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Figure 1: We propose a novel method for intrinsic video decomposition, which exhibits excellent temporal coherence. Additionally, we show
a varied number of related applications such as video segmentation, color transfer, stylization, recolorization, and material editing (the last
three included in this image). Please refer to the accompanying video for these and all the other results shown in the paper.

Abstract

We present a method to decompose a video into its intrinsic com-
ponents of reflectance and shading, plus a number of related ex-
ample applications in video editing such as segmentation, styliza-
tion, material editing, recolorization and color transfer. Intrinsic
decomposition is an ill-posed problem, which becomes even more
challenging in the case of video due to the need for temporal co-
herence and the potentially large memory requirements of a global
approach. Additionally, user interaction should be kept to a min-
imum in order to ensure efficiency. We propose a probabilistic
approach, formulating a Bayesian Maximum a Posteriori problem
to drive the propagation of clustered reflectance values from the
first frame, and defining additional constraints as priors on the re-
flectance and shading. We explicitly leverage temporal information
in the video by building a causal-anticausal, coarse-to-fine iterative
scheme, and by relying on optical flow information. We impose no
restrictions on the input video, and show examples representing a
varied range of difficult cases. Our method is the first one designed
explicitly for video; moreover, it naturally ensures temporal con-
sistency, and compares favorably against the state of the art in this
regard.
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1 Introduction

Decomposing an image into its intrinsic shading and reflectance
layers is an ill-conditioned problem with direct applications in com-
puter graphics and image processing, such as retexturing and re-
lighting. In the past few years there have been numerous works
tackling this problem from different angles. Some propose fully
automatic methods from single images [Tappen et al. 2005; Garces
et al. 2012], or rely on user annotations [Bousseau et al. 2009;
Shen et al. 2011]. Others leverage information from multiple im-
ages [Laffont et al. 2012] or time-lapse sequences [Weiss 2001;
Sunkavalli et al. 2007]. Nevertheless, the problem of decompos-
ing a video shot into its intrinsic components remains unexplored.

Intrinsic video decomposition is particularly challenging, since
temporal coherence must be preserved, even in the presence of dy-
namic lighting or occluded surfaces coming into view due to ob-
ject or camera motion. Naively applying any existing intrinsic im-
ages algorithm to every individual frame yields poor results, due to
the extremely ill-posed nature of the problem and the lack of built-
in temporal coherence. Solving the problem on a few keyframes
and then interpolating also leads to bad results, since there is no
guarantee that resulting reflectance values will be coherent across
keyframes. Last, trying to solve the problem globally for the whole
sequence would be impractical due to large memory requirements.
Another possible approach would be to rely on video segmenta-
tion: however, given the rich complexity of video shots, no existing
algorithm can guarantee a reliable temporal coherent segmentation.
Instead, we focus on an accurate and efficient propagation of the re-
flectance from an initial intrinsic decomposition on the first frame.

Propagating reflectance is different from other propagation ap-
proaches (such as video colorization) given the impossibility of
building a reliable feature space: The information we wish to prop-
agate (reflectance) is not explicitly coded in the RGB values of the
frames and, as we argued, obtaining it on a per-frame basis lead-
s to disturbing flickering artifacts. Instead, we propose a relaxed
propagation approach based on a Bayesian framework and solve a
Maximum A Posteriori (MAP) problem. To avoid accumulation
errors, we define a local confidence threshold and stop the propa-
gation when the number of unreliable pixels surpasses it. We then
leverage shading information to complete the reflectance layer at
the stopping frame, and propagate backwards. We iterate this pro-
cess using a coarse-to-fine approach.
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Our approach has the following desirable characteristics: 1) it is
efficient, since at each step it only uses information from the cur-
rent and previous frame; 2) it takes advantage of information in the
temporal dimension given its causal-anticausal scheme; 3) it is tem-
porally stable; 4) it leverages the characteristics of intrinsic images,
both from reflectance and shading; and 5) it keeps cumbersome us-
er interaction to a minimum (most of the results shown in this paper
are fully automatic, while a few others required a few scribbles on
the first frame only). Additionally, we show some video editing
applications of our work, including segmentation, recolorization,
color transfer, stylization and material editing.

2 Related work

Intrinsic image decomposition from a single image Automat-
ic decomposition of a single image into its intrinsic components
usually relies on Retinex theory [Land and McCann 1971], by ana-
lyzing local pixel derivatives, to distinguish a change in reflectance
from a change of shading [Tappen et al. 2005]. Some methods
add priors to a Retinex-based framework, either on the illumina-
tion, the reflectance, or both [Jiang et al. 2010; Gehler et al. 2011;
Shen and Yeo 2011]. Garces et al. [2012] build clusters of similar
chromaticity, from which connections and constraints are defined.
Inspired by this, we work on a simplified cluster space of similar
reflectance, obtained from an initial single-frame decomposition.
Lombardi and Nishino [2012] introduce a probabilistic formulation
with data-driven and entropy constraints, but the method is limited
to obtaining the reflectance of single objects with homogeneous ma-
terials. A recent work by Zhao et al. [2012], building on the work
by Shen et al. [2008], formulates Retinex as a linear optimization,
forcing distant pixels with the same texture to have the same re-
flectance. A different set of techniques rely on user intervention to
constrain the problem by specifying sparse sets of pixels with sim-
ilar properties [Bousseau et al. 2009; Shen et al. 2011]. Applying
any of these techniques on each frame of a video causes disturbing
flickering artifacts, due to the lack of built-in temporal coherence
mechanisms.

Intrinsic image decomposition from multiple images A few
methods try to leverage information from multiple images of the
same static scene, and analyze pixel variations under varying illu-
mination [Weiss 2001; Hauagge et al. 2013]. A more flexible so-
lution is given by Laffont et al. [2012], which reconstructs a point-
based 3D representation of the scene. Similarly, Liu et al. [2008]
use several images of the same scene with the purpose of image col-
orization. Different from these techniques, our method is designed
to work on video sequences, where the key simplifying assumption
of a static scene no longer holds.

Intrinsic video decomposition The most similar approach to
ours is the work of Yan et al. [2010]. The authors rely on per frame
intrinsic decomposition in local regions, in order to re-texture spe-
cific objects in a video. However, editing a complete video this
way would again produce temporal inconsistencies. Specific intrin-
sic video has only recently been done by Lee et al. [2012], but it
requires additional depth information from Kinect. Matsushita et
al. [2004] use a simpler approach where the goal is only to elim-
inate shadows in open scenes, as a pre-processing step for video
surveillance, and not to produce a complete intrinsic decomposi-
tion. Finally, the heuristic approach of Sunkavalli et al. [2007]
decompose a time-lapse sequence into its intrinsic components as-
suming certain properties of the sky light of the scene. The method
works well on static images, but is not able to cope with camera
movements.

Video colorization Colorization algorithms are also somewhat
related to our problem [Levin et al. 2004; Yatziv and Sapiro 2006;
Bhat et al. 2010; Oskam et al. 2012]. However, better results can be
obtained for such a task if the intrinsic components are available,
where shading information does not interfere in the process. More-
over, these methods usually require user input every few frames; in
contrast, our method is fully automatic in most sequences, requiring
at most minimal user input only on the first frame.

Temporal consistency Guaranteeing temporal consisten-
cy across frames is a challenge for video editing algorithms.
Paris [2008] combines isotropic diffusion and Gaussian convolu-
tion to adapt classical algorithms like mean shift segmentation or
bilateral filtering to video streams. Farbman and Lischinski [2011]
propagate values using a combined technique of optical flow and
interpolation, for the purpose of tonal stabilization. Recently,
Bonneel et al. [2013] applied curvature-flow smoothing in the
space of color transformations to transfer color palettes between
videos. These techniques are adapted to the particular problems
they address, and cannot be easily modified for our purposes.
Last, Lang et al. [2012] propose an efficient framework to enforce
temporal smoothness across frames. They approximate a global
optimization, and show very good results for applications such as
disparity estimation, depth upsampling or colorization. However,
even after a decent amount of scribbles and parameter tuning,
there is an inherent trade-off between the spatial filtering necessary
to perform temporal filtering. For the case of intrinsic video,
given the large variability across frames of the individual intrinsic
decompositions, this causes clear ghosting artifacts, as Figure 11
shows.

3 Overview

Let ft(t = 0, 1...) be the frames of an input video sequence, with
color values Ip,t for each pixel p in each time step t. At each frame,
the intrinsic decomposition problem can be formulated as finding
the reflectance Rp,t and shading Sp,t layers that satisfy:

Ip,t = Rp,t × Sp,t (1)

where × denotes per-channel multiplication. The great challenge
lies in ensuring temporal coherence of the results, while avoiding
the huge memory requirements that analyzing the video as a whole
would impose.

We first obtain the reflectance-shading decomposition of the first
frame, and obtain clusters of similar reflectance. We then formulate
a probabilistic framework that allows us to propagate reflectance
values along the frames of the video. In particular, we solve a
Maximum A Posteriori (MAP) problem, using a smoothness pri-
or and imposing additional constraints to ensure robustness in the
results. At each step, we only propagate values above a certain
confidence threshold, and stop the propagation when the number
of unknown pixels becomes significant. We follow a coarse-to-
fine approach, and perform a local decomposition at the stopping
frame, using known reflectance values as constraints, and proceed
to propagate the new values backward in time. This combined
propagation-completion, forward-backward approach allows us to
deal with challenging cases like occluded objects.

This process is iterated three times. Last, we apply a smoothness
constraint on the shading on the few remaining unassigned pixels,
from which we derive the missing reflectance values by simple di-
vision. The algorithm then begins again the propagation in a similar
manner from the last processed frame, until a new stopping frame
is found or the whole sequence is processed. Figure 2 and Algo-
rithm 1 show an overview.
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Figure 2: Overview of our algorithm. We first decompose the ini-
tial frame into its intrinsic components. To reduce inconsistencies,
we first cluster the initial reflectance values (Section 4). A forward-
backward loop propagates this clustered reflectance in the temporal
domain, leaving out unreliable pixels (Section 5). After this prop-
agation step, some pixels may still remain unassigned; we rely on
Retinex theory to apply shading constraints, thus obtaining the final
result (Section 6).

4 Initial decomposition and clustering

We first aim to find a clustered reflectance decomposition on the
first frame, which will be the input to our probabilistic propaga-
tion framework. Given the ill-posed nature of the problem, we
need a flexible approach that produces good results automatical-
ly, while allowing a certain amount of user interaction to improve
the results if needed. We base our approach on a common Retinex
formulation [Land and McCann 1971]; in particular we extend the
single-image formulation by Zhao et al. [2012], who define a global
optimization framework and allow user interaction with constant-
albedo and constant-shading strokes [Bousseau et al. 2009] (refer
to Appendix A for a quick overview). Naively running the algorith-
m on every frame yields obvious flickering artifacts (see Section
8 and the accompanying video), while extending the optimization
to the whole video is prohibitively expensive and may lead to poor
results.

We thus extend the original formulation by Zhao et al. in three
ways: First, by allowing the user to define local optimizations in
selected areas of the image. Second, by moving from a pixel-based
representation to a more consistent (and efficient) cluster-based ap-
proach. And third, by imposing additional constraints during propa-
gation, derived from temporal information in the video. We present
details of the first two extensions in the following paragraphs, while
the third is explained in Section 5.1.

Local optimizations The global optimization by Zhao and col-
leagues is based on a global threshold T defined over the whole
image, which determines how sensitive the decomposition is to
changes in chromaticity. In particular, the authors define a balance
factor ωp,q (where p, q denotes all neighboring pairs of pixels) as
follows:

ωp,q =

{
0, if ‖ Jp − Jq ‖ > T

100, otherwise (2)

where J denotes chromaticity. We set T = 10−3 for all the re-
sults shown in the paper. A lower value of T tends to produce an
over smooth shading, while higher values assign most of the inten-
sity variations to the shading layer, approximating the results to a
chrominance-luminance decomposition. Since in Zhao’s formula-
tion the threshold T is defined globally, this may lead to unequal
results in different parts of the image.

We thus allow for local variations of T within different regions of
the image, which the user identifies by simply drawing approximate

Algorithm 1 Intrinsic Video decomposition

1: [R0, S0] = IntrinsicImageDecomposition(I0)
2: [C, I,R] = ReflectanceClustering(I0, R0)
3: for each iteration do
4: ft ← 1
5: repeat
6: fs ← lastFrame
7: /* Forward propagation */
8: for f := ft : lastFrame do
9: Rf ← ReflectancePropagation(Rf−1, C, I)

10: if StoppingCondition(Rf ) then
11: fs = f
12: break
13: end if
14: end for
15: [Rfs , Sfs ]← ReflectanceCompletion(Rfs , Sfs)
16: [C, I,R]← ClusteringUpdate(Rfs , C,R)
17: /* Backward propagation */
18: for f := fs : ft do
19: Rf ← ReflectancePropagation(Rf+1, C, I)
20: end for
21: ft ← fs + 1
22: until fs = lastFrame
23: end for
24: [R,S]← ResidualCompletion(R,S)
25: return R,S

Figure 3: Local optimization. Using a global threshold T , re-
flectance variations with low chromaticity change may be mis-
classified as shading (top-right). By allowing T to vary locally
in a user-defined region, this is corrected (bottom-right). The user-
defined scribble appears in blue. Video credits: ”Big Buck Bunny”
(2008) c©Blender Foundation.

masks (using for instance lazy snapping [Li et al. 2004]). Follow-
ing Retinex theory, we assume that within a mask shading varies
smoothly, which is therefore captured by the lower intensity gradi-
ents. We then redefine T locally as T ′ = 0.05 × µ (∇J), where
µ is the mean of the chromaticity gradient of the pixels inside the
mask. Figure 3 shows an example.

Reflectance clustering Given the large volume of data con-
tained in a video, a pure pixel-based approach is inefficient, while
being more error-prone and causing temporal instabilities in the for-
m of jittering artifacts. Hence, we cluster the initial reflectance
decomposition by grouping together sets of pixels sharing simi-
lar reflectance values. To reduce memory requirements, we first
obtain an over-segmented image, where all pixels in a segmen-
t are spatially connected. We use a graph-based segmentation
approach [Felzenszwalb and Huttenlocher 2004]. Although this
method is very sensitive to changes in parameters, we take advan-
tage of the fact that we only need a rough initial segmentation,
and use the same fixed parameters for all our results: size of the
Gaussian blur σ = 0.8, segmentation cut threshold K = 50, and
minimum size of the segment min = 256. We then group these
segments into larger clusters where pixels no longer need to be
connected in image space. We iteratively merge two segments if



Figure 4: Reflectance clustering. Top: Input frame with user scrib-
bles for constant-albedo regions. Middle: Reflectance from Zhao et
al. [2012]. Bottom: Our reflectance after the clustering step. Note
that our reflectance is more consistent and lends itself better to tem-
poral propagation. Video from MPI-Sintel online database [Butler
et al. 2012].

the difference between their average RGB values is smaller than
the specified threshold K. This process yields our final reflectance
clustering C.

Additionally, we create a suitable data structure for our subsequent
reflectance propagation (Section 5). This structure maps image val-
ues with clustered reflectance values. For each cluster Ck ∈ C, we
compute two different tables indexed by 3D (RGB) vectors. The
first tableRk is simply a histogram of reflectance values; the func-
tion ρ(k, r) returns the number of pixels with reflectance r in clus-
ter Ck. The second table Ik stores, on the one hand, a histogram
of color values, where the function γ(k, l) returns the number of
pixels with color l in cluster Ck; additionally, it stores the associat-
ed reflectance rk,l for each color l. If more than one pixel have the
same color but different reflectances in the same cluster, the average
reflectance is stored. This helps ameliorate possible inconsistencies
in the initial decomposition, yielding a more coherent reflectance.
Tables Rk and Ik will be later used and updated during our prob-
abilistic reflectance propagation and completion steps (Sections 5
and 6). Figure 4 shows a comparison of our result with the initial
decomposition of Zhao et al. [2012].

5 Reflectance Propagation

We now proceed to propagate reflectance values along the tempo-
ral dimension, following a coarse-to-fine iterative approach. Re-
flectance propagation consists of three steps: forward propagation,
reflectance completion, and backward propagation. Last, a final
residual reflectance completion takes place. Figure 5 illustrates this
process.

Forward Propagation Backward Propagation Reflectance Completion Residual Reflectance Completion

Iteration 1

Iteration 3

Iteration 2

Step 1

Step 3

Step 2

Iteration 1

Figure 5: Reflectance propagation. We propagate reflectance in-
formation over successive frames, until a stopping frame is found
(depicted in pink). We then apply a reflectance completion step on
the stopping frame, and proceed to propagate backwards. We run
this basic cycle of forward propagation - reflectance completion -
backward propagation until we reach the end of the video, and it-
erate three times in a coarse-to-fine approach. Last, we perform a
residual reflectance completion step.

5.1 Probabilistic framework

We introduce a Bayesian formulation for reflectance propagation,
which enables the integration of reflectance-color statistical infer-
ence from tables Rk and Ik, which are updated at each step, plus
a location-reflectance prior from the former frame. Moreover, we
jointly optimize pixel clustering with reflectance propagation. With
this combined analysis on color, intrinsic reflectance and clustering,
we obtain temporally consistent results.

Given a pixel p in frame ft, with an input RGB color vector lp,t, we
aim to find the matching cluster in the previous frame ft−1 with the
most similar reflectance value (the reflectance of pixel p is unknown
at this point), while avoiding over-fitting. We introduce a proba-
bilistic formulation to find the cluster index k̄ which maximizes the
posterior probability P(Ck|p). We can define a Maximum A Pos-
teriori (MAP) problem as:

k̄(p) = arg max
k

P(Ck|p) ∝ P(p|Ck) · P(Ck) (3)

where P(p|Ck) is the likelihood that pixel p belongs to cluster Ck,
and P(Ck) acts as a prior. We discuss these two terms in the fol-
lowing paragraphs.

To limit our search to the most probable candidate regions (thus
improving accuracy and efficiency), we leverage the information
contained in the video and compute optical flow [Brox et al. 2004]
between ft and ft−1, to obtain the cross-frame motion vector up.
This vector defines the corresponding pixel p′ in frame ft−1 as p′ =
p+ up. We then only query the pixels inside an N ×N (N = 50)
windowWp′ defined in ft−1 and centered at p′. Our MAP problem
(Equation 3) is therefore only solved for all the clusters intersecting
window Wp′ .

Likelihood P(p|Ck) The likelihood of a pixel p belonging to a
cluster Ck is based on the probability density function of cluster
Ck. We formulate a standard non-parametric density estimation
problem to estimate the fitness of assigning a pixel to a cluster ac-
cording to pre-clustered pixels from the previous frame, for which a
Parzen window-based approximation is a convenient and effective
method. We define our normalized likelihood term P(p|Ck) as:

P(p|Ck) =
1

|Ik|
∑

l

γ(k, l)G
(

l− lp,t
d

)
(4)

where |Ik| is the total number of pixels of cluster Ck, and G repre-
sents a Parzen window defined by a 3-D Gaussian kernel function,



with width d = 5. In this form, P(p|Ck) represents the probability
density function of cluster Ck. Figure 6 (c) shows the propagated
reflectance at this stage.

However, we note that this definition is biased towards clusters with
a large number of pixels. Since each cluster may contain sever-
al different reflectances, if we only divide Equation 4 by |Ik|, re-
flectances with more pixels within the cluster (large γ(k, l)) will
dominate. We thus introduce a unit function U :

U (γ) =

{
1, γ > 0
0, γ = 0

(5)

and redefine P(p|Ck) as:

P(p|Ck) =
1

|U (Ik) |
∑

l

U(γ(k, l))G
(

l− lp,t
d

)
(6)

Note that we also apply the unit step function on Ik, where
|U (Ik) | represents the number of non-zero entries in Ik. Includ-
ing the unit step function in our formulation makes the likelihood
independent of the number of pixels in each cluster, effectively re-
moving bias (see Figure 6 (d)).

Prior P(Ck) We adopt a smoothness prior common to many
MAP solutions. Given the pixel p′ computed from p by optical
flow, we define D(p′, q′) as the Euclidean spatial distance between
pixels p′ and q′, where q′ belongs to the same frame as p′ and satis-
fies the following three conditions: q′ ∈Wp′ , q

′ ∈ Ck and q′ 6= p′.
Our prior thus becomes:

P(Ck) = min
q′

(
D(p′, q′)

)− 1
2 (7)

Note that P(Ck) is independent of the intrinsic properties of a pix-
el, and can be calculated after the former frame has been processed:
it thus acts as a prior even if it is not explicitly formulated as a prob-
ability. Figure 6 (e) shows how the smoothness prior improves the
reflectance propagation.

5.2 Additional constraints

Solving our MAP problem in Equation 3 for frame ft, we obtain
the cluster candidate k̄(p) indicating the best cluster match for pix-
el p. However, assigning the corresponding cluster index to every
pixel before proceeding to the next frame would accumulate errors
over time (as Figure 12 in Section 8 shows). This is in part due to
factors such as antialiased edges, non-rigid motion, occluded sur-
faces or time-varying shading, which increase the number of pixels
in a given frame without a suitable cluster in the previous frame.

To avoid this, we take a conservative approach and only assign a
definite cluster index to those pixels above a high confidence thresh-
old. We again leverage the extra information in the temporal do-
main and postpone the judgment of the unresolved pixels to subse-
quent processing (Section 6). To define our high confidence thresh-
old, we analyze two conditions: We first check whether the poste-
rior of k̄ satisfies P(Ck̄|p) > ε. We empirically set the threshold
ε = 0.8 (the maximum value ofP is 1.0). Additionally, we ask how
close this probability is to the probability associated to the second-
best cluster Ck̄′ , by checking whether P(Ck̄|p) > βP(Ck̄′ |p). We
fix β = 2, which we found to work well for all the results shown in
the paper and the supplementary video.

If these two conditions are satisfied, pixel p is assigned to a cluster,
and its reflectance value is set to rk̄,l. In this fashion, we success-
fully assign about 95% of the pixels for each frame. The reflectance

Figure 6: Effect on reflectance propagation of every component
of our algorithm: (a) Original color frame (including user strokes
for constant-albedo regions; highlighted area enlarged in the inset-
s). (b) Reflectance propagation without clustering. (c) Reflectance
propagation using Eq. 4. (d) Reflectance propagation using Eq. 6,
adding the step function U . (e) Reflectance propagation using both
Eq. 6 and the distance term of Eq. 7. (f) Removing low-confidence
reflectance using Section 5.2 on the result of (e).

of the rest of the pixels is left undefined, and will be assigned later
using information from other frames. Figure 6 (f) shows the result
after removing the pixels with low-confidence reflectance.

5.3 Stopping condition

We continue propagating reflectance values on successive frames
ft+1, ft+2, · · · , following the same approach. Unassigned pixel-
s in ft remain undefined in subsequent frames, so the total num-
ber of such pixels increases as the propagation continues forward.
As a consequence, applying our propagation algorithm over long
stretches in the video sequence may lead to poor results, with too
many unassigned pixels in the end.

To bound the number of unassigned pixels, we define a stopping
condition for our forward reflectance propagation, and stop when
a given threshold is reached. Instead of relying on the total num-
ber of unassigned pixels over the whole image, we take a local ap-
proach and stop when the ratio of unassigned pixels is greater than
α = 80% in any local M ×M window WM on the current frame.
This allows for timely detection of growing regions of unassigned
pixels, which would be too difficult to solve later if a global thresh-
old had not been reached yet. We begin with a value of M = 30,
which will be progressively reduced in subsequent iterations (see
Subsection 6.1). Figure 7 (a) shows the result of the forward prop-
agation once the stopping condition has been met. The remaining
undefined pixels of all the processed frames are left to later process-
ing, explained in the following sections.

6 Reflectance Completion

Once the propagation has stopped at frame fs, we perform a local
intrinsic decomposition on the sparse set of unknown pixels in that
frame. We take advantage of the propagated reflectance values, and
add them as constraints into our framework. We first define a mask
Ω0 containing all the unknown pixels of frame fs, and perform
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Figure 7: Reflectance completion: (a) Forward reflectance stop-
s at frame fs = f31. Unassigned pixels are depicted in black.
(b) Partial, constrained reflectance completion over Ω∗. (c) Sim-
ply combining the forward propagation reflectance with the par-
tial completed reflectance causes reflectance discontinuities (see
for instance the yellow rectangle). (d) The result of our Poisson
reflectance smoothing.

a morphological expansion with a radius of four pixels, so that the
new expanded mask Ω∗ now also contains known reflectance values
(see Figure 7 (b)). We denote Ω1 = {Ω∗ −Ω0} as the set of pixels
with known reflectance, which are included as constraints adding a
new term λcEc to Equation 12 (see the Appendix), where:

Ec =
∑
p∈Ω1

(rp − r1
p)2 (8)

where rp and r1
p are the log-reflectance values of the unknown and

known pixels respectively. We set λc = 1000.

To avoid discontinuities introduced by the new reflectance values
(see Figure 7 (c)), we apply Poisson blending [Pérez et al. 2003]
with Dirichlet boundary conditions on the arbitrary outlines of the
regions:

∆Rc = ∆R1 over Ω0, with Rc|∂Ω0 = R1|∂Ω0 (9)

where ∆ is the Laplacian operator, and R1 and Rc are the known
and the newly obtained (completed) reflectance values on Ω0, re-
spectively. Figure 7 (d) shows the final result.

Clustering update We now need to find matching clustersCk for
the pixels with new reflectance values. We rely on table Rk since
the variation of pixel values in reflectance space is smaller than in
the original color space. Similar to Equation 6, we calculate the
likelihood of pixel p belonging to cluster Ck by maximizing:

P(p|Ck) =
1

|U (Rk) |
∑

r

U(ρ(k, r))G
( r− rp,s

d

)
(10)

where rp,s is the reflectance of pixel p at frame fs, and |U (Rk) |
is the number of non-zero entries of Rk for cluster Ck. Note that
in this case we cannot rely on our smoothness prior in Equation 7,
since nearby pixels in the previous frame will likely be unassigned
also. We thus do not limit the search to local windows, but search
all clusters instead. Additionally, since the completion works ro-
bustly, we do not need to enforce the conservative constraints in
Section 5.2 before assigning a cluster. Once the index k̄ with maxi-
mum probability has been found, we update the corresponding Ik̄,
Rk̄ tables to ensure an effective subsequent propagation.

Note that thanks to this updating process, our reflectance propa-
gation of frame k is not entirely determined by its adjacent frame
only. In our probability formulation (Equation 3), the first term (E-
quation 6) is based on the global histogram Ik, which is constantly

Figure 8: Results of the iterative propagation and final completion.
Left: Unassigned (black) pixels after the first iteration. Middle: Re-
duced number of unassigned pixels after the three iterations. Right:
Final result after reflectance completion.

updated based on information from all the frames that have already
been traversed. The smoothness term in Equation 7 does depend
only on the previous frame.

6.1 Coarse-to-Fine Propagation

Our next steps complete the remaining unassigned pixels, follow-
ing a coarse-to-fine approach. From the (partially) completed fs we
first launch a backward propagation towards ft. We follow the same
basic approach as the forward propagation, based on the color table
Ik and using again our Bayesian framework defined in Equation 3.
Note that at each step, we only propagate the reflectance to pixels
that have not been assigned yet, leaving the rest unchanged. Intu-
itively, this backward propagation helps assign correct reflectance
values to occluded objects in the forward propagation: working
backwards in time, these are visible from the beginning.

This forward-backward propagation scheme is then iterated to com-
plete the rest of the unassigned pixels. At each iteration, we de-
crease the threshold for the stopping condition: specifically, we
maintain the threshold ratio α = 80%, but progressively reduce the
size of the window WM . We adopt a three-pass iteration scheme,
using M = 30, 20, and 10 respectively. This offers a good trade-
off to complete unassigned pixels effectively without needing to run
our reflectance completion algorithm at each frame. Figure 8 (left
and middle) shows an example.

Residual Reflectance Completion While we could continue the
iteration until all pixels are assigned a reflectance value, this may
be impractical or error-prone in some difficult cases. Instead, we
rely on Retinex theory and leverage shading information. We as-
sume C1 shading continuity on the unassigned regions, an assump-
tion that has been used in previous Retinex-based works [Funt et al.
1992; Shen and Yeo 2011; Gehler et al. 2011]; in our case this
works particularly well given the small size of the remaining unas-
signed areas (less than 1% in our experiments).

Similar to our reflectance completion step, we impose smooth in-
terpolation on the domain Ω0 of unassigned pixels by applying the
following Poisson equation:

∆Sc = 0 over Ω0, with Sc|∂Ω0 = S1|∂Ω0 (11)

where S1 and Sc are the known and the new completed shading
values respectively. The final reflectance values are simply obtained
by a pixel-wise division of color over shading (Figure 8, right).

7 Evaluation

We first evaluate our algorithm by comparing it to a ground truth,
synthetic example. We have rendered a 3D model of St. Basil with
dynamic lighting and a rotating camera, using Maya. The ground
truth reflectance and shading layers are obtained assigning a con-
stant and a white Lambertian shader, respectively. Figure 9 (left),
shows the comparison between the rendered ground truth sequence



Figure 9: Left: Comparison between synthetic ground truth for
reflectance and shading (top) and our corresponding results (bot-
tom). Top-right: The evolution of the Local Mean Squared Error
(LMSE) with the number of initial reflectance clusters. Bottom-
right: Comparison between chrominance (left) and our reflectance
layer (right). Note how the reflectance of the materials is much
better depicted with our method.

Figure 10: Representative clusters of the videos included in this
paper. The parameters of the segmentation are the same for all the
sequences (details in Section 4).

and our algorithm; the entire animation is included in the video.
Figure 9 (top-right) shows a representative graph of the evolution
of the Local Mean Squared Error (LMSE) with the number of ini-
tial reflectance clusters. We have found that the error is consis-
tently minimized with 5-10 clusters in all our sequences. With too
few clusters, the algorithm cannot differentiate reflectances proper-
ly, whereas a larger number increases error since the second con-
dition in our high confidence threshold (Section 5.2) can hardly
be met. Moreover, in Figure 9 (bottom-right) we compare our
reflectance results for chicken against its chromaticity channels.
Our reflectance represents the underlying materials more truthful-
ly, while being able to separate black features (no chromaticity)
like the pupils. Figure 10 shows some representative clusters of the
scenes included in this paper.

Although ours is the first intrinsic decomposition method devised
to work with video sequences, we objectively compare against four
other alternatives, by plotting the LMSE with respect to the ground
truth for the St. Basil sequence. In particular, we first compare a-
gainst two state-of-the-art methods devised for single images [Zhao
et al. 2012; Garces et al. 2012], decomposing each frame of the
video individually. Figure 12, left (black and blue lines) shows the
results. Because of motion-induced occlusions and time varying
shading, the results of a frame-by-frame approach are inevitably un-
stable, with large, sudden changes between frames. These spikes in
error translate into disturbing flickering artifacts even for the best of
the two algorithms, as the accompanying video shows. Our method
yields very stable results, with the lowest LMSE (red line).

The green line (also in Figure 12, left) shows the result of apply-
ing the recent method by Lang et al. [2012] over the frames re-
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Figure 12: Left: Comparison of LMSE of our algorithm (red line)
and three other different approaches, including two per frame de-
compositions [Zhao et al. 2012; Garces et al. 2012] and the recent
method by Lang et al [2012] which enforces temporal stability over
Zhao’s per frame result. Our algorithm yields the most stable re-
sults, avoiding flickering, and the lowest LMSE. Right: Different
variations of our algorithm; removing or altering some of its key
components leads to temporal instability and larger error.

turned by Zhao’s method. The resulting error curve is somewhat
smoother than frames processed individually, indicating overall im-
proved temporal stability (although some of the largest error peak-
s remain). However, the overall error increases compared to per-
frame decomposition by Zhao’s method. The reason is that Lang’s
method is not well suited for the particular case of intrinsic im-
ages since, as we have seen, this initial per-frame decomposition
shows very large differences between frames, which in turn forces
a very aggressive smoothing in the temporal domain. The spatial s-
moothing that the method imposes along with its temporal filtering,
leads to clear ghosting artifacts and over-blurred edges. Figure 11
shows some direct comparisons with our method for two different
sequences.

Figure 12, right, shows the LMSE of different variations of our
algorithm to highlight the influence of its most relevant compo-
nents. It can be seen how performing reflectance completion after
each frame (gray line), removing our conservative high-confidence
threshold defined in Section 5.2 (deep red) or removing optical flow
(purple line) increase both the overall error and the temporal insta-
bility of the results.

8 Results and Applications

Figure 13 shows additional results (we refer the reader to the ac-
companying video for the complete set). All our results have been
produced automatically, unless user scribbles are shown on the ini-
tial frame. Their frame length varies between 100 and 500 frames,
which is in accordance to the average shot in modern TV and
movies [Lang et al. 2012]. The initial decomposition runs at in-
teractive rates. Since we only propagate frames until the local er-
ror threshold is surpassed, we have experienced no error accumu-
lation or temporal drift in any of the videos tested. Note also how
in the chicken sequence parts of the body disappear and appear a-
gain, which our algorithm handles gracefully thanks to its forward-
backward structure. In objects, the camera loops around the scene;
notice the temporal coherence of the reflectance images, including
the first and last frames of the sequence (leftmost and rightmost
frames in the image). In the video, Squirrel presents a particular-
ly challenging case including a furry animal, moving shadows and
motion blur, but our algorithm still yields good results.

For one frame in a video sequence at 800 × 600 spatial resolution,
our algorithm takes slightly over one minute using a four-threaded
unoptimized implementation on a standard PC. Automatic decom-
position and reflectance clustering of the first frame requires about
30 seconds, plus 20 seconds for the forward propagation in the first



Figure 11: Comparison of Lang’s method [2012], imposing temporal coherency to the decomposition of each individual frame, (top) and
our result (bottom) for the squirrel and St. Basil sequences. The built-in spatial filtering in Lang’s method, coupled with the large variability
across frames of per-frame decompositions, cause some clear ghosting artifacts, more exaggerated in the presence of quick motion (squirrel).
Additionally, fine features become blurry (see the rightmost comparison for St. Basil).

iteration and 5 seconds for each reflectance completion and resid-
ual reflectance completion steps. Since the propagation for each
pixel is neighbor-independent, the algorithm is suitable for parallel
processing and could be significantly accelerated on a GPU.

Moreover, our intrinsic video decomposition method can be used as
a basic platform for video editing applications. Here we show some
examples, and refer the reader again to the supplemental video.

Video segmentation Available video segmentation methods rely
heavily on local color and shape information; therefore such meth-
ods usually fail to track an object in natural videos where illumi-
nation or shape may change. Our algorithm can be used for ob-
ject segmentation based on propagated clustered reflectance infor-
mation. Since the reflectance propagation effectively removes the
shading component, it is more robust in case of changes in illumina-
tion. Moreover, our method does not rely on local statistics, which
makes it also robust in case of fast topology changes of the segment-
ed objects. Figure 15 shows the results for five frames of the nemo
sequence, equally spaced 225 frames apart, compared with the re-
sult using the popular video SnapCut [Bai et al. 2009] and the on-
line efficient hierarchical graph-based video segmentation (EHGV)
tool [Grundmann et al. 2010]. For a fair comparison with these
methods, in the SnapCut example the first frame has been manually
labeled as foreground and background, in order to provide visually
comparable results, while for EHGV we use the automatic cluster
result directly. It can be seen how both SnapCut and EHGV pro-
gressively accumulate error and completely miss at least one of the
fishes in the end. In contrast, our method improves performance in
the presence of fast motion, dramatic changes in shape, and simi-
lar color between foreground and background objects, even over a
large number of frames, without error drift.

Material editing We can re-render the surface materials by ma-
nipulating the shading layer, defining a simple mapping function
between the original and the new shading. The user only needs to
define a sparse set of control point in the shading grayscale space,
and the mapping function is obtained by cubic interpolation. Fig-
ure 14, top-left, shows how diffuse surfaces can be made to appear
shiny by applying the function shown.

Color transfer Given a source image of different scene, our intrin-
sic decomposition allows us to efficiently transfer its color and tone
to a target video, by simply performing histogram matching on the
reflectance layers of both the source image and the first frame of the
video. Our algorithm efficiently propagates this new reflectance in-
formation; multiplying by the corresponding shading images yields

the final color-transferred video. Given our temporally consisten-
t cluster information, we can further composite the original fore-
ground object onto the new background (Figure 14, bottom-left).

Recolorization By adding simple scribbles on the input image (Fig-
ure 14, top-right), users can define a reflectance transfer function
between the input and the target reflectance values. In our imple-
mentation, the target reflectance values are defined by the color of
the scribbles. For each pixel in any subsequent frame, this trans-
fer function is applied to the original reflectance. Note that similar
effects have been achieved using propagation techniques [Li et al.
2010; Xu et al. 2009], although here we directly manipulate the
reflectance layer.

Stylization We can easily achieve interesting non-photorealistic re-
sults by manipulating each intrinsic layer separately. Figure 14,
bottom-right, shows two different depictions of the same video, in-
creasing and decreasing the saturation of the reflectance layer, re-
spectively, while flattening the shading layer. An edge layer has
been subsequently added to enhance the effect.

9 Discussion

In summary, we have presented a novel approach for the challeng-
ing problem of intrinsic video decomposition, as well as several
example applications in video editing. Our method is temporal-
ly coherent, does not impose a large memory footprint, and does
not require heavy user interaction. We believe this is the first work
successfully addressing this problem, without imposing any restric-
tions on the input videos.

Our approach is not free of limitations. Working on a per-frame ba-
sis allows our method to be very light on memory requirements and
processing time; however it is currently not optimized for speed,
and it still does not work in real time. Similar to other video edit-
ing approaches, different shots need to be processed separately: if
the content between shots varies drastically (i.e., two completely
different scenes in a movie), our propagation scheme cannot guar-
antee good results. Last, if the initial frame is very dark or very
saturated, it may be hard to find meaningful reflectance clusters.
Despite this, we hope our work inspires both future research on in-
trinsic decomposition of video sequences, as well as novel video
editing techniques that take advantage of the individual manipula-
tion of reflectance and shading information.



Figure 13: Results of our intrinsic video decomposition for the dancing baby, objects and chicken sequences (including strokes for chicken
for constant-shading regions in gray and for constant-albedo in color). Please refer to the video for these and more complete examples. Video
Credits (bottom): ”Chicken or Egg First?” (2013) c©Medreza Assegaf.
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A Retinex-based Optimization

We summarize here the main aspects of the paper by Zhao and col-
leagues [2012] relevant to our work. The problem of intrinsic de-
composition of a single image is posed as an optimization. Work-
ing in log-space, the problem is defined as ip = sp + rp, where
ip = log(Ip), rp = log(Rp) and sp = log(Sp) (Ip, Rp and Sp are
the image, reflectance and shading pixel values, according to our
Equation 1). The following function is then minimized:

arg min
s

E(s) = λlEl(s) + λrEr(s) + λaEa(s) (12)

where λl, λr and λa are positive weights (set to 1, 10000 and
1000 respectively), El(s) represents the common Retinex con-

straint minimizing the differences in shading and reflectance be-
tween adjacent pixels, Er(s) is a non-local albedo constraint and
Ea(s) is a normalization factor. Explicitly:

El(s) =
∑

(p,q)∈N

[
(sp − sq)2 + w(p,q)(rp − rq)2] (13)

where N denotes the set of all neighboring pairs of pixels and
w(p,q) is the balance factor introduced in Equation 2. The next
term is:

Er(s) =
∑

Gi
r∈Γr

∑
(p,q)∈Gi

r

(rp − rq)2 (14)

where Gi
r is a set of pixels with similar albedo, and Γr is the set

of pixel groups previously detected to share the same albedo. Last,
the normalization term is:

Ea(s) =
∑
p∈Ga

(sp − 1)2 (15)

where Ga contains the brightest pixel(s).


