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Abstract

We construct an absolutely normal number using time very close
to quadratic in the number of output digits.

1 Warning

This proof is part of a joint paper with Jack H. Lutz on Alan Turing and
normality. Therefore we don’t include a proper introduction.

Strauss [10] proved that almost every real number that is computable in
polynomial time is absolutely normal. The measure conservation theorem of
resource-bounded measure [7] automatically derives from this proof explicit
examples of absolutely normal numbers that are computable in polynomial
time.

Very recently three efficient constructions of absolutely normal numbers
have been obtained simultaneously, [1], [5], and this result.

2 Preliminaries

For any natural number k ≥ 2, we let Σk = {0, . . . , k − 1} be a k-symbol
alphabet. Σ∗k denotes the set of finite strings over alphabet Σk, Σ∞k denotes
infinite sequences over alphabet Σk.

For 0 ≤ i ≤ j, we write x[i . . . j] for the string consisting of the i-th
through the j-th symbols of x. We use λ for the empty string.
Definition. Let s ∈ [0,∞).
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1. An s-gale on Σk is a function d : Σ∗k → [0,∞) satisfying

d(w) = k−s
∑
a∈Σk

d(wa)

for all w ∈ Σ∗k.

2. A martingale is a 1-gale, that is, a function d : Σ∗k → [0,∞) satisfying

d(w) =

∑
a∈Σk

d(wa)

k

for all w ∈ Σ∗k.

Definition. Let s ∈ [0,∞) and d be an s-gale. We say that d succeeds on
a sequence S ∈ Σ∞k if

lim sup
n→∞

d(S[0 . . . n]) =∞.

The success set of d is

S∞[d] = {S ∈ Σ∞k | d succeeds on S}.

Definition. We say that a function d : Σ∗k → [0,∞) ∩ Q is exactly t(n)-
computable if d(w) is computable in time t(|w|).
Definition. We say that a function d : Σ∗k → [0,∞) ∩Q is exactly on-line
t(n)-computable if d(w) is computable in time t(|w|) and for every w ∈ Σ∗k,
a ∈ Σk, the computation of d(wa) starts with a computation of d(w).
Definition. We say that an s-gale d : Σ∗k → [0,∞) ∩Q is FS-computable
if d(w) is computable by a finite-state gambler as defined in [4].
Definition. Let X ⊆ Σ∞k , The on-line t(n)-dimension of X is

dimol-t(n)(X) = inf

{
s ∈ [0,∞)

∣∣∣∣ there is an exactly on-line
O(t(n))-computable s-gale d s.t. X ⊆ S∞[d]

}
Definition. Let X ⊆ Σ∞k , The FS-dimension of X is

dimFS(X) = inf

{
s ∈ [0,∞)

∣∣∣∣ there is a FS-computable s-gale d s.t.
X ⊆ S∞[d]

}
We will use dim

(k)
∆ (X) to refer to the ∆-dimension of X ⊆ Σ∞k when we

want to stress that the underlying sequence space is Σ∞k .
Definition. Let x ∈ Σ∞k , let c ∈ N. We say that x is on-line nc-random if
no exactly on-line O(nc)-computable martingale succeeds on x.

For a complete introduction and motivation of effective dimension see
[8].
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2.1 Representations of Reals

We will use infinite sequences over Σk to represent real numbers in [0,1).
For this, we associate each string w ∈ Σ∗k with the half-open interval [w]k

defined by [w]k = [x, x+k−|w|), for x =
∑|w|

i=1w[i−1]k−i. Each real number
α ∈ [0, 1) is then represented by the unique sequence Sk(α) ∈ Σ∞k satisfying

w v Sk(α) ⇐⇒ α ∈ [w]k

for all w ∈ Σ∗k. We have

α =
∞∑
i=1

Sk(α)[i− 1]k−i

and the mapping α 7→ Sk(α) is a bijection from [0, 1) to Σ∞k (notice that [w]k
being half-open prevents double representations). If x ∈ Σ∞k then realk(x) =
α such that x = Sk(α). Therefore we always have that realk(Sk(α)) = α
and Sk(realk(x)) = x.
Definition. A number α ∈ [0, 1) is k-normal [2], if for every w ∈ Σ∗k,

lim
n→∞

1

n

∣∣∣{i < n
∣∣∣ Sk(α)[i..i+ |w| − 1] = w

}∣∣∣ = k−|w|.

That is, α is k-normal if every string w has asymptotic frequency k−|w| in
Sk(α).
Definition. A number α ∈ [0, 1) is absolutely normal [2], if for every k ∈ N
α is k-normal. That is, α is absolutely normal if for every k, every string w
has asymptotic frequency k−|w| in Sk(α).

The following theorem is proven in [3] and also follows from [9].

Theorem 2.1 A number α ∈ [0, 1) is k-normal if and only if dimFS(Sk(α)) =
1.

3 Main result

In this section we prove or main result. We need the following lemma with
the conversion of FS-gales on Σl to p-gales on Σk which is a careful gener-
alization of lemma 3.1 in [6].

Lemma 3.1 Let k, l ≥ 2, let c ∈ N, let s ∈ Q. For any FS-computable s-
gale d on Σl and rational s′ > s, there is an exactly on-line O(n2)-computable
s′-gale d′ on Σk such that reall(S

∞[d])) ⊆ realk(S∞[d′]).
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As a consequence we can compare FS and polynomial-time dimension
for different representations of the same number.

Theorem 3.2 Let α ∈ [0, 1), let k, l ≥ 2. Then

dim
(k)
ol-n2(Sk(α)) ≤ dim

(l)
FS(Sl(α)).

Theorem 3.3 Let α ∈ [0, 1]. If S2(α) is on-line n2-random then α is abso-
lutely normal.

Proof.
If S2(α) is on-line n2-random then dim

(2)
ol-n2(S2(α)) = 1. By theorem 3.2,

for every l ∈ N, dim
(l)
FS(Sl(α)) = 1, and (by theorem 2.1) α is absolutely

normal.
�

Theorem 3.4 There is an algorithm computing the first n bits of S2(α) in
time n2 log∗ n, for α absolutely normal.

Proof. Let d be an exactly on-line n2 log∗ n-computable martingale that is
universal for all exactly on-line O(n2)-computable martingales. Then any
x 6∈ S∞[d] is on-line n2-random.

We construct x 6∈ S∞[d] by martingale diagonalization in time n2 log∗ n
for the first n bits of x.

�
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