Construction of an absolutely normal real number
in polynomial time

Elvira Mayordomo*

Abstract

We construct an absolutely normal number using time very close
to quadratic in the number of output digits.

1 Warning

This proof is part of a joint paper with Jack H. Lutz on Alan Turing and
normality. Therefore we don’t include a proper introduction.

Strauss [10] proved that almost every real number that is computable in
polynomial time is absolutely normal. The measure conservation theorem of
resource-bounded measure [7] automatically derives from this proof explicit
examples of absolutely normal numbers that are computable in polynomial
time.

Very recently three efficient constructions of absolutely normal numbers
have been obtained simultaneously, [1], [5], and this result.

2 Preliminaries

For any natural number k > 2, we let ¥ = {0,...,k — 1} be a k-symbol
alphabet. ;. denotes the set of finite strings over alphabet X, X7° denotes
infinite sequences over alphabet .

For 0 < ¢ < j, we write z[i...j] for the string consisting of the i-th
through the j-th symbols of x. We use A for the empty string.
Definition. Let s € [0, 00).
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1. An s-gale on 3, is a function d : ¥}, — [0, 00) satisfying

d(w) =k )" d(wa)

a€Xy
for all w € X3.

2. A martingale is a 1-gale, that is, a function d : ¥} — [0, 00) satisfying

d(wa
i) = S )

for all w € X3.
Definition. Let s € [0,00) and d be an s-gale. We say that d succeeds on

a sequence S € X7° if
limsup d(S]0...n]) = oco.

n—o0

The success set of d is

Sd] = {S € £3° | d succeeds on S}.

Definition. We say that a function d : ¥} — [0,00) N Q is exactly t(n)-
computable if d(w) is computable in time ¢(|w|).

Definition. We say that a function d : 3} — [0,00) N Q is exactly on-line
t(n)-computable if d(w) is computable in time ¢(Jw|) and for every w € X},
a € Xy, the computation of d(wa) starts with a computation of d(w).
Definition. We say that an s-gale d : ¥} — [0,00) N Q is FS-computable
if d(w) is computable by a finite-state gambler as defined in [4].
Definition. Let X C 32, The on-line t(n)-dimension of X is

dimg gy (X) = inf {3 € [0, 00) ’ there is an exactly on-line

Definition. Let X C X?2°, The FS-dimension of X is

dimps (X) = inf {s € [0, 00) there is a FS-computable s-gale d s.t. }

X C 5°]d]

We will use dim(Ak) (X) to refer to the A-dimension of X C 32° when we
want to stress that the underlying sequence space is 37°.
Definition. Let z € ¥7°, let ¢ € N. We say that z is on-line n®-random if
no exactly on-line O(n¢)-computable martingale succeeds on z.

For a complete introduction and motivation of effective dimension see

[8].

O(t(n))-computable s-gale d s.t. X C S*°[d]

}



2.1 Representations of Reals

We will use infinite sequences over X, to represent real numbers in [0,1).
For this, we associate each string w € 3} with the half-open interval [w]
defined by [w]y = [z, + k1), for z = Zyill w[i — 1]k, Each real number
a € [0,1) is then represented by the unique sequence Sy (a) € ¥7° satisfying

wC Sk(a) <= a € |w)

for all w € 37. We have

o0

a=> Sp(a)li— 1]k’

=1

and the mapping a — Si(«) is a bijection from [0, 1) to X2° (notice that [w]y,
being half-open prevents double representations). If x € ¥2° then realy(z) =
a such that © = Si(a). Therefore we always have that realy(Sk(a)) =
and Sk(realg(x)) = x.

Definition. A number « € [0,1) is k-normal [2], if for every w € X},

Qe

o1
lim —
n—oo n

{i <n ‘ Sp(a)i.i+ |w| — 1] = w}‘ = kIl

That is, o is k-normal if every string w has asymptotic frequency k="l in
Si(a).
Definition. A number « € [0, 1) is absolutely normal [2], if for every k € N
« is k-normal. That is, « is absolutely normal if for every k, every string w
has asymptotic frequency k=1l in Sy (a).

The following theorem is proven in [3] and also follows from [9].

Theorem 2.1 A number a € [0,1) is k-normal if and only if dimps(Sk(a)) =
1.

3 Main result

In this section we prove or main result. We need the following lemma with
the conversion of FS-gales on Y; to p-gales on X which is a careful gener-
alization of lemma 3.1 in [6].

Lemma 3.1 Let k,l > 2, let c € N, let s € Q. For any FS-computable s-
gale d on ¥y and rational s' > s, there is an exactly on-line O(n?)-computable
§'-gale d' on Xy such that real;(S*°[d])) C realy(S>[d']).



As a consequence we can compare FS and polynomial-time dimension
for different representations of the same number.

Theorem 3.2 Let o € [0,1), let k,1 > 2. Then

dim™) ,(Sk(@)) < dimpd(Si(a)).
Theorem 3.3 Let o € [0,1]. If Sa(a) is on-line n?-random then « is abso-
lutely normal.

Proof.
If So() is on-line n2-random then dim® (S2(cr)) = 1. By theorem 3.2,

ol-n2
for every | € N, dimg%(Sl(a)) =1, and (by theorem 2.1) « is absolutely
normal.
O

Theorem 3.4 There is an algorithm computing the first n bits of So(a) in
time n?log* n, for a absolutely normal.

Proof. Let d be an exactly on-line n? log* n-computable martingale that is
universal for all exactly on-line O(n?)-computable martingales. Then any
x & S°[d] is on-line n2-random.
We construct ¢ S°°[d] by martingale diagonalization in time n?log* n
for the first n bits of x.
O
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