

Information Processing Letters 84 (2002) 1-3

Information Processing Letters

www.elsevier.com/locate/ipl

A Kolmogorov complexity characterization of constructive Hausdorff dimension $\stackrel{\text{\tiny{themselve}}}{\longrightarrow}$

Elvira Mayordomo

Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, 50015 Zaragoza, Spain

Received 20 July 2001; received in revised form 3 June 2002

Communicated by P.M.B. Vitányi

Keywords: Kolmogorov complexity; Information theory; Hausdorff dimension; Theory of computation

1. Introduction

Lutz [7] has recently developed a constructive version of Hausdorff dimension, using it to assign to every sequence $A \in \mathbf{C}$ a constructive dimension $\dim(A) \in [0, 1]$. Classical Hausdorff dimension [3] is an augmentation of Lebesgue measure, and in the same way constructive dimension augments Martin-Löf randomness. All Martin-Löf random sequences have constructive dimension 1, while in the case of non-random sequences a finer distinction is obtained. Martin-Löf randomness has a useful interpretation in terms of information content, since a sequence Ais random if and only if there is a constant c such that

$$K(A[0..n-1]) \ge n-c,$$

where K is the usual self-delimiting Kolmogorov complexity. Here we characterize constructive dimension using Kolmogorov complexity.

Lutz [6] has proven that

$$\liminf_{n \to \infty} \frac{K(A[0..n-1])}{n} \leq \dim(A)$$
$$\leq \limsup_{n \to \infty} \frac{K(A[0..n-1])}{n}.$$

Staiger [9,10] and Ryabko [8] study similar inequalities for classical Hausdorff dimension and for computable martingales.

We obtain the following full characterization of constructive dimension in terms of algorithmic information content. For every sequence A,

$$\dim(A) = \liminf_{n \to \infty} \frac{K(A[0..n-1])}{n}$$

2. Preliminaries

We work in the Cantor space C consisting of all infinite binary sequences. The n-bit prefix of a sequence $A \in \mathbb{C}$ is the string $A[0..n-1] \in \{0,1\}^*$ consisting of the first *n* bits of *A*. We denote by $u \sqsubset v$ the fact that a string u is a proper prefix of a string v.

The definition and basic properties of Kolmogorov complexity K(x), can be found in the book by Li and Vitányi [4].

^{*} This research was supported in part by Spanish Government MEC projects PB98-0937-C04-02 and TIC98-0973-C03-02. It was done while visiting Iowa State University.

E-mail address: elvira@posta.unizar.es (E. Mayordomo).

^{0020-0190/02/\$ -} see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0020-0190(02)00343-5

Definition 2.1. Let $f: D \to \mathbb{R}$ be a function, where *D* is $\{0, 1\}^*$ or \mathbb{N} . *f* is *upper semicomputable* if its upper graph

$$Graph^+(f) = \{(x, s) \in D \times \mathbb{Q} \mid s > f(x)\}$$

is recursively enumerable. f is *lower semicomputable* if its lower graph

$$Graph^{-}(f) = \{(x, s) \in D \times \mathbb{Q} \mid s < f(x)\}$$

is recursively enumerable.

We give a quick summary of constructive dimension. The reader is referred to [7,5] for a complete introduction and historical references and to Falconer [2] for a good overview of classical Hausdorff dimension.

Definition 2.2. Let $s \in [0, \infty)$.

An *s*-supergale is a function *d*: {0, 1}* → [0, ∞) that satisfies the condition

$$d(w) \ge 2^{-s} \left[d(w0) + d(w1) \right] \tag{(*)}$$

for all $w \in \{0, 1\}^*$.

- An *s*-gale is an *s*-supergale that satisfies (*) with equality for all $w \in \{0, 1\}^*$.
- A martingale is a 1-gale.
- We say that an *s*-supergale *d* succeeds on a sequence $A \in \mathbb{C}$ if $\limsup_{n \to \infty} d(A[0..n-1]) = \infty$.
- The success set of an s-supergale d is $S^{\infty}[d] = \{A \in \mathbb{C} \mid d \text{ succeeds on } A\}.$

Definition 2.3. Let $X \subseteq \mathbf{C}$.

- $\mathcal{G}(X)$ is the set of all $s \in [0, \infty)$ such that there is an *s*-gale *d* for which $X \subseteq S^{\infty}[d]$.
- $\widehat{\mathcal{G}}(X)$ is the set of all $s \in [0, \infty)$ such that there is an *s*-supergale *d* for which $X \subseteq S^{\infty}[d]$.
- $\widehat{\mathcal{G}}_{\text{constr}}(X)$ is the set of all $s \in [0, \infty)$ such that there is a lower semicomputable *s*-supergale *d* for which $X \subseteq S^{\infty}[d]$.
- The Hausdorff dimension of X is $\dim_{\mathrm{H}}(X) = \inf \mathcal{G}(X) = \inf \widehat{\mathcal{G}}(X)$. This is equivalent to the classical definition by Theorem 3.10 of [5].
- The constructive dimension of X is $\operatorname{cdim}(X) = \inf \widehat{\mathcal{G}}_{\operatorname{constr}}(X)$.
- The *constructive dimension* of a sequence *A* ∈ C is dim(*A*) = cdim({*A*}).

3. Main theorem

Theorem 3.1. For every sequence $A \in \mathbf{C}$,

$$\dim(A) \leqslant \liminf_{n \to \infty} \frac{K(A[0..n-1])}{n}.$$

Proof. Let $A \in \mathbb{C}$. Let *s* and *s'* be rational numbers such that

$$s > s' > \liminf_{n \to \infty} \frac{K(A[0..n-1])}{n}.$$

Let

$$B = \{ x \in \{0, 1\}^* \mid K(x) \leq s' |x| \}.$$

Note that *B* is recursively enumerable. By Theorem 3.3.1 in [4] we have that $|B^{=n}| \leq 2^{s'n-K(n)+c}$ for a constant *c* and for every $n \in \mathbb{N}$. We define $d: \{0, 1\}^* \to [0, \infty)$ as follows.

$$d(w) = 2^{(s-s')|w|} \times \bigg(\sum_{wu \in B} 2^{-s'|u|} + \sum_{v \in B, v \sqsubset w} 2^{(s'-1)(|w|-|v|)} \bigg).$$

It can be shown that *d* is well defined $(d(\lambda) \leq \sum_{n} 2^{-K(n)+c} \leq 2^{c}$ by the Kraft inequality), *d* is an *s*-gale, and *d* is lower semicomputable (since *B* was recursively enumerable). For each $w \in B$, $d(w) \geq 2^{(s-s')|w|}$. There exist infinitely many *n* for which $A[0..n-1] \in B$, so it follows that $A \in S^{\infty}[d]$ and dim $(A) \leq s$. Since this holds for each rational

$$s > \liminf_{n \to \infty} \frac{K(A[0..n-1])}{n}$$

we have proven the theorem. \Box

Corollary 3.2. For every sequence $A \in \mathbf{C}$,

$$\dim(A) = \liminf_{n \to \infty} \frac{K(A[0..n-1])}{n}$$

Proof. The proof follows from Theorem 3.1 above and Theorem 4.13 in [6]. \Box

Using this characterization we generalize Chaitin's Ω construction [1] to obtain new examples of sequences of arbitrary dimension (provided that the dimension is a lower semicomputable real number) that are computable relative to a recursively enumerable set. **Corollary 3.3.** Let $s \in [0, 1]$ be a computable real number, let A be an infinite recursively enumerable set of strings, and let U be a universal Turing machine. Let θ_A^s be the infinite binary representation (without infinitely many consecutive trailing zeros) of the real number $\sum_{U(p) \in A} 2^{-|p|/s}$. Then dim $(\theta_A^s) = s$.

Proof. We prove that there are constants *c*, *d* such that for each $k \in \mathbb{N}$, $sk - c \leq K(\theta_A^s[0..k - 1]) \leq sk + d$.

Let *A*, *s*, and *U* be as above. Let $k \in \mathbb{N}$. The finite set $X_k = \{p \mid |p| < sk, U(p) \in A\}$ can be computed from the string $\theta_A^s[0..k - 1]$, since $\theta_A^s[0..k - 1] < \theta_A^s < \theta_A^s[0..k - 1] + 2^{-k}$. From X_k we can compute an $x_k \in A$ with $K(x_k) \ge sk$. Therefore there is a constant *c* such that

 $sk \leq K(x_k) \leq K(\theta_A^s[0..k-1]) + c$

and $sk - c \leq K(\theta_A^s[0..k - 1])$ for every k.

For the other inequality, note that for each $k \in \mathbb{N}$, the string $\theta_A^s[0..k-1]$ can be computed from the cardinal of the set $X_k = \{p \mid |p| < sk, U(p) \in A\}$, therefore there is a constant *d* such that $K(\theta_A^s[0..k-1]) \leq sk + d$.

By Corollary 3.2, $\dim(\theta_A^s) = s$. \Box

Acknowledgements

I thank Jack Lutz for very helpful discussions and an anonymous referee for helpful suggestions and pointers to the literature.

References

- G.J. Chaitin, Algorithmic Information Theory, Cambridge University Press, New York, 1987.
- [2] K. Falconer, The Geometry of Fractal Sets, Cambridge University Press, New York, 1985.
- [3] F. Hausdorff, Dimension und äußeres Maß, Math. Ann. 79 (1919) 157–179.
- [4] M. Li, P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and its Applications, 2nd edn., Springer, Berlin, 1997.
- [5] J.H. Lutz, Dimension in complexity classes, in: Proceedings of the 15th Annual IEEE Conference on Computational Complexity, IEEE Computer Society Press, 2000, pp. 158–169, Technical Report cs.CC/0203017, ACM Computing Research Repository.
- [6] J.H. Lutz, Gales and the constructive dimension of individual sequences, in: Proceedings of the 27th Colloquium on Automata, Languages and Programming, in: Lecture Notes in Computer Science, Springer, Berlin, 2000, pp. 902–913.
- [7] J.H. Lutz, The dimensions of individual strings and sequences, Technical Report cs.CC/0203017, ACM Computing Research Repository, 2002, Submitted.
- [8] B.Ya. Ryabko, The complexity and effectiveness of prediction problems, J. Complexity 10 (1994) 281–295.
- [9] L. Staiger, Kolmogorov complexity and Hausdorff dimension, Inform. and Comput. 102 (1993) 159–194.
- [10] L. Staiger, A tight upper bound on Kolmogorov complexity and uniformly optimal prediction, Theory Comput. Systems 31 (1998) 215–229.