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1. Introduction Lutz [6] has proven that
.. K(A[0..n — 1)) :
Lutz [7] has recently developed a constructive lIMinf - . < dim(A)
version of Hausdorff dimension, usi_ng it_to as_sign _ K (A[O..n — 1])
to every sequencel € C a constructive dimension < limsup——
n— o0

dim(A) € [0, 1]. Classical Hausdorff dimension [3] ) o
is an augmentation of Lebesgue measure, and in theStaiger [9,10] and Ryabko [8] study similar inequal-
same way constructive dimension augments Martin— ities for classical Hausdorff dimension and for com-
L6f randomness. All Martin—Lof random sequences Putable martingales. o

have constructive dimension 1, while in the case of e obtain the following full characterization of
non-random sequences a finer distinction is obtained. constructive dimension in terms of algorithmic infor-
Martin—L6f randomness has a useful interpretation Mation content. For every sequentge

in terms of information content, since a sequerce di imin K(A[0..n — 1))

is random if and only if there is a constantsuch im(4) = Imm n )

that

K(A[0.n—1])>n—c, 2. Preliminaries

where K is the usual self-delimiting Kolmogorov We work in the Cantor spac€ consisting of
complexity. Here we characterize constructive dimen- || infinite binary sequences. Thebit prefix of a
sion using Kolmogorov complexity. sequenced € C is the stringA[0..n — 1] € {0, 1}*

consisting of the firsk bits of A. We denote by: C v

— ‘ _ the fact that a string is a proper prefix of a string.
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Definition 2.1. Let f : D — R be a function, wher®
is {0, 1}* or N. f is upper semicomputablgits upper
graph

Graph' (f) ={(x,s) e Dx Q| s> f(x)}

is recursively enumerablé¢. is lower semicomputable
if its lower graph

Graph™ (f) ={(x,s) e D x Q| s < f(x)}

is recursively enumerable.

We give a quick summary of constructive dimen-
sion. The reader is referred to [7,5] for a complete in-
troduction and historical references and to Falconer [2]
for a good overview of classical Hausdorff dimension.

Definition 2.2. Let s € [0, 00).

e An s-supergalds a functiond : {0, 1}* — [0, co)
that satisfies the condition

dlw)>2"° [d(wO) + d(wl)] (%)

forall w € {0, 1}*.

e An s-galeis ans-supergale that satisfies)(with
equality for allw € {0, 1}*.

e A martingaleis a 1-gale.

e We say that anv-supergaled succeed®n a se-
quenced € Ciflimsup,_, . d(A[O..n — 1]) = oo.

e Thesuccess seatf an s-supergalel is S*°[d] =
{A € C|d succeeds o }.

Definition 2.3. Let X C C.

e G(X) isthe set of alk € [0, c0) such that there is
g\ns-galed for which X C §*°[d].

e G(X) isthe set of alk € [0, c0) such that there is
ans-supergale/ for which X € §%°[d].

e Geonst(X) is the set of alls € [0, c0) such that
there is a lower semicomputablesupergalel for
which X C §*°[d].

e The Hausdorff dimensiorof X is dimy(X) =
infG(X) = infG(X). This is equivalent to the
classical definition by Theorem 3.10 of [5].

° TheAconstructive dimensionf X is cdim(X) =
inf Geonst(X).

e Theconstructive dimensioaf a sequencel € C
is dim(A) = cdim({A}).

3. Main theorem

Theorem 3.1. For every sequencé € C,
K(A[0.n—1
dim() < liminf £A0-1 = 1D
n—00 n

Proof. Let A € C. Let s ands’ be rational numbers
such that

. .  K(A[0.n—-1
s >s' > liminf M

n—o00 n

Let
B={xe{0,1}*| K(x) <s'|x|}.

Note that B is recursively enumerable. By Theo-
rem 3.3.1 in [4] we have thatB="| < 28— K(m+c
for a constantc and for everyn € N. We define
d:{0,1}* — [0, c0) as follows.

d(w) = 2(s—s")w]

8 ( Yooy Y 2<s/—1><|w|—|v|)>_

wueB veB,vCw

It can be shown that/ is well defined (1) <
Y-, 27 Km+e £ 2¢ py the Kraft inequality).d is an
s-gale, andd is lower semicomputable (sind@ was
recursively enumerable). For eaeh € B, d(w) >
2=l There exist infinitely many: for which
A[O0..n — 1] € B, so it follows thatA € S*°[d] and
dim(A) < s. Since this holds for each rational

s > liminf £ A0 = 1D

n—o00 n

we have proven the theoremO

Corollary 3.2. For every sequencé € C,
K(A[0.n—1
dim(4) = liminf X AL = 1D
n—oo n
Proof. The proof follows from Theorem 3.1 above
and Theorem 4.13in [6]. O

Using this characterization we generalize Chait-
in’s 2 construction [1] to obtain new examples of se-
quences of arbitrary dimension (provided that the di-
mension is a lower semicomputable real number) that
are computable relative to a recursively enumerable
set.
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Corollary 3.3. Let s € [0,1] be a computable real

number, letA be an infinite recursively enumerable set

of strings, and letV be a universal Turing machine.
Let 03 be the infinite binary representatigqithout
infinitely many consecutive trailing zejosf the real
numbery_ ;)4 2775 Thendim(6}) =s.

Proof. We prove that there are constantd such that
foreachk e N, sk —c < K(03[0..k — 1]) < sk +d.

Let A, s, andU be as above. Lét € N. The finite
setX, ={p||pl < sk, U(p) € A} can be computed
from the stringf;[0..k — 1], since §3[0..k — 1] <
0% < 03[0.k—1]+ 27k FromX; we can compute an
xr € A with K (xi) > sk. Therefore there is a constant
¢ such that

sk < K (xp) < K(03[0.k —1]) + ¢

andsk — ¢ < K(63[0..k — 1]) for everyk.

For the other inequality, note that for eakle N,
the stringd; [0..k — 1] can be computed from the car-
dinal of the setX; = {p | |p| < sk, U(p) € A}, there-
fore there is a constantsuch thatk (67, [0..k — 1]) <
sk+d.

By Corollary 3.2, dint03) =s. O
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