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Abstract

We introduce the concept of effective dimension for a wide class of
metric spaces that are not required to have a computable measure. Ef-
fective dimension was defined by Lutz in (Lutz 2003) for Cantor space
and has also been extended to Euclidean space. Lutz effectivization uses
the concept of gale and supergale, our extension of Hausdorff dimension to
other metric spaces is also based on a supergale characterization of dimen-
sion, which in practice avoids an extra quantifier present in the classical
definition of dimension that is based on Hausdorff measure and therefore
allows effectivization for small time-bounds.

We present here the concept of constructive dimension and its char-
acterization in terms of Kolmogorov complexity, for which we extend the
concept of Kolmogorov complexity to any metric space defining the Kol-
mogorov complexity of a point at a certain precision. Further research
directions are indicated.

1 Introduction

Effective dimension in Cantor space was defined by Lutz in [10, 11] in order to
quantitatively study complexity classes [7]. The connections of effective dimen-
sion with Information Theory [14], in particular with Kolmogorov complexity
and compression algorithms, some of them suspected even before the definition
of effective dimension itself ([17, 18, 20, 21, 1] and more recently for symbolic
dynamical systems in [19]), have lead to very fruitful areas of research including
those within Algorithmic Information theory [3].

In this paper we will explore the definition of effective dimension for general
metric spaces. The long term purpose of this line of research is to find more
and easier dimension bound proofs in those spaces, while the connections with
Information Theory already suggest further developments.
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The original definition of effective dimension was done in Cantor space which
is the set of infinite binary sequences with the usual longest-common-prefix-
based metric. The spaces of infinite sequences over other finite alphabets have
also been explored, for instance the case of Finite-State effectivity is particu-
larly interesting with this variation [2]. Also the Euclidean space Rn has been
considered in this context by several papers that go back to fractal geometry,
starting in [13] and including recent progress on the Kakeya conjecture [12], and
the space hω, a generalization of Cantor space, is studied in [15]. Our approach
generalizes all the cited existing ones and does not require the underlying space
to have a computable measure.1

Gales and supergales, introduced by Lutz in [10], are intuitively betting
strategies in a guessing game on the elements of Cantor space. They allow the
interpretation of Hausdorff dimension in terms of prediction and provide natu-
ral effectivizations of dimension by restricting the computability and resource-
bounds used in the computation of these betting strategies. In terms of the
complexity of the definition, the effectivization based on a gale characterization
of dimension avoids an extra quantifier on the covers that would be present in
effectivizations based on Hausdorff measure and makes it possible to attain low
time-bounds effectivizations such as polynomial-time dimension.

We introduce here the concept of a nice cover of a metric space. A nice
cover can simulate very closely any of the covers required in the definition of
Hausdorff dimension, while it allows simple representations of the points in the
space and the use of gales as betting games on those representations. Spaces
with nice covers can be fairly general and are locally separable.

We then characterize Hausdorff dimension using supergales for any metric
space with a nice cover. This characterization allows the definition of effective
dimension by restricting the family of supergales that can be used.

We present here an initial step in this effectivization direction by intro-
ducing the definition of constructive dimension on a metric space. We then
extend the concept of Kolmogorov complexity to any metric space and define
the Kolmogorov complexity of a point at a certain precision. We character-
ize constructive dimension in terms of Kolmogorov complexity and prove the
property of absolute stability (that is, the fact that constructive dimension can
be pointwise defined). We present a few interesting examples of spaces with a
constructive dimension including all previously studied cases. We finish with a
list of topics for further development.

2 Preliminaries

In this section we include the definition of Hausdorff diemnsion for general metric
spaces and include basic notation for strings and sequences.

1Several authors [5, 9, 16] have defined Martin-Löf algorithmical randomness in certain
computable metric spaces, with the obvious requirement of a computable Borel measure that
we avoid for effective dimension.
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Let (X, ρ) be a metric space. (From now on we will omit ρ when referring
to space (X, ρ)).
Definition. The diameter of a set A ⊆ X is

diam(A) = sup {ρ(x, y) |x, y ∈ A} .

Notice that the diameter of a set can be infinite.
Definition. Let A ⊆ X. A cover of A is C ⊆ P(X) such that A ⊆ ∪U∈CU .
Definition. Let A ⊆ X. A is separable if there exists a countable set S ⊆ A
that is dense in A, that is, for every x ∈ A, δ > 0 there is an s ∈ S such that
ρ(x, s) < δ.
Definition. The ball of radius r > 0 about x ∈ X is the set B(x, r) =
{y ∈ X | ρ(y, x) < r}.
Definition. A neighborhood of x ∈ X is a set U that contains a ball about
x.
Definition. A locally separable space is X such that every x ∈ X has a
neighborhood that is separable.
Definition. An isolated point in X is x ∈ X such that there is a δ > 0 with
B(x, δ) ∩X = {x}.

We will be interested in metric spaces that have no isolated points. No-
tice that metric spaces consisting only of isolated points have little interest for
Hausdorff dimension (see definition below), while Hausdorff dimension in gen-
eral spaces can be analyzed by restricting to non isolated points in the space.

We include the basic definitions of Hausdorff dimension. We refer the reader
to [4] for a complete introduction and motivation.

For each A ⊆ X and δ > 0, we define the set of countable δ-covers of A

Hδ(A) = {U | U is a countable cover of A and diam(U) < δ for every U ∈ U } .

We can now define Hs
δ (A) and Hs(X)

Hs
δ (A) = inf

U∈Hδ(A)

∑
U∈U

diam(U)s.

Hs(A) = lim
δ→0

Hs
δ (A).

Notice that Hs
δ (X) is monotone as δ → 0 so Hs(X) is well defined. It is routine

to verify that Hs is an outer measure [4], Hs is called the s-Hausdorff measure.
Definition. (Hausdorff [6]). The Hausdorff dimension of A ⊆ X is

dimH(A) = inf {s ∈ [0,∞) |Hs(A) = 0} .

Notice that dimH(A) is nontrivial only when A is bounded, that is, A has a
finite diameter. In general there is an abuse of notation for unbounded A using
dimH(A) = sup

B⊆A,B bounded dimH(B).
Let Σ be a finite set. We denote as Σ∗ the set of finite strings over Σ and

Σ∞ the set of infinite strings over Σ. If w ∈ Σ∗ and x ∈ Σ∗ ∪ Σ∞ then w v x
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denotes w being a finite prefix of x. For 0 ≤ i ≤ j, we write x[i . . . j] for the
string consisting of the i-th through the j-th symbols of x. We use λ for the
empty string. For n ≥ 0, we write x � n for x[0..n− 1]. (x � 0 denotes again the
empty string).

We use <,> for a pairing function <,>: Σ∗ × Σ∗ → Σ∗ that is injective,
efficiently computable and invertible. We also denote with < w1, . . . , wk > the
k-fold composition of <,> for each k ∈ N.

3 A supergale characterization of dimension in
metric spaces

3.1 Nice covers

We introduce the concept of a nice cover for a metric space. A nice cover allows
well behaving representations of all points in the space, and it will be the key
to the supergale characterization of Hausdorff dimension in the next subsection.
Intuitively, a nice cover of A is a sequence of covers of A that can closely simulate
any Hausdorff cover of A.

We prove here that spaces with a nice cover are locally separable and that
spaces with countable nice covers are separable. We also include examples of
spaces with nice cover that include all spaces for which effective dimension has
been defined so far.

Our goal is to generalize Lutz characterization for Cantor space [10, 11].
Notice that Cantor space has very good properties not generally present in
other spaces, namely a basis of clopen intervals defined by finite prefixes (for
w ∈ Σ∗, Cw = {x |w v x}) and a Borel measure from which the distance is
defined (ρ(x, y) = inf {µ(w) |x, y ∈ Cw }). These two facts make prediction and
compression arguments natural and simpler, our aim is to have a prediction
(and later on compression) setting for more general metric spaces.

Let X be a metric space without isolated points.
Definition. A nice cover of X is a sequence (Bn)n∈N with Bn ⊆ P(X) for
every n and such that the following hold

(A1) (Decreasing monotonicity) For every n ∈ N, U ∈ Bn, |{V ∈ Bn+1, V ⊆
U}| <∞.

(A2) (Increasing monotonicity) For every n ∈ N, U ∈ Bn, m < n, there is a
unique V ∈ Bm such that U ⊆ V .

(A3) (Layerwise nonnull) For every n ∈ N, infU∈Bn diam(U) > 0.

(A4) (c-cover) There is a c ∈ N such that for every A ⊆ X with 0 < diam(A) <
1 there exists {U1, . . . , Uc} ⊆ ∪nBn a cover of A, with diam(Ui) < c ·
diam(A) for every i.

Notice that the above definition does not even require the elements of each
cover Bn to be open or disjoint.
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Theorem 3.1 If X has a nice cover then X is locally separable.

Theorem 3.2 If X has a countable nice cover then X is separable.

We next include several examples of spaces with a nice cover including all
spaces for which Hausdorff dimension has been effectivized. Our first example
is the generalization of Cantor space to any finite alphabet and to any Borel
probability measure.

Example 3.3 Consider the set Σ∞ of all infinite sequences over a finite al-
phabet Σ with the metric based on a positive and nonatomic Borel probability
measure.

Let ν : Σ∗ → [0, 1] be a Borel probability measure on Σ∞ (that is, ν(λ) = 1
and for each w ∈ Σ∗ ν(w) =

∑
a∈Σ ν(wa)) such that ν is positive (that is,

ν(w) > 0 for every w ∈ Σ∗) and nonatomic (that is, limn ν(x[0..n− 1]) = 0 for
every x ∈ Σ∞). Then ν(w) is the measure of cylinder Cw = {x ∈ C |w v x}),
and the distance is defined as ρ(x, y) = inf {ν(w) |x, y ∈ Cw }.

This space has a nice cover formed by cylinders Cw. We take Bn = {Cw |w ∈ {0, 1}n }
for each n ∈ N. (In this case condition (A4) is met for c = 1 by considering the
longest w such that A ⊆ Cw, we can prove that diam(A) = diam(Cw) = ν(w)).

Notice that we place no restrictions on the probability measure ν, so this
is a strict generalization of the case considered in [13], where ν needed to be
“strongly positive” as defined in [13]. This is because of the good properties of
Cantor space.

Particular cases of this metric space are widely used in connection with cod-
ing and compression algorithms, and also to represent symbolic dynamical sys-
tems.

We will now move to Euclidean space.

Example 3.4 For m ∈ N, consider the set Rm with the metric based on a
strongly positive Borel measure ν ∈ ∆(Rm).

We use the notation I(z,a, n) (z ∈ Zm, a ∈ Nm, n ∈ N) for the n-diadic
interval defined by z,a, that is, I(z,a, n) = [z1 + a12−n, z1 + (a1 + 1)2−n] ×
. . . × [zm + am2−n, zm + (am + 1)2−n] (for every i, ai < 2n to avoid multiple
representations).

ν is strongly positive if there is a δ > 0 such that ν(I(t,b, n + 1)) > δ ·
ν(I(z,a, n)) for every I(t,b, n+ 1) ⊆ I(z,a, n).

This space has a nice cover formed by intervals with dyadic rational extremes.
We take Bn = {I(z,a, n) | z ∈ Zm,a ∈ Nm } for each n ∈ N. (In this case
condition (A4) is met for c = max(1/δ, 2m)). Notice that an interval [a, b]
can be covered by two dyadic intervals A,B of size ν(A) ≤ ν([a, b])/δ, ν(B) ≤
ν([a, b])/δ.)

Example 3.5 Let h : N→ N−{0, 1}, we define hω = Πn∈N{0, 1, . . . , h(n)− 1}
with the metric based on a positive and nonatomic Borel probability measure ν.

For n ∈ N, let hn = Πm<n{0, 1, . . . , h(m)− 1}. Let h∗ = ∪n∈Nhn.
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Given a Borel probability measure ν : h∗ → [0, 1] (where ν(w) is the mea-
sure of cylinder Cw = {x ∈ hω |w v x}), the distance is defined as ρ(x, y) =
inf {ν(w) |x, y ∈ Cw }.

This space has a nice cover formed by cylinders Cw. We take Bn = {Cw |w ∈ hn }
for each n ∈ N. (In this case condition (A4) is met for c = 1 by considering the
longest w such that A ⊆ Cw, we can prove that diam(A) = diam(Cw) = ν(w)).

This is a strict generalization of the case considered in [15].

Our last example has not been considered before in the context of effective
dimension, and can have further interest in the context of spaces of functions.

Example 3.6 Let n ∈ N. Let Pn(0, 1) be the set of polynomials with real co-
efficients and degree less than or equal to n, together with the metric d(f, g) =
‖f − g‖∞ = supx∈(0,1) |f(x)− g(x)|, for f, g ∈ Pn(0, 1).

This space has a nice cover defined from dyadic coefficient polynomials as
follows. Let z ∈ Zn+1, a ∈ Nn+1, k ∈ N, with ai < 2k for every i,

DP (z,a, k) = {b0 + b1x+ . . .+ bnx
n | bi ∈ R, 0 ≤ bi − (zi + ai2

−k) ≤ 2−k)}.

We take Bk =
{
DP (z,a, k)

∣∣ z ∈ Zn+1,a ∈ Nn+1
}

for each k ∈ N. (In this case
condition (A4) is met for c = max{2n, 2(n+ 1)}).

3.2 Supergale characterization of Hausdorff dimension

In this subsection we prove a supergale characterization of Hausdorff dimension
for X with a nice cover. Notice that each nice cover gives an equivalent char-
acterization of dimension. The definition of a supergale in terms of diameters
gives a new and interesting prediction setting for general metric spaces.

The concept of gale we introduce here is the natural extension of the gales
introduced in [10] to spaces with nice covers, while the flexibility on the metric
spaces makes the proof of this characterization quite more involved than the
case of Cantor spaces proven in [10]. For instance we cannot assume anything
about the diameters of the covers used.

Let X be a metric space with a nice cover, fix a nice cover (Bn)n∈N. Let
B = ∪nBn. For n ∈ N, let B≥n = ∪m≥nBm.
Definition. Given x ∈ X, a B-representation of x is a sequence (wn)n∈N such
that wn ∈ Bn and x ∈ ∩nwn.

We denote with R(x) the set of B-representations of x ∈ X.
A supergale is intuitively a strategy in a betting game on a representation

(wn)n∈N of an unknown x ∈ X.
Definition. Let s ∈ [0,∞). An s-supergale d is a function d : B → [0,∞)
such that the following hold

•
∑
U∈B0

d(U) diam(U)s <∞,

• for every n ∈ N, for every U ∈ Bn the following inequality holds

d(U) diam(U)s ≥
∑

V ∈Bn+1,V⊆U

d(V ) diam(V )s. (1)
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An s-gale is an s-supergale for which equation (1) holds with equality.
Definition. An s-supergale d succeeds on x ∈ X if there is a (wn)n∈N ∈ R(x),
such that

lim sup
n

d(wn) =∞.

Definition. Let d be an s-supergale. The success set of d is

S∞[d] = {x ∈ X | d suceeds on x} .

Definition. Ĝ(A) = {s | there is an s-supergale d with A ⊆ S∞[d]}.
We start with two useful properties of supergales. The first one allows suc-

cess to be defined independently of layers Bn for n ∈ N, the second one is a
generalization of Kraft inequality that is used in Cantor space, that gives us
bounds on supergale values.

Property 3.7 Let d be a an s-supergale, if there is a sequence in B (ym)m∈N
such that lim supm d(ym) =∞ then ∩mym ⊆ S∞[d].

Proof. From lim supm d(ym) =∞ and condition (1) in the definition of super-
gale we have that lim infm diam(ym) = 0. In particular there is a subsequence
(ymk)k∈N with limk d(ymk) =∞ and limk diam(ymk) = 0. Therefore using (A3)
we have that for every n there is a k such that ymk ∈ B≥n which gives us
(wn)n∈N such that wn ∈ Bn with ∩mym ⊆ ∩nwn and lim supn d(wn) =∞.

�

Property 3.8 (Generalization of Kraft inequality) Let d be an s-supergale.
Then for every E ⊆ B such that all sets in E are incomparable we have that∑

W∈B0

d(W ) diam(W )s ≥
∑
V ∈E

d(V ) diam(V )s.

Proof. Notice that
∑
U∈B0

d(U) diam(U)s < ∞ implies that d(U) diam(U) is
nonzero on a countable subset of B0, and therefore d(U) diam(U) is nonzero on
a countable subset of B because of (A1). Therefore let us assume that E ⊆ B is
countable.

We prove that for any finite subset A ⊆ E ,∑
W∈B0

d(W ) diam(W )s ≥
∑
V ∈A

d(V ) diam(V )s.

This can be proven by induction on n such that A ⊆ B≥n using condition (1)
in the definition of supergale. �

Our next Theorem is the supergale characterization of dimension. Since the
metric used is not necessarily related to a Borel measure, and we can’t assume
a suitable basis of clopen (not even open) sets the arguments in the proof are
different from the Cantor space case [10]. The fact that we need to use diameters
instead of a probability measure makes it necessary to carefully examine each
sum of diameters for its good definition and finiteness.
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Theorem 3.9 (Supergale characterization) Let X be a metric space that has a
nice cover, let A ⊆ X. Then

dimH(A) = inf Ĝ(A).

Proof.
Let s > dimH(A). Then for any k ∈ N there is a countable cover of A,

Ck, such that
∑
U∈Ck diam(U)s < 2−k and diam(U) > 0 for each U ∈ Ck.

(If necessary substitute each Un ∈ Ck with diam(Un) = 0 by a ball of radius
2−k/s−n/s−1).

Using property (A4) of nice covers we can get a cover Ek ⊆ B of A such that∑
W∈Ek

diam(W )s < c1+s · 2−k.

Let Dk = {U |U ∈ Ek and no proper superset of U is in Ek }. Then Dk is a
countable cover of A and ∑

W∈Dk

diam(W )s < c1+s · 2−k.

Define dk : B → [0,∞) as follows,
For U ∈ B, if diam(U) = 0 then d(U) = 1.
If U ∈ Bn for n > 0, diam(U) > 0, and there is V ∈ Bn−1 and W ∈ Dk with

U ⊆ V ⊆W , U 6= V and
∑
U ′⊆V,U ′∈Bn diam(U ′) > 0 then

dk(U) =
dk(V ) diam(V )s∑

U ′⊆V,U ′∈Bn diam(U ′)s
.

Otherwise, if U ∈ Bn, diam(U) > 0,

dk(U) =
∑

W∈Dk∩B≥n,W⊆U

diam(W )s

diam(U)s
.

Claim 3.10 dk is an s-supergale.

Proof of Claim 3.10. Let V ∈ Bn−1 and∑
U ′⊆V,U ′∈Bn diam(U ′) > 0.
If there is W ∈ Dk such that V ⊆W then

∑
U⊆V,U∈Bn

dk(U) diam(U)s =
∑

U⊆V,U∈Bn

dk(V ) diam(V )s∑
U ′⊆V,U ′∈Bn diam(U ′)s

diam(U)s

= dk(V ) diam(V )s.

If for any W ∈ Dk, V 6⊆W then

dk(V ) =
∑

W∈Dk∩B≥n−1,W⊆V

diam(W )s

diam(V )s
.
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Therefore,∑
U⊆V,U∈Bn

dk(U) diam(U)s =
∑

U⊆V,U∈Bn

∑
W∈Dk∩B≥n,W⊆U

diam(W )s

diam(U)s
diam(U)s

=
∑

U⊆V,U∈Bn

∑
W∈Dk∩B≥n,W⊆U

diam(W )s

≤
∑

W∈Dk∩B≥n−1,W⊆V

diam(W )s = dk(V ) diam(V )s,

where the last inequality follows from property (A2) of nice covers.
For every U ∈ B0, we use the second part in the definition of dk. Therefore,

using property (A2) of nice covers,∑
U∈B0

dk(U) diam(U)s ≤
∑
W∈Dk

diam(W )s < c1+s · 2−k <∞.

�

Claim 3.11 If W ∈ Dk, dk(W ) = 1.

Proof of Claim 3.11. If W ∈ Bn, since all sets in Dk are incomparable, we
use the second part in the definition of dk and

dk(W ) =
∑

W ′∈Dk∩B≥n,W ′⊆W

diam(W ′)s

diam(W )s
= 1.

�

Claim 3.12 For every k ∈ N, U ∈ B, with diam(U) > 0, dk(U) ≤ c1+s·2−k
diam(U)s .

Proof of Claim 3.12.
We prove by induction on n−m that for every n,m ∈ N with m < n, U ⊆ V

with diam(U) > 0, U ∈ Bn and V ∈ Bm,

dk(U) ≤ dk(V ) diam(V )s

diam(U)s
.

By the definition of supergale, if U ∈ Bn, dk(U) ≤ dk(U ′) diam(U ′)s

diam(U)s for U ′ ∈
Bn−1 with U ⊆ U ′. By induction dk(U ′) ≤ dk(V ) diam(V )s

diam(U ′)s and therefore dk(U) ≤
dk(V ) diam(V )s

diam(U)s .

For everyW ∈ B0 with diam(W ) > 0, we use the second part in the definition

of dk and so dk(W ) ≤ c1+s·2−k
diam(W )s .

Since for every U ∈ B there is a W ∈ B0 with U ⊆W we have that

dk(U) ≤ dk(W ) diam(W )s

diam(U)s
≤ c1+s · 2−k

diam(U)s
.
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�
We define next an s-supergale d(U) =

∑
k 2kd2k(U).

By Claim 3.12 d is well-defined.
By Claim 3.11, if W ∈ Dk, d(W ) ≥ 2k. Since for every k, Dk ⊆ B is a cover

of A, by Property 3.7 we have that A ⊆ S∞[d] and s ∈ G(A).
For the other direction, let s ∈ Ĝ(A). Then there exists an s-supergale d

such that A ⊆ S∞[d].
For each k ∈ N let

Ck =

{
U

∣∣∣∣∣ diam(U) > 0, d(U) > 2k ·
∑
W∈B0

d(W ) diam(W )s

}
,

let Dk = {U |U ∈ Ck and no proper superset of U is in Ck }. Then, using Prop-
erty 3.8,

∑
U∈Dk diam(U)s ≤ 2−k.

Notice that for every k, Dk is a 2−k/s-cover of S∞[d], so dimH(A) ≤ s. This
completes our proof.

�
Notice that a characterization of Hausdorff dimension in terms of martingales

(that is, 1-gales) that holds for Cantor space is not clear for the general case.
d(U) is an s-gale if and only if d′(U) = diam(U)s−1d(U) is a 1-gale, but it is
not clear how to express S∞[d] in terms of d′.

For the examples in subsection 3.1, we obtain generalizations of the concept
of gale used in previous effectivizations.

Example 3.13 For the set Σ∞ of all infinite sequences over a finite alphabet
Σ with the metric based on a positive and nonatomic Borel probability measure
ν : Σ∗ → [0, 1]. (Generalization of [13]).

For s ∈ [0,∞), an s-supergale d is a function d : Σ∗ → [0,∞) such that for
every n ∈ N, for every w ∈ Σ∗ with |w| = n the following inequality holds

d(w) ν(w)s ≥
∑
a∈Σ

d(wa) ν(wa)s

Example 3.14 For m ∈ N, consider the set Rm with the metric based on a
strongly positive Borel measure ν. (Generalization of [13]).

For s ∈ [0,∞), an s-supergale d is a function d : Zm×Nm×N→ [0,∞) such
that for every z ∈ Zm,a ∈ Nm, n ∈ N (with ai < 2n), the following inequality
holds

d(z,a, n) ν(I(z,a, n))s ≥ (2)∑
I(t,b,n+1)⊆I(z,a,n)

d(t,b, n+ 1) ν(I(t,b, n+ 1))s.

Example 3.15 Let h : N→ N−{0, 1}, hω = Πn∈N{0, 1, . . . , h(n)− 1} with the
metric based on a positive and nonatomic Borel probability measure ν. (Gener-
alization of [15]).

10



For s ∈ [0,∞), an s-supergale d is a function d : h∗ → [0,∞) such that for
every n ∈ N, for every w ∈ hn the following inequality holds

d(w) ν(w)s ≥
∑
a∈Σ

d(wa) ν(wa)s.

Example 3.16 Pn(0, 1) is the set of polynomials with real coefficients and de-
gree less than or equal to n, together with the metric d(f, g) = ‖f − g‖∞.

For s ∈ [0,∞), an s-supergale d is a function d : Zn+1×Nn+1×N→ [0,∞)
such that for every z ∈ Zn+1,a ∈ Nn+1, k ∈ N (with ai < 2k), the following
inequality holds

d(z,a, k) ≥ 2−s
∑

DP (t,b,k+1)⊆DP (z,a,k)

d(t,b, k + 1). (3)

4 Constructive dimension

In this section we effectivize Hausdorff dimension by considering constructive
dimension. We consider spaces that have computable nice covers (defined below)
and define constructive dimension in them.

Then we characterize constructive dimension in terms of Kolmogorov com-
plexity using the concept of Kolmogorov complexity of x ∈ X at precision
r ∈ N inspired by [13]. This characterization, together with the absolute stabil-
ity proven below allows a full Theory of Information view of Hausdorff dimension
in some general metric spaces.
Definition. Let X be a metric space with a nice cover (Bn)n∈N. Let Σ be
finite and δ : Σ∗ → B be surjective. We say that (X, (Bn), δ) has a computable
nice cover if the following hold,

(B5) (Computable diameter) diam ◦ δ is a computable function.

(B6) (Computable cover) The function

P : Σ∗ × N→ Σ∗

defined by P (w, n) =< w1, . . . , wk > for δ(w) ∈ Bn, such that
{V |V ∈ Bn+1, V ⊆ δ(w)} = {δ(w1), . . . , δ(wk)} is a computable function.

For the rest of this section we fix a space (X, (Bn), δ) with a computable nice
cover and omit (Bn), δ when referring to X.
Definition. Let d be a supergale. Then d is contructive if d ◦ δ is lower
semicomputable and

∑
U∈B0

d(U) diam(U)s is a computable number.
Definition. Let A ⊆ X,

Ĝconstr(A) = {s | there is a constructive s-supergale d with A ⊆ S∞[d]} .
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Definition. Let A ⊆ X. We define the constructive dimension of A as
cdim(A) = inf Ĝconstr(A).

For each x ∈ X we denote with cdim(x) the constructive dimension of the
singleton set, that is, cdim(x) = cdim({x}).

Let us briefly comment on the importance of the choice of nice cover when
effectivizing a dimension. The classical definition of Hausdorff dimension is
invariant under the choice of nice cover as our characterization in Theorem
3.9 proves. In the case of effective dimension, however, this invariance does
not generally hold (the choice of (Bn), δ can be relevant) and this fact is very
meaningful. For instance in the case of Finite-State dimension in Rn, that
is, restriction to gales that can be computed by Finite State Automata (done
for Cantor space in [2]), it matters whether we use dyadic intervals, triadic
intervals, etc and this is related to the existence of normal sequences that are
not absolutely normal [2]. On the other hand certain invariance properties are
known for constructive and polynomial-time dimension [8].

We next look at the compression characterization of constructive dimen-
sion. Notice that the definition of Kolmogorov complexity at a certain precision
is more involved than in the Cantor case (or even slightly more than in the
Euclidean case) when there is no Borel measure.

Constructive dimension can be characterized in terms of Kolmogorov com-
plexity as follows. Let K(w) denote the usual self-delimiting Kolmogorov com-
plexity of w ∈ Σ∗.
Definition. Let x ∈ X, let r ∈ N. The Kolmogorov complexity of x at
precision r is

Kr(x) = inf
{

K(w)
∣∣x ∈ δ(w), diam(δ(w)) ≤ 2−r

}
,

with Kr(x) =∞ if not such w exists.

Theorem 4.1 Let X be a metric space with a computable nice cover. Let Z ⊆
X,

cdim(Z) = sup
x∈Z

lim inf
r

Kr(x)

r
.

Proof.
The first direction uses semicomputability and additivity properties of prefix

Kolmogorov complexity.

Let s, s′, s′′ be rational numbers such that s > s′ > s′′ > supx∈Z lim infr
Kr(x)
r .

Let
A = {w |K(w) ≤ −s′ log(diam(δ(w)))} .

Then A is computably enumerable.
We define d as follows, let U ∈ Bn with diam(U) > 0,

d(U) =
∑

V⊆U,V ∈δ(A)∩B≥n

diam(V )s
′

diam(U)s
.
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d is well defined since
∑
V ∈δ(A) diam(V )s

′ ≤
∑
w 2−K(w) < ∞. d is con-

structible by property (B6).
d is an s-supergale since for W ∈ Bn−1,∑
U⊆W,U∈Bn

d(U) diam(U)s =
∑

U⊆W,U∈Bn

∑
V⊆U,V ∈δ(A)∩B≥n

diam(V )s
′
≤

≤
∑

V⊆W,V ∈δ(A)∩B≥n−1

diam(V )s
′

= d(W )diam(W )s,

where the last property follows from property (A2).
If U ∈ δ(A) then d(U) ≥ diam(U)s

′−s. Let x ∈ Z. Since Kr(x) < rs′′

for infinitely many r, for those r there is a wr with K(wr) ≤ rs′′, x ∈ δ(wr)
and diam(δ(wr)) ≤ 2−r. Therefore wr ∈ A and d(δ(wr)) ≥ diam(δ(wr))

s′−s ≥
2r(s−s

′).
Therefore for each x ∈ Z there is (δ(wr)) ⊆ B with lim supr d(δ(wr)) = ∞

and by Property 3.7 x ∈ S∞[d]. Therefore Z ⊆ S∞[d].
For the other direction, let s > cdim(Z). Let d be a constructive s-supergale

such that Z ⊆ S∞[d]. For each k ∈ N, let

Ak =

{
w

∣∣∣∣∣ d(δ(w)) ≥ 2k(
∑
W∈B0

d(W ) diam(W )s)

}
.

Then by Property 3.8, for each r ∈ N and for every E ⊆ B such that all sets in E
are incomparable, the number of w ∈ Ak∩δ−1(E) such that diam(δ(w)) > 2−r−1

is at most 2−k+rs+s. Also by Property 3.8, if w ∈ Ak then diam(δ(w)) ≤ 2−k/s.
Fix k ∈ N. We enumerate all strings u in Ak and include δ(u) in Ek for the

strings such that δ(u) is incomparable with all sets previously included in Ek.
For w ∈ Ak ∩ δ−1(Ek) there is an r ≥ dk/s− 1e with 2−r−1 < diam(δ(w)) ≤

2−r, and K(w) ≤ rs+ s− k +O(log k) +O(log r).
Since x ∈ S∞[d] for every k there is w ∈ Ak ∩ δ−1(Ek) such that x ∈ δ(w)

and therefore

lim inf
r

Kr(x)

r
≤ rs+ s− k +O(log k) +O(log r)

r
≤ s.

Taking the supremum over all x ∈ Z we have proven our Theorem. �

Corollary 4.2 Let X be a metric space with a computable nice cover. Let
x ∈ X,

cdim(x) = lim inf
r

Kr(x)

r
.

As a corollary we have the property of total stability of constructive dimen-
sion (see [11] for the corresponding version in Cantor space).

Corollary 4.3 Let X be a metric space with a computable nice cover. Let
A ⊆ X. Then

cdim(A) = sup
x∈A

cdim(x).
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We finish by presenting the constructive dimension of the spaces in all pre-
vious examples. Notice that all the examples in subsection 3.1 have computable
nice covers.

Example 4.4 For the set Σ∞ of all infinite sequences over a finite alphabet
Σ with the metric based on a positive and nonatomic Borel probability measure
ν : Σ∗ → [0, 1]. (Generalization of [13]).

Constructive supergales are constructive functions d : Σ∗ → [0,∞) that fulfill
the supergale inequality.

For x ∈ Σ∞, the Kolmogorov complexity of x at precision r is

Kr(x) = inf
{

K(w)
∣∣w v x, ν(w) ≤ 2−r

}
.

Example 4.5 For the set Rm (m ∈ N) with the metric based on a strongly
positive Borel measure ν. (Generalization of [13]).

Constructive supergales are constructive functions d : Zm×Nm×N→ [0,∞)
that fulfill inequality (2).

For x ∈ Rm, the Kolmogorov complexity of x at precision r is

Kr(x) = inf{K(w) | w =< z,a, n >, z ∈ Zm,a ∈ Nm, n ∈ N, ai < 2n, x ∈ I(z,a, n),

ν(I(z,a, n)) ≤ 2−r}.

Example 4.6 Let h : N → N − {0, 1}, hω = Πn∈N{0, 1, . . . , h(n) − 1} with the
metric based on a positive and nonatomic Borel probability measure ν. (Gener-
alization of [15]).

Constructive supergales are constructive functions d : h∗ → [0,∞) that fulfill
the supergale inequality.

For x ∈ hω, the Kolmogorov complexity of x at precision r is

Kr(x) = inf
{

K(w)
∣∣w codifies y ∈ h∗, y v x, ν(y) ≤ 2−r

}
.

Example 4.7 Pn(0, 1) is the set of polynomials with real coefficients and degree
less than or equal to n, together with the metric d(f, g) = ‖f − g‖∞.

Constructive supergales are constructive functions d : Zn+1 × Nn+1 × N →
[0,∞) that fulfill inequality (3).

For f ∈ Pn(0, 1), the Kolmogorov complexity of f at precision r is

Kr(f) = inf{K(w) | w =< z,a, k >, z ∈ Zn+1,a ∈ Nn+1, k ∈ N, ai < 2k,

f ∈ DP (z,a, k), k ≥ r + log(n+ 1)}.

5 Further directions

This paper intends to give an initial view of effective dimension on arbitrary
metric spaces. A number of issues have not been addressed here including
the definition of resource-bounded dimension for resource-bounds other than
lower semicomputability and the role of different (computable) nice covers in
effectivization and conditions for their equivalence within it.
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