Construction of an absolutely normal real number in polynomial time

Elvira Mayordomo*

Abstract

We construct an absolutely normal number using time very close to quadratic in the number of output digits.

1 Warning

This proof is part of a joint paper with Jack H. Lutz on Alan Turing and normality. Therefore we don’t include a proper introduction.

Strauss [10] proved that almost every real number that is computable in polynomial time is absolutely normal. The measure conservation theorem of resource-bounded measure [7] automatically derives from this proof explicit examples of absolutely normal numbers that are computable in polynomial time.

Very recently three efficient constructions of absolutely normal numbers have been obtained simultaneously, [1], [5], and this result.

2 Preliminaries

For any natural number $k \geq 2$, we let $\Sigma_k = \{0, \ldots, k-1\}$ be a k-symbol alphabet. Σ_k^* denotes the set of finite strings over alphabet Σ_k, Σ_k^∞ denotes infinite sequences over alphabet Σ_k.

For $0 \leq i \leq j$, we write $x[i \ldots j]$ for the string consisting of the i-th through the j-th symbols of x. We use λ for the empty string.

Definition. Let $s \in [0, \infty)$.

*Dept. de Informática e Ingeniería de Sistemas, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, SPAIN. elvira@unizar.es. Part of this work was done during a visit to the Isaac Newton Institute for Mathematical Sciences at the University of Cambridge. This work was supported by the Spanish Ministry of Economy and Competitiveness (Project TIN2011-27479-C04-01).
1. An \(s \)-gale on \(\Sigma^k \) is a function \(d : \Sigma^*_k \to [0, \infty) \) satisfying
\[
d(w) = k^{-s} \sum_{a \in \Sigma_k} d(wa)
\]
for all \(w \in \Sigma^*_k \).

2. A martingale is a 1-gale, that is, a function \(d : \Sigma^*_k \to [0, \infty) \) satisfying
\[
d(w) = \sum_{a \in \Sigma_k} d(wa)
\]
for all \(w \in \Sigma^*_k \).

Definition. Let \(s \in [0, \infty) \) and \(d \) be an \(s \)-gale. We say that \(d \) succeeds on a sequence \(S \in \Sigma^\infty_k \) if
\[
\limsup_{n \to \infty} d(S[0 \ldots n]) = \infty.
\]
The success set of \(d \) is
\[
S^\infty[d] = \{ S \in \Sigma^\infty_k \mid d \text{ succeeds on } S \}.
\]

Definition. We say that a function \(d : \Sigma^*_k \to [0, \infty) \cap \mathbb{Q} \) is exactly \(t(n) \)-computable if \(d(w) \) is computable in time \(t(|w|) \).

Definition. We say that a function \(d : \Sigma^*_k \to [0, \infty) \cap \mathbb{Q} \) is \(\text{on-line } t(n) \)-computable if \(d(w) \) is computable in time \(t(|w|) \) and for every \(w \in \Sigma^*_k \), \(a \in \Sigma_k \), the computation of \(d(wa) \) starts with a computation of \(d(w) \).

Definition. We say that an \(s \)-gale \(d : \Sigma^*_k \to [0, \infty) \cap \mathbb{Q} \) is FS-computable if \(d(w) \) is computable by a finite-state gambler as defined in [4].

Definition. Let \(X \subseteq \Sigma^\infty_k \), The on-line \(t(n) \)-dimension of \(X \) is
\[
\dim_{\text{ol-}t(n)}(X) = \inf \left\{ s \in [0, \infty) \mid \text{there is an exactly on-line } O(t(n))-\text{computable } s \text{-gale } d \text{ s.t. } X \subseteq S^\infty[d] \right\}
\]

Definition. Let \(X \subseteq \Sigma^\infty_k \), The FS-dimension of \(X \) is
\[
\dim_{FS}(X) = \inf \left\{ s \in [0, \infty) \mid \text{there is a FS-computable } s \text{-gale } d \text{ s.t. } X \subseteq S^\infty[d] \right\}
\]

We will use \(\dim_{\Delta}^{(k)}(X) \) to refer to the \(\Delta \)-dimension of \(X \subseteq \Sigma^\infty_k \) when we want to stress that the underlying sequence space is \(\Sigma^\infty_k \).

Definition. Let \(x \in \Sigma^\infty_k \), let \(c \in \mathbb{N} \). We say that \(x \) is on-line \(n^c \)-random if no exactly on-line \(O(n^c) \)-computable martingale succeeds on \(x \).

For a complete introduction and motivation of effective dimension see [8].
2.1 Representations of Reals

We will use infinite sequences over \(\Sigma_k \) to represent real numbers in \([0,1)\). For this, we associate each string \(w \in \Sigma_k^* \) with the half-open interval \([w]_k\) defined by \([w]_k = [x, x + k^{-|w|}]\), for \(x = \sum_{i=1}^{|w|} w[i-1]k^{-i} \). Each real number \(\alpha \in [0,1) \) is then represented by the unique sequence \(S_k(\alpha) \in \Sigma_k^\infty \) satisfying

\[
w \subseteq S_k(\alpha) \iff \alpha \in [w]_k
\]

for all \(w \in \Sigma_k^* \). We have

\[
\alpha = \sum_{i=1}^\infty S_k(\alpha)[i-1]k^{-i}
\]

and the mapping \(\alpha \mapsto S_k(\alpha) \) is a bijection from \([0,1)\) to \(\Sigma_k^\infty \) (notice that \([w]_k\) being half-open prevents double representations). If \(x \in \Sigma_k^\infty \) then \(\text{real}_k(x) = \alpha \) such that \(x = S_k(\alpha) \). Therefore we always have that \(\text{real}_k(S_k(\alpha)) = \alpha \) and \(S_k(\text{real}_k(x)) = x \).

Definition. A number \(\alpha \in [0,1) \) is \(k \)-normal \([2]\), if for every \(w \in \Sigma_k^* \),

\[
\lim_{n \to \infty} \frac{1}{n} \left\{ i < n \mid S_k(\alpha)[i..i + |w| - 1] = w \right\} = k^{-|w|}.
\]

That is, \(\alpha \) is \(k \)-normal if every string \(w \) has asymptotic frequency \(k^{-|w|} \) in \(S_k(\alpha) \).

Definition. A number \(\alpha \in [0,1) \) is absolutely normal \([2]\), if for every \(k \in \mathbb{N} \) \(\alpha \) is \(k \)-normal. That is, \(\alpha \) is absolutely normal if for every \(k \), every string \(w \) has asymptotic frequency \(k^{-|w|} \) in \(S_k(\alpha) \).

The following theorem is proven in \([3]\) and also follows from \([9]\).

Theorem 2.1 A number \(\alpha \in [0,1) \) is \(k \)-normal if and only if \(\dim_{FS}(S_k(\alpha)) = 1 \).

3 Main result

In this section we prove or main result. We need the following lemma with the conversion of FS-gales on \(\Sigma_l \) to p-gales on \(\Sigma_k \) which is a careful generalization of lemma 3.1 in \([6]\).

Lemma 3.1 Let \(k, l \geq 2 \), let \(c \in \mathbb{N} \), let \(s \in \mathbb{Q} \). For any FS-computable \(s \)-gale \(d \) on \(\Sigma_l \) and rational \(s' > s \), there is an exactly on-line \(O(n^2) \)-computable \(s' \)-gale \(d' \) on \(\Sigma_k \) such that \(\text{real}_l(S^\infty([d])) \subseteq \text{real}_k(S^\infty([d'])) \).
As a consequence we can compare FS and polynomial-time dimension for different representations of the same number.

Theorem 3.2 Let $\alpha \in [0,1)$, let $k, l \geq 2$. Then
\[\dim_{\text{ol-}n^2}^{(k)}(S_k(\alpha)) \leq \dim_{\text{FS}}^{(l)}(S_l(\alpha)). \]

Theorem 3.3 Let $\alpha \in [0,1]$. If $S_2(\alpha)$ is on-line n^2-random then α is absolutely normal.

Proof. If $S_2(\alpha)$ is on-line n^2-random then $\dim_{\text{ol-}n^2}^{(2)}(S_2(\alpha)) = 1$. By theorem 3.2, for every $l \in \mathbb{N}$, $\dim_{\text{FS}}^{(l)}(S_l(\alpha)) = 1$, and (by theorem 2.1) α is absolutely normal.

Theorem 3.4 There is an algorithm computing the first n bits of $S_2(\alpha)$ in time $n^2 \log^* n$, for α absolutely normal.

Proof. Let d be an exactly on-line $n^2 \log^* n$-computable martingale that is universal for all exactly on-line $O(n^2)$-computable martingales. Then any $x \not\in S^\infty[d]$ is on-line n^2-random.

We construct $x \not\in S^\infty[d]$ by martingale diagonalization in time $n^2 \log^* n$ for the first n bits of x.

References

