Construction of an absolutely normal real number in polynomial time

Elvira Mayordomo*

Abstract

We construct an absolutely normal number using time very close to quadratic in the number of output digits.

1 Warning

This proof is part of a joint paper with Jack H. Lutz on Alan Turing and normality. Therefore we don't include a proper introduction.

Strauss [10] proved that almost every real number that is computable in polynomial time is absolutely normal. The measure conservation theorem of resource-bounded measure [7] automatically derives from this proof explicit examples of absolutely normal numbers that are computable in polynomial time.

Very recently three efficient constructions of absolutely normal numbers have been obtained simultaneously, [1], [5], and this result.

2 Preliminaries

For any natural number $k \geq 2$, we let $\Sigma_k = \{0, \ldots, k-1\}$ be a k-symbol alphabet. Σ_k^* denotes the set of finite strings over alphabet Σ_k , Σ_k^{∞} denotes infinite sequences over alphabet Σ_k .

For $0 \leq i \leq j$, we write $x[i \dots j]$ for the string consisting of the *i*-th through the *j*-th symbols of *x*. We use λ for the empty string. **Definition.** Let $s \in [0, \infty)$.

^{*}Dept. de Informática e Ingeniería de Sistemas, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, SPAIN. elvira@unizar.es. Part of this work was done during a visit to the Isaac Newton Institute for Mathematical Sciences at the University of Cambridge. This work was supported by the Spanish Ministry of Economy and Competitiveness (Project TIN2011-27479-C04-01).

1. An s-gale on Σ_k is a function $d: \Sigma_k^* \to [0, \infty)$ satisfying

$$d(w) = k^{-s} \sum_{a \in \Sigma_k} d(wa)$$

for all $w \in \Sigma_k^*$.

2. A martingale is a 1-gale, that is, a function $d: \Sigma_k^* \to [0,\infty)$ satisfying

$$d(w) = \frac{\sum_{a \in \Sigma_k} d(wa)}{k}$$

for all $w \in \Sigma_k^*$.

Definition. Let $s \in [0, \infty)$ and d be an s-gale. We say that d succeeds on a sequence $S \in \Sigma_k^{\infty}$ if

$$\limsup_{n \to \infty} d(S[0 \dots n]) = \infty.$$

The success set of d is

$$S^{\infty}[d] = \{ S \in \Sigma_k^{\infty} \mid d \text{ succeeds on } S \}.$$

Definition. We say that a function $d : \Sigma_k^* \to [0, \infty) \cap \mathbb{Q}$ is exactly t(n)computable if d(w) is computable in time t(|w|).

Definition. We say that a function $d: \Sigma_k^* \to [0, \infty) \cap \mathbb{Q}$ is exactly on-line t(n)-computable if d(w) is computable in time t(|w|) and for every $w \in \Sigma_k^*$, $a \in \Sigma_k$, the computation of d(wa) starts with a computation of d(w). **Definition.** We say that an *s*-gale $d: \Sigma_k^* \to [0, \infty) \cap \mathbb{Q}$ is *FS*-computable if d(w) is computable by a finite-state gambler as defined in [4].

Definition. Let $X \subseteq \Sigma_k^{\infty}$, The on-line t(n)-dimension of X is

$$\dim_{\text{ol-}t(n)}(X) = \inf \left\{ s \in [0,\infty) \mid \begin{array}{c} \text{there is an exactly on-line} \\ O(t(n))\text{-computable } s\text{-gale } d \text{ s.t. } X \subseteq S^{\infty}[d] \end{array} \right\}$$

Definition. Let $X \subseteq \Sigma_k^{\infty}$, The FS-dimension of X is

$$\dim_{\mathrm{FS}}(X) = \inf \left\{ s \in [0,\infty) \mid \text{ there is a FS-computable s-gale } d \text{ s.t.} \right\}$$

We will use $\dim_{\Delta}^{(k)}(X)$ to refer to the Δ -dimension of $X \subseteq \Sigma_k^{\infty}$ when we want to stress that the underlying sequence space is Σ_k^{∞} .

Definition. Let $x \in \Sigma_k^{\infty}$, let $c \in \mathbb{N}$. We say that x is on-line n^c -random if no exactly on-line $O(n^c)$ -computable martingale succeeds on x.

For a complete introduction and motivation of effective dimension see [8].

2.1 Representations of Reals

We will use infinite sequences over Σ_k to represent real numbers in [0,1). For this, we associate each string $w \in \Sigma_k^*$ with the half-open interval $[w]_k$ defined by $[w]_k = [x, x + k^{-|w|})$, for $x = \sum_{i=1}^{|w|} w[i-1]k^{-i}$. Each real number $\alpha \in [0,1)$ is then represented by the unique sequence $S_k(\alpha) \in \Sigma_k^\infty$ satisfying

$$w \sqsubseteq S_k(\alpha) \iff \alpha \in [w]_k$$

for all $w \in \Sigma_k^*$. We have

$$\alpha = \sum_{i=1}^{\infty} S_k(\alpha)[i-1]k^{-i}$$

and the mapping $\alpha \mapsto S_k(\alpha)$ is a bijection from [0,1) to Σ_k^{∞} (notice that $[w]_k$ being half-open prevents double representations). If $x \in \Sigma_k^{\infty}$ then $real_k(x) = \alpha$ such that $x = S_k(\alpha)$. Therefore we always have that $real_k(S_k(\alpha)) = \alpha$ and $S_k(real_k(x)) = x$.

Definition. A number $\alpha \in [0, 1)$ is k-normal [2], if for every $w \in \Sigma_k^*$,

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ i < n \mid S_k(\alpha)[i..i + |w| - 1] = w \right\} \right| = k^{-|w|}$$

That is, α is k-normal if every string w has asymptotic frequency $k^{-|w|}$ in $S_k(\alpha)$.

Definition. A number $\alpha \in [0, 1)$ is absolutely normal [2], if for every $k \in \mathbb{N}$ α is k-normal. That is, α is absolutely normal if for every k, every string w has asymptotic frequency $k^{-|w|}$ in $S_k(\alpha)$.

The following theorem is proven in [3] and also follows from [9].

Theorem 2.1 A number $\alpha \in [0, 1)$ is k-normal if and only if $\dim_{FS}(S_k(\alpha)) = 1$.

3 Main result

In this section we prove or main result. We need the following lemma with the conversion of FS-gales on Σ_l to p-gales on Σ_k which is a careful generalization of lemma 3.1 in [6].

Lemma 3.1 Let $k, l \geq 2$, let $c \in \mathbb{N}$, let $s \in \mathbb{Q}$. For any FS-computable sgale d on Σ_l and rational s' > s, there is an exactly on-line $O(n^2)$ -computable s'-gale d' on Σ_k such that $\operatorname{real}_l(S^{\infty}[d])) \subseteq \operatorname{real}_k(S^{\infty}[d'])$. As a consequence we can compare FS and polynomial-time dimension for different representations of the same number.

Theorem 3.2 Let $\alpha \in [0, 1)$, let $k, l \geq 2$. Then

$$\dim_{ol-n^2}^{(k)}(S_k(\alpha)) \le \dim_{\mathrm{FS}}^{(l)}(S_l(\alpha)).$$

Theorem 3.3 Let $\alpha \in [0,1]$. If $S_2(\alpha)$ is on-line n^2 -random then α is absolutely normal.

Proof.

If $S_2(\alpha)$ is on-line n^2 -random then $\dim_{\text{ol-}n^2}^{(2)}(S_2(\alpha)) = 1$. By theorem 3.2, for every $l \in \mathbb{N}$, $\dim_{\text{FS}}^{(l)}(S_l(\alpha)) = 1$, and (by theorem 2.1) α is absolutely normal.

Theorem 3.4 There is an algorithm computing the first n bits of $S_2(\alpha)$ in time $n^2 \log^* n$, for α absolutely normal.

Proof. Let d be an exactly on-line $n^2 \log^* n$ -computable martingale that is universal for all exactly on-line $O(n^2)$ -computable martingales. Then any $x \notin S^{\infty}[d]$ is on-line n^2 -random.

We construct $x \notin S^{\infty}[d]$ by martingale diagonalization in time $n^2 \log^* n$ for the first n bits of x.

References

- [1] V. Becher, P. A. Heiber, and T. A. Slaman. A polynomial-time algorithm for computing absolutely normal numbers. Manuscript.
- [2] É. Borel. Sur les probabilités dénombrables et leurs applications arithmétiques. *Rend. Circ. Mat. Palermo*, 27:247–271, 1909.
- [3] C. Bourke, J. M. Hitchcock, and N. V. Vinodchandran. Entropy rates and finite-state dimension. *Theoretical Computer Science*, 349:392–406, 2005.
- [4] J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension. *Theoretical Computer Science*, 310:1–33, 2004.
- [5] S. Figueira and A. Nies. Feasible analysis and randomness. Manuscript.

- [6] J.M. Hitchcock and E. Mayordomo. Base invariance of feasible dimension. Manuscript, 2003.
- [7] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44(2):220–258, 1992.
- [8] J. H. Lutz. Effective fractal dimensions. *Mathematical Logic Quarterly*, 51:62–72, 2005.
- C.-P. Schnorr and H. Stimm. Endliche automaten und zufallsfolgen. Acta Informatica, 1:345–359, 1972.
- [10] M. J. Strauss. Normal numbers and sources for BPP. Theoretical Computer Science, 178:155–169, 1997.