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Abstract
Objective. Brain–computer-interfaces (BCIs) have been proposed not only as assistive 
technologies but also as rehabilitation tools for lost functions. However, due to the stochastic 
nature, poor spatial resolution and signal to noise ratio from electroencephalography 
(EEG), multidimensional decoding has been the main obstacle to implement non-invasive 
BCIs in real-live rehabilitation scenarios. This study explores the classification of several 
functional reaching movements from the same limb using EEG oscillations in order to create 
a more versatile BCI for rehabilitation. Approach. Nine healthy participants performed 
four 3D center-out reaching tasks in four different sessions while wearing a passive robotic 
exoskeleton at their right upper limb. Kinematics data were acquired from the robotic 
exoskeleton. Multiclass extensions of Filter Bank Common Spatial Patterns (FBCSP) and 
a linear discriminant analysis (LDA) classifier were used to classify the EEG activity into 
four forward reaching movements (from a starting position towards four target positions), a 
backward movement (from any of the targets to the starting position and rest). Recalibrating 
the classifier using data from previous or the same session was also investigated and 
compared. Main results. Average EEG decoding accuracy were significantly above chance 
with 67%, 62.75%, and 50.3% when decoding three, four and six tasks from the same limb, 
respectively. Furthermore, classification accuracy could be increased when using data from the 
beginning of each session as training data to recalibrate the classifier. Significance. Our results 
demonstrate that classification from several functional movements performed by the same 
limb is possible with acceptable accuracy using EEG oscillations, especially if data from the 
same session are used to recalibrate the classifier. Therefore, an ecologically valid decoding 
could be used to control assistive or rehabilitation mutli-degrees of freedom (DoF) robotic 
devices using EEG data. These results have important implications towards assistive and 
rehabilitative neuroprostheses control in paralyzed patients.
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Introduction

Brain–computer interface (BCI) systems can be used to decode 
brain activity into commands to control external devices  
[1, 2]. A recent double-blind controlled study has demonstrated 
for the first time that BCI control of a rehabilitation robot can 
promote motor recovery of severely paralyzed chronic stroke 
patients [3], being these results reproduced and confirmed 
[4–6]. BCIs can also function as an assistive device to restore 
a lost function, such as motor control. It’s obvious that the 
number of DoFs that can be volitionally controlled is very rel-
evant for assistive technologies and prosthetics. This has also 
been suggested to be of paramount importance in rehabilitation 
robotic therapies [7, 8]. Initial EEG-based BCI studies control-
ling several DoFs were achieved using motor imagery para-
digms involving different limbs (e.g. 3D cursor control using 
hand versus feet versus tongue motor imagery) [9, 10]. This 
control strategy, albeit successful, is not based on ‘natural’ 
or ecologically valid environments (i.e. based on EEG oscil-
lations produced rapidly and without conscious effort when 
performing the task) and an extensive learning process is nec-
essary to achieve acceptable control performance. Recently, 
new strategies have been used to control multi-DoF robots 
based on EEG error potentials [11], steady state visual evoked 
potentials (SSVEPs) [12] and P300 potentials, even in ALS 
patients [13–15]. These strategies require attention but ignore 
motor descending corticospinal volleys, which seems to be key 
aspect in motor rehabilitation BCIs aiming at restoring natural 
corticomuscular connections [3]. Involvement on descending 
motor commands was suggested as key mechanism in motor 
rehabilitation because motor execution/attempt brain activity 
only was correlated with significant motor improvement com-
pared to motor imagery related brain activity during a proprio-
ceptive BCI rehabilitative intervention [3]. Other strategies 
like trajectory decoding [16] might offer a promising solution, 
albeit methodological challenges [17].

Neuronal population signals have been used to decode, 
with acceptable decoding performance, directional movement 
executions using non-invasive magnetoencephalographic 
(MEG) [18] and intracranial activity [19] from the motor 
cortex. Furthermore, intracortical activity has been succes-
fully used to control several degrees of freedom of robotic 
devices in primates [20, 21] and in humans [22, 23] decoding 
and/or encoding neural signals. Recently, control over func-
tional electrical stimulation (FES) [24] in humans has been 
also achieved. Furthermore, intracranial EEG has also been 
used to continuously decode two-dimensional (2D) hand posi-
tion [25], wrist movement trajectory [26] and seven different 
hand movement intentions in severely paralyzed chronic 
stroke patients [27]. However, invasive and MEG (nowadays 
too bulky and expensive to be considered as a practical option) 
data decoding are out of the scope of this paper.

Upper limb and especially hand movement decoding from 
electroencephalography (EEG) signals is still challenging 
mainly due to poor signal to noise ratio and spatial resolu-
tion [28]. Existing motor rehabilitation oriented BCI systems 
(i.e. decoding ‘natural’ movement related EEG oscillations) 
decode two classes only using simple binary classification 
between rest and movement [3, 4, 29–32]. These BCI systems 
only allow a user to control 1 DoF (e.g. orthosis for opening or 
closing the hand, a predefined functional electrical stimulation 
(FES) or visual feedback).

Recent studies have achieved classification of the same limb 
with acceptable performance using EEG data although many 
of these studies classify only two movements [18, 28, 33, 34]. 
Liao et al investigated the binary classification of ten different 
pairs of executed finger movements using 128-channel EEG 
signals achieving a promising average decoding performance of 
77.1% [35]. In another study, six different wrist movement pairs  
(e.g. flexion versus extension or pronation versus supination) 
were decoded with average accuracy ranging from 60 to 80% 
[36]. A few other groups have reported some preliminary work 
on multi-class decoding using motor imagery and execution of 
movements from the same upper limb [33, 37, 38]. Yong et al 
have shown a 3-class BCI system that discriminates EEG signals 
corresponding to rest, imaginary grasp, and elbow movement 
[33]. Furthermore, classification of hand movement direc-
tions from the same limb using EEG has not been sufficiently 
explored in the literature. Our previous work reported five class 
EEG decoding reported during multiclass classification of four 
movements directions and rest from the same limb [34].

We believe, discriminating different movements within the 
same limb would allow more intuitive control of neuropros-
theses (e.g. brain controlled exoskeleton) without considering 
any artificial association between actual movement and neuro-
prosthetic movement. Therefore, in the here presented work, 
we aimed at discriminating 6 different functional movements 
from the same limb with acceptable accuracy levels using EEG 
data towards a more intuitive and natural control of rehabilita-
tive devices like robotic exoskeletons and FES. Furthermore, 
we evaluated the impact of different recalibration strategies on 
the decoding to optimize system stability.

We hypothesize decoding accuracy levels allowing robotic 
control of rehabilitative devices of up to 6 functional movements 
from the same limb, could be achieved using EEG activity only.

Materials and methods

Participants

Study participants included nine healthy right-handed sub-
jects (6 male, age: 24  ±  4 years) with no history of neuro-
logic disease. Participants underwent four recording sessions 
(4 non-consecutive days) within eight days (average time 
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between each session was 2 d). The experimental procedure 
was explained to the subjects and they were asked to sign a 
written consent form. Ethically permission was given by the 
ethical committee of the Faculty of Medicine, University of 
Tübingen, Germany.

Experimental setup

Participants were seated in a comfortable chair in front of 
a desk (see figure  1(A)) especially designed for the experi-
ment. Participants were asked to perform 4 different center-
out functional reaching movements and move back to the 
initial starting position (see figure 1(A)) with their right upper 
limb attached to an IS-MORE 7-DoF robotic exoskeleton 
(Tecnalia, San Sebastian, Spain) upon imperative auditory cues  
(see figure  1(A)). All the participants were instructed to 
perform the outreaching movements in the same way, and 
rhythmic auditory cues were used to facilitate movements’ 

timing. The directional colored targets were named as Blue, 
Red, Green, and Brown. Participants were asked to reach a 
colored target and return to the rest position at a comfortable 
pace.

IS-MORE robotic exoskeleton

We decided to use an exoskeleton to record the kinematic 
data to simulate a realistic scenario condition in which a 
patient could brain-control the exoskeleton to produce func-
tional movements like reach and grasp. For an optimal stroke 
rehabilitation paradigm, a realistic environment with dif-
ferent functional movements trained at the same time is very 
important. Training of reaching movements is key in stroke 
recovery, as it involves elbow-shoulder coordination [39]. The 
Exoskeleton was friction-free and motors were disengaged, 
although produced some mechanical restrictions (e.g. no ver-
tical, or writs movement). Furthermore, the haptics related to 
the use of the exoskeleton will be present during the real sce-
nario and could also produce some brain activity from afferent 
origin, which could influence brain oscillatory signature of 
each motor task.

The exoskeleton can be moved in 7 DoFs including dis-
placement and rotation of the forearm in a 2D horizontal plane 
(3 proximal DoFs: position in X, position in Y, and forearm 
orientation angle), pronation and supination of the wrist  
(1 distal DoF: wrist angle), flexion and extension of the thumb, 
index and the group of middle, ring and pinky fingers (3 distal 
DoFs: thumb angle; index angle; three fingers angle).

Kinematic data (position in X, position in Y, and forearm 
orientation angle) of the midpoint of the fore-arm was calcu-
lated and recorded via a camera attached to the bottom of the 
base of the device. The exoskeleton rolls on top of a map with 
micro optical symbols printed on it, which are used to calcu-
late the instantaneous position (more details can be found in 
[37, 40]). The rest of the DoFs were recorded using motor 
encoders and potentiometers. Kinematic data was recorded 
at 18 Hz. Participants also performed 4 hand grasping move-
ments (pinch grip, key and cylindrical grasp and pointing with 
the index finger) and reach-and-grasp movements to the 4 
targets described in the manuscript combining the different 
grasping movements using especially designed objects for 
that purpose. Although we have analyzed the data, we have 
not included neither the experimental procedure nor the clas-
sification results in this manuscript because we did not obtain 
‘above chance level’ classification results for the grasping 
movements.

Experimental paradigm

Each experimental session was divided in 5 runs, each con-
sisting of 40 trials (10 trials for each target). The experimental 
timing diagram for each trial is shown in figure 1(B). Each 
trial consisted of three phases separated by auditory cues: (1) 
resting interval (random length between 2–3 s); (2) an instruc-
tional cue regarding the target to be reached (2 s); (3) ‘Go’ 
cue to initiate reaching movements towards the indicated 

Figure 1. (A) Experimental situation: participant performing a 
reaching movement from the starting rest position towards the 
green target. Reaching movements were executed towards the four 
different targets represented by rectangles coloured in blue, red, 
green and brown. (B) Timing: to begin, an auditory ‘Rest’ cue 
was presented indicating a random resting period between 2 to 3 s. 
immediately after this period an instructional auditory cue indicated 
to which target the participant was asked to move (blue, red, green, 
brown). Two seconds afterwards a ‘GO’ cue indicated the moment 
to start the active movement towards the targets at a comfortable 
pace, having a 4 s time out to perform the reaching movement and 
come back to the starting position. (C) Movement onsets were 
identified for forward and backward movements into 1 s epoch for 
each trial by kinematics data. Rest class was also segmented into 1 s 
epoch from the beginning of each rest interval.
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targets and come back to the starting position at a comfort-
able pace but always executed in less than 4 s. In order to 
reduce artifacts, we asked subjects to keep the jaw and face 
muscles relaxed avoiding eye blinks or swallowing during 
data recording. Therefore, to increase participants’ aware-
ness regarding artifacts, we performed a brief instruction task 
before the first session instructing subjects to perform face, 
neck, contralateral arm and eye movements, while raw data 
was shown to them.

Data acquisition

EEG was recorded according to the international 10–20 system 
from 32 active electrodes as FP1, FP2, F7, F3, Fz, F4, F8, FC5, FC1, 
FC2, FC6, T7, C3, Cz, C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, 
P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, and PO10 (ActiCap, Brain 
Products GmbH, Germany) and the cap was fixed by a chinstrap 
to avoid electrode shifts. EOG was recorded with passive elec-
trodes. AFz and FCz were used as the ground and reference elec-
trodes, respectively. The impedance of electrodes was kept below 
5 kΩ. EEG data were sampled (BrainAmp, Brain Products GmbH, 
Germany) at a frequency of 2500 Hz. BCI2000 software was used 
to record EEG data from the acquisition system and to present the  
auditory cues [41].

Data analysis

Preprocessing. After offline visual inspection peripheral 
channels (Fp1, Fp2, T7, T8, TP9, TP10, P7, P8, O1, Oz, O2, 
PO9, and PO10) were removed from prospective data analysis 
due to excessive noise and/or artefacts. Blind Source Separa-
tion (BSS) algorithm [42] from the automatic artifact removal 
(AAR) toolbox as an EEGLAB plug-in [43] was used to 
remove artifacts caused by eye-blinks and eye movements, 
and muscle activity from face, neck and shoulder movements. 
Live video streaming with a frontal view from the participants 
allowed the experimenter to control for systematic or random 
artifacts, which were reported to the participant if persistent 
and the correspondent experimental run was disregarded from 
the analysis. Data was downsampled to 250 Hz, band-pass 
filtered (0.1–70 Hz), and the power line noise was removed 
using a 50 Hz notch filter. An open-source MATLAB toolbox, 
BCILAB, was used to process the EEG data [44].

Time-frequency analysis. Time-frequency analysis for the 
investigation of spectral changes at distinct time points was 
performed using wavelet transforms even at the lowest fre-
quency (1 Hz corresponding to 3 cycles during 1 s) as event-
related spectral perturbations (ERSPs) [10]. The time window 
analyzed included 3 s before and 7 s after the auditory ‘Go’ 
cue and the time course was obtained by averaging the power 
change of the frequency bands across all trials during the 
movement. The time window from  −3 to  −2 s before the ‘Go’ 
cue was used as baseline (see figure 2(B)).

Feature extraction and classification. The kinematics data 
(position in X, position in Y, and forearm orientation angle) 
of the base of the IS-MORE exoskeleton were only analyzed 

(up-sampled to 250 Hz and synchronized with EEG data), and 
used to identify sub-movements within a task (forward and 
backward phases during reaching movements) and hence, to 
label EEG data. Every EEG trial for movements phase was 
segmented into two 1 s epochs (figure 1(C)): (a) starting 
from movement onset identified by kinematics data to for-
ward movement towards the target); and (b) starting move-
ment after target was reached (backward movement towards 
the starting position). Rest class was also segmented into 1 s 
epochs from the beginning of each rest interval. Data from all 
trials for each class were appended and used to extract spatio-
frequency features using filter-bank common spatial patterns 
(FBCSP) [45], which is an extension of the standard common 
spatial pattern (CSP) algorithm [46]. We applied FBCSP as 
feature extraction method because it uses frequency filter-
ing into multiple frequency bands, which could benefit the 
decoding of different motor tasks as demonstrated previously 
[33]. Furthermore, CSP algorithm has been proven its effi-
cacy calculating optimal spatial filters for motor related BCIs  
[25, 33, 35]. Spatial filters were created for three fre-
quency windows: 7–15 Hz, 15–25 Hz, and 25–30 Hz. The  
log-variance of the filtered signal was used as feature for 
classification.

We set three as the number of spatial filters to use for 
the CSP algorithm in accordance to prior studies with CSP  
[33, 45] resulting in 6 features per frequency band and 18 
features per channel. The spatial patterns used in feature 
extraction representing the areas involved in each movement 
EEG activity were obtained with the help of FCSP patterns  
(figure 2(A)). We obtained the topographical distribution of 
the difference in EEG activity during 2 different movement 
conditions (e.g. reaching towards Blue versus Rest) in specific 
frequency bands. As depicted with data from a representa-
tive participant in figure  2(A), the EEG activity difference 
is prominent when comparing each movement direction and 
Rest. However, the difference is not obvious when comparing 
EEG activity produced during reaching movements towards 
2 different targets (e.g. Blue versus Red). Therefore, FCSP 
patterns of ERD of the mu and beta rhythms were needed to 
extract distinct features for the different execution movements.

The resulting feature vector was then fed to the Linear 
Discriminant Analysis (LDA) classifier as multi class clas-
sifier. Taking into account the similar performance of LDA 
and SVM for multiclass classification [33], we chose LDA 
as our preferred method. It is basically a two-class classifier 
extended to more classes by one-versus-one voting. For the 
one-versus-one voting scheme, the classifier was trained for a 
K(K  −  1)/2 binary classifiers in a K-way multiclass problem 
[47]. Validation performance was estimated using five-fold 
blockwise cross-validation with 5 trials safety margin. Thus, 
each session was split up into five folds, with each fold being 
used for testing and used the remaining four folds to train the 
classifier. Decoding accuracy was estimated according to the 
average over all folds for each session.

To evaluate the statistical significance thresholds for 
decoding accuracy, we used the chance levels ( p  <  0.05) for 
an infinite number of trials and classes using the binomial 
cumulative distribution [48]. From now on, we will refer to 
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wthis significance level when reporting classification acc-
uracy results.

The collected EEG data contained nine different states: 
REST, and eight actual directional movements: four forward 
(F) (towards BLUE, RED, GREEN, and BROWN  targets) 
and four backward (B) (coming back from each target to 
the starting position) that we combined in one movement 
only (coming back to the starting position from any target 
(BACKWARD)) to reduce the number of classes. In this man-
uscript, we described the classification of three different com-
plexity cases, decoding 3, 4 and 6 movement classes:

 • 3 class (RED, BLUE, REST)
 • 4 class (RED, BLUE, BACKWARD, REST)
 • 6 class (RED, BLUE, GREEN, BROWN, BACKWARD, 

REST)

Recalibration. In order to investigate how the recalibration 
could affect the classification results, we first divided each 
session in five data blocks that were used later as folds for 
the cross-validation of the classification and tested three 
decoding schemes using data from the different four sessions  
(see table1):

  Scheme 1 (within session): We used each session for both 
training and testing with five-fold cross-validation. The 
within session decoding accuracy was averaged over all 
folds.

  Scheme 2 (recalibrated between-sessions): Previous and 
current session data (four folds) were used for training, 
and only one fold of current session (S2* or S3* or S4*) 
was used for testing. The recalibrated between sessions 
decoding accuracy was averaged over all folds.

  Scheme 3 (between sessions): All previous session data 
were used for training and current session was used for 
testing in between sessions.

Statistical analysis. We performed two separate statistical 
analyses to evaluate: (i) changes in performance over ses-
sions, and (ii), if any factor (scheme, class, and session) had a  
significant effect in performance.

 • To check for learning effects over sessions, we compared 
classification accuracy differences between the different 
sessions using a repeated measures ANOVA separately for 
the 3-class, 4-class, and 6-class problems. The time (four 
sessions for scheme 1, and three sessions for schemes 

Figure 2. Filter bank common spatial pattern (FBCSP) and time-frequency analysis: EEG data from a representative participant 
transformed into spatio-frequency topographical maps and into one selected channel time-frequency domain. (A) Highest-ranking common 
spatial patterns for each pair of movements within the specific frequency band (black dots represent the 19 channels used for classification). 
BLUE and RED stand for reaching movement towards the blue and red target respectively. (B) Channel C3 time-frequency event-related 
spectral perturbation (ERSP) during reaching towards the blue target. The vertical dashed line shows the time when the Go cue was 
presented to the participant.

J. Neural Eng. 14 (2017) 046018
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2 and 3; see table  1) was considered the independent 
variable and the classification accuracy the dependent 
variable.

 • A three-way ANOVA was performed to study the influ-
ence of the three factors (Scheme, Class, Session) in 
classification accuracy (dependent variable). Factor 
scheme consisted of 3 levels (Scheme 1, Scheme 2, 
Scheme 3); factor classification problem included 3 
levels (3-, 4-, and 6-classes); and factor session had also 
3 levels (S2, S3, S4). Notice that session S1 was removed 
from this analysis to facilitate comparisons, as it was only 
tested in scheme 1 (within session). When these factors 
or their interactions reached significance ( p  <  0.05), 
subsequent post-hoc t-tests were performed, applying a 
Bonferroni correction for multiple comparisons. These 
post-hoc comparisons were considered significant if the 
p-value was below 0.05 after correction.

Results

Regardless of the number of movements to be classified and 
the calibration strategy, the classification results were above 
significance level in all participants. For clarity, the results 
section was categorized into three sections according to dif-
ferent decoding schemes (calibration strategy) and complexity 
of the classification (number of movements to be classified).

Scheme 1 (within session classification): Each session was 
used for training and testing with five-fold cross-validation.

3-movements classification

We obtained an average accuracy of 67  ±  7.33 % (signifi-
cance level 40%) for classifying 3-classes (Blue versus Red 
versus Rest) as can be seen in detail from table 2. The max-
imum classification accuracy over all sessions was observed in 
Participant1 (75.25  ±  10) and the minimum for Participant 6 
(53.25  ±  3). The maximum and minimum classification acc-
uracy for one session was observed in Participant1 (Session 2;  
86%) and Participant6 (Session 3; 49%) respectively. The 
mean average accuracy across participants increased from 
the first session (64%) to the fourth session (69%) being this 
difference non-significant ( p  =  0.61). The confusion matrix 
demonstrated that the 3 classes were similarly classified with 
no clear confusion between classes.

4-movements classification

Table 2 (in the middle) shows a mean classification accuracy 
of 62.75  ±  6.89% (significance level 30%) for all partici-
pants when classifying 4-classes (Blue, Red, Backward, and 
Rest). Maximum classification accuracy over all sessions was 
observed in Participant2 (73.75  ±  2.7) and the minimum in 
Participant6 (48  ±  2.1). Same as for the 3-class classifica-
tion, the maximum and minimum classification in one ses-
sion was achieved by Participant1 (Session 3; 77%) and 
Participant6 (Session 3; 46%) respectively. The Average acc-
uracy increased from the first session for 60.6% compared to 
the fourth-session for 63.6% (see table 2 in the middle), being 
this difference non-significant ( p  =  0.76).

6-movements classification

Table 2 (in the right) shows an average accuracy of 
50.3  ±  8.76% (significance level 20.33%) for all partici-
pants when classifying 5 movements towards different tar-
gets (Blue, Red, Green, Brown, and Backward) and Rest. 
Maximum classification accuracy over all sessions was 
observed in Participant2 (64  ±  7.7) and the minimum in 
Participant6 (33.5  ±  4.4). The maximum and minimum 
classification in one session was observed in Participant2  
(Session 3; 70%) and Participant6 (Session 3; 28%) respec-
tively. In the Confusion matrix (figure 3 in the right) can be 
seen that in contrast to the targets more separated from each 
other (Blue and Red), neighbor targets are confused by the 
classifier. Average acc uracy did not change significantly 
between sessions ( p  =  0.77).

Scheme 2 (recalibrated between-sessions classification): 
In this scheme, previous and current sessions were used for 
training and only the current session was used for testing with 
five-fold cross-validation.

Table 3 shows the mean decoding performance of multiclass 
combinations of 3-class, 4-class, and 6-class during 3 different 
recalibration using different combinations of sessions: a) two 
sessions were used for training (S1, S2) and tested on unseen 
data of S2; b) three sessions were used for training (S1, S2, 
S3) and tested on unseen data of S3; and c) four sessions  
(S1, S2, S3, S4) were used for training and tested on unseen 
data of S4. In each recalibration of sessions (table 3) the pre-
vious and the current session were used as the training sets, 
and the current session was used as the testing set.

Table 1. Decoding schemes: different sessions were used for training and testing to investigate re-calibration effects on classification 
performance. If the same session was used for training and testing (in schemes 1 and 2 indicated by *), it was evaluated using a 5-fold cross-
validation to ensure that training and test set do not overlap. Scheme 3 trained with previous ‘calibration’ sessions and tested on current 
session.

Scheme 1 
 (within session)

Scheme 2  
(recalibrated between-sessions)

Scheme 3 
 (between sessions)

Training Testing Training Testing Training Testing

S1 S1*

S2 S2* S1-S2 S2* S1 S2
S3 S3* S1-S2-S3 S3* S1-S2 S3
S4 S4* S1-S2-S3-S4 S4* S1-S2-S3 S4

J. Neural Eng. 14 (2017) 046018



F
 S

him
an et al

7

Table 2. Within session classification results for 3-class (left), 4-class (middle), and 6-class (right) classification accuracy for all participants and sessions. For each participant, average and 
SD is shown in the last column of the table. In the lower cell of the table significance level of the decoding is shown. Five-fold cross-validation was used to estimate the accuracy. ‘P’ indicates 
participant and ‘S’ for the session.

3-class 4-class 6-class

S1  
(%)

S2  
(%)

S3  
(%)

S4  
(%)

Average  
(%)

S1  
(%)

S2  
(%)

S3  
(%)

S4  
(%)

Average  
(%)

S1  
(%)

S2  
(%)

S3  
(%)

S4  
(%)

Average  
(%)

P1 70 86 81 64 75.25  ±  10 59 64 69 59 62.75  ±  4.7 47 54 67 49 54.25  ±  8.9
P2 69 72 78 80 74.75  ±  5.1 72 71 77 75 73.75  ±  2.7 64 53 70 69 64  ±  7.7
P3 65 62 62 73 65.5  ±  5.1 59 62 60 70 62.75  ±  4.9 54 63 49 55 55.25  ±  5.8
P4 64 72 62 65 65.75  ±  4.3 59 60 65 58 60.5  ±  3.1 43 51 53 41 47  ±  5.8
P5 52 60 58 65 58.75  ±  5.3 58 59 55 69 60.25  ±  6 44 41 40 42 41.75  ±  1.7
P6 56 53 49 55 53.25  ±  3 47 51 46 48 48  ±  2.1 38 36 28 32 33.5  ±  4.4
P7 71 61 78 78 72  ±  8 66 62 65 68 65.25  ±  2.5 50 55 58 52 53.75  ±  3.5
P8 64 63 82 75 71  ±  9.1 65 67 74 64 67.5  ±  4.5 49 52 54 47 50.5  ±  3.1
P9 66 65 69 67 66.75  ±  1.7 61 66 67 62 64  ±  2.9 53 52 58 50 53.25  ±  3.4
Average 64.1  ±  6.3 66  ±  9.5 68.7  ±  11.6 69.1  ±  7.9 67  ± 7.33 60.6  ±  6.8 62.4  ±  5.6 64.2  ±  9.5 63.6  ±  8 62.75  ±  6.8 49.1  ±  7.5 50.7  ±  7.9 53  ±  12.9 48.5  ±  10.3 50.3  ±  8.76
Significance 
level

40% 30% 20.33%
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As shown in table  3, mean classification accuracies for 
the first recalibration of sessions (S1 and S2 for training; 
S2* for testing) were 67.2  ±  11.4%, 61.5  ±  13%, and 
47.5  ±  11.54% for 3-class, 4-class, and 6-class respectively. 
The maximum classification accuracy in the 3-, 4- and 6-class 
paradigm was 80% (Participant9), 74.4% (Participant9) and 
65.2% (Participant2) respectively. The minimum classifica-
tion accuracy in the 3-, 4- and 6-class paradigm was obtained 
always for Participant6 and was 49.3%, 35.6%, and 27%, 
respectively.

During the second recalibration of sessions in table  3, 
mean classification accuracies (S1, S2, S3 for training; 
S3* for testing) were 69.2  ±  12.13%, 62.7  ±  15.27%, and 
47.15  ±  11.38%. The maximum average accuracy in the 3-, 
4- and 6-class paradigm was 87.5% (Participant9), 86.1% 
(Participant2) and 63.1% (Participant9), respectively. The 
minimum classification accuracy in the 3-, 4- and 6-class par-
adigm was obtained for Participant6 and was 48.6%, 42.7%, 
and 28.7%, respectively.

During the third recalibration of sessions, mean clas-
sification accuracies (S1, S2, S3, S4 for training; S4* for 
testing) were 67.1  ±  15.86, 59.7  ±  18.9, and 46.8  ±  13.23. 

The maximum classification accuracy was also observed for 
3-, 4- and 6-class 91% (Participant9), 87% (Participant9), 
and 67.1% (Participant2), respectively. The minimum clas-
sification accuracy for 3-, 4- and 6-class was obtained for 
45.4% (Participant6), 33.6% (Participant 1), and 25.7% 
(Participant6), respectively. For all combinations the signifi-
cance level is shown in table 3. Furthermore, we also analyzed 
the difference in performance for scheme 2 depending on how 
many sessions’ data were included in the recalibration of the 
classifier (see table 3). Although there was an overall increase 
in classification accuracy, our ANOVA analysis resulted 
in not significant results, (3-class p-value  =  0.93; 4-class 
p-value  =  0.92; 6-class p-value  =  0.98).

Scheme 3 (between-sessions classification): In this 
scheme, previous sessions were used for training and only 
current session was used for testing.

Table 4 shows the mean classification accuracy of multiclass 
combination for 3-class, 4-class, and 6-class for three different 
combinations (see table 1). We analyzed 3 different recalibra-
tion of sessions using the previous session as training set and the 
current session as test set. a) one session was used for training 
(S1) and tested on session S2; b) two sessions were used for 

Figure 3. Within session classification results. Confusion matrices showing the mean classification accuracy (%) of all participants for 
different combination of movements (blue, red, green, brown, backward, and rest).

Table 3. Mean classification accuracy (%) for the offline analysis of multiclass combination during different session calibration and current 
session with testing on current session. If the same session was used for training and testing (in scheme 1 and 2 indicated by *, it was 
evaluated using a 5-fold cross-validation to ensure that training and test set do not overlap. First recalibration: two sessions were used for 
training (S1, S2) and tested on unseen data of S2*. Second recalibration: three sessions were used for training (S1, S2, S3) and tested on 
unseen data of S3*. Third recalibration: four sessions (S1, S2, S3, S4) were used for training and tested on unseen data of S4*. ‘P’ indicates 
participant.

3-class 4-class 6-class

S1-S2*  
(%)

S1-S2-S3*  
(%)

S1-S2-S3-S4* 
(%)

S1-S2*  
(%)

S1-S2-S3*  
(%)

S1-S2-S3-S4*  
(%)

S1-S2*  
(%)

S1-S2-S3*  
(%)

S1-S2-S3-S4*  
(%)

P1 79 73.7 48.1 73.6 60.4 33.6 57.2 52.6 44.8
P2 79.6 84.9 84.8 73.7 86.1 82.2 65.2 58.5 67.1
P3 55.3 60.5 62 51.3 48 48.8 38.1 37.5 36.2
P4 66.5 63.2 59.9 68.4 65 54.6 53.8 46 38.2
P5 59 64.2 60.5 62 61.5 64.5 52.5 55.4 56.5
P6 49.3 48.6 45.4 35.6 42.7 34.2 27 28.7 25.7
P7 63.2 67.6 76.4 62.7 49.3 69.8 42.8 36.2 49.4
P8 73.7 72.9 76.5 52.6 66.5 63.1 40.2 46.4 42.1
P9 80 87.5 91 74.4 85 87 50.6 63.1 62
Average 67.2  ±  11.4 69.2  ±  12.13 67.1  ±  15.86 61.5  ±  13 62.7  ±  15.27 59.7  ±  18.9 47.5  ±  11.54 47.15  ±  11.38 46.8  ±  13.23

Significance  
level

38 37.11 36.5 28.5 28 27.5 19.16 18.77 18.41
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training (S1, S2) and tested on session S3; c) three sessions (S1, 
S2, S3) were used for training and tested on session S4.

For the first recalibration in table  4, the mean classi-
fication accuracies (S1 for training; S2 for testing) were 
52.1  ±  8.34%, 54  ±  9.98%, and 42.5  ±  9.88% for 3-class, 
4-class, and 6-class, respectively (table 4). The maximum 
classification accuracy was observed for 3-, 4-, and 6-class 
68.4% (Participant9), 72.4% (Participant2), and 55.9% 
(Participant2). The minimum classification accuracy in 3-, 
4- and 6-class paradigm was obtained 41.4% (Participant6), 
37.5% (Participant6), and 29% (Participant9), respectively.

In the second recalibration in table  4, mean classifica-
tion accuracies (S1 and S2 for training; S3 for testing) were 
58.3  ±  13.93%, 57.7  ±  13.86%, and 44.4  ±  11.79%. The 
maximum average accuracy was observed for 3-, 4-, and 
6-class 77% (Participant8), 81.6% (Participant9), and 63.2% 
(Participant9), respectively. The minimum classification 
accuracy in the 3-, 4- and 6-class was obtained for 38.8% 
(Participant7), 41.4% (Participant3), and 27% (Participant6), 
respectively.

In the third recalibration in table  4, mean classification 
accuracies (S1, S2, S3 for training; S4 for testing) were 
58.5  ±  12.2, 55.7  ±  16.03, and 44.2  ±  13.5, respectively. 
The maximum classification accuracy was observed for 3-, 4- 
and 6-class 71.7% (Participant7), 75.7% (Participant9), and 
68.4% (Participant2). The minimum classification accuracy in 
the 3-, 4- and 6-class was obtained for 41.4% (Participant1), 
32.2% (Participant1), and 25.7% (Participant6). ANOVA 
analysis to test session effect resulted in not significant results 
for scheme 3 (see table 4) in the recalibration of the classi-
fier (3-class p-value  =  0.43; 4-class p-value  =  0.83; 6-class 
p-value  =  0.93).

Comparison of recalibration schemes. A 3-way ANOVA was 
used to assess the influence of the three calibration schemes 
(within session, recalibrated between sessions, and between 
sessions), classification problems (3-, 4-, and 6-classes), test-
ing sessions, and the interaction between factors (see table 5). 
As can be seen in table 5, the factors scheme and class had 
a significant effect on the classification accuracy (Scheme, 
F  =  11.71; p  <  0.0001 and class, F  =  43.71; p  <  0.0001). 
The factor sessions, as well as all the interactions between 
factors were not significant. All the post-hoc comparisons can 
be seen in table 6. For the factor scheme, significant differ-
ences were found between Schemes 1 and 3 (i.e. calibration 
within session versus between sessions, p  <  0.0001), and 

Table 4. Mean classification accuracy (%) of the offline analysis of multiclass combination during session calibration and testing on 
current session. First recalibration: one session was used for training (S1) and tested on session S2. Second recalibration: two sessions were 
used for training (S1, S2) and tested on session S3. Third recalibration: three sessions (S1, S2, S3) were used for training and tested on 
session S4. ‘P’ indicates participant.

3-class 4-class 6-class

S1-S2  
(%)

S1-S2-S3  
(%)

S1-S2-S3-S4  
(%)

S1-S  
(%)

S1-S2-S3  
(%)

S1-S2-S3-S4  
(%)

S1-S2  
(%)

S1-S2-S3  
(%)

S1-S2-S3-S4  
(%)

P1 42.8 62.5 41.4 55.3 58.6 32.2 48.7 55.3 37.1
P2 49.3 69.7 71.1 72.4 71.1 74.3 55.9 50 68.4
P3 46.1 51.3 53.9 46.7 41.4 46.1 34.9 39.5 33.6
P4 54.6 46.7 53.9 61.2 58.6 48 50 38.2 32.2
P5 57.2 62.3 65.4 53.5 57.5 60.5 50.2 53.5 52
P6 41.4 42.8 42.8 37.5 40.8 35.5 34 27 25.7
P7 55.3 38.8 71.7 55.3 44.7 67.8 48 32.2 46.7
P8 54 77 73 46.1 65.8 61.2 32.2 40.8 46.1
P9 68.4 73.7 53.9 58 81.6 75.7 29 63.2 56.6
Average 52.1  ±  8.34 58.3  ±  13.93 58.5  ±  12.2 54  ±  9.98 57.7  ±  13.86 55.7  ±  16.03 42.5  ±  9.88 44.4  ±  11.79 44.2  ±  13.5
Significance 
level

40 38 37.11 300 28.5 28 20.33 19.6 18.77

Table 5. Results of 3-way ANOVA between the three recalibration 
schemes. Significant difference was tested for the main factors with 
recalibration scheme (3 levels: scheme 1, scheme 2, scheme 3), 
classification problem (3 levels: 3-, 4- and 6-classes), test sessions 
(3 levels: S2, S3, S4) and interaction factor.

3-way ANOVA 
scheme  ×  class  ×  session

p-valuedf F-value

Class 2 43.71 p  <  0.0001a

Scheme 2 11.71 p  <  0.0001a

Session 2 0.72 0.484
Scheme  ×  class 4 0.88 0.475

Scheme  ×  session 4 0.22 0.923

Class  ×  session 4 0.17 0.951

Scheme  ×  class  ×  session 8 0.08 0.999
Error 216

a p  <  0.05.

Table 6. Results of the multiple comparisons for scheme and 
class. Significant difference was tested for the calibration schemes 
pair-wise (scheme 1 versus scheme 2, scheme 1 versus scheme 3, 
and scheme 2 versus scheme 3) and classification problem pair-
wise (3-class versus 4-class, 3-class versus 6-class, 4-class versus 
6-classes).

Scheme Sch1 Sch2 Sch1 Sch3 Sch2 Sch3
p-value 0.876 p  <  0.0001a 0.001a

Class 3-class 4-class 3-class 6-class 4-class 6-class
p-value 0.130 p  <  0.0001a p  <  0.0001a

a p  <  0.05, Bonferroni corrected.
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between Schemes 2 and 3 (i.e. recalibrated between sessions 
versus between sessions, p  =  0.001). For the factor classifica-
tion problem, significant differences were found between the 
3-class and 6-class problems ( p  <  0.0001), and between the 
4-class and 6-class problems ( p  <  0.0001). Figure  4 shows 
the interaction plot between the two significant factors and the 
dependent variable (classification accuracy).

Discussion

In this study, we demonstrated multiclass decoding accuracy 
above significance level of different reaching movements 
from the same limb using EEG data. Different number of 
movements (classes) and recalibration strategies were inves-
tigated. We consider a performance level to be acceptable if 
significant above chance level accuracy and the presented 
results could serve as a starting point in the context of a neuro-
feedback-based learning process, in which users learn to adapt 
their brain activity to control a rehabilitative device.

Firstly, we achieved 3-class classification for two tar-
gets (Blue and Red) and rest with an overall accuracy 
above 69% reaching even 91% in one participant (signifi-
cance level  =  36.5%). Then, we explored the possibility 
of extending the 3-class to a 4-class (including backward 
movement to starting position) achieving an overall acc-
uracy above 62% reaching even 86% in one participant  
(significance level  =  28%). After that, we extended the clas-
sification problem to a 6-class BCI to discriminate four dif-
ferent movements towards 4 targets (Blue, Red, Green, and 
Brown), rest, and backwards to the starting position achieving 
an overall accuracy above 50% reaching even 68% in one 
participant (significance level  =  18.77%). With these results 
we demonstrate that acceptable decoding can be achieved 

for even 6 movement classes from the same limb using EEG 
only. We consider these performances to be acceptable as a 
starting point in the context of a rehabilitative environment, 
in which subjects perform a learning process and adapt their 
brain activity to control a rehabilitative device. The link 
between oscillatory neuroelectric activity and the movement  
(proprioceptive feedback) will allow the users to learn to con-
trol system improving their performance [2]. Furthermore, 
there is no need of excellent performance level to induce motor 
learning and recovery using proprioceptive BMIs as rehabili-
tation tool in chronic severely paralyzed stroke patients [3], 
which indeed are the patient population benefiting of the here 
presented developments.

Finally, we demonstrated that for a real scenario application 
in which previous data is used to classify different functional 
movements from the same upper limb, classification accuracy 
can be maintained if the classifier is trained with previous 
sessions data and can be significantly enhanced when data 
from the beginning of each session is added to data from pre-
vious sessions to recalibrate/retrain the classifier confirming 
previous results [49]. These results demonstrate the poten-
tial online use of the here proposed classification algorithm 
to decode up to 6 different movements from the same limb 
to control a multi degree of freedom rehabilitative devices  
(i.e. provide ecologically valid neurofeedback).

The brain oscillatory signature of different movements 
from the same limb can be adequately isolated using FBCSP 
and the commonly known ‘session-to-session-transfer’ issue 
in EEG does not affect the classification accuracy results sig-
nificantly. However, consistent with other studies [50, 51], our 
results did not show any significant impact of the amount of 
previous sessions data used for recallibration or re-training of 
the classifier on the decoding accuracy.

In this study we used the filter bank common spatial pat-
tern (FBCSP) for feature extraction because it uses frequency 
filtering with multiple frequency bands, which may help iso-
lating oscillatory activity related to different motor tasks as 
previously proposed [52]. Decoding accuracy was higher 
using FBCSP compared to previous work using CSP only  
[34, 53].

Our results argue in favor of using adaptive methods that 
constantly adapt the decoder with the current session’s data. 
We successfully applied a recalibration of sessions to spe-
cifically address the problem of non-stationarities and the  
session-transfer problem [54].

Although our results are promising and we achieved 
overall participants and sessions accuracies in the range of 
69%, 62%, and 50% for 3-class, 4-class, and 6-class, respec-
tively improving reported work [18], the control of rehabili-
tative devices (e.g. robotic orthosis, FES, etc) need higher 
classification accuracies. However the continuous use of the 
system might produce some learning effects and accuracies 
could improve significantly.

Motor execution of reaching movements of the same 
limb activating muscles at different joints activates regions 
with very close representation on the motor cortex [28]. This 
spatial proximity, EEG volume conducting effects, spec-
tral limitations and signal to noise ratio and electrical and 

Figure 4. Classification accuracy of three class combination 
between three schemes. The graph shows the mean classification 
accuracy for three classification problem (3-, 4- and 6-classes) 
between three recalibration schemes (scheme 1: within session 
classification, scheme 2: recalibrated between sessions, and  
scheme 3: between-sessions classification).
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neurophysiological artefacts makes classification of such 
movements more difficult. Furthermore, when attempting to 
classify very similar movements (reaching neighbor targets 
green and brown) this problem becomes very challenging, as 
demonstrated in the confusion matrix of scheme 1 for 6-class 
being confused for decoding of close targets in the setup.

In the here presented work we report the performance of a 
BCI using 1 s time windows and 19 EEG electrodes and it has 
been already shown that the accuracy of classifier increases 
using longer time window after onset [38] and denser EEG elec-
trodes around the motor cortex [33]. Adding more features such 
as movement related cortical potential (MRCP) to the proposed 
system may further improve the performance [30, 32]. Further 
experimental work is needed to investigate the use of longer 
time windows, more EEG channels and other new features.

In general, healthy subjects show strong brain activation in 
the regions contralateral to the moving hand but other areas 
are being also significantly activated depending on the phase 
of the movement (planning, onset, execution, cessation) [52]. 
These cortical activations captured by EEG are affected after 
any neural lesion (e.g. stroke) and maintaining the classifica-
tion performance we obtained in healthy participants will be 
more challenging. Chronic stroke patients show often a more 
bilateral brain activation when they move their affected hand 
[3, 55]. These results together with the here presented results 
in healthy participants suggest the use of bihemispheric EEG 
activity and FBCSP in order to provide stroke patients with a 
multi degree of freedom control of rehabilitation or assistive 
devices.

Further experiments to test the feasibility and efficacy of 
our approach need to be performed. However, we believe that 
the here presented results in healthy participants constitute a 
baseline population, which can be afterwards compared to and 
used as control group (not age-matched though) for different 
typologies of patients with different brain alterations, such as 
stroke and spinal cord injury. From our previous study [2] we 
know that the link between oscillatory neuroelectric activity 
and the movement (proprioceptive feedback) allows severely 
paralyzed stroke patients to learn to control the system 
improving their performance and inducing motor recovery [3].

In summary, the here presented promising results, consti-
tute the first step towards a multi-directional rehabilitation 
exoskeleton online control system for severely paralyzed 
stroke patients

Conclusion

We demonstrated the feasibility of classifying up to 6 func-
tional movements from the same upper limb using EEG data 
with acceptable levels of accuracy and demonstrated how a 
classifier trained on previous sessions’ data can maintain the 
classification accuracy demonstrating robustness against ses-
sion-to-session transfer issues. Furthermore, we demonstrated 
how retraining the classifier with some data of the current ses-
sion could significantly increase the classification accuracy.

We demonstrated how FBCSP could help isolate brain 
oscillatory signatures of different movements of the same 

limb using their spatiotemporal filters at multiple frequen-
cies and therefore create good features to allow acceptable 
classification rates to link several DoFs of robotic reha-
bilitation exoskeletons with brain neuroelectric oscillatory 
activity.
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