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1. Introduction

Lutz [7] has recently developed a constructive
version of Hausdorff dimension, using it to assign
to every sequenceA ∈ C a constructive dimension
dim(A) ∈ [0,1]. Classical Hausdorff dimension [3]
is an augmentation of Lebesgue measure, and in the
same way constructive dimension augments Martin–
Löf randomness. All Martin–Löf random sequences
have constructive dimension 1, while in the case of
non-random sequences a finer distinction is obtained.
Martin–Löf randomness has a useful interpretation
in terms of information content, since a sequenceA

is random if and only if there is a constantc such
that

K
(
A[0..n − 1]) � n − c,

where K is the usual self-delimiting Kolmogorov
complexity. Here we characterize constructive dimen-
sion using Kolmogorov complexity.
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Lutz [6] has proven that

lim inf
n→∞

K(A[0..n − 1])
n

� dim(A)

� lim sup
n→∞

K(A[0..n− 1])
n

.

Staiger [9,10] and Ryabko [8] study similar inequal-
ities for classical Hausdorff dimension and for com-
putable martingales.

We obtain the following full characterization of
constructive dimension in terms of algorithmic infor-
mation content. For every sequenceA,

dim(A) = lim inf
n→∞

K(A[0..n − 1])
n

.

2. Preliminaries

We work in the Cantor spaceC consisting of
all infinite binary sequences. Then-bit prefix of a
sequenceA ∈ C is the stringA[0..n − 1] ∈ {0,1}∗
consisting of the firstn bits of A. We denote byu ❁ v

the fact that a stringu is a proper prefix of a stringv.
The definition and basic properties of Kolmogorov

complexityK(x), can be found in the book by Li and
Vitányi [4].
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Definition 2.1. Let f :D → R be a function, whereD
is {0,1}∗ or N. f is upper semicomputableif its upper
graph

Graph+(f ) = {
(x, s) ∈ D × Q

∣∣ s > f (x)
}

is recursively enumerable.f is lower semicomputable
if its lower graph

Graph−(f ) = {
(x, s) ∈ D × Q

∣∣ s < f (x)
}

is recursively enumerable.

We give a quick summary of constructive dimen-
sion. The reader is referred to [7,5] for a complete in-
troduction and historical references and to Falconer [2]
for a good overview of classical Hausdorff dimension.

Definition 2.2. Let s ∈ [0,∞).

• An s-supergaleis a functiond : {0,1}∗ → [0,∞)

that satisfies the condition

d(w) � 2−s
[
d(w0) + d(w1)

]
(∗)

for all w ∈ {0,1}∗.
• An s-gale is ans-supergale that satisfies (∗) with

equality for allw ∈ {0,1}∗.
• A martingaleis a 1-gale.
• We say that ans-supergaled succeedson a se-

quenceA ∈ C if lim supn→∞ d(A[0..n − 1]) = ∞.
• The success setof an s-supergaled is S∞[d] =

{A ∈ C | d succeeds onA}.

Definition 2.3. Let X ⊆ C.

• G(X) is the set of alls ∈ [0,∞) such that there is
ans-galed for whichX ⊆ S∞[d].

• Ĝ(X) is the set of alls ∈ [0,∞) such that there is
ans-supergaled for whichX ⊆ S∞[d].

• Ĝconstr(X) is the set of alls ∈ [0,∞) such that
there is a lower semicomputables-supergaled for
whichX ⊆ S∞[d].

• The Hausdorff dimensionof X is dimH(X) =
inf G(X) = inf Ĝ(X). This is equivalent to the
classical definition by Theorem 3.10 of [5].

• The constructive dimensionof X is cdim(X) =
inf Ĝconstr(X).

• Theconstructive dimensionof a sequenceA ∈ C
is dim(A) = cdim({A}).

3. Main theorem

Theorem 3.1. For every sequenceA ∈ C,

dim(A) � lim inf
n→∞

K(A[0..n− 1])
n

.

Proof. Let A ∈ C. Let s and s′ be rational numbers
such that

s > s′ > lim inf
n→∞

K(A[0..n − 1])
n

.

Let

B = {
x ∈ {0,1}∗ ∣∣ K(x) � s′|x|}.

Note that B is recursively enumerable. By Theo-
rem 3.3.1 in [4] we have that|B=n| � 2s ′n−K(n)+c

for a constantc and for everyn ∈ N. We define
d : {0,1}∗ → [0,∞) as follows.

d(w) = 2(s−s ′)|w|

×
( ∑

wu∈B

2−s ′|u| +
∑

v∈B,v❁w

2(s ′−1)(|w|−|v|)
)

.

It can be shown thatd is well defined (d(λ) �∑
n 2−K(n)+c � 2c by the Kraft inequality),d is an

s-gale, andd is lower semicomputable (sinceB was
recursively enumerable). For eachw ∈ B, d(w) �
2(s−s ′)|w|. There exist infinitely manyn for which
A[0..n − 1] ∈ B, so it follows thatA ∈ S∞[d] and
dim(A) � s. Since this holds for each rational

s > lim inf
n→∞

K(A[0..n− 1])
n

we have proven the theorem.✷
Corollary 3.2. For every sequenceA ∈ C,

dim(A) = lim inf
n→∞

K(A[0..n − 1])
n

.

Proof. The proof follows from Theorem 3.1 above
and Theorem 4.13 in [6]. ✷

Using this characterization we generalize Chait-
in’s Ω construction [1] to obtain new examples of se-
quences of arbitrary dimension (provided that the di-
mension is a lower semicomputable real number) that
are computable relative to a recursively enumerable
set.
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Corollary 3.3. Let s ∈ [0,1] be a computable real
number, letA be an infinite recursively enumerable set
of strings, and letU be a universal Turing machine.
Let θs

A be the infinite binary representation(without
infinitely many consecutive trailing zeros) of the real
number

∑
U(p)∈A 2−|p|/s . Thendim(θs

A) = s.

Proof. We prove that there are constantsc, d such that
for eachk ∈ N, sk − c � K(θs

A[0..k − 1]) � sk + d .
Let A, s, andU be as above. Letk ∈ N. The finite

setXk = {p | |p| < sk, U(p) ∈ A} can be computed
from the stringθs

A[0..k − 1], since θs
A[0..k − 1] <

θs
A < θs

A[0..k −1]+2−k. FromXk we can compute an
xk ∈ A with K(xk) � sk. Therefore there is a constant
c such that

sk � K(xk) � K
(
θs
A[0..k − 1]) + c

andsk − c � K(θs
A[0..k − 1]) for everyk.

For the other inequality, note that for eachk ∈ N,
the stringθs

A[0..k − 1] can be computed from the car-
dinal of the setXk = {p | |p| < sk, U(p) ∈ A}, there-
fore there is a constantd such thatK(θs

A[0..k − 1]) �
sk + d .

By Corollary 3.2, dim(θs
A) = s. ✷
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