� If there exists a language B such that B�xn v w and for every R� L�Mi� BR��xn� "
L�Mi� BS��xn�� then �x the �rst such B and let Zn be the class

Zn "
n
C
�� If �C�qi��xn�� " B�qi��xn�� and C�qi��xn�� " B�qi��xn��

�
then C�xn� " L�Mi� B���xn�

o
�

If PrC �C � ZnjC � Cw� �" � then

di�wb� " di�w� 	
PrC �C � ZnjC � Cwb�

PrC �C � ZnjC � Cw�
�

If PrC �C � ZnjC � Cw� " � then di�wb� " di�w�	

��� Otherwise� if sjwj " qi��xn� then

di�wb� "

�
� 	 di�w� if L�Mi� ���xn� " w��jxnj � ��� S�qi��x�� " b�
� if L�Mi� ���xn� " w��jxnj � ��� S�qi��x�� �" b�

If sjwj �" qi��xn� then di�wb� " di�w�	

For each i � IN� di is a martingale by the de�nition of conditional probability in case ���
and by de�nition in case ���	 In order to compute d�i� w� we need to compute ff i��x�� f

i
��x�g

for several x � sjwj for part ���� and S�sjwj� for part ���� all of which can be done in time
polynomial in jwj$ i	 Thus d is a pcomputable �MS	

We now show that Xi � S��di� for all i � IN	 Fix i � IN and A � Xi	 Let w� " �� r� " �	
For each n 
 �� let wn " �A�����

jxnj � �� and rn " di�wn�	 �That is� wn is the initial
segment of the characteristic sequence �A of A up to but not including the bit that decides
whether xn � A	� Since the choice of ��� or ��� in the de�nition of di depends only on n�
either for every w v A with xn � sjwj � xn�� we are in case ��� or for every w v A with
xn � sjwj � xn�� we are in case ���	

If we are in case ��� then� if A�qi��xn�� " B�qi��xn�� and A�qi��xn�� " B�qi��xn�� we
know that L�Mi� AS��xn� " L�Mi� BS��xn� " L�Mi� B���xn�	 Since A � Xi we have
A����xn� " L�Mi� AS��xn�� thus A � Zn and for each w v A� PrC �C � ZnjC � Cwn � �" �	
Therefore�

rn�� " rn 	
PrC �C � ZnjC � Cwn�� �

PrC �C � ZnjC � Cwn �
�
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Moreover� xn� q
i
��xn� and qi��xn� are decided by wn��� so PrC �C � ZnjC � Cwn��� " ��

that is�

rn�� "
rn

PrC �C � ZnjC � Cwn �
�

Finally�
Pr
C
�C � ZnjC � Cwn � � �

because a set C such that C�xn� �" B�xn�� C�q
i
��xn�� " B�qi��xn�� and C�qi��xn�� "

B�qi��xn�� is in Cwn n Zn	 Since there are at most � bits that in uence whether C � Zn�
then PrC �C � ZnjC � Cwn � � � implies that PrC �C � ZnjC � Cwn � � � � ��		 We thus
have

rn�� �
�

�
	 rn�

If we are in case ��� then by Claim �� qi��xn� 
 xn and A�xn� " L�Mi� ���xn� if and only
if A�qi��xn�� " S�qi��xn��	 Thus rn�� " � 	 rn	

This implies that limn�� di��A����jwnj � ��� " �� thus lim supm di��A����m�� " � and
A � S��di�	 This completes the proof that Xi � S��di� for all i � IN	 By Lemma �	��� we
have �nished the proof of Lemma �	�� via the proof of Claim �	

Proof of Claim 
� Let i � IN be such that Xi �" �	 Let x � f�� �g�	 One of the following
seven cases must happen	 Cases I� to VI� correspond to �a�� case VII� corresponds to �b�	

I� qi��x� " qi��x� and jq
i
��x�j � jxj	

For every B and every R� L�Mi� BR��x� " L�Mi� BS��x�� because all queries of ma
chine Mi on input x involving R are longer than jxj �condition �iv��	

II� qi��x� �" qi��x�	

For l � f�� �g� if qil �x� 
 x let

B�qil�x�� "

�
� if ail�x� " �
� otherwise	

Then for every R� BR�f
i
l �x�� " BS�f

i
l �x��� and L�Mi� BR��x� " L�Mi� BS��x� �re

member that by condition �iv� all queries of machine Mi on input x involving R are
longer than jxj�	

III� qi��x� " qi��x�� jq
i
��x�j 
 jxj and ai��x� " � or ai��x� �" �	

Let

B�qi��x�� "

�
� if ai��x� " �
� otherwise	

Then for every R� for each l � f�� �g� BR�f
i
l �x�� " BS�f

i
l �x��� and L�Mi� BR��x� "

L�Mi� BS��x�	

The rest of the cases happen when qi��x� " qi��x�� a
i
��x� " �� and ai��x� " �	 Notice

that the answers ��� �� are not possible	

IV� qi��x� " qi��x�� a
i
��x� " �� ai��x� " � and gi�x���� �� " gi�x���� �� " gi�x���� ��	
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In this case� for every B and for every R� L�Mi� BR��x� " L�Mi� BS��x�	

V� qi��x� " qi��x�� jq
i
��x�j 
 jxj� ai��x� " �� ai��x� " � and gi�x���� �� �" gi�x���� �� "

gi�x���� ��	

Let B�qi��x�� " �	 Then for everyR� BR�q
i
��x�� " �� and L�Mi� BR��x� " L�Mi� BS��x�	

VI� qi��x� " qi��x�� jq
i
��x�j 
 jxj� ai��x� " �� ai��x� " � and gi�x���� �� �" gi�x���� �� "

gi�x���� ��	

Let B�qi��x�� " �	 Then for everyR� BR�q
i
��x�� " �� and L�Mi� BR��x� " L�Mi� BS��x�	

VII� qi��x� " qi��x�� jq
i
��x�j 
 jxj� ai��x� " �� ai��x� " � and gi�x���� �� " gi�x���� �� �"

gi�x���� ��	

Here we are in case �b�	 If A����x� " gi�x���� �� then S�qi��x�� " A�qi��x��� because it is
the only way of having answers ��� �� or ��� ��	 In the same way if A����x� " gi�x���� ��
then S�qi��x�� �" A�qi��x��	

��� Separating reducibilities in NP

In this section� assuming that NP is not small� we establish the distinctness of many
polynomialtime reducibilities in NP	

Our �rst such result involves known consequences of E �" NE	

Theorem ����	 Assume that NP does not have pmeasure �	

There exist A�B � NP � coNP such that A�p
TB� but A ��p

pos�TB	

There exist A�B � NP � coNP such that A�p
ttB� but A ��p

pos�ttB	

Proof � Selman �Selm��� has shown that these conclusions follow from E �" NE� so the
present theorem follows immediately from Theorem �	�	

Similarly� we have the following	

Theorem ����	 Assume that NP � coNP does not have pmeasure �	

There exist A�B � NP such that A�p
TB but A ��p

pos�TB	

There exist A�B � NP such that A�p
ttB but A ��p

pos�ttB	

Proof � Selman �Selm��� has shown that these conclusions follow from E �" NE� coNE�
so the present theorem follows immediately from Theorem �	�	

The rest of our results concern the separation of various polynomialtime truthtable re
ducibilities in NP� according to the number of queries	 Theorem �	�� separates �p

�k����tt

reducibility from �p
k�tt� for any constant k� while Theorem �	�� separates �p

q�n��tt re

ducibility from �p
r�n��tt� for q�n� � o�

p
r�n�� and r�n� � O�n�	

Theorem ����	 If NP does not have pmeasure �� then for all k � IN there exist A�B � NP
such that A�p

�k����ttB but A ��p
k�ttB	
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The proof of Theorem �	�� uses the following notation and lemma For x � f�� �g� and
k � IN� let

Qk�x� " fx��ij� � i � kg�

For all B � f�� �g� and k � IN� then� de�ne the kfold disjunction of B to be the language

��k�B " fx � f�� �g�jQk�x� �B �" �g�

Lemma ���		 For all k � IN� the set

Xk " fB � f�� �g�j ��k��� B�p
k�ttBg

has pmeasure �	

Proof of Theorem ����� Assume that NP does not have pmeasure � and let k � IN	
Then Lemma �	�� tells us that there exists B � NP such that ��k���B � �p

k�ttB	 Fix

such a language B and let A " ��k���B	 Then A � NP �because A�p
pos�TB and NP is

closed under �p
pos�Treducibility �Selm����� A�p

�k����ttB �trivially�� and A ��p
k�ttB �by

our choice of B�	

Proof of Lemma ���	� Fix k � IN and let Xk be as in the statement of the lemma	
Let fMi

�� i � INg be a feasible enumeration of all Turing Machines performing �p
k�tt

reductions	 We can assume that for every i � IN and every x � f�� �g�� all queries of
machine Mi on input x are shorter than �jxj	 For each i � IN� let �f i� gi� be the ktt
reduction performed by Mi

For i � IN� we de�ne the set

Yi " fB � f�� �g�
�� ��k���B " L�Mi� B�g�

Let

Y "
��
i��

Yi�

It is clear that Xk � Y � so it su�ces to prove that �p�Y � " �	

In order to prove that Y has pmeasure �� by Lemma �	��� it is enough to de�ne a p
computable �MS d� such that Yi � S��di�� for all i � IN	

The function d� IN
 f�� �g� � ����� is de�ned as follows�

We use again fxn
�� n � INg a sequence of very separated strings de�ned as x� " ��

xn " ��
jxn��j

for n 
 �	

Let i � IN� di��� " �	 Let w � f�� �g�� and b � f�� �g	 Let n be such that xn � sjwj � xn��	

�i� If PrC
�
L�Mi� C��xn� " ��k���C�xn�jC � Cw

�
�" � then

di�wb� " di�w� 	
PrC

�
L�Mi� C��xn� " ��k���C�xn�jC � Cwb

�
PrC

�
L�Mi� C��xn� " ��k���C�xn�jC � Cw

� �
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�ii� Otherwise� di�wb� " di�w�	

For each i � IN� di is a martingale� as in previous proofs this is by the de�nition of
conditional probability	 In order to compute d�i� w� we need to compute Qk���x� �
ff i��x�� � � � � f

i
k�x�g for several x � sjwj� which can be done in time polynomial in jwj $ i	

Thus d is a pcomputable �MS	

We now show that Yi � S��di� for all i � IN	 Fix i � IN and A � Yi	 Let w� " �� r� " �	
For each n 
 �� let wn " �A�����

jxnj � �� and rn " di�wn�	 �That is� wn is a pre�x of
the characteristic sequence �A of A up to but not including the bit corresponding to xn	�
Since A � Yi� for every w v A� PrC

�
L�Mi� C��xn� " ��k���C�xn�

�� C � Cw

�
�" �� and for

each w v A� we use case �i� in the de�nition of di�w�	 Thus for n 
 �

rn�� " rn 	
PrC

�
L�Mi� C��xn� " ��k���C�xn�jC � Cwn��

�
PrC

�
L�Mi� C��xn� " ��k���C�xn�jC � Cwn

� �

For all n 
 � all the queries of Mi on input xn and all the strings in Qk���xn� are decided
by wn��� so

Pr
C

�
L�Mi� C��xn� " ��k���C�xn�jC � Cwn��

�
" ��

that is�

rn�� "
rn

PrC
�
L�Mi� C��xn� " ��k���C�xn�jC � Cwn

� �
Finally� for all n 
 �� the fact that

Pr
C

�
L�Mi� C��xn� " ��k���C�xn�jC � Cwn

�
� �

follows from the next claim

Claim �� Let A � Xi	 For every x � f�� �g� there exists a language B such that A�x " B�x

and L�Mi� B��x� �" ��k���B�x�	

The claim holds because no string in Qk���x� is �xed by A�x and Mi can make at most
k queries on input x	

Since there are at most �k $ � bits that in uence whether L�Mi� C��xn� " ��k���C�xn�
for each C� then

Pr
C

�
L�Mi� C��xn� " ��k���C�xn�jC � Cwn

�
� �

implies that

����� Pr
C

�
L�Mi� C��xn� " ��k���C�xn�jC � Cwn

�
� �� ���k���

We thus have
rn�� �

rn
�� ���k��

for all n 
 �	 This implies that limn�� di��A����jwnj � ��� "�� thus

lim sup
m

di��A����m�� "�

and A � S��di�	 This completes the proof that Yi � S��di� for all i � IN� and by
Lemma �	��� the proof of Lemma �	��	
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For non constant querybounds� we have the following result	

Theorem ���
	 If NP does not have pmeasure � and q� r� IN � IN are polynomialtime
computable querycounting functions satisfying the conditions q�n� � o�

p
r�n�� and r�n� �

O�n�� then there exist A�B � NP such that A�p
r�n��ttB but A ��p

q�n��ttB	

To prove this theorem� we use a very similar technique to that of Theorem �	��� this time
substituting the disjunctive operator by a majority operator	 The following notation and
lemma are used

For all B � f�� �g� and r� IN� IN� we de�ne the rfold majority of B to be the language

maj�r�B "
n
x � f�� �g�

��� ��Qr�jxj��x� � B
�� � �r�jxj�

�

�o
�

Lemma ����	 If q� r� IN � IN are polynomialtime computable functions satisfying the
conditions q�n� � o�

p
r�n�� and r�n� � O�n�� then the set

X " fB � f�� �g�jmaj�r�B�p
q�n��ttBg

has pmeasure �	

Proof of Theorem ���
� This is similar to the proof of Theorem �	��� using Lemma �	��
and maj�r�B in place of Lemma �	�� and ��k���B	

Proof of Lemma ����� The proof of this lemma is similar to that of Lemma �	��� but
we now have unbounded querycounting functions where we previously had constants	

Let fMi

�� i � INg be a feasible enumeration of all Turing Machines performing �p
q�n��tt

reductions	

Following the steps and notation in the proof Lemma �	��� we need a constant upper bound
for

Pr
C

�
L�Mi� C��xn� " maj�r�C�xn�jC � Cwn

�
�

as in ��	��	 In this case the existence of such a bound is a consequence of the fact that

Pr
C

�
L�Mi� C��xn� " maj�r�C�xn�jC � Cwn

�
has a limit � �

� as n goes to in�nity	 So there exists a n� such that

Pr
C

�
L�Mi� C��xn� " maj�r�C�xn�jC � Cwn

�
�

�

�

for every n � n�	

The rest of the proof follows the same arguments as in Lemma �	��	
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The query bounds of Theorems �	�� and �	�� can be relaxed if we make the stronger
assumption that ��NP j E�� �" �	 Theorem �	�� can be extended to logarithmically
bounded querycounting functions� while in Theorem �	�� we can remove the requirement
that r�n� � O�n�	

Theorem ����	 If ��NP j E�� �" � and q is a polynomialtime computable querycounting
function such that q�n� � O�logn�� then there exist A�B � NP such that A�p

q�n����ttB

but A ��p
q�n��ttB	

Theorem ����	 If ��NP j E�� �" � and q� r� IN � IN are polynomialtime computable
querycounting functions satisfying q�n� � o�

p
r�n��� then there exist A�B � NP such

that A�p
r�n��ttB but A ��p

q�n��ttB	

The proofs of Theorems �	�� and �	�� are similar to those of Theorems �	�� and �	���
respectively	 Details are omitted	

��� Further results and open problems

We look here at the consequences of the hypothesis �NP does not have measure � in
PSPACE� we know so far	 Notice that if ��NP j E�� �" � then ��NP j PSPACE� �" �

Theorem ����	 If NP does not have measure � in PSPACE then

�i� NP contains a DLOGbiimmune language	

�ii� NP contains a language that is not LINSPACEoqself reducible	

Proof � The proof follows from Theorems �	� and �	��	

We have seen that for each of the treated questions� the hypothesis �NP does not have
pmeasure �� gives the answer that seems most likely� relative to our current knowledge	
Further investigation of this hypothesis and its power to resolve other questions is clearly
indicated	 Additionally� it allows us to combine all relativizable proofs of measure � in E
results for speci�c properties with the result of Kautz and Miltersen �KautMi� that the
set of all A such that ��NP�A� j E�A�� �" � has Lebesgue measure �	 For instance� it
follows that with probability �� a random oracle has a P�A�biimmune set in NP�A��
which generalizes the construction of an oracle for which NP contains a Pbiimmune set
in �GasaHo� �in fact� for that oracle NP " E��	

Regarding the density of hard languages for NP� there are several open questions involving
special reducibilities	 We mention just one example	 Very recently� Arvind� K�obler� and
Mundhenk �ArviK�oM� have proven that

P �" NP "� NP �� Pbtt�Pctt�SPARSE���

where Pctt refers to polynomialtime conjunctive reducibility	 �This strengthens Theo
rem �	�	� Does the class Pbtt�Pctt�DENSE

c�� have measure � in E�
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As noted in section �	�� all known �p
Thard languages for NP are dense� i	e	� our experience

suggests that NP �� P�DENSEc�	 This suggests two open questions	 Karp and Lipton
�KarpLi� have shown that

&P
� �" !P

� "� NP �� P�SPARSE��

Theorem �	� shows that

��NP j E�� �" � "� NP �� Pn��tt�DENSE
c�

for � � �	 The �rst question� posed by Selman� is whether the strong hypothesis ��&P
� n!

P
� j

E�� �" � can be used to combine these ideas to get a conclusion that NP �� P�DENSEc�	
The second� more fundamental� question is suggested by the �rst	 A wellknown downward
separation principle �Stoc��� says that� if the polynomial time hierarchy separates at some
level� then it separates at all lower levels	 Thus� for example� &P

� �" !P
� implies that

P �" NP	 Is there a �downward measure separation principle�� stating that ��&P
k��n!

P
k�� j

E�� �" � "� ��&P
k n!

P
k j E�� �" �� In particular� does ��&P

� n!
P
� j E�� �" � imply that

��NP j E�� �" ��

The next immediate open problem involves the further separation of completeness notions
in NP	 We have shown that the hypothesis �p�NP� �" � separates �p

��Tcompleteness
from �p

��ttcompleteness in NP	 However� there is a large spectrum of completeness no
tions between �p

T and �p
m	 Watanabe ��Wata��a�� �Wata��b�� and Buhrman� Homer� and

Torenvliet �BuhrHoT� have shown that nearly all these completeness notions are distinct
in E and in NE� respectively	 In light of the results of sections �	� and �	� above� it is
reasonable to conjecture that the hypothesis �NP does not have pmeasure �� yields a sim
ilarly detailed separation of completeness notions in NP	 Investigation of this conjecture
may shed new light on NPcompleteness phenomena	

We �nish by looking at the BermanHartmanis isomorphism conjecture formulated in �����
namely that all NP �p

mcomplete sets are polynomial time isomorphic �BermHa�	 A lot of
work has been done around this conjecture �for a survey� see �KurtMaR��	 Most researchers
now believe that the isomorphism conjecture as stated by Berman and Hartmanis is false	
It would be very interesting to obtain results of the form �If NP does not have pmeasure �
then the isomorphism conjecture is false for �p

r complete sets�� for di�erent reducibilities
�p
r 	



Chapter �

Cones

��� Introduction

Given a reducibility R� we can picture the lattice de�ned by the preorder relation R on the
class of all languages	 Fix a language A and look at the two classes formed respectively by
languages that are Rreducible to A and languages to which A is Rreducible to	 These
two classes can be intuitively viewed as the two parts of the cone starting in vertex A	 The
Rupper cone of A� denoted R���A�� is the class of all languages to which A is Rreducible�
and the Rlower cone of A� denoted R�A�� is the class of languages that are Rreducible
to A	 In this chapter we want to study the size of the upper and lower cones of a language
A as a way of having information on the usefulness of A as oracle and on the amount
of oracles A reduces to	 In this line� Juedes and Lutz have studied in �JuedLu��a� the
measure of �p

mcones in E	

The size of the lower cone of a language A gives us information on the usefulness of A as
oracle	 Using this concept� a language A is Rhard for a class C i� the Rlower cone of
A contains C	 Lutz proposed in �Lutz��� to weaken this condition and consider languages
A such that R�A� contains a non negligible part of C� languages which were later called
weaklyhard by Juedes and Lutz in �JuedLu��a�	 Thus a language A is Rweaklyhard for
a class C when R�A� does not have measure � in C	 Intuitively� A is weaklyhard when
a nonnegligible subclass of C is reducible to A	 Clearly every hard set A is weaklyhard�
since its lower cone contains the whole C	 Lutz posed in �Lutz��� the question of whether
the opposite holds� that is� whether there exist Rweaklyhard languages that are not R
hard for a class C	 The interest of this question comes from the use of hardness as a
proof of intractability� for instance Stockmeyer and Chandra show in �StocCh� that certain
twoperson combinatorial games are intractable by proving that they are polynomial time
manyone hard for E	 The existence of languages that are Rweaklyhard and not Rhard
for a certain reducibility R would imply the existence of another level in the classi�cation
of languages by criteria of Rintractability� below the level of Rhardness	

In �Lutz��a� Lutz solves a�rmatively this question for the class E and the reducibility �p
m�

showing that there exists a language in E that is �p
mweaklyhard and not �p

mhard for E	
The proof of this result is based on Lutz�s new diagonalization technique called martingale
diagonalization� that allows us to diagonalize against all martingales in �� for a particular ��
while at the same time we pursue another agenda� using for this second objective classical
diagonalization techniques	 In section �	� below we see how martingale diagonalization can
be used to show that there exists a language H such that H is weaklyuseful �as de�ned
in �JuedLaL��� which means that for some time bound t� H is �t

Tweaklyhard for the
class REC� but such that H is not strongly useful� that is� for every time bound f H is

��
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not �f
Thard for REC	 As a consequence of an auxiliary result� we show that the class of

�p
ttcomplete languages for ESPACE has measure � in ESPACE	

Regarding the size of the upper cone of a language A� it gives us an idea of the amount
of oracles A reduces to	 Thus if the upper cone is large� A reduces to almost every
oracle� this means intuitively that access to the oracle is merely used as a source of
random bits	 In this way� for each reducibility R the class ALMOSTR is de�ned as
the class of languages A such that the Rupper cone of A has Lebesgue probability �
�studied for instance in �Book��� and �BookLuW��	 The �ALMOSTR� formalism pro
vides characterizations of certain complexity classes that are wellstudied in structural
complexity theory	 For example� P"ALMOST�p

m�Ambo�� P"ALMOST�p
btt �TangBo��

BPP"ALMOST�p
T ��Ambo�� �BennGi��� BPP"ALMOST�p

tt �TangBo�� AM"ALMOST
�NP
T ��Cai�� �NisaWi��� PH"ALMOST�PH

T ��Cai�� �NisaWi�� and IP"ALMOSTIP �Breu�	
Book� Lutz� and Wagner studied these classes in �BookLuW� and �Book���� characterizing
them in terms of algorithmically random languages in the sense of MartinL�of �Mart�	 The
notion of MartinL�of algorithmically random language is the strongest de�nition of ran
dom language that is considered to represent randomness of in�nite sequences	 Book� Lutz
and Wagner ��Book���� �BookLuW�� have characterized each class of the form ALMOSTR
as the class of recursive languages that can be Rreduced to MartinL�of algorithmically
random languages	 This characterizations lead to observations about the relationships
between complexity classes such as� P " NP if and only if some algorithmically random
language is �p

btthard for NP� and PH " PSPACE if and only if some algorithmically
random language is �PH

T hard for PSPACE	

In section �	� we give new characterizations of the classes ALMOSTR	 For each natural
n� we consider a subclass of MartinL�of random languages� denoted nrandom languages�
and show that a language A in %�

n �the nth level of the Kleene arithmetical hierarchy� is
in ALMOSTR if and only if A is Rreducible to an nrandom language	 This gives us an
idea of� for instance� how di�cult can �p

Toracles for BPP be	 We also see that nrandom
oracles are useless for the class %�

n �REC	 Considering the Kleene arithmetical hierarchy
as a whole� we show that a language A in it is in ALMOSTR if and only if A is Rreducible
to an �random language	 The concept of ��randomness� is� in a sense� the �limit� of
the nrandom sets� and has been introduced and studied in �Kaut�	

In section �	� we discuss the interest of de�ning a bidimensional resourcebounded measure
to study problems that are better formulated in terms of pair of languages	 We see that
for any wellbehaved bidimensional measure� the class of pairs of languages that are �p

m
incomparable� that is� �A�B� such that A ��p

m B and B ��p
m A is non measurable in E
E	

The results in section �	� are joint work with S	 Fenner and J	H	 Lutz� included in
�FennLuM�	 The results in section �	� appear in �BookMa�	 The study of bidimensional
measure is still incomplete and therefore unpublished	 This chapter contains ongoing re
search in the area of measure of cones� we include at the end of each section some open
problems as guidelines of possible future investigation	

��� Weakly�useful languages
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We start by giving the de�nition of lower cone	

De�nition ���	 Given a reducibility R and a language A� we de�ne the R�lower cone of
A� denoted R�A�� as the following class

R�A� " fB
�� B �R Ag�

Notice that for each class C� a language A is Rhard for C i� C is contained in the Rlower
cone of A	

Based on the widely believed assumptions that P is di�erent from NP� researchers have
viewed the fact that a problem is�p

mhard for NP as a proof that the problem is intractable	
An absolute proof of intractability is obtained when we show that a language is �p

mhard
for E	 This intractability comes from some properties of �p

mhard problems for E� for
instance they are not in P and they have a dense complexity core	 In general proving
that a language A is Rhard for E� for a polynomialtime reduction R� gives us an idea of
intractability of the language� because if A is Rhard for E then it cannot be in P	

Lutz proposes in �Lutz��� to weaken hardness as the notion of intractability and consider
intractable those languages A such that R�A� does not have measure �	 Formally�

De�nition ���	 Given a reducibility R and a class C �with a non trivial measure�� we say
that a language A is R�weakly�hard for C if and only if R�A� does not have measure � in
C	 We say that a language A is R�weakly�complete for C if and only if A is Rweaklyhard
for C and A � C	

Notice that every hard language is weaklyhard because C does not have measure � in
C	 Remark that� since P has measure � in E� for each polynomialtime reducibility R�
Rweaklyhard problems for E are not in P� thus are intractable in a sense	

The next step would be to show that indeed this concept is more general than that of
hardness� by showing that for each class and reducibility� there is a weaklyhard language
that is not hard	 In �Lutz��a�� Lutz gets this for the class E with reducibility �p

m� showing
that there exists a language that is �p

mweaklycomplete but not �p
mcomplete for E	 Let

us brie y review his proof	

Lutz constructs a language H � E� with two properties

�� H is not �p
mhard for E	

�� Pm�H� does not have measure � in E	

By a padding argument� this shows that there is a �p
mweaklycomplete language for E

that is not �p
mcomplete	

For property ��� the concept of incompressibility is used	 A languageA is�p
mincompressible

when for every �p
mreduction f from A to f�A�� the following holds��f�x� y� �� x� y � f�� �g�� x �" y� and f�x� " f�y�g

�� ���

that is� f is almost everywhere oneone	 �This concept was introduced with the name of
strong Pbiimmunity in �BalcSc�	�
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Juedes and Lutz show in �JuedLu��a� that every �p
mhard language for E is not �p

m
incompressible �From �Berm� and �BalcSc� this was already known for �p

mcomplete lan
guages	� In order to obtain a language H that is not �p

mhard� the language H is con
structed with the property of being �p

mincompressible	 This can be done by classical
diagonalization	

For property ��� we de�ne for each i � IN and each language A let the ith strand of A be
the following language

Ai " fx
�� hi� xi � Ag�

Notice that for every A� fAi

�� i � INg � Pm�A�	

Lutz constructs H such that for every i � IN� Hi � E and such that fHi

�� i � INg does not
have measure � in E� thus obtaining property ��	

Here we look at the class REC of all recursive languages and study hardness and weakly
hardness for this class	 In REC we only restrict Turing reductions to those that always
stop� that is� �t

Treductions for any recursive function t	 In this context� the concepts of
stronglyuseful and weaklyuseful appear in the place of hardness and weakly hardness	 A
language is strongly useful if it is �t

Thard for some t� and it is weakly useful if it is �t
T

weaklyhard for some t	 Let us start by de�ning these concepts� introduced in �JuedLaL�	

De�nition ���	 A language A is strongly�useful when there exists a recursive function t
such that A is �t

Thard for REC	

De�nition ���	 A language A is weakly�useful when there exists a recursive function t
such that A is �t

Tweaklyhard for REC	

Notice that every stronglyuseful language is weaklyuseful� and that no weaklyuseful
language is recursive	

With a technique similar to the martingale diagonalization we just described� we construct
next a weaklyuseful language that is not stronglyuseful	

The results in this section relate to timebounded Turing reductions� but we will lose no
generality if we restrict our attention to ttreductions	 This is because if t is a recursive
function and M is an oracle Turing machine running in time t�n� for all oracles� then there
is a well de�ned truthtable oracle Turing machine M � running in time exponential in t�n�
such that L�M�C� " L�M �� C� for any oracle C	 Moreover� M � can be found e�ectively
from M 	 �This is a Theorem by Nerode that is included in �Roge�� page ���	�

The main result in this section is the following

Theorem ���	 There exists a language H which is weaklyuseful but not stronglyuseful	

To prove this theorem� we will de�ne H one strand at a time to satisfy the following
conditions�

�	 For every recursive time bound t� there is a recursive set A such that A �� DTIMEH�t�	

�	 Each strand Hk is recursive	

�	 If d is any martingale in rec� then there is some k such that d fails on Hk	

These three conditions su�ce for our purposes	 Condition � ensures that H is not strongly
useful	 By Condition �� the set J " fH�� H�� H�� � � �g � REC� and by Condition �� no
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recursive martingale can succeed on all its elements	 Thus ��J j REC� �" �� which makes
H weaklyuseful� since J � DTIMEH�linear�	

Highly incompressible languages

In order to have Condition �� we start by constructing� for each recursive time bound
t� a recursive set A that is �highly incompressible� for �t

ttreductions� that is� for almost
every B� A �� DTIMEB�t�	 Then it will be very easy to construct a language H such that
A �� DTIMEH�t�	

Proposition ���	 If ffi
�� i � INg is a uniform family of recursive ttreductions� then there

is a recursive set A such that

�rec�fB
�� �i with A " fi�B�g� " ��

We obtain the following theorem as an immediate corollary	

Theorem ���	 For any recursive time bound t� there is a recursive set A such that �rec�fB
��

A � DTIMEB�t�g� " �	

Proof of Proposition ����

We �rst consider a single ttreduction f and de�ne a recursive set Af with �rec�fB j Af "
f�B�g� " � as follows�

Af ��� "

�
� if PrC �f�C� �� " �� � �

� �
� otherwise�

and for each n � IN� n 
 ��

Af �sn� "

�
� if PrC

�
f�C� sn� " � j f�C�����n� �� " Af ����n� ��

�
� �

� �
� otherwise	

Fact ��		 For all n � IN� PrC
�
f�C�����n� �� " Af ����n� ��

�
� ��n	

We now describe a reccomputable martingale df that succeeds on any set B such that
Af " f�B�	 We split df up into in�nitely many martingales

df "
�X
��

d�

where each martingale d bets a �nite number of times	 Fixing �� let

d�w� " �jwj� 	 Pr
C

�
w v C j f�C������� �� " Af ������ ��

�
for all w � f�� �g�� if PrC

�
f�C������� �� " Af ������ ��

�

 �	 Otherwise� let d�w� " ��

for all w � f�� �g�	 It can be easily checked that d is a martingale	 Consider any w� v B
that is long enough to be de�ned on all queries made by f for all inputs less than s� and
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let E be the event that f�C������� �� " Af ������ ��	 We have PrC
�
E j w� v C

�
" �� and

thus
d�w�� " �jw	j� 	 Pr

C
�w� v C j E�

" �jw	j� 	
PrC �E j w� v C� 	 PrC �w� v C�

PrC �E�

"
��

PrC �E�

� ��

by Fact �	�	 Applying the above inequality to the martingale df � we get that for any ��
there is a w v B such that d�w� � �	 Thus df succeeds on B	

Returning to the ffi
�� i � INg in the hypothesis of Proposition �	�� we let

A " fhi� xi j x � A �fi
g�

where (fi�C� x� simulates fi�C� hi� xi� for all i� x and C	 �Therefore� A �fi
is the ith strand

of A	� We call A the highly incompressible set with respect to ffi
�� i � INg	 A is clearly

recursive	 To prove the proposition� we de�ne a recursive martingale d that succeeds on
all B such that A " fi�B� for some i	 Let

d "
�X
i��

d
�fi 	 ��i�

The martingale d is recursive� since each d
�fi can be computed uniformly	 For some B�

if A " fi�B� for some i� then A �fi
" (fi�B�� and so d

�fi succeeds on B by the previous
discussion	 Hence d succeeds on B	

Remark that in Proposition �	� if we take ffi
�� i � INg to be the family of all�t

ttreductions�
for t a recursive time bound� then in the proof of the proposition� A is in DSPACE��n 	t�n��
and d is DSPACEF

�
m 	 t�logm�

�
approximable	 Thus we have the following corollary	

Corollary ��
	 There exists a language A � ESPACE such that

��fB
�� A�p

ttBg j ESPACE� " ��

This implies the next result for the class of �p
ttcomplete languages for ESPACE	

Corollary ����	 The class of �p
ttcomplete languages for ESPACE has measure � in ES

PACE	

Proof of Theorem �	�

We start by giving some notation on partial characteristic functions	

A partial characteristic function is a function with domain a subset of f�� �g� and with
range f�� �g	 We will identify a binary string w with the characteristic function whose
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domain is fs�� � � � � sjwj��g	 If � and � are partial characteristic functions� we let dom���
denote the domain of �� and say that � and � are compatible if they agree on all elements
in dom��� � dom���	 We say that � is extended by � �� v �� if � and � are compatible
and dom��� � dom��� �if in addition � �" � � we write � v ��	 If � and � are compatible�
we let � � � be their smallest common extension	

If � is a partial characteristic function� i � IN and x � f�� �g�� then ��i� � x� denotes the
unique partial characteristic function � such that for all y�

��y� "
n
��hi� yi� if y � x and ��hi� yi� is de�ned�
unde�ned otherwise	

That is� ��i� � sn� results from �excising� the �rst n bits of � from the ith column	
Inversely� if w is a binary string� then fig 
 w denotes the unique partial characteristic
function � such that ��hi� sni� " w�n� for all n � jwj� and is unde�ned on all other
arguments	 That is� fig 
 w is w �transported� over to the ith column	 Of particular
importance will be the �nite characteristic function de�ned for an arbitrary language C�
k � IN and y � f�� �g� as

�C�k� y� "
�
k��k

fk�g 
 C�k�� � y��

Fix an arbitrary enumeration ftk
�� k � INg of all recursive time bounds� and an enumera

tion f (dk
�� k � INg of all recursive martingales	 These enumerations need not be uniform

in any sense� since at present we are not trying to control the complexity of H	 We will
de�ne �in order� a number of di�erent objects for each k�

� a uniform family ffkj
�� j � INg of ttreductions corresponding to tk	

� a recursive Ak such that Ak �� DTIMEH�tk� �A
k will be the highly incompressible set

with respect to ffkj
�� j � INg��

� a partial characteristic function �k of �nite domain� compatible with all the previous
strands of H �ultimately� �k v H for all k��

� martingales di�jk�q �uniformly recursive on j and q� for all i� j� q � IN with i � k� which�

taken together� witness that each Ai is highly incompressible� and

� the strand Hk itself� which is designed to make the martingale

d�k " (dk $
kX
i��

�X
j��

�X
q��

di�jk�q 	 �
�q�j

fail on Hk� thus (dk fails on Hk and Condition � above is satis�ed	 Hk will also
participate in a �xed �nite number of diagonalizations against ttreductions from the
Ai to H for i � k	

Fix k � IN� and assume that all the above objects have been de�ned for all k� � k �de�ne
��� " ��	 Also assume that for each k� � k we have at our disposal programs to compute
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�uniformly over j and q� fk
�

j � Ak� � Hk� � and di�jk��q for all i � k�	 Let fMj�k

�� j � INg be a
recursive enumeration of all oracle Turing machines running in time tk� and for all j let
M �

j�k be the same as Mj�k except that when Mj�k makes a query of the form hm� yi for

m � k� M �
j�k instead simulates the answer by computing Hm�y� directly	 We let fkj be the

ttreduction corresponding to M �
j�k	 Note that on any input� fkj only makes queries of the

form hm� yi for m � k	

We de�ne Ak to be the highly incompressible set constructed in the proof of Proposition �	�
using ffkj

�� j � INg as the family of ttreductions	 The analogue of Fact �	� above says
that

Fact ����	 For all j� k� n � IN� PrC
�
fkj �C��j� � sn� " Ak�j� � sn�

�
� ��n	

Let H�k denote the partial characteristic function that agrees with H on all hm� yi with
m � k� and is unde�ned otherwise	 Given �k��� which is compatible with H�k� we de�ne
�k as follows� let hi� ji " k	 If there is a set C with H�k��k�� v C such that Ai �" f ij�C��

then we diagonalize against f ij by letting �k be the least �nite characteristic function
extending �k�� that preserves such a miscomputation� i	e	� for some C and x such that
Ai�x� �" f ij �C� x�� �k will agree with C on all queries made by f ij on input x	 If no such C
exists� let �k " �k��	

Now �x any i and j with i � k	 We would like to de�ne a martingale to perform the task
that d did back in the proof of Proposition �	� for the set Ai	 We cannot do this directly�
because any given ttreduction f ij from Ai to H might make queries on many di�erent
columns at once� and our martingales can only act on one column at a time	 Instead� for
any q � IN large enough� the martingales di�jk��q for all k

� � i will act together to �succeed

as a group� on all sets to which Ai reduces via f ij 	

The martingale di�jk�q will be split up into in�nitely many martingales

di�jk�q "
�X
��

di�jk�q��

similar to the proof of Proposition �	�	 Fix i and j	 For any m � f�� �g�� let ym be least
such that v � ym for all queries hu� vi made by f ij on inputs hj� xi for all x � sm	 For any

language C� let EC�m� be the event that f ij�C��j� � m� " Ai�j� � m�� i	e	� that f ij �C� and

Ai agree on fhi� yi
�� y � smg	 For all w � f�� �g�� we de�ne

di�jk�q��w� " �jwj� 	 Pr
C

�
�H�k� yq� � �fkg 
 w� v C j �H�k� yq� v C .EC�q��

�
if PrC ��

H�k� yq� v C . EC�q��� 
 �	 Otherwise� for all w de�ne di�jk�q��w� " ��	

Remark ����	 The de�nition of di�jk�q��w� above remains unchanged if we replace yq with

any y � yq	 This is because E
C�q�� depends on C only for those queries made by f ij on

inputs hj� �i� � � � � hj� sq��i	 None of these are of the form hu� yi for y � yq	
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We now de�ne Hk	 For any n � IN� we assume that Hk����n� �� has already been de�ned�
and we set w " Hk����n� ��	 Let

Hk�n� "


��
�k�hk� sni� if �k�hk� sni� is de�ned�
� if �k�hk� sni� is unde�ned and d�k�w�� � d�k�w���
� if �k�hk� sni� is unde�ned and d�k�w�� 
 d�k�w��	

Remark ����	 Actually� we cannot do this exactly as stated	 A reccomputable martingale
such as d�k cannot in general be computed exactly� but is only approximated	 What we are
really comparing are not d�k�w�� and d�k�w��� but rather their nth approximations� which
are computable	 Since these approximations are guaranteed to be within ��n of the actual
values� and our sole aim is to make d�k fail on Hk� it su�ces for our purposes to consider
only the approximations when doing the comparisons above	 The same trick is used in
�Lutz��a�	

Hk is evidently recursive �given the last remark�� and for co�nitely many n� Hk�n� is
chosen so that d�k�Hk����n�� � d�k�Hk����n � ��� $ ��n� the ��n owing to the error in the
approximation of d�k	 Thus d

�
k fails on Hk� from which we obtain

Fact ����	 The martingales (dk and di�jk�q for all and i � k� j� and q all fail on Hk	

Thus Conditions � and � are satis�ed	 Each Hk also preserves the diagonalization com
mitments made by the �k� for all k

� � k� so the following is easily checked�

Fact ����	 �� v �� v �� v 	 	 	 v H	

To verify Condition �� we show that Ai �" f ij �H� for all i and j	 Suppose Ai " f ij�H� for
some i and j	 Let k� " hi� ji� and let � " H����k� � �� � �k	��	 By the de�nition of �k	 �
it must be the case that Ai " f ij �C� for all C with � v C� otherwise f ij would have been

diagonalized against by �k	 and would thus fail to reduce Ai to H	 Let q� be smallest
such that q� 
 i and ��hq�� yi� is unde�ned for all y and q� � q�	 We will show that di�jn�q	
succeeds on Hn for some n � q�� contradicting Fact �	�� above	

For notational convenience� let A " Ai� f " f ij � and for all k � i and � let dk " di�jk�q	 and

dk� " di�jk�q	�	 For any language C and m � IN� we let ym and EC�m� be as before	 For
any � and su � yq	 we have

Pr
C
�EC�q��� j �

H�q�� su� v C� " �

by the de�nition of q� and yq	� and thus

�q	 	

q	��Y
k�i

dk��Hk����u� ���

�

q	��Y
k�i

�
� 	 dk��Hk����u� ���

�
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"

q	��Y
k�i

�u 	 Pr
C

�
�H�k� yq	� � �fkg 
Hk����u� ��� v C j �H�k� yq	� v C.EC�q���

�

"

q	��Y
k�i

�u 	 Pr
C

�
�H�k� su� � �fkg 
Hk����u� ��� v C j �H�k� su� v C .EC�q���

�
�by Remark �	���

"

q	��Y
k�i

�u 	 Pr
C

�
�H�k $ �� su� v C j �H�k� su� v C .EC�q���

�

"

q	��Y
k�i

�u 	
PrC ��

H�k $ �� su� v C.EC�q����

PrC ��H�k� su� v C .EC�q����

" ��q	�i�u 	
PrC ��

H�q�� su� v C .EC�q����

PrC ��H�i� su� v C .EC�q����

" ��q	�i�u 	
PrC �E

C�q��� j �H�q�� su� v C� 	 PrC ��H�q�� su� v C�

PrC �EC�q��� j �H�i� su� v C� 	 PrC ��H�i� su� v C�

"
PrC �E

C�q��� j �H�q�� su� v C�

PrC �EC�q��� j �H�i� su� v C�

"
�

PrC �EC�q��� j �H�i� su� v C�

"
�

PrC
�
EC�q����

� �q	�

the last inequality following from Fact �	��	 Therefore�

q	��Y
k�i

dk��Hk����u� ��� � �

for all su � yq	� which implies that dk��Hk����u� ��� � � for at least one k between i and
q� � �	 Since q� is �xed and � was chosen arbitrarily� by the PigeonHole Principle there
must be some n� with i � n� � q� such that for in�nitely many �� dn	��Hn	 ����u� ��� � �
for all su � yq		 This in turn implies that the martingale

dn	 "
�X
��

dn	�

succeeds on H� contradicting Fact �	��	

Thus Ai �" f ij �H� for all i and j� and Condition � is satis�ed	
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It would be interesting to see how far can the martingale diagonalization technique be
pushed� that is� for which classes and reducibilities we can construct languages that are
hard but not weakly hard	

Very recently� AmbosSpies� Terwijn and Zheng have shown that almost every language
in E is �p

mweaklycomplete and not �p
bttcomplete �AmboTeZ�	 This� together with the

results in �JuedLu��a� and �AmboNeT�� implies the next result that summarizes the actual
knowledge of measure of cones in E

Theorem ����	 ��JuedLu��a�� �AmboTeZ�� �AmboNeT�� For almost every A � E� Pbtt�A�
does not have measure � in E	 For each k � IN� for almost every A � E� P��

ktt�A� has
measure � in E	

The next open question is whether this is the case for other reducibilities and classes	 As
a curiosity� let us mention that in �BuhrMa� we construct a set A such that both Ptt�A�
and P��

ktt�A� �for every k � IN� have measure � in E	

Another very recent result by Juedes and Lutz on weaklycomplete languages is the fol
lowing�

Theorem ����	 Every �p
mweaklycomplete for E is �p

mweaklycomplete for E�	 There
exists a �p

mweaklycomplete for E� that is not �p
mweaklycomplete for E	

Another interesting open problem is the existence of languages A such that ��R���A� j
C� " � for each class C and reducibilityR� that is� what we denoted above asRincompressible
languages	 Notice that the existence of an Rincompressible language for C is equivalent
to the fact that the class of Rcomplete problems has measure � in C	 �Here we have seen
that there exists a �p

ttincompressible for ESPACE	 Recently this has been shown for the
class E with reducibility �p

btt in �AmboTeZ�	�

��� On the robustness of ALMOST�R

If R is a reducibility� then ALMOSTR is de�ned to be the class

fA j Pr�R���A�� " �g�

Book� Lutz� and Wagner �BookLuW� showed that for every bounded �that is� recursively
presentable� reducibility� ALMOSTR " R�rand� � REC� where rand denotes the class
of algorithmically random languages in the sense of MartinL�of �Mart�� and REC denotes
the class of recursive languages	 Book �Book��� extended this characterization for certain
bounded reducibilities called �appropriate� �all of the standard reducibilities used in struc
tural complexity theory are appropriate� by showing the Random Oracle Characterization�
namely that for every B � rand� ALMOSTR " R�B� � REC� and the Independent Pair
Characterization� namely that for every B and C such that B�C � rand� ALMOSTR "
R�B� �R�C�	

While di�erent classes are obtained in the characterization of ALMOSTR as R�rand� �
REC by considering di�erent reducibilities R� here we are concerned with the possibility of
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obtaining di�erent classes by considering as parameter values the classes rand and REC	
In particular� we investigate the result of substituting speci�c subclasses of rand for rand
itself	 We �nd that if we substitute a class based on Kurtz�s notion of �nrandomness�
�de�ned in �Kurt�� and simultaneously substitute the class %�

n �from the arithmetical
hierarchy of languages� for the class REC� then once again the result is ALMOSTR	 That
is� R�nrand� �%�

n " ALMOSTR �Theorem �	���	

Our new characterizations of classes having the form ALMOSTR imply a robustness
property of these classes	 The parameters C and D in ALMOSTR " R�C� � D may vary�
while the result is always ALMOSTR	

Next we develop our results about �nrandomness	� First we review the concept of the
arithmetical hierarchy of classes of languages due to Kleene �see Rogers �Roge� for back
ground�	

If L is a language and C � f�� �g� is a class� then L 	 C denotes the class fw�
�� w � L� � �

Cg	

A class of languages X is an open class when there is an A � f�� �g� such that

X " A 	 f�� �g��

We say that X is a closed class when Xc is an open class	

A class of languages is recursively open if it is of the form A 	 f�� �g� for some recursively
enumerable set A � f�� �g�	 A class of languages is recursively closed if it is the complement
of some recursively open set	

Notice that if C is a countable union or intersection of �recursively� open or closed sets� then
C is Lebesguemeasurable and so Pr�C� is de�ned	 Since there are only countably many
recursively open sets� every intersection of recursively open sets is a countable intersection
of such sets� and hence is Lebesguemeasurable� similarly every union of recursively closed
sets is Lebesguemeasurable	

Kleene�s arithmetical hierarchy of classes is de�ned as follows	

�i� Let &�
� be de�ned as fA j A is recursively openg	 We �x an enumeration of &�

� as
follows� let fMi

�� i � INg be a recursive enumeration of all Turing machines �so that

fL�Mi�
�� i � INg is the class of recursively enumerable sets�	 If Ai " L�Mi� 	 f�� �g��

then &�
� " fAi j i � INg	

�ii� We say that fCj j j � INg is a uniform sequence in &�
� if there exists a total recursive

function g such that for every j � IN� Cj " Ag�j�	

�iii� For every n � �� !�
n " fA j Ac � &�

ng	

�iv� We say that fDj j j � INg is a uniform sequence in !�
n if there exists a uniform

sequence in &�
n� fCj j j � INg� such that for every j � IN� Dj " �Cj�

c	

�v� For every n � �� B � &�
n�� if there exists a uniform sequence in !�

n� fDj j j � INg�
such that B "

S
kDk	

�vi� We say that fCj j j � INg is a uniform sequence in &�
n�� if there exists a uniform

sequence in !�
n� fDhj�ki j j� k � INg� such that for every j � IN� Cj "

S
kDhj�ki	
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Note that classically the same notation is used for both the arithmetical hierarchy of
languages de�ned in Chapter � �where &�

n denotes a set of languages� and the arithmetical
hierarchy of classes of languages we just de�ned �where &�

n denotes a set of classes�	 The
meaning in each case will be clear from the context	

Now we de�ne the concepts of �nconstructive null cover� and �nrandom language� in a
similar way to the introduction of null covers and random languages in �BookLuW�	

For n 
 �� a class X of languages has an n�constructive null cover if there exists a uniform
sequence in &�

n� fCk j k � INg� such that

�i� for every k � IN� X � Ck� and

�ii� for every k � IN� Pr�Ck� � ��k	

Notice that condition �ii� implies that every class with an nconstructive null cover has
probability �	

Let NULLn denote the union of all classes that have an nconstructive null cover	

Notice that NULLn � NULLn��	 In the case of n " �� we refer to the class as NULL� that
is� NULL� " NULL	

The class rand of algorithmically random languages was de�ned by MartinL�of �Mart� as
rand " f�� �g� � NULL	

Here we de�ne� for each n 
 �� the class nrand by nrand " f�� �g� � NULLn� and the
class �rand as �rand "

T
n nrand	

Since NULLn � NULLn��� n$ �rand � nrand	 Since NULL� " NULL� �rand " rand	

A reducibility R will be called appropriate if �i� it is bounded� �ii� for any language A� R�A�
is closed under �nite variations� and �iii� for any language L� R���L� is closed under �nite
variations and under �nite translations� as de�ned in Chapter �	

The reader should note that the reducibilities commonly used in structural complexity
theory meet the conditions for being appropriate	

If R is a bounded reducibility and n 
 �� then de�ne ALMOSTnR as the class

ALMOSTnR " fA j nrand � R���A�g�

and the class ALMOST�R by

ALMOST�R " fA j �rand � R���A�g�

In �BookLuW� Book� Lutz� and Wagner studied the classes of the form ALMOSTR and
related them to the class rand by showing that

ALMOSTR " R�rand� � REC�

The main result of this section is that each class ALMOSTnR is related to the class
nrand in a very similar way� and that ALMOSTnR " ALMOSTR	 We also obtain
similar results for ALMOST�R and �rand	
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We begin with a technical lemma stating that for any language B in %�
n� R

���B� is a class
in &�

n��	 This will be useful in the proof of our main theorem	

Lemma ���		 If R is a bounded reducibility and B is a language in %�
n� then R���B� is

a class in &�
n��	

Proof � We consider only the case where n is odd� the other case being analogous	

Let g be a recursive presentation of R	 For every j � IN� let R��
j �B� " fA j L�Mg�j�� A� "

Bg	 Then R���B� "
S
j R

��
j �B�� and it su�ces to show that if B � %�

n� then fR
��
j �B� j

j � INg is a uniform sequence in !�
n� or equivalently� f

�
R��
j �B�

�c
j j � INg is a uniform

sequence in &�
n	

Since B � %�
n� there exist recursive languages C and D such that for every x � f�� �g��

�i� x � B if and only if �m�m� � � ��mn�hx�m�� � � � �mni � C��

�ii� x �� B if and only if �m�m� � � ��mn�hx�m�� � � � �mni � D��	

Fix j � IN	 For each x�m��m�� � � � �mn�� � f�� �g�� we de�ne the following two classes

Y j
x�m��m�����mn��

" fA j �mnhx�m�� � � � �mni � C and L�Mg�j�� A��x� " �g�

and

Zj
x�m��m�����mn��

" fA j �mnhx�m�� � � � �mni � D and L�Mg�j�� A��x� " �g�

Using these classes� we can express R��
j �B�

c
as follows

R��
j �B�

c
"
�
x

��
m�

�
m�

� � �
�

mn��

�Y j
x�m��m�����mn��

� Zj
x�m��m�����mn��

�
�

�����

Next we show that for �xed x�m��m� � � � �mn�� � f�� �g�� the class Y j
x�m��m�����mn��

is recursively open	 To do this we de�ne a partial recursive function hjx�m��m�����mn��

as follows	 For mn� z � f�� �g�� if hx�m�� � � � �mni � C� L�Mg�j�� z�
���x� " � and

L�Mg�j�� z�
���x� needs only the initial part z of z�� � then hjx�m��m�����mn��

�z�mn� " z	

Otherwise� hjx�m��m�����mn��
�z�mn� is unde�ned	

From the de�nition of Y j
x�m��m�����mn��

we know that A � Y j
x�m��m�����mn��

if and only if
there exists a pre�x z of A such that hx�m�� � � � �mni � C� L�Mg�j�� z�

���x� " � and
L�Mg�j�� z�

���x� needs only the initial part z of z��	 But this is exactly the de�nition of
z being in the range of hjx�m��m�����mn��

	 Thus Y j
x�m��m�����mn��

" range�hjx�m��m�����mn��
� 	

f�� �g�� and Y j
x�m��m�����mn��

is recursively open	 By a similar argument Zj
x�m��m�����mn��

is

recursively open� using functions f jx�m��m�����mn��
de�ned as follows	 For mn� z � f�� �g

�� if
hx�m�� � � � �mni � D� L�Mg�j�� z�

���x� " � and L�Mg�j�� z�
���x� needs only the initial part

z of z��� then f jx�m��m�����mn��
�z�mn� " z	 Otherwise� f jx�m��m�����mn��

�z�mn� is unde�ned	

We de�ne a recursive function F that is the uniform version of all h�s and f �s as follows	
For every j � IN� x�m��m� � � � �mn���mn� z � f�� �g��

F �j� x�m��m� � � � �mn���mn� z�� " hjx�m��m�����mn��
�mn� z��
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F �j� x�m��m� � � � �mn���mn� z�� " f jx�m��m�����mn��
�mn� z��

F witnesses the fact that the sequence of classes

f range�hjx�m��m�����mn��
� 	 f�� �g� � range�f jx�m��m�����mn��

� 	 f�� �g�

j j � IN� x�m��m�� � � � �mn�� � f�� �g� g

is a uniform sequence in &�
�	

To complete the proof note that fR��
j �B�

c
j j � INg can be seen to be a uniform sequence

in &�
n by using the expression of R��

j �B�
c
in Equation ��	��� and the facts that

Y j
x�m��m�����mn��

" range�hjx�m��m�����mn��
� 	 f�� �g��

and
Zj
x�m��m�����mn��

" range�f jx�m��m�����mn��
� 	 f�� �g��

In the proof of our main theorem we also use the following lemma� Theorem IV	�	� in
�Kaut�	

Lemma ���
	 �Kaut� Let X be a class in &�
n�� that is closed under �nite variations and

�nite translations	 Then either X � nrand " � or nrand � X	

Now we have our main result	

Theorem ����	 For any appropriate reducibility R and any n 
 ��

a� for every B � nrand� ALMOSTnR " R�B� �%�
n�

b� ALMOSTnR " R�nrand� �%�
n�

c� ALMOSTnR " ALMOSTR	

Proof � a� Fix B � nrand	 First� we show that ALMOSTnR � R�B� �%�
n	 Let A �

ALMOSTnR	 By de�nition of ALMOSTnR� nrand � R���A� thus A � R�B�	 Since
NULLn is a countable union of classes having probability �� Pr�nrand� " � which implies
that for every A � ALMOSTnR� Pr�R

���A�� " �� and ALMOSTnR � ALMOSTR �
REC	 Thus ALMOSTnR � R�B� � REC � R�B� �%�

n	

Second� we show that R�B� � %�
n � ALMOSTnR	 Let A � R�B� � %�

n	 By Lemma
�	�� since A � %�

n� R
���A� � &�

n��	 R is an appropriate reducibility as de�ned in the
preliminaries� therefore R���A� is closed under �nite variations and is closed under under
�nite translations	 By Lemma �	��� either nrand � R���A� or nrand�R���A� " �	 But
B � nrand � R���A�� therefore nrand � R���A� and A � ALMOSTnR	

b� Is a direct consequence of a�	

c� We have argued in a� that ALMOSTnR � ALMOSTR	

To see that ALMOSTR � ALMOSTnR� take A � ALMOSTR	 Since

Pr�R���A�� " � and Pr�nrand� " � then R���A� � nrand �" �	 Thus A � R�nrand� �
REC and A � ALMOSTnR by b�	
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Thus� Theorem �	�� extends the Random Oracle Characterization to classes having the
form ALMOSTnR by showing that for every n 
 � and every B � nrand� ALMOSTR "
R�B��%�

n " R�nrand��%�
n " ALMOSTnR	 Notice that since ALMOSTR is a recursive

class� these results show that there are no languages from %�
n � REC in R�nrand�� that

is� oracles in nrand are useless for %�
n � REC	

We also show that R��rand� � AH " ALMOSTR� where AH denotes the arithmeti
cal hierarchy of languages� and �rand corresponds to the concept of ��randomness� as
de�ned in �Kaut�	

Theorem ����	 For any appropriate reducibility R�

a� for every B � �rand� ALMOST�R " R�B� �AH�

b� ALMOST�R " R��rand� �AH�

c� ALMOST�R " ALMOSTR	

Proof � The proof uses similar arguments to those in the proof of Theorem �	��	 Re
mark that since �rand is a countable intersection of classes having probability �� it has
probability �	

To end this section� we brie y comment on the possibility of characterizing ALMOSTR in
terms of �randomness as we have done with MartinL�of and nrandomness	 This would
produce resourcebounded measure characterizations of interesting classes	

This is a di�cult problem that relates directly to the measurability of upper cones	 If we
de�ne

ALMOST�R " fA j �rand � R���A�g�

then since Pr��rand� " �� clearly ALMOST�R � ALMOSTR	 But to see the converse�
that is� ALMOSTR � ALMOST�R� we need that for each A � ALMOSTR� �rand �
R���A�	 We would have an answer if we knew the �measure of R���A� for each language
A� that is� if we could show that for every A� R���A� is �measurable	 But this is not
even known for the simplest reducibilities� such as �p

m	

Let us only remark a �rst step in this direction	 For all natural reducibilities� it triv
ially holds that for every A� R��� � R�A�	 If� besides� R is a reducibility such that
ALMOSTR � R���� such as �p

btt� then ALMOSTR " ALMOST�R and for every
B � �rand�

ALMOSTR � R�B� � REC�

Lutz and Martin �personal communication� have considered the following situation� take a
reducibilityR and restrict it so that only a bounded number of queries can be made �making
it like a �bounded truthtable� or �bounded Turing� reducibility� while maintaining the
bounds on computational complexity	 If Rb denotes the result� then Rb�rand� � &�

� "
ALMOSTRb	

Kautz and Lutz �personal communication� went in the other direction	 If R is a reducibility
that is not bounded truthtable or bounded Turing� then R�rand��&�

� �" ALMOSTR �but
clearly ALMOSTR � R�rand� � &�

��	
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It would be interesting to answer these last two questions in a more general form� that is�
does R�nrand� � &�

n�� equal ALMOSTR�

��� Bidimensional measure

Up to this point� this dissertation has been focusing mainly on measure of classes of
languages	 Nevertheless� there are some important properties that are better expressed
in terms of couples of languages� and in order to study whether one of these properties
represents the typical behavior or the exception we need to de�ne a measure of classes of
pairs of languages	

For instance consider the class of minimal pairs for �p
m� that is� pairs �A�B� such that

every language C with C �p
m A and C �p

m B must be in P	 Sch�oning constructs in �Sch�o���
�arbitrary complex� minimal pairs� which supports the intuition that almost every pair is
minimal	 It is an open problem to de�ne a bidimensional resourcebounded measure for
which this result holds within� for instance� the class E
 E	

So far� we have not found a satisfactory de�nition of bidimensional resourcebounded
measure	 In this section we �rst discuss the properties that are desirable for such a measure
and then list the characteristics and inconveniences of the most natural approaches	

A bidimensional measure should be a way of comparing the size of classes X � f�� �g� 

f�� �g� with the size of some pattern classes� for instance E
 E or ESPACE
 ESPACE	
It is clearly desirable� too� to have a Kolmogorov �� law avalaible	 In addition to this
there should be some connection between the bidimensional measure of a class X and the
measure of its �projections�� as we explain now	

We de�ne for each class X � f�� �g� 
 f�� �g� and for each language A the projections
XA and XA as follows

XA " fB
�� �A�B� � Xg

XA " fB
�� �B�A� � Xg�

Classically� the relation between the measure of a set and the measure of its projections
is formalized by the Fubini Lemma	 This lemma says that if X � f�� �g� 
 f�� �g� has
Lebesgue measure �� then for almost every A the Ath projections of X� XA and XA� must
have Lebesgue measure �� that is

Lemma ����	 Let X � f�� �g� 
 f�� �g�	 If Pr�X� " � then the following holds

a� Pr�fA
�� Pr�XA� " �g� " �	

b� Pr�fA
�� Pr�XA� " �g� " �	

Intuitively� the projections of a class X can be viewed as the �dimensional slices X is
made from� thus it is reasonable that if X is very small� many of this slices have to be
small too	 Note that� as a consequence of this lemma� if X has Lebesgue measure � then
for almost every A the Ath projections of X� XA and XA� must have Lebesgue measure �	

We are looking for a bidimensional resourcebounded measure where the Fubini Lemma
holds	 Let us see the use of such a tool	 For instance� consider X to be the class of pairs
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of languages �A�B� such that A is �p
mreducible to B	 The results of Juedes and Lutz in

�JuedLu��a� say that almost every language A � E has the property that Pm
���A� has

measure � in E	 Thus for almost every A� XA has measure � in E� therefore X cannot
have measure � in E 
 E	 By the desired Kolmogorov �� law� there would be only two
possibilities for X� either X is not measurable in E
E or X has measure � in E
E	 But
very recently� AmbosSpies� Terwijn and Zheng have shown in �AmboTeZ� that for almost
every A � E� Pm�A� does not have measure � in E	 This implies that for almost every A�
XA does not have measure � in E� and X cannot have measure � in E
E	 The conclusion
is that X cannot be measurable in E
E� for any de�nition of measure that has the Fubini
property	

Let us mention some possible de�nitions	 We can de�ne bidimensional martingales� corre
sponding to strategies in the game where a player bets on a hidden pair of languages �A�B�	
In step n� the player bets on �A�sn�� B�sn�� with the information �A����n� ��� B����n����	
In this case given such a function d� for each u� v � f�� �g� with juj " jvj�

d�u� v� "
d�u�� v�� $ d�u�� v�� $ d�u�� v�� $ d�u�� v��

�
�

The class of pairs covered by d would be de�ned as

S��d� " f�A�B�
�� lim sup

n��
d�A����n�� B����n�� "�g�

and a class X has measure � if X is included in S��d� for some d	

With this de�nition we can show that the class X " f�A�B�
�� A �p

m Bg we mentioned
above has measure � in E
E	 A martingale for X is a sum of martingales di each of them
dealing with a particular �p

mreduction Mi	 For each x � f�� �g�� if the query of Mi�x� is
bigger than x then di bets on the query according to x� if the query of Mi�x� is smaller
than x then di bets on x depending on the query	 But from the discussion above� since X
has measure � in E
 E with this formulation� Fubini Lemma does not hold� therefore we
discard this de�nition	

Another possibility is to de�ne a bidimensional martingale d�u� v� as a product of two
regular martingales d��u� and d��v�� each of them dealing with a component� and the set
covered by d as

S��d� " f�A�B�
�� lim sup

n��
d��A����n�� 	 d��B����n�� "�g�

We could also generalize this to functions of the form

d�u� v� "
X
i

d�i �u� 	 d
�
i �v��

for d� and d� two uniform enumerations of martingales �that is� �MS�	 It can be proven
that the resulting measure ful�lls the Fubini property� but it does not seem easy to �nd
interesting examples where this measure can be used	
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