
1

Distributed Data Association in Robotic Networks
with Cameras and Limited Communications

Eduardo Montijano, Rosario Aragues, Carlos Sagues

Abstract— We address the data association problem of features
observed by a robotic network. Every robot in the network has
limited communication capabilities and can only exchange local
matches with its neighbors. We propose a distributed algorithm
that takes these local matches and, by their propagation in the
network, computes global correspondences. When the algorithm
finishes, each robot knows the correspondences between its
features and the features of all the other robots, even if they
cannot directly communicate. The presence of spurious local
correspondences may produce inconsistent global correspon-
dences, which are association paths between features observed
by the same robot. The contributions of this work are the
propagation of the local matches and the detection and resolution
of these inconsistencies. We formally prove that after executing
the algorithm, all the robots finish with a data association free
of inconsistencies. We provide a fully decentralized solution to
the problem, valid for any fixed communication topology and
with bounded communications between the robots. Simulations
and experimental results with real images show the performance
of the method considering different features, matching functions
and robotic applications.

I. INTRODUCTION

The data association problem is of high interest in many
robotic applications such as localization [1], mapping, explo-
ration [2] and tracking [3]. In multi-robot systems, where the
communications are limited, local matches between robots that
directly communicate can be established by using existing
matching methods. However, distant robots may have observed
common features as well. In this paper, we address the problem
of discovering these global correspondences in a distributed
way when the robots perceive the world using cameras.

The problem of finding correspondences between two sets
of observations has been deeply studied from different per-
spectives depending on the features used. Scan matching and
Iterative Closest Point (ICP) [4] are popular methods for
comparing two laser scans. In SLAM problems, three dimen-
sional points with uncertainties are matched using the Nearest

E. Montijano is with Centro Universitario de la Defensa (CUD) and
Instituto de Investigación en Ingenierı́a de Aragón (I3A), Zaragoza, Spain.
emonti@unizar.es

R. Aragues is with Institut Pascal, UMR 6602 CNRS - UBP - IFMA, F-
63000 Clermont-Ferrand, France, raragues@unizar.es

C. Sagues is with Departamento de Informática e Ingenierı́a de Sistemas
- Instituto de Investigación en Ingenierı́a de Aragón (I3A), Zaragoza, Spain.
csagues@unizar.es

This work was supported by Spanish projects Ministerio de Economı́a
y Competitividad DPI2009-08126, DPI2012-32100, grants from the French
program investissement d’avenir managed by the National Research Agency
(ANR), the European Commission (Auvergne FEDER funds) and the Région
Auvergne in the framework of the LabEx IMobS3 (ANR-10-LABX-16-01)
and grants MEC BES-2007-14772 and AP2007-03282. The data set used in
one of the experiments was provided by U. Frese and J. Kurlbaum.

Neighbor [5], Maximum Likelihood [6], or B-splines [7].
Another popular method is the Joint Compatibility Branch
and Bound [8], which considers the compatibility of many
associations simultaneously. The Combined Constraint Data
Association [9] builds a graph where the nodes are individually
compatible associations and the edges relate binary compat-
ible assignments. Switchable constraints [10] and consistent
clusters [11] are considered to discard outliers in pose graph
SLAM problems. Computer vision approaches match point or
line features applying geometric constraints [12]–[14]. Image
templates are used e.g., to recognize people [15], and bags of
words [16] to recognize previously visited places. And there
are many combinations of all the previous techniques with
RANSAC [17] for higher robustness.

In robotic networks with multiple robots participating, these
algorithms can be used in a first step to compute initial
correspondences. For example, the localization of different
robots [18] is done using homographies computed between
pairs of robots. Multi-robot SLAM methods where the ob-
servations of all robots are broadcasted or sent to a central
unit [19]–[21] associate the data following a cycle-free order,
using the same methods as in single robot scenarios. None
of these approaches has fully addressed the problem of multi
robot data association, where additional mechanisms are re-
quired to obtain higher information than pair to pair matches.

In computer vision there are solutions to find correspon-
dences of multiple views. Triplets of matches are considered
in [22]. A multi-view matching where every pair of views
is compared is presented in [23]. Then, their results are
arranged in a graph where associations are propagated and
inconsistencies are solved. The main limitation of these works
is that the data from all the images need to be processed
together, which implies a centralized scheme, communication
between all the robots or broadcast.

Distributed approaches are more appealing. They present a
natural robustness to individual failures of the robots because
there are no central nodes of computation. Besides, they do
not rely on any particular communication scheme or topology.
Different distributed map merging methods are presented
in [24], [25], but the data association between the robots is
not treated in detail. The distributed data association in SLAM
is tackled in [26], but the problem of inconsistencies is not
treated. In [27] the data association of a considerably large set
of images is considered. However, the method requires any
image to be able to be associated with any other, which is not
always possible in networks with limited communications.

In this paper, we propose a fully distributed solution for
the data association problem in robotic networks with limited



2

communication valid for fixed topologies. Given the local
matches established between neighboring robots, our algo-
rithm allows each robot to find the correspondences with
all the other robots in the network, even if they cannot
communicate. Due to the presence of spurious matches, there
may appear inconsistent correspondences, which are detected
when chains of local matches create a path between two
features observed by the same robot (Fig. 1). These situations
must be correctly identified and solved, otherwise, any future
merging of information will be wrong. In the paper we also
provide two distributed algorithms that solve this problem
taking into account the communication restrictions.

Robot A 

Robot B 

Robot D 

Robot C 
Inconsistency! 

Local match 

Limited 
communications 

Spurious match 

Fig. 1. A limited communication network with four robots A,B,C,D. Note
that robot A communicates with robots B and D, but not with robot C. Chains
of local matches correctly link features fA

1 and fC
1 of non-neighbor robots

A and C. These chains also link two features of robot A, which is wrong
(inconsistency). We propose methods to distributively discover associations
between non neighbor robots, and to detect and solve inconsistencies.

The contributions of this paper are: (i) the propagation of the
local matches, providing each robot the correspondences with
all the other robots, even if they cannot directly communicate;
(ii) a mechanism to detect inconsistent associations and to
resolve these inconsistencies through the deletion of local
matches, in function of their quality; (iii) a rigorous study
of the properties of the whole procedure which proves that is
fully distributed, requires a bounded amount of communication
and finishes in finite time. In addition, the method makes mild
assumptions on the local matching functions, and thus can be
combined with a wide variety of features and local matchers
and therefore, used in many different robotic scenarios. A
preliminary version of this article appeared in [28]. Here, we
present an improved detection algorithm which reduces the
number of iterations, the complexity of the operations and the
transmitted information. In this paper two different resolution
methods are provided. The first one is based on distributed
consensus and computes the edge with the largest error that
breaks each inconsistency. The second one creates different
independent spanning trees.

Along the paper we use the indices i, j and k to refer to
robots and indices r, s, u to refer to features. The rth feature
observed by the ith robot is denoted as f ir. Given a matrix
A, the notation [A]r,s corresponds to the component (r, s) of
the matrix, whereas Aij denotes the block (i, j) when the
matrix is defined by blocks. Similarly, ai

r represents a row
with the information corresponding to feature f ir, and [air]s
the sth component of the row.

The remainder of the paper is arranged as follows. In Sec-
tion II we give a formal definition to the problem. Section III
presents our algorithm for the decentralized propagation of
matches and detection of inconsistencies. In Section IV the
methods to solve these inconsistencies are detailed. The re-
sults of our methods in different experiments are shown in
Section V. Finally, in Section VI we present the conclusions
of the work. The proofs of the theoretical results appear in the
appendices.

II. PROBLEM DESCRIPTION

A. Matching between two robots

As previously stated, our method consists of correctly
propagating the local matches of neighboring robots through
the network in a distributed fashion. In this section, we
introduce the notation and describe the properties the local
matcher must satisfy. Let us consider two robots i and j.
Robot i (respectively j) observes a set Si of mi features,
Si = {f i1, . . . , f imi

}. We do not make any assumptions about
the sets of features used by the robots, as they will depend on
the application.

We let F be the local matching function, such that for
any two sets of features, Si and Sj , F (Si,Sj) returns an
association matrix Aij ∈ Nmi×mj where

[Aij ]r,s =

{
1 if f ir and f js are associated,
0 otherwise,

for r = 1, . . . ,mi and s = 1, . . . ,mj . The function F must
satisfy the following conditions.

Assumption 2.1 (Self Association): When F is applied to
the same set Si, it returns the identity, F (Si,Si) = I.

Assumption 2.2 (Unique Association): The association
Aij has the property that the features are matched in a
one-to-one way,

mi∑
r=1

[Aij ]r,s ≤ 1 and
mj∑
s=1

[Aij ]r,s ≤ 1,

for all r = 1, . . . ,mi and s = 1, . . . ,mj .
Assumption 2.3 (Symmetric Association): For any two

sets Si and Sj it holds that F (Si,Sj) = Aij = AT
ji =

(F (Sj ,Si))T .
Additionally, the local matching function may give infor-

mation of the quality of each association. The management of
this information about quality is discussed in Section IV.

B. Centralized matching between n robots

Let us consider now the situation in which there are n
robots, one of them being a leader with the n sets of features
available. In this case F can be applied to all the pairs of
sets of features, Si, Sj , for i, j ∈ {1, . . . , n}. The results
of all the associations can be represented by an undirected
matching graph Gcen = (Fcen, Ecen). Each node in Fcen is a
feature and there is an edge between two features f ir, f js only
if [Aij ]r,s = 1.

For a consistent matching function, the matching graph,
Gcen, exclusively contains disjoint cliques, identifying features



3

Robot A Robot B 

Robot D Robot C 

Robot A Robot B 

Robot D Robot C 

Robot A Robot B 

Robot D Robot C 

(a) (b) (c)
Fig. 2. Different association graphs. (a) Centralized matching with perfect association function. The graph is formed by disjoint cliques. (b) Centralized
matching with imperfect association. Some edges are missed, (fA

1 , fB
1 ) and (fA

2 , fB
2 ), and spurious matches appear, (fA

2 , fB
1 ). As a consequence, a subset

of the features forms an inconsistent set. (c) Matching with limited communications. Now, the matches between robots A and C, and B and D, cannot be
computed because they are not neighbors in Gcom. Moreover, the information available to each robot is just the one provided by its neighbors.

observed by multiple robots (Fig. 2 (a)). However, in real situ-
ations, the matching function will miss some matches and will
consider as good correspondences some spurious matches (Fig.
2 (b)). As a consequence, inconsistent associations relating
different features from the same set Si may appear.

Definition 2.1 (Association Sets and Inconsistencies):
Given a matching graph, G, an association set is a set of
features such that they form a connected component in G.
Such set is an inconsistent set or an inconsistent association
if there exists a path in G between two or more features
observed by the same robot. A feature is inconsistent if it
belongs to an inconsistent association.

In computer vision, centralized solutions to overcome this
problem are found in [23], [27]. The latter one is also well
suited for a distributed implementation but yet requires that
any pair of images can be matched. In robotic networks this
implies global communications, which are not always possible.

C. Matching between n robots with limited communications

Let us consider now that there is no leader with the
information of the n robots. Instead of that, the robots are
scattered forming a network with limited communications
described with an undirected graph Gcom = (Vcom, Ecom).
The nodes in the graph are the robots, Vcom = {1, . . . , n}. If
two robots i, j can exchange information then there is an edge
between them, (i, j) ∈ Ecom. Let Ni be the set of neighbors
of robot i, Ni = {j | (i, j) ∈ Ecom}.

In this case, due to communication restrictions, local
matches can only be found within direct neighbors. As a
consequence, the matching graph computed in this situation is
a subgraph of the centralized one, Gdis = (Fdis, Edis) ⊆ Gcen,
(Fig. 2 (c)). It has the same set of nodes, Fdis = Fcen, but
it has an edge between two features f ir, f js only if the edge
exists in Gcen and the robots i and j are neighbors in the
communication graph,

Edis = {(f ir, f js ) | (f ir, f js ) ∈ Ecen ∧ (i, j) ∈ Ecom}.

Along the paper, we name msum the number of features,
|Fdis| =

∑n
i=1mi = msum. We name df the diameter of

Gdis, the length of the longest path between any two nodes
in Gdis, and we name dv the diameter of the communication
graph, Gcom. The diameters satisfy df ≤ msum and dv ≤ n.

We name A ∈ Nmsum×msum the adjacency matrix of Gdis,

A =

 A11 . . . A1n

...
. . .

...
An1 . . . Ann

 , where (1)

Aij =

{
F (Si,Sj) if j ∈ {Ni ∪ i},
0 otherwise.

(2)

Let us note that in this case none of the robots has the
information of the whole matrix. Robot i has only available
the sub-matrix corresponding to its own local matches Aij , j =
1, . . . , n. Under these circumstances the problem is formulated
as follows: Given a robotic network with communications de-
fined by a graph, Gcom, and an association matrix A scattered
over the network, find the global matches considering the
communication restrictions. In case there are inconsistencies,
find them and solve them, also in a distributed way.

III. PROPAGATION OF MATCHES AND DETECTION OF
INCONSISTENCIES

Considering Definition 2.1 we observe that in order to match
features of robots that are not neighbors and to detect any
inconsistency between features, the paths that exist among the
elements in Gdis should be computed. As the following lemma
states [29], given a graph G, the powers of its adjacency matrix
contain the information about the number of paths existing
between the different nodes of G:

Lemma 3.1 (Lemma 1.32 [29]): Let G be a weighted
graph of order |V| with un-weighted adjacency matrix A ∈
{0, 1}|V|×|V|, and possibly with self loops. For all r, s ∈
{1, . . . , |V|} and t ∈ N the (r, s) entry of the tth power of
A, [At]r,s, equals the number of paths of length t (including
paths with self loops) from node r to node s.
Then, if we compute the powers of A we can detect the
different association sets by evaluating whether the number
of paths is greater than zero or not.

These powers can be computed in a distributed way by cre-
ating local variables, Xij ∈ Nmi×mj , of the same dimension
as the matrices Aij , initialized by

Xij(0) =

{
I, j = i,
0, j 6= i.



4

Denoting by X the whole matrix, as in eq. (1), the initial value
is the identity matrix, X(0) = I ∈ Nmsum×msum . After that,
at each iteration the robots exchange the local matrices with
their neighbors and update them using the local association
matrices, Aij ,

Xik(t+ 1) =
∑

j∈Ni∪i
AijXjk(t).

Noting that Aij is zero for those robots that are not neighbors
in the communication graph, it is observed that the method is
equivalent to

X(t+ 1) = AX(t),

and therefore, it achieves the desired result in a fully dis-
tributed manner, X(t) = At. Although this method is simple
and effective, it requires big communications between the
robots, because they need to send all the matrices Xik(t) at
each iteration to all their neighbors. In this paper we propose
an improved algorithm that reduces the complexity of the
operations, the amount of transmitted information and the
number of execution steps.

Algorithm 1 shows the proposed method. Each robot ini-
tializes mi vectors of dimension msum. We denote by yir
the rth vector handled by robot i, which is related with the
associations of feature f ir, and we initialize it using the local
matches of this feature. The components are either 1, if f ir
and f js are locally associated, or 0 otherwise,

yir(0) = {[Ai1]r,1, . . . , [Ain]r,mn
}.

Instead of computing the number of paths between two
features, the idea is to compute if there exists a path or
not. This is done by using logical values and logical “or”
operations rather than integers, sums and products. At each
iteration, t, the robots exchange the vectors yi

r(t) with their
neighbors (lines 5-6 of Algorithm 1). If two features, f ir and
f js , of neighbor robots are matched, then, by the transitivity
of the associations, they are also matched with all the other
features associated to them,

yir(t+ 1) = yir(t) ∨ yjs(t),

(lines 8-10 of Algorithm 1). The “or” operation implies that
the components equal to one in yjs(t) are transmitted to
yi
r(t + 1), without modifying those components that were

already positive. Additionally, the robots speed up the process
using their own vectors to find more associations. If f ir and f ir′
are both associated to any other feature f js , where j does not
need to be a direct neighbor of i, then they must be associated
to all the other features associated to both f ir and f ir′ , (lines 11-
14 of Algorithm 1). Finally, the stop criterion is triggered when
all the vectors of robot i have not changed any component
at some iteration, as it means they will not change anymore
because all the paths between associated features have been
found (line 16 of Algorithm 1).

The advantages of using this Algorithm rather than com-
puting the power matrices of A are the following. Firstly, the
use of logical values allows us to avoid the large numbers that
may appear when computing powers of the adjacency matrix.
Secondly, the number of iterations is reduced by considering

that, when two or more of the features observed by the same
robot share a common third feature observed by a different
robot, then eventually they will be associated with each other.
Lastly, since we assume that all the robots know msum, instead
of exchanging the whole vectors at each iteration, the robots
only need to send to their neighbors, the indices of those
components that have changed from zero to one in the previous
iteration, also reducing the amount of communications. In the

Algorithm 1 Propagation of matches - Robot i
Require: Si and Aij

Ensure: All the global matches and inconsistencies are found
1: – Initialize mi vectors
2: yir(0) = {[Ai1]r,1, . . . , [Ain]r,mn

}
3: – Propagation of the matches
4: repeat
5: Send yir(t) to the neighbors
6: Receive yjs(t) from the neighbors
7: for all r, r′ ∈ Si do
8: if f ir is associated to f js ([Aij ]r,s = 1) then
9: yir(t+ 1) = yi

r(t) ∨ yj
s(t)

10: end if
11: if f ir and f ir′ are both associated to any f js ,
12: ([yir]s(t) = [yir′ ]s(t) = 1, for some s) then
13: yir(t+ 1) = yi

r(t) ∨ yi
r′(t)

14: end if
15: end for
16: until yir(t+ 1) = yi

r(t), ∀r ∈ Si

following we formalize the main properties of the algorithm.
The proofs of the results are in Appendix I.

Proposition 3.2 (Limited Communications): The amount
of information exchanged by the network during the whole
execution of Algorithm 1 can be upper bounded by 2m2

sum.
Proposition 3.3 (Correctness): After executing Algorithm

1 all the paths between features have been found and they are
available to all the robots with features involved in them.

Theorem 3.4 (Limited Iterations): All the robots end the
execution of the Algorithm 1 in at most min(df , 2n) iterations.

Remark 3.5 (Conservative Bounds): The bounds provided
in Proposition 3.2 and Theorem 3.4 are conservative. In prac-
tice we should expect a better performance of the algorithm.
In order to send 2m2

sum data, it is required for the association
graph to be strongly connected, i.e., for any pair of features
there is a path of arbitrary length connecting them. This
situation is unlikely to happen, since it would mean that all the
features are associated with each other. In the experiments we
empirically show that the actual iterations and communications
are smaller than these bounds.

After the execution of the algorithm, every robot is able
to detect all the features associated with its own ones. The
robots are also able to extract from their own rows yir(t) all
the information of any inconsistency that involves any of its
features. The feature f ir will be associated to all the features,
s, such that [yi

r(t)]s = 1.
The detection of the inconsistencies is done using two rules.

A feature f ir is inconsistent if and only if one of the following
conditions is satisfied:



5

1 1 

1 1 1 

1 1 

1 1 1 

1 1 

1 1 1 

1 1 1 

1 1 1 

1 1 

1 1 1 

1 1 1 

Ro
b.

 A
 

Ro
b.

 B
 

Ro
b.

 C
 

Ro
b.

 D
 

1 1 1

1 1 1 1 1

1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1 1 1

C
am

. A
C

am
. B

C
am

. C
C

am
. D

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

C
am

. A
C

am
. B

C
am

. C
C

am
. D

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

C
am

. A
C

am
. B

C
am

. C
C

am
. D

(a) (b) (c) (d)
Fig. 3. Execution of the propagation algorithm to detect all the matches in Fig. 2 (c). A detailed explanation can be found in section III-A.

• There exists another feature observed by robot i, f ir′ , with
r 6= r′, such that [yir(t)]r′ = 1;

• There exist two features observed by other robot j, f js
and f js′ , s 6= s′, such that [yi

r(t)]s = 1 and [yir(t)]s′ = 1.

In the first case, the robot knows that two or more of the
features it has observed are associated, which cannot be
possible because they are different features. In the second case
the robot detects that there is another robot which has two or
more features associated. If there is an inconsistent feature,
the robots also know the rest of features that belong to the
inconsistent set independently of who observed such features.
Additionally, note that the propagation may find associations
between neighboring robots that the local matcher did not find,
provided that an alternative path of local matches associates
them.

A. Example of execution

Figure 3 shows an example of how to use the algorithm.
The example shows the propagation of the local associations
shown in Fig. 2 (c). Each robot has only the information
about the rows corresponding to the features it has observed.
Fig. 3 (a) shows the matrix with the local matches of all the
robots. The zeros have been omitted in the figure for a better
representation. For simplicity here we will only explain the
process for the robot A.

Initially, robot A instantiates three vectors of 11 components
(the total number of features), corresponding to the three first
rows of the matrix in Fig. 3. Looking at the first row, which
is related to feature fA1 , we observe that it has a value equal
to 1 in the element corresponding to feature fD1 , which is the
only feature locally associated to it (besides the feature fA1
itself). In a similar way, the second row has 3 components
equal to 1 and the third row 2 components. This implies that
in the first communication round, robot A sends a total of
2 ·7 = 14 integers (56 bytes using standard codification) to its
neighbors (robots B and D), specifying the components that
have changed from zero to one, row and column.

After these communications and the execution of lines 8-
10 of Algorithm 1 the rows have the form of Fig. 3 (b). The
components with green background are the new associations
found by the algorithm. For the case of the robot A, the first
feature, fA1 , is matched with the first feature of robot D, which
is a direct neighbor of A, thus, yA

1 (2) = yA1 (1) ∨ yD1 (1). The
second feature, fA2 , is matched with fB1 and fD2 so yA2 (2) =
yA
2 (1)∨yB1 (1)∨yD2 (1). Finally yA

3 (2) = yA3 (1)∨yB3 (1). After
that, robot A detects that fA1 and fA2 share a common match

with fC1 . Therefore it executes lines 11-14 of the algorithm
with these two features, as shown in Fig. 3 (c). The total
number of associations found in these two steps (number of
components with green background in the three rows handled
by robot A in Fig. 3 (b) and (c)) is equal to 10, which means
that the next message of robot A to robots B and D will be
of size 2 · 10 = 20 integers (80 bytes).

In the next iteration (Fig. 3 (d)), robot A finds two more
associations, therefore sending 4 integers (16 bytes), and
after that the process is finished because there are no more
matched features. The algorithm has found all the associations
using 3 iterations and robot A has needed to communicate
56 + 80 + 16 = 152 bytes, which certainly is much less than
the information exchanged in the first phase to find the local
matches. Finally, robot A knows that fA1 and fA2 belong to
one inconsistency with features fB1 , f

B
2 , f

C
1 , f

C
2 , f

D
1 and fD2 .

IV. DECENTRALIZED RESOLUTION OF INCONSISTENT
ASSOCIATIONS

Up to now, the robots know all the association matches
affecting their features and which features are inconsistent. If
there are not inconsistent features after the propagation, then
the association is already globally consistent and the robots
do not need to do anything else. Otherwise they need to solve
the inconsistencies.

The existence of one inconsistency implies the existence of
at least one spurious match in the local matching process. The
problem of resolving one inconsistency consists in partitioning
the association graph so that the features belonging to the same
robot are disconnected after the partition, ideally deleting the
spurious matches. Let us note that, even with the knowledge
of the whole association graph, it is impossible to discern
with 100% of confidence which local matches are spurious
and which ones are good matches. Moreover, the problem
of finding the best partition of the graph, according to some
arbitrary metric, is NP-Hard because all the possible partitions
should be analyzed.

The only thing that we know for sure is that in order to
have a correct data association it is required for the association
graph to be free of inconsistencies. Therefore, in this paper we
carry out the resolution of inconsistent associations by deleting
edges from Gdis, so that the resulting graph is inconsistency-
free.

Definition 4.1 (Inconsistency-Free Graph): Let NC de-
note the number of inconsistent sets in Gdis. The robots that
detect an inconsistent set C are V ⊆ Vcom. The number of



6

features from each robot i ∈ V involved in C is m̃i and the
number of total features involved in C is denoted as c. We say
Gdis is inconsistency-free if NC = 0.

All the edges whose deletion transforms Gdis into an
inconsistency-free graph, belong to any of the NC inconsistent
sets of Gdis. Since the inconsistent sets are disjoint, they
can be considered separately. From now on, we focus on
the resolution of one of the inconsistent sets C. The other
inconsistent sets are managed in parallel in the same way.

In the rest of the section we provide two different distributed
algorithms to transform Gdis into an inconsistency-free associ-
ation graph. The first one, the Maximum Error Cut, considers
the weights in the association graph in order to find the edge
with the largest error that breaks a given inconsistency. The
second method is based on a greedy deletion of edges to
construct different Spanning Trees free of inconsistencies. The
analysis about the goodness of the two methods is done in
section V.

A. Resolution using the Maximum Error Cut

Most of the matching functions in the literature are based
on errors between the matches, e.g., the Sampson distance or
the Mahalanobis distance. Therefore, we can use these errors
to find an inconsistency-free partition of C, with good chances
of discarding the outlier matches.

Let E be the weighted association matrix

[E]r,s =

{
ers if [A]r,s = 1,
−1 otherwise,

(3)

with ers the error of the match between r and s.
Assumption 4.1 (Properties of the Errors): The error be-

tween matches satisfies:
• err = 0,∀r;
• Errors are non negative, ers ≥ 0,∀r, s;
• Errors are symmetric, ers = esr,∀r, s;
• Errors of different matches are different,
ers = er′s′ ⇔ [r = r′ ∧ s = s′] ∨ [r = s′ ∧ s = r′].

Note that this Assumption is, in general, fulfilled using any of
the above mentioned matching functions. The distance of any
feature with respect to itself is generally equal to zero and with
respect to other feature it usually has a positive value. The last
property is the only one that might sometimes be violated and
for that reason we will discuss what happens when it is not
fulfilled later in the section.

Since the inconsistency is already known there is no need to
use the whole matrix, E, but just the sub-matrix related with
the inconsistency, EC .

Definition 4.2 (Bridges and Cuts): In an inconsistent set,
a bridge is an edge whose deletion divides the set in two
connected components, i.e., it does not belong to a cycle.
Given two inconsistent features, we define a cut as a bridge
that, if it is deleted, it solves the inconsistency between the
features.

Note that not all the bridges in one inconsistency are cuts.
There are bridges that, if deleted, do not break the inconsis-
tency because they do not belong to the path between the
features to separate. Our goal is, for each pair of inconsistent

features, find and delete the cut with the maximum error. We
justify this deletion by assuming that the local matcher will
work similarly for all the pairs of features in terms of quality,
and that this quality will be in general high, as happens with
methods such as JCBB or the epipolar constraint. Therefore,
it seems like a good idea to respect as many local matches as
possible instead of removing a large set of links, and specially
to respect cycles in the association graph, as they represent
strong association sets with high probability of being correct.
Also, if we have several cuts to break one inconsistency, it is
normal to assume that the spurious match is the one that in
the local matching has the largest error. All these factors are
considered by our algorithm with the intention of finding the
correct inconsistency-free partition of the association graph.

Algorithm 2 shows the distributed solution that we propose
to find the cuts using local interactions. In the following we
give a detailed explanation of the whole process.

Algorithm 2 Maximum Error Cut - Robot i
Require: An inconsistent set C and the error matrix EC

1: – Initialize m̃i vectors
2: zr(0) = {[EC ]r,1, . . . , [EC ]r,c}
3: – Propagation of the errors
4: repeat
5: Send zr(t) to the neighbors
6: Receive all zs(t), from the neighbors
7: for all r ∈ C and Si do
8: if fr is associated to fs ([EC ]r,s ≥ 0) then
9: zr(t+ 1) = max(zr(t), zs(t)Prs)

10: end if
11: end for
12: until zr(t+ 1) = zr(t), ∀r
13: – Edge Deletion
14: while robot i has inconsistent features r and r′ do
15: Find the cuts (s, s′), s 6= s′, such that:
16: (a) [zr]s = [zr′ ]s′ ,
17: (b) For all u 6= s, [zr]s 6= [zr]u,
18: (c) For all u 6= s′, [zr′ ]s′ 6= [zr′ ]u
19: Select the edge with largest error
20: Send message to cut it
21: end while

Similarly to the propagation step, in line 2 of the algorithm
each robot initializes a set of m̃i vectors, as many as features
in Si belonging to the inconsistency, each one with dimension
equal to the number of features in the inconsistency. Let
zr denote the vector associated to the rth feature in the
inconsistency, which without loss of generality we assume that
belongs to robot i. We drop the super indices corresponding
to robots because in this case we are interested in the global
position of feature r in the inconsistency, without mattering
which is the robot that is handling the vector related to this
feature. Let us note that this value is available and known to
the robots from the propagation stage. Each component of the
vector is initialized by [zr(0)]s = [EC ]r,s which recall that is
equal to ers if features r and s are locally associated and −1
otherwise.

As in the propagation method, the robots exchange their



7

initial vectors with their neighbors. The robots update the value
of the vectors zr using the information of all the received
vectors, zs, such that features r and s are associated, i.e.,
[EC ]r,s ≥ 0. The limited communications are implicit in the
errors [EC ]r,s, which are different than −1 only if the robots
that have observed features r and s are direct neighbors in
the communication graph. Then, the uth component of zr(t)
is updated by

[zr(t+ 1)]u =


max([zr(t)]u, [zs(t)]s) if u = r

max([zr(t)]u, [zs(t)]r) if u = s

max([zr(t)]u, [zs(t)]u) if r 6= u 6= s.

(4)

The update rule is very similar to the “or” operation executed
during the propagation of the matches. For all those elements
that are not r or s, the update rule selects the maximum
value between the two vectors, as the “or” operation does.
The difference relies in the elements r and s, which consider
the maximum of the other component of the received vectors,
i.e., [zr(t + 1)]r is updated taking the maximum of [zr(t)]r
and [zs(t)]s and [zr(t + 1)]s is updated taking the maximum
of [zr(t)]s and [zs(t)]r.

Update rule (4) can also be put in vectorial form

zr(t+ 1) = max(zr(t), zs(t)Prs), (5)

where the maximum is done element-wise and Prs is the
permutation matrix of the columns r and s. Basically, what
the rule does is to transmit the errors over the network, in such
a way that [zr(t)]u has the value of the error of the last link in
the path that connects fr with fu. The rule is executed until
zr(t+ 1) remains equal to zr(t) for all the vectors handled by
each robot, as shown in lines 3-12 of Algorithm 2.

The following results state the main properties of this update
rule. We demonstrate that the presented method converges
in finite time. We also show the convergence values of the
different elements. For clarity, we separate the analysis in
two parts: the first result gives the values reached by the
components that belong to bridges in the graph; the second
result consider the features that form part of a cycle in
the association graph. The proofs of these results appear in
Appendix II.

Proposition 4.3 (Convergence): The dynamic system de-
fined in (5) converges in a finite number of iterations and for
any r, s ∈ C such that [EC ]r,s ≥ 0 the final value of zr is the
same as zsPrs. In addition, for any r ∈ C, [zr(t)]r = 0,∀t ≥ 0.

Theorem 4.4 (Values for Bridges): Let us consider one
bridge, (s, u). Let d(r, s) be the minimal distance in edges
to reach node s starting from node r, then for all r such that
d(r, s) < d(r, u),

[zr(t)]u → [EC ]s,u = esu. (6)

Equivalently, for all r such that d(r, s) > d(r, u), [zr(t)]s →
[EC ]u,s = eus = esu.

Theorem 4.5 (Values for Cycles): Let us suppose the in-
consistency has a cycle involving ` features. Let C` be the
subset of features that belong to the cycle. For any feature r

[zr(t)]s → max
u,u′∈C`

euu′ , ∀s ∈ C` \ arg min
s′∈C`

d(r, s′). (7)

Corollary 4.6: If there is a cycle C` in the association
graph, after the execution of Algorithm 2, for every feature
r there exist at least two features s, s′ in C` as in (7) for
which the elements [zr]s, [zr]s′ reach the same value.

On one hand, Theorem 4.4 formally proves the intuition
behind equation (5), which was to transmit the errors so that
[zr(t)]s reached the value of the error of the last link in the
path that connects fr with fs. On the other hand, Theorem 4.5
states that the maximum error of all the links belonging to a
cycle in the association graph will appear in as many elements
of the vectors zr(t) as features belonging to the cycle minus
one. By Assumption 4.1 all the errors have different values,
this means that if [zr]s is equal to [zr′ ]s′ , and this value appears
only once in the whole vector, then the last link that connects
fr with fs is the same one that connects fr′ with fs′ , which
can only be the link (s, s′).

Taking this into account, the robots can analyze the final
values of the vectors after the transmission of the errors to
find the possible cuts to break the inconsistencies (lines 14-
21 of Algorithm 2). Let us suppose that one robot wants to
separate features r and r′. Any cut, (s, s′) with s 6= s′, will
satisfy three conditions in the variables zr(t) and zr′(t) :

(a) [zr]s = [zr′ ]s′ ,
(b) for all u 6= s, [zr]s 6= [zr]u,
(c) for all u 6= s′, [zr′ ]s′ 6= [zr′ ]u.

The first condition is extracted from the ideas in Theorem
4.4 whereas the other two are direct implications from Theo-
rem 4.5. Finally, note that for any cut, [zr]s = [zr′ ]s′ = ess′ ,
i.e., the value of the cut equals the error of the local match.
Therefore, the robots select from all the possible cuts to break
the inconsistency, the one with the largest error. In case one
robot has more than two features in the same inconsistency,
the algorithm chooses two of the m̃i inconsistent features and
selects the best cut for them. The cut separates all the m̃i

features in two disconnected subsets. The process is repeated
with each of the subsets until the inconsistencies are solved.

Remark 4.7 (Equal matching errors): If Assumption 4.1 is
violated and two links belonging to an inconsistent set have
the same error associated, then the propagation step will end
up with two components of the vectors zr having the same
value. In this case the algorithm will not remove any of these
two matches because it is interpreted as features that belong
to a cycle. Nevertheless, as long as there are other cuts in the
inconsistency the algorithm will still be able to solve it.

Finally, with our solution each robot can choose locally the
best cut to break the inconsistency, keeping the communication
constraints of the communication network. The algorithm has
the drawback that it is not able to solve inconsistencies in
which the inconsistent features belong to one cycle in the
association graph. However, since the algorithm is able to
detect this situation, a different approach can be used in this
case to solve it.

B. Resolution based on Spanning Trees

We propose an alternative algorithm to deal with the situa-
tions that the Maximum Error Cut does not solve. The method
computes different spanning trees in each inconsistent set and,



8

Robot A Robot F 

Robot C Robot D 

Robot B Robot E 

8 

2 

3 

Errors 

4 

6 

9 1 

7 

𝑓2𝐴 
𝑓1𝐴 

𝑓2𝐵 𝑓1𝐵 

𝑓1𝐹 

𝑓1𝐸 

𝑓1𝐶  𝑓1𝐷 

Robot A Robot F 

Robot C Robot D 

Robot B Robot E 

8 

2 

3 

4 

6 

9 1 

7 

𝑓2𝐴 
𝑓1𝐴 

𝑓2𝐵 𝑓1𝐵 

𝑓1𝐹 

𝑓1𝐸 

𝑓1𝐶  𝑓1𝐷 

Robot A Robot F 

Robot C Robot D 

Robot B Robot E 

𝑓2𝐴 
𝑓1𝐴 

𝑓2𝐵 𝑓1𝐵 

𝑓1𝐹 

𝑓1𝐸 

𝑓1𝐶  𝑓1𝐷 

(a) Inconsistency (b) Maximum Error Cut (c) Spanning Trees

Fig. 4. Example of execution of the resolution of one inconsistency using the two approaches. (a) Inconsistency. (b) Solution obtained using the Maximum
Error Cut approach. (c) Solution obtained using the Spanning Trees algorithm. A detailed explanation is in section IV-C.

0 9 6 

0 1 

9 0 

1 0 7 

7 0 8 2 

8 0 4 

2 4 0 3 

6 3 0 

0 1 7 

0 9 3 6 

1 0 7 8 2 

9 0 6 

1 7 0 8 4 3 

7 8 0 4 3 

6 7 8 8 0 3 

6 9 2 4 3 0 

0 9 3 6 

0 1 7 

9 0 6 

1 0 7 8 2 

1 7 0 8 4 3 

7 8 0 4 3 

6 7 8 8 0 3 

6 9 2 4 3 0 

0 1 7 8 2 

0 9 2 4 3 6 

1 0 7 8 4 3 

9 0 3 6 

1 6 7 0 8 8 3 

1 6 7 8 0 8 3 

1 6 7 9 8 8 0 3 

6 7 9 8 8 3 0 

0 9 2 4 3 6 

0 1 7 8 2 

9 0 3 6 

1 0 7 8 4 3 

6 1 7 0 8 8 3 

6 1 7 8 0 8 3 

6 1 9 7 8 8 0 3 

6 9 7 8 8 3 0 

0 1 7 8 4 3 

0 7 9 8 8 3 6 

1 6 0 7 8 8 3 

9 0 2 4 3 6 

1 6 7 9 0 8 8 3 

1 6 7 9 8 0 8 3 

1 6 7 9 8 8 0 3 

1 6 7 9 8 8 3 0 

0 9 7 8 8 3 6 

0 1 7 8 4 3 

9 0 2 4 3 6 

6 1 0 7 8 8 3 

6 1 9 7 0 8 8 3 

6 1 9 7 8 0 8 3 

6 1 9 7 8 8 0 3 

6 1 9 7 8 8 3 0 

0 6 1 7 8 8 3 

1 0 7 9 8 8 3 6 

1 6 0 9 7 8 8 3 

9 7 0 8 8 3 6 

1 6 7 9 0 8 8 3 

1 6 7 9 8 0 8 3 

1 6 7 9 8 8 0 3 

1 6 7 9 8 8 3 0 

0 1 9 7 8 8 3 6 

6 0 1 7 8 8 3 

9 0 7 8 8 3 6 

6 1 9 0 7 8 8 3 

6 1 9 7 0 8 8 3 

6 1 9 7 8 0 8 3 

6 1 9 7 8 8 0 3 

6 1 9 7 8 8 3 0 

0 6 1 9 7 8 8 3 

1 0 7 9 8 8 3 6 

1 6 0 9 7 8 8 3 

1 9 7 0 8 8 3 6 

1 6 7 9 0 8 8 3 

1 6 7 9 8 0 8 3 

1 6 7 9 8 8 0 3 

1 6 7 9 8 8 3 0 

0 1 9 7 8 8 3 6 

6 0 9 1 7 8 8 3 

9 1 0 7 8 8 3 6 

6 1 9 0 7 8 8 3 

6 1 9 7 0 8 8 3 

6 1 9 7 8 0 8 3 

6 1 9 7 8 8 0 3 

6 1 9 7 8 8 3 0 

(a) (b) (c) (d) (e) (f)
Fig. 5. Example of execution of (5) for the inconsistency in Fig. 4 (a). Each subfigure (a)-(f) represents a new step of the algorithm, where the shaded
elements are those which are updated at each iteration. In 6 steps the robots with inconsistent features are able to decide which links should be deleted. For
more details see Section IV-C.

although the cuts done in the association graph are arbitrary, it
has the property that it is able to solve all the inconsistencies.
The algorithm constructs inconsistency-free components using
a strategy close to a breadth-first search tree construction,
where the robots include their inconsistent features in the
different components in such a way that no inconsistencies
appear.

Given an inconsistent set, we define the root robot, i?,
as the robot with the most inconsistent features involved in
the inconsistency. In case two robots have the same number
of inconsistent features, the one with the lowest identifier is
selected. The whole method is schematized in Algortihm 3.

In lines 1-6 of the algorithm, the root robot creates m̃i?

components, as many as inconsistent features it has in the
inconsistency, and initializes a different component Cq with
each one of its features. Then, it tries to add to each component
Cq the features directly associated to the feature assigned to
that component by sending a request message to them. The
rest of the robots do not do anything during the initialization
and directly wait for request and reject messages.

Let us consider now that robot i receives a request message,
coming from robot j, to join feature f ir to feature f js in a
specific component Cq . Then four cases can be distinguished:
(a) f ir is already assigned to Cq;
(b) f ir is assigned to a different component;
(c) other feature f ir′ is already assigned to Cq;
(d) f ir is unassigned and no feature in i is assigned to Cq .
In case (a), f ir already belongs to the component Cq and robot
i does nothing, as shown in lines 9-10 of the algorithm. Lines
11 to 13 consider cases (b) and (c), where f ir cannot be added
to Cq because it would create an inconsistency; in these two
cases robot i deletes the link [Aij ]r,s and replies with a reject
message to robot j; when robot j receives the reject message

(lines 19-21), it deletes the equivalent link [Aji]s,r. Finally,
in case (d) (lines 14-16), robot i assigns its feature f ir to the
component Cq and the process is repeated.

Algorithm 3 Spanning Trees - Robot i
Require: Set of C different inconsistent sets
Ensure: Gdis is inconsistency-free

1: – Initialization
2: for all C such that i is root (i = i?) do
3: create m̃i? components, Cq
4: assign each feature f i?r ∈ C to a different Cq
5: send request to all features locally associated to f i?r
6: end for
7: – Algorithm
8: for each request from f js to f ir do
9: if case (a) then

10: do nothing
11: else if cases (b) or (c) then
12: [Aij ]r,s = 0
13: send reject message to j
14: else if case (d) then
15: assign f ir to the component
16: send request to all its neighboring features
17: end if
18: end for
19: for each reject from f js to f ir do
20: [Aij ]r,s = 0
21: end for

The algorithm ends its execution after no more than n
communication rounds. When the algorithm finishes, each
original inconsistent set C has been partitioned into m̃i?

disjoint, inconsistency-free components. It may happen that



9

a subset of features remains unassigned. These features may
still be inconsistent. The detection and resolution algorithms
can be executed on the subgraph defined by this smaller subset
of features obtaining in the end an association graph free of
all the inconsistencies.

C. Example of execution

Let us consider one inconsistency as the one depicted in
Fig. 4 (a) where the communication graph is a ring with an
additional edge between robots C and E.

Figure 4 (b) shows the solution obtained using the Maximum
Error Cut algorithm. The evolution of the zr vectors is shown
in Figure 5. Each figure, 5 (a) to 5 (f), represents a new
iteration of the algorithm in (5). The -1 values are omitted
for clarity. As an example of how it works, the fourth row in
figure 5 (b), corresponding to fB2 is obtained as follows. fB2
executes (5) and updates its row in Fig. 5 (a) with the 2nd
and 5th rows in Fig. 5 (a), sent by robots A and C because of
features fA2 and fC1 . Robot B permutes the second and fourth
element of the vector sent by robot A and the fourth and fifth
element of vector sent by robot C and chooses the maximum
(element to element) of the three vectors. As a result the sixth
and seventh position in Fig. 5 (b) (features fD1 and fE1 ) change
their values. It is interesting to see how several elements in
the different vectors receive the value “8”, corresponding to
the largest value within the cycle. Once rule (5) has finished,
robots A and B look for the cuts to break their inconsistencies
(Fig. 6). For robot B the best cut is the one matching features
fA1 and fB1 . For the robot A the largest error is in the column
associated to fB1 . However, this is not a cut because both
features have the same value in the same element. The next
largest value is also discarded because it belongs to a cycle.
Finally, the bridge with error 7 is selected because it is a cut
and the match between fB2 and fC1 is deleted.

0 1 9 7 8 8 3 6 

6 0 9 1 7 8 8 3 

9 1 0 7 8 8 3 6 

6 1 9 0 7 8 8 3 

0 1 9 7 8 8 3 6 

6 0 9 1 7 8 8 3 

9 1 0 7 8 8 3 6 

6 1 9 0 7 8 8 3 

Fig. 6. Decisions to solve the inconsistency. Robot B chooses the edge
(fA

1 , fB
1 ). Robot A discards the elements with values 8 and 9 because

they belong to a cycle and to an edge that does not solve its inconsistency
respectively. The match between fB

2 and fC
1 solves the inconsistency and

has the largest error.

The Spanning Trees solution is shown in Fig. 4 (c). The root
robot to manage the inconsistency is the robot A. For each
feature, robot A instantiates a different spanning tree. After 2
communications rounds, robots C and E send a request to D
and also among them. fD1 gets attached to fC1 and the other
edges are broken. After this point the algorithm has ended its
execution and the new association graph is inconsistency-free.

V. EXPERIMENTS

A. Simulations

We have designed a simulation environment using MAT-
LAB to evaluate the performance of the proposed algorithms.

The environment considers a set of n robots observing the
same m features. To find the local matches, we start from the

perfect association graph of a fully connected graph. Then,
we randomly remove a percentage of the perfect associations
(pm Missing Edges) and add a percentage of spurious matches
(ps Spurious Edges). The error of each match is randomly
assigned between 0 and 10.

We assume the local matching to be deterministic, i.e.,
for the same matching function and pair of robots, the local
matching is always the same. In this way we can repeat
the experiment considering different network topologies. The
networks are generated as random graphs, where each com-
munication link has independent probability of existing, δ. We
call this parameter the network density, because values close
to 1 create networks with many links whereas small values
of δ imply very sparse networks. Moreover, let us note that
if δ = 1, then the communication graph is complete and the
robots have all the information about the matches available,
which is equivalent to a centralized solution of the problem.

Since all the robots are observing all the features, we
can define a metric to measure the correctness of the global
matching. One match will be a full match when the n robots
correctly associate the same feature. The ground truth solution
is obtained when m full matches are obtained. Given a par-
ticular communication network and local matching, it is also
interesting to analyze what is the best performance that our
algorithms can obtain. In such case, the best possible solution
is the one in which all the spurious links are removed and all
the good links are kept for that particular association graph. We
define this solution as the optimal distributed solution (OPT),
which is computed propagating the local matches without the
spurious links. In Fig. 7 (a)-(c) we show the percentage of
full matches varying the number of features, of robots and
the density of the network. The results are shown for two
different matching functions, F1 = [pm, ps] = [0.1, 0.1], and
F2 = [pm, ps] = [0.25, 0.05].

Influence of the number of features: Fig. 7 (a) shows the
percentage of full matches of the optimal distributed solution
(OPT), and the solutions obtained after the propagation (P),
and after executing the Maximum Error Cut (MEC) and the
Spanning Trees (ST) resolution methods for different values
of m. Since the ground truth solution always corresponds to
the 100% of full matches it is not depicted in the graphics.
The number of robots is fixed and equal to n = 8 and the
density of the network is δ = 0.5. For each number of features
we have repeated the experiment 100 times with different
initial configurations. The number of features is a parameter
without much influence on the obtained results. This makes
sense because each association set is treated independently,
and in general, with more features there are more sets, but
not more complex inconsistencies. The performance of MEC
is close to the OPT in any case. We can also see that there is
a difference in the values depending on the local matcher, but
we will analyze this later.

Influence of the number of robots: In Fig. 7 (b) we show the
results for the same experiment fixing m to 15 features and
varying the number of robots, n. As the number of robots is
increased, the percentage of full matches after the propagation
step is decreased because there are more outliers (and more
inconsistencies). On the other hand, using any of the resolution



10

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Number of Features (m)

%
 F

ul
l M

at
ch

es

 

 

F1−P
F1−ST
F1−MEC
F1−OPT
F2−P
F2−ST
F2−MEC
F2−OPT

4 6 8 10 12 14 16
0

20

40

60

80

100

Number of Robots (n)

%
 F

ul
l M

at
ch

es

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Network Density (δ)

%
 F

ul
l M

at
ch

es

(a) Full matches versus m (b) Full matches versus n (c) Full matches versus δ

Fig. 7. Percentage of full matches for two matching functions and different number of features (m), robots (n) and network density (δ).

S1M1 S1M2 S1M3 S2M1 S2M2 S2M3 S3M1 S3M2 S3M3
0

20

40

60

80

100

Different Matching Functions

F
ul

l M
at

ch
es

 %

 

 

P
ST
MEC
OPT

S1M1 S1M2 S1M3 S2M1 S2M2 S2M3 S3M1 S3M2 S3M3
0

20

40

60

80

100

Different matching functions (centralized execution)

F
ul

l m
at

ch
es

 %

 

 

P
ST
MEC
CEN

S1M1 S1M2 S1M3 S2M1 S2M2 S2M3 S3M1 S3M2 S3M3
0

500

1000

1500

Different matching functions

N
um

be
r 

of
 s

pu
rio

us
 li

nk
s

 

 

P
ST
MEC

(a) Full matches (distributed) (b) Full matches (centralized) (c) Number of false positives

Fig. 8. Quality of different matchers. Figures (a) and (b) show the % of Full Matches for increasing percentages of missing and spurious
links in the local associations in a distributed and a fully connected scenario. Figure (c) shows the number of spurious links (false positives)
found before and after executing the resolution algorithms (in 100 iterations).

algorithms, the percentage is kept at good values (almost as
good as the ground truth), which means that our resolution
algorithms are robust to the number of robots participating.

Influence of the density of the network: In Fig. 7 (c) we show
the results considering different densities of the network and
fixed number of robots, n = 8, and features, m = 15. With
more communication links between the robots our algorithms
have a better performance. With few communication links it
is more probable for a spurious match to pass undetected,
whereas with more links, it will be easier to detect inconsisten-
cies. This detection allows to improve the results by deleting
more spurious edges. Let us also note that for δ = 1 (all to all
communications), the MEC algorithm obtains the 100% of full
matches, which corroborates that the idea of deleting single
links with large error is a good proxy for deleting spurious
matches.

Influence of the local matching: In Figs. 7 (a)-(c) we can
see that the matchers F1 and F2 return very different results.
The quality of the function used for the local matching is a pa-
rameter that plays a fundamental role in our algorithm. In Fig.
8 (a)-(c) we have considered 9 different matchers, with n =
8, m = 15, and evaluated their performance in a distributed,
Fig. 8 (a), and a fully connected scenario, Fig. 8 (b), comparing
the results again OPT and a centralized implementation of
OPT (CEN). For the distributed case we have also measured
the amount of spurious links removed, Fig. 8 (c). The matchers
have different values of ps, [S1, S2, S3] = [0.05, 0.15, 0.25],
and different values of pm, [M1,M2,M3] = [0.1, 0.25, 0.5].
Note that these values are in several cases, quite extreme, as
it is very unlikely that a local matcher misses half of the
associations and introduces a 25% of spurious links.

Our methods are more sensitive to missing links than to

spurious links (columns with M3), where the gap w.r.t. OPT
and CEN is notable. This happens because with fewer links
it is harder to obtain a full match. Nevertheless, even using
the worst matching functions, in Fig 8 (c) we can observe
that a large number of the spurious links is removed. With
more links, even if there are several spurious, by removing
the appropriate matches we obtain a larger percentage of full
matches, and almost the same results as OPT and CEN. Note
that in all the cases, using the resolution methods we obtain
better results than just considering the matching given by the
propagation (P) of the local matches.

In conclusion, our algorithms are able to improve the initial
data association, in the sense that they are able to identify
and delete a great proportion of the spurious links introduced
by the local matching. As a consequence, the global data
association we obtain is better than the one obtained by just
propagating the local associations. The performance is similar
to OPT and for dense networks the results are close to the
ground truth regardless of the local matcher.

B. Experiments with real data

We have also tested our proposal with real images con-
sidering different robotic scenarios such as robots moving
in formation or multi-robot SLAM. In each example we
have used different features and functions to find the local
correspondences.

1) Data association in multi-robot formations using ge-
ometric constraints: In the first experiment we consider 6
robots moving in formation (around 5 m away from each
other). Each robot acquires one image with its camera and
extracts SURF features [30] (Fig. 9). The epipolar constraint
plus RANSAC [12] is used for the local matching. The



11

detection and resolution of inconsistencies is analyzed for four
different typical communication graphs (Fig. 10). The error
function used for the Maximum Error Cut algorithm is the
Sampson distance.

Fig. 9. Images acquired by 6 robots moving in formation. We show an
example of one inconsistency solved with the Spanning Trees algorithm by
deleting the black line. The blue lines show a full match and the green
lines a partial match. For clarity, we do not show the rest of the matches
or inconsistencies.

(a) Ring (b) Pyramidal (c) Star-Ring (d) Complete

Fig. 10. Formations used in the experiment.

We have chosen a man made scenario to be able to manually
classify the matches. Although ground truth is not available
in this example, by looking at the correspondences we have
counted the amount of full matches. This number is very small
or even zero due to missing matches and occlusions caused
by the trees in the images. For that reason we also define a
partial match when 3 or more robots correctly match the same
feature, because in such case the propagation is required for
the association. Even when a partial match does not represent
a fully correct match, let us note that it is still free of any
spurious information.

The results of the experiment can be seen in Table I. The
number of features and links participating increases with the
number of edges in Gcom (first and second row in Table
I). As a consequence, the propagation is able to find more
inconsistencies (73 with a complete graph versus 1 with a ring
topology), resulting in better results after the resolution. After
executing the ST resolution algorithm, all the inconsistencies
have been solved (second and third row in the ST block in
Table I). The MEC is not able to solve one inconsistency out
of 73 for the complete topology because the features that must
be separated belong to a cycle. Fortunately, the algorithm is
able to detect this situation, because the robots realize that
there are no cuts, computing the Spanning Trees solution to
resolve this inconsistency with results shown in parenthesis.
Regarding the quality of the new association, using any of
the two algorithms there are more full and partial matches
than those found with the propagation, resulting in a better
data association than the one obtained by plain propagation of
the matches. In this aspect the MEC is able to obtain better

TABLE I
RESULTS FOR THE DATA ASSOCIATION OF IMAGES

Comm. graph Fig. 10 (a) (b) (c) (d)
Total Features 1727 1985 2126 2618

Total Links 1036 1345 1560 2326
AFTER PROPAGATION (P)

Inconsistencies 1 14 29 73
Incons. feats. 7 89 183 510
Full Matches 7 10 13 15

Partial Matches 210 271 302 391
SPANNING TREES (ST)

Deleted Links 1 17 40 126
Deleted False Positives 0 7 19 48

Inconsistencies 0 0 0 0
Incons. feats. 0 0 0 0
Full Matches 7 10 13 16

Partial Matches 211 284 329 460
MAXIMUM ERROR CUT (MEC)

Deleted Links 1 20 38 108 (4)
Deleted False Positives 1 12 25 69 (2)

Inconsistencies 0 0 0 1 (0)
Incons. feats. 0 0 0 10 (0)
Full Matches 8 11 16 21

Partial Matches 210 282 324 462

results than the ST because it obtains a larger number of full
and partial matches.

In Table II we show the number of iterations executed
by our algorithms and the amount of information the robots
exchange in KBytes (KB). First of all, let us note that the
number of iterations of the propagation is always around
n = 6, and therefore smaller than the conservative bounds
given in Theorem 3.4. In terms of communications, the most
expensive step is the initial one, in which the robots require
to exchange the features with their neighbors to compute
the local matches. Although only one iteration is required to
send the features (same demands for all the networks), it is
more demanding than the other steps because each SURF is
composed by a 64-float descriptor, while in the propagation
and the resolution steps the robots exchange pairs of integers.
Note thus that methods based on multi-hop propagation of
local features have larger communication consumptions than
our approach. Let us also note that the amount of information
exchanged in the propagation is in all the cases much smaller
than 2m2

sum and that the resolution algorithms have a very
light communication load, since they are only executed in
the presence of inconsistencies. MEC has slightly larger costs
than ST since it requires to exchange the errors between
the matches. Finally, in the last rows of Table II we have
measured the percentage of time spent in the computations of
the different steps of our algorithms in a single computer. It
can be seen that the local matching of the features is the most
demanding part of the algorithm, always requiring more than
half of the total time.

2) Data association in multi-robot SLAM with stochastic
maps: Our proposal is also of high interest in multi-robot
exploration scenarios with limited communications. In this ex-
periment each robot has explored a section of the environment
and it has built a stochastic map using a SLAM algorithm.
When the exploration finishes, the local maps are merged into
a global map of the environment using the consensus-based
distributed algorithm in [25].



12

TABLE II
COMMUNICATION FOR THE DATA ASSOCIATION OF IMAGES

Comm. graph Fig. 10 (a) (b) (c) (d)
LOCAL MATCHING

Iterations 1 1 1 1
Mean(KB) 615.94 615.94 615.94 615.94
Max(KB) 698.88 698.88 698.88 698.88

PROPAGATION (P)
Iterations 6 5 6 6

Mean(KB) 0.28 0.58 0.54 0.63
Max(KB) 0.92 1.55 1.88 2.44

SPANNING TREES (ST)
Iterations 3 4 4 4

Mean(KB) 0.01 0.04 0.11 0.34
Max(KB) 0.02 0.28 0.70 1.26

MAXIMUM ERROR CUT (MEC)
Iterations 9 9 10 14

Mean(KB) 0.01 0.13 0.28 0.72
Max(KB) 0.02 0.42 0.93 2.96

COMPUTATIONAL TIME (%)
Extraction 8.8 6.6 6.3 3.7

Local Matching 76.2 77.0 78.3 68.3
Propagation 4.8 5.5 5.5 10.6

Resolution (ST) 5.0 5.2 4.2 6.4
Resolution (MEC) 5.2 5.7 5.7 11.0

Distributed map merging methods can cope with limited
communication, switching topologies, or link failures in a
much more robust way than solutions based on centralized
schemes, all-to-all communication, or broadcasting methods,
such as [21] for particle filters, [31] for multi-robot submaps,
and [32] for graph maps of laser scan. Lately, some decentral-
ized map merging algorithms have been proposed that, instead
of using consensus-based solutions, rely on the storage and
propagation of the measurements and odometry [33], or of the
local maps [26] of all robots in the network. These methods
however have the inconvenience that the memory cost does
not scale well with the size of the network, i.e., if the number
of robots is increased without changing the scene size, the
memory cost increases as well. Consensus-based approaches
as [25] do not suffer from this problem, since each robot
keeps a single representation of the scene. The distributed
data association method presented in this paper constitutes an
interesting tool for these distributed map merging solutions.

We use a data set [34] with bearing information obtained
with vision (Sony EVI-371DG). The landmarks are vertical
lines extracted from the images. The measurements are la-

(a) (b) (c)
Fig. 11. Communication graphs between the 8 robots used for evaluating
the data association of stochastic maps.

beled so that we can compare our results with the ground-truth
data association. We select 8 sections of the whole path for the
operation of 8 different robots and analyze the performance
of the algorithm under 3 communication graphs (Fig 11). A
separate SLAM is executed on each section, producing the 8
local maps (Fig. 12). In this case a full match is obtained
when all the robots that observe one feature match it. As
in many real scenarios, here the landmarks are close to each

other, and the only information available for matching them
are their cartesian coordinates. The local data associations are
computed using the Joint Compatibility Branch and Bound
(JCBB) [8] since it is very convenient for cluttered situations
like the considered scenario. The JCBB is applied to the local
maps of any pair of neighboring robots. The resulting local
matches are depicted in Fig. 12.

Robots establish the association between their features us-
ing the distributed data association described in this paper,
and solve any inconsistent association detected. Recall that
inconsistencies are always motivated by, at least, one spurious
link; thus, if they are not removed, they may introduce
serious deformations in the global map (Fig. 13). Observe
that the global merged map using either the ground truth data
association (Fig. 13 (b)), or the inconsistency-free association
given by our methods (Fig. 13 (c)) appropriately resemble
the scene (Fig. 13 (a)). Table III shows the results for the
different network topologies in Fig. 11. We assign to each
edge an error that depends on the number of matches between
the local maps. Thus, we assume that an edge that belongs
to a set with many jointly compatible matches has many
chances of being a good edge. Between the edges belonging
to the same set of jointly compatible associations, we use
the individual Mahalanobis distance to slightly differentiate
their errors. Then, we apply the two resolutions algorithms
to solve the inconsistencies. The Spanning Trees approach,
which does not take into account the errors associated to the
edges, produces good results. For the three communication
schemes, it improves the amount of full and partial matches.
However, the Maximum Error Cut algorithm produces better
results. The total number of edges deleted by this approach is
lower, whereas the number of full matches is higher than for
the Spanning Trees method.

TABLE III
RESULTS FOR THE DATA ASSOCIATION OF STOCHASTIC MAPS

Comm. graph (a) (b) (c)
Total Features 194 194 194

Total Links 82 93 111
Total False Positives 4 13 21

AFTER PROPAGATION
Inconsistencies 2 6 8
Incons. feats. 8 35 49
Full Matches 55 49 46

Partial Matches 4 3 2
SPANNING TREES

Deleted Links 2 10 16
Deleted False Positives 2 6 10

Inconsistencies 0 0 0
Incons. feats. 0 0 0
Full Matches 55 53 50

Partial Matches 6 5 6
MAXIMUM ERROR CUT

Deleted Links 2 7 14
Deleted False Positives 2 6 8

Inconsistencies 0 0 1 (0)
Incons. feats. 0 0 8 (0)
Full Matches 55 55 52

Partial Matches 4 3 3

Table IV shows the communication cost of the data associa-
tion algorithm in KBytes (KB). The most expensive part con-
sists of sending the local maps to neighbor robots. Therefore,



13

Fig. 12. Local maps acquired by 8 robots (blue) during their exploration. We also display the features observed by all the robots (gray crosses) to give an
idea of the region explored by each robot. Each robot solves a local data association with its neighbors in the communication graph in Fig. 11 (a). Although
many of the local edges are good (green solid lines), there are also some spurious matches (red dashed lines) that give rise to an inconsistency between 3 of
the local maps (inside the dark gray area).

−5 0 5 10 15
−4

−2

0

2

4

6

8

−5 0 5 10 15
−4

−2

0

2

4

6

8

 

 

R1
R2
R3
R4
R5
R6
R7
R8 −5 0 5 10 15

−4

−2

0

2

4

6

8

 

 

R1
R2
R3
R4
R5
R6
R7
R8 −5 0 5 10 15

−4

−2

0

2

4

6

8

 

 

R1
R2
R3
R4
R5
R6
R7
R8

(a) Section explored (b) Ground truth data association (c) Inconsistency resolution (d) No inconsistency resolution

Fig. 13. Effects of using inconsistent data associations for merging the local maps. The section explored by the robots is composed of corridors and rooms
(a). If robots knew the ground truth data association, the global merged map would resemble the original scene structure (b). The global merged map after
resolving the inconsistencies with the Maximum Error Cut method appropriately resembles the scene as well (c). However, if inconsistencies are not removed,
they may introduce serious deformations in the global merged map (d).

map merging methods based on multi-hop propagation of local
maps will be more demanding in terms of communications
than our approach. The propagation involves the exchange of a
small number of integers (new associations found), and thus it
has a much smaller cost. Finally, the inconsistency resolution,
which is executed only on the inconsistent features, has a
very low communication cost. The computational cost for the
different parts of the algorithm can be found at the last rows
of Table IV. As it can be observed, the computational effort
for propagating matches and resolving inconsistencies is very
low compared to the cost for establishing the local matches.

VI. CONCLUSIONS

We have presented distributed algorithms to compute con-
sistent correspondences over a robotic network considering
limited communications and vision sensors. The algorithms
receive as input the local correspondences found between
robots that can communicate. After that, a fully decentralized
method to compute all the paths between local associations is
carried out, allowing the robots to detect all the features that
are associated with the ones they have observed and the in-
consistencies that occur because of spurious local matches. In
order to break these inconsistencies, two different algorithms
have been presented that require only local communications.
One of the algorithms considers the quality of each local
match, when this information is provided by the local matcher.
The other algorithm computes different spanning trees free
of inconsistencies. We have evaluated our algorithms using
simulated data and real images, considering different features

TABLE IV
COMMUNICATION FOR THE DATA ASSOCIATION OF STOCHASTIC MAPS

Comm. graph (a) (b) (c)
LOCAL MATCHING

Iterations 1 1 1
Mean(KB) 10.9 10.9 10.9
Max(KB) 27.9 27.9 27.9

PROPAGATION (P)
Iterations 5 7 7

Mean(KB) 0.36 0.45 0.54
Max(KB) 0.50 0.71 0.84

SPANNING TREES (ST)
Iterations 2 4 3

Mean(KB) 0.04 0.20 0.30
Max(KB) 0.12 0.33 0.56
MAXIMUM ERROR CUT (MEC)

Iterations 4 8 8
Mean(KB) 0.05 0.46 0.85
Max(KB) 0.15 0.79 1.53

COMPUTATIONAL TIME (%)
Local Matching 99.59 99.46 99.39

Propagation 0.395 0.501 0.473
Resolution (ST) 0.006 0.019 0.099

Resolution (MEC) 0.019 0.023 0.030

and local matching functions where our algorithms can be
used.

REFERENCES

[1] K. Y. K. Leung, T. D. Barfoot, and H. Liu, “Decentralized localization
of sparsely-communicating robot networks: A centralized-equivalent
approach,” IEEE Transactions on Robotics, vol. 26, no. 1, pp. 62 –
77, February 2010.



14

[2] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart,
“Distributed multirobot exploration and mapping,” Proceedings of the
IEEE, vol. 94, no. 7, pp. 1325 – 1339, July 2006.

[3] N. F. Sandell and R. Olfati-Saber, “Distributed data association for multi-
target tracking in sensor networks,” in IEEE International Conference
on Decision and Control, 2008, pp. 1085 – 1090.

[4] A. Censi, “An accurate closed-form estimate of ICP’s covariance,” in
IEEE International Conference on Robotics and Automation, 2007, pp.
3167 – 3172.

[5] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact
pose slam,” IEEE Transactions on Robotics, vol. 26, no. 1, pp. 78 – 93,
February 2010.

[6] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smooth-
ing and mapping,” IEEE Transactions on Robotics, vol. 24, no. 6, pp.
1365 – 1378, December 2008.

[7] L. Pedraza, D. Rodriguez-Losada, F. Matia, G. Dissanayake, and J. V.
Miro, “Extending the limits of feature-based SLAM with b-splines,”
IEEE Transactions on Robotics, vol. 25, no. 2, pp. 353 – 366, April
2009.

[8] J. Neira and J. D. Tardós, “Data association in stochastic mapping
using the joint compatibility test,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 6, pp. 890 – 897, December 2001.

[9] T. Bailey, E. M. Nebot, J. K. Rosenblatt, and H. F. Durrant-Whyte, “Data
association for mobile robot navigation: a graph theoretic approach,” in
IEEE International Conference on Robotics and Automation, 2000, pp.
2512 – 1517.

[10] N. Sünderhauf and P. Protzel, “Switchable constraints for robust pose
graph slam,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2012, pp. 1879 – 1884.

[11] E. Olson, “Recognizing places using spectrally clustered local matches,”
Robotics and Autonomous Systems, vol. 57, no. 12, pp. 1157 – 1172,
December 2009.

[12] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge: Cambridge University Press, 2000.

[13] D. Nister, “An efficient solution to the five-point relative pose prob-
lem,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 6, pp. 756 – 770, June 2004.

[14] J. J. Guerrero, A. C. Murillo, and C. Sagues, “Localization and matching
using the planar trifocal tensor with bearing-only data,” IEEE Transac-
tions on Robotics, vol. 24, no. 2, pp. 494 – 501, April 2008.

[15] R. Garg, D. Ramanan, S. Seitz, and N. Snavely, “Where’s waldo: Match-
ing people in images of crowds,” in IEEE International Conference on
Computer Vision and Pattern Recognition, 2011, pp. 1793 – 1800.

[16] C. Cadena, D. Gálvez-López, J. Tardós, and J. Neira, “Robust place
recognition with stereo sequences,” IEEE Transaction on Robotics,
vol. 28, no. 4, pp. 871 – 885, August 2012.

[17] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381 – 395, June 1981.

[18] L. Merino, J. Wiklund, F. Caballero, A. Moe, J. R. M. de Dios,
P. Forssen, K. Nordberg, and A. Ollero, “Vision-based multi-uav position
estimation,” IEEE Robotics and Automation Magazine, vol. 13, no. 3,
pp. 53 – 62, September 2006.

[19] A. Gil, O. Reinoso, M. Ballesta, and M. Juliá, “Multi-robot visual SLAM
using a rao-blackwellized particle filter,” Robotics and Autonomous
Systems, vol. 58, no. 1, pp. 68 – 80, January 2010.

[20] X. S. Zhou and S. I. Roumeliotis, “Multi-robot slam with unknown initial
correspondence: The robot rendezvous case,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2006, pp. 1785
– 1792.

[21] A. Howard, “Multi-robot simultaneous localization and mapping using
particle filters,” International Journal of Robotics Research, vol. 25,
no. 12, pp. 1243 – 1256, September 2006.

[22] J. Yao and W. Cham, “Robust multi-view feature matching from multiple
unordered views,” Pattern Recognition, vol. 40, no. 11, pp. 3081 – 3099,
November 2007.

[23] V. Ferrari, T. Tuytelaars, and L. V. Gool, “Wide-baseline multiple-view
correspondences,” in IEEE International Conference on Computer Vision
and Pattern Recognition, 2003, pp. 718 – 725.

[24] K. Y. K. Leung, T. D. Barfoot, and H. Liu, “Distributed and decentralized
cooperative simulatenous localization and mapping for dynamic and
sparse robot networks,” in IEEE Int. Conf. on Robotics and Automation,
2011, pp. 3841 – 3847.

[25] R. Aragues, J. Cortes, and C. Sagues, “Distributed consensus on robot
networks for dynamically merging feature-based maps,” IEEE Transac-
tions on Robotics, vol. 28, no. 4, pp. 840 – 854, August 2012.

[26] A. Cunningham, K. Wurm, W. Burgard, and F. Dellaert, “Fully dis-
tributed scalable smoothing and mapping with robust multi-robot data
association,” in IEEE Int. Conf. on Robotics and Automation, 2012, pp.
1093 – 1100.

[27] S. Avidan, Y. Moses, and Y. Moses, “Centralized and distributed
multi-view correspondence,” International Journal of Computer Vision,
vol. 71, no. 1, pp. 49 – 69, January 2007.

[28] R. Aragues, E. Montijano, and C. Sagues, “Consistent data association in
multi-robot systems with limited communications,” in Robotics: Science
and Systems, 2010, pp. 97 – 104.

[29] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University Press,
2009, electronically available at http://coordinationbook.info.

[30] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust
features,” in European Conference on Computer Vision, 2006, pp. 404
– 417.

[31] S. B. Williams and H. Durrant-Whyte, “Towards multi-vehicle simulta-
neous localisation and mapping,” in IEEE Int. Conf. on Robotics and
Automation, 2002, pp. 2743 – 2748.

[32] R. Vincent, D. Fox, J. Ko, K. Konolige, B. Limketkai, B. Morisset,
C. Ortiz, D. Schulz, and B. Stewart, “Distributed multirobot exploration,
mapping, and task allocation,” Annals of Mathematics and Artificial
Intelligence, vol. 52, no. 1, pp. 229 – 255, 2008.

[33] K. Y. K. Leung, T. D. Barfoot, and H. H. T. Liu, “Decentralized coop-
erative simultaneous localization and mapping for dynamic and sparse
robot networks,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2010, pp. 3554 – 3561.

[34] U. Frese and J. Kurlbaum, “A data set for data
association,” June 2008. [Online]. Available: http://www.sfbtr8.spatial-
cognition.de/insidedataassociation/

APPENDIX I
PROPERTIES OF ALGORITHM 1

This appendix presents the proofs related to the properties
of Algorithm 1.

Proof of Proposition 3.2 (Limited Communications): By
the definition of the operations in lines 9 and 13 of Algorithm
1 we can see that the components of yir change their value at
most once during the whole execution, for all i ∈ Vcom, r ∈
Si. This means that it is not necessary for the robots to send
the whole blocks yir to their neighbors but just the indices
of the components that have changed their value from false
to true. Each element can be identified by the row and the
column and there are a total of m2

sum elements. Therefore, in
the worst case, the amount of transmitted information through
the network during the whole execution of the algorithm is
2m2

sum.
Proof of Proposition 3.3 (Correctness): If for some time t

[yir(t − 1)]u = 0 and [yir(t)]u = 1, u = 1, . . . ,msum then a
new path has been found in Gdis that includes the feature r.
These new paths come either from the execution of line 9, or
the execution of line 13.

Let ti be the first time instant such that yir(ti) = yir(ti −
1) ∀r because no component has changed its value from
zero to one for any of the features. This means that, for any
feature in Si, there are no new paths with other features. By
the properties of a path, it is obvious that if there are no new
features at minimum distance ti, it will be impossible that a
new feature is at minimum distance ti + 1. In addition, if no
new paths at distance ti + 1 can be found, the algorithm will
not find new paths at distance ti + 2 either. At this point the
condition of line 16 is true and the algorithm ends with all the
features connected to f ir contained in yir(ti).

Proof of Theorem 3.4 (Limited Iterations): We already
know that the algorithm finishes in, at most, df iterations [28].



15

In the case that the matching does not contain any inconsis-
tency df ≤ 2n and the result is valid.

Now let us suppose that there is one inconsistency. This
implies that the communication graph, Gcom, contains one
cycle of arbitrary length, `. We divide the number of iterations
in three parts. First n − ` iterations are required to ensure
that the information of all the features belonging to the robots
outside the cycle reaches at least one robot in the cycle.

Let us analyze now the iterations of the second part. In the
worst case, the diameter of the subgraph defined by the cycle is
`/2 and only `+1 features in the cycle form the inconsistency,
which means that only one robot will execute, at some point,
line 13 of Algorithm 1. It is clear that after `/2 + 1 iterations
there will be at least two robots in the cycle, at maximum
distance from each other (`/2), with all the information. One
of the robots, the one with the inconsistency, will obtain the
information from the execution of line 13 in Algorithm 1. The
other robot is the one with the common feature, detected by
the first one. After this point `/4 iterations are required to
share this information with the rest of the robots in the cycle
and we can ensure that all the robots in the cycle have all the
information about the inconsistency. Therefore, the second part
requires `/2 + 1 + `/4 = 3

4`+ 1 iterations. If there are more
than `+ 1 features inside the cycle forming the inconsistency
the result is still valid.

With all the robots in the cycle knowing all the features
that form the inconsistency, the number of additional iterations
required to transmit the information to the rest of the network
is upper bounded again by n− `. If we sum all the iterations
we obtain 2n− 5

4`+ 1. Since the minimum length of a cycle
is 3 the above quantity is always lower than 2n.

APPENDIX II
PROPERTIES OF ALGORITHM 2

This appendix presents the proofs related to the properties
of Algorithm 2.

Proof of Proposition 4.3 (Convergence): The features
involved in the inconsistency form a strongly connected graph.
For a given graph, the max consensus update is proved to
converge in a finite number of iterations [29]. For any r, s ∈ C
such that [EC ]r,s ≥ 0, by eq. (5) and the symmetry of EC , the
final consensus values of zr and zs satisfy, element to element,
that

zr ≥ zsPrs and zs ≥ zrPsr. (8)

Using the properties of the permutation matrices, Prs = PT
sr =

P−1sr , we see that zsPrs ≥ zr, which combined with eq. (8)
yields to zr = zsPrs. For any feature, r, taking into account
eq. (4), the update of the rth element of zr is

[zr(t+ 1)]r = max
s∈C, [EC ]r,s≥0

([zr(t)]r, [zs(t)]s). (9)

Recalling the first point in Assumption 4.1, the initial value
of [zr(0)]r = err = 0, for all r, then [zr(t)]r = 0,∀t ≥ 0.

Proof of Theorem 4.4 (Values for Bridges): First note that
(s, u) is a bridge, therefore it creates a partition of C in two
strongly connected, disjoint subsets

Cs = {r ∈ C | d(r, s) < d(r, u)},

Cu = {r ∈ C | d(r, u) < d(r, s)}. (10)

In the above equations it is clear that s ∈ Cs and u ∈ Cu.
We will focus now on the values of the sth element of the

state vector for the nodes in Cu and the uth element for the
nodes in Cs,

[zr(t)]u, r ∈ Cs, and [zr(t)]s, r ∈ Cu.

In the first case, for any r ∈ Cs \ s, update rule (4) is equal to

[zr(t+ 1)]u = max
r′∈Cs, [EC ]r,r′≥0

([zr(t)]u, [zr′(t)]u), (11)

because r 6= u 6= r′. The nodes in Cu are not taken into
account because that would mean that (u, s) belongs to a cycle
and it is not a bridge. The special case of feature s has an
update rule equal to

[zs(t+ 1)]u = max
r′∈Cs,[EC ]s,r′≥0

([zs(t)]u, [zr′(t)]u, [zu(t)]s). (12)

In a similar way the updates for features in Cu are

[zr(t+ 1)]s = max
r′∈Cu, [EC ]r,r′≥0

([zr(t)]s, [zr′(t)]s),

[zu(t+ 1)]s = max
r′∈Cu,[EC ]u,r′≥0

([zu(t)]s, [zr′(t)]s, [zs(t)]u).

Considering together all the equations and the connect-
edness of Cu and Cs, all these elements form a connected
component and they will converge to

[zr(t)]u, [zr′(t)]s → max
r∈Cs, r′∈Cu

([zr(0)]u, [zr′(0)]s). (13)

Since all the features r ∈ Cs \ s are not associated with u,
[zr(0)]u = −1. Analogously, for all the features r ∈ Cu \ u,
[zr(0)]s = −1. Finally, for the features u and s, by the second
and third point of Assumption 4.1, [zu(0)]s = eus = esu =
[zs(0)]u ≥ 0 > −1. Therefore this subset of elements of the
state vectors converge to the error of the edge (u, s), eus.

Proof of Theorem 4.5 (Values for Cycles): We will use the
following lemma to proof the result

Lemma 2.1: Let us consider a feature u, such that it is
an articulation vertex, defined as a node in C whose deletion
increases the number of connected components of C. Denote
Cu and Cu′ the two partitions generated by its deletion. For
any r ∈ Cu, s ∈ Cu′ , [zr(t)]s will converge to the same value
as [zu(t)]s and [zs(t)]r will converge to the same value as
[zu(t)]r. Moreover [zr(t)]u will converge to a different value
than [zs(t)]u.

Proof: Considering the fact that u is the only feature that
connects Cu and Cu′ , the permutations in (4) for elements in Cu
matched with u will not change the value of the components
related to elements in Cu′ and viceversa. On the other hand the
permutations will affect the value of the [zr(t)]u and [zs(t)]u
for features matched to u, shifting it to different positions in
the two partitions. Then using Proposition 4.3 the result holds.

Proof of Theorem 4.5: Let C̄` = C \ C` be the rest of the
features in the inconsistency. Given a feature r ∈ C̄` there
exists a unique s ∈ C` such that there is at least one path of
features in C̄` that ends in s. The uniqueness of s comes from
the fact that if there were another feature s′ ∈ C`, reachable



16

from r without passing through s, that would mean that r
is also part of the cycle. Note that this does not discard the
possibility that r and s belong to another cycle different than
C`. Also note that s = arg mins′∈C` d(r, s′).

Since s is the only connection with C`, then it is an
articulation vertex and, by Lemma 2.1, for any s′ ∈ C`\s, [zr]s′

will have final value equal to [zs]s′ . Therefore, if we show
that (7) is true for the features belonging to the cycle then the
theorem is proved.

Let us see what happens to features inside the cycle. First
note that r′ = arg mins∈C` d(r′, s), ∀r′ ∈ C`, and therefore,
by Proposition 4.3, this element is always zero. Now, for any
r′ ∈ C`, if we consider another element s ∈ C`, such that r′

is not directly matched to it, the update rule (4) is

[zr′(t+ 1)]s = max
u∈C`,[EC ]r′,u≥0

([zr′(t)]s, [zu(t)]s). (14)

We have omitted other possible features that are directly
matched to r′ and that do not belong to C` because they cannot
be matched to s, otherwise they would belong to C`, and then,
because of Lemma 2.1, they do not affect to the final value of
[zr′ ]s.

The special case of features in the cycle, s′, directly matched
to s has update rule equal to

[zs′(t+ 1)]s =

max
u∈C`\s,[EC ]s′,u≥0

([zs′(t)]s, [zs(t)]s′ , [zu(t)]s).

Due to the permutation, [zs′ ]s depends on the value of [zs]s′ .
Then, by Proposition 4.3 and the connectedness of the cycle,
in the end [zr]s will have the same value for all r ∈ C`\s, and
equal to the final value of [zs]s′ , for any s′ in the cycle directly
associated to s. By applying the same argument for any other
element corresponding to a feature in C` we conclude that
after the execution of enough iterations of (4), for any r ∈ C`,
[zr]s = [zr]s′ ,∀s, s′ ∈ C` \ r. Thus, each feature inside the
cycle will end with `− 1 elements in its state vector with the
same value, the maximum of all the considered edges, and (7)
is true.

Eduardo Montijano (M’12) received the M.Sc. and
Ph.D. degrees from the Universidad de Zaragoza,
Spain, in 2008 and 2012 respectively, supervised
by Prof. Carlos Sagüés. He is currently a Professor
at Centro Universitario de la Defensa, in Zaragoza,
Spain. His research interests are computer vision and
consensus algorithms applied to multiple robots.

Rosario Aragues (M’12) is a Postdoc at the Cler-
mont Universite, Institut Pascal, CNRS, UMR 6602,
France, since April 2012. She received her M.S. and
Ph.D. degrees in System Engineering and Computer
Science from the University of Zaragoza, Spain
in 2008 and 2012. Her research interests include
multi-robot perception, map merging, and distributed
consensus in robotic networks.

Carlos Sagüés (M’00, SM’11) received the M.Sc.
and Ph.D. degrees from the Universidad de
Zaragoza, Spain. During the course of his Ph.D.
he worked on force and infrared sensors for robots.
Since 1994 he has been Associate Professor and,
since 2009 Full Professor with the Departamento de
Informática e Ingenieı́a de Sistemas, Universidad de
Zaragoza, where he has also been Head Teacher. His
current research interest includes control systems,
computer vision, visual robot navigation and multi-
vehicle cooperative control.


