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Abstract Brain machine interfaces (BMIs) have previously been utilized to control
rehabilitation robots with promising results. The design and development of more
dexterous and user-friendly rehabilitation platforms is the next challenge to be tack-
led. We built a novel platform that uses an electro-encephalograpy-based BMI to
control a multi-degree of freedom exoskeleton in a rehabilitation framework. Its
applicability to a clinical scenario is validated here with six healthy subjects and
a chronic stroke patient using motor imagery and movements attempts. Therefore,
this study presents a potential system to carry out fully-featured motor rehabilitation
therapies.

1 Introduction

Electro-encephalographic (EEG)-brain machine interfaces (BMIs) have previously
been used to control an external robot or exoskeleton in assistive and rehabilitation
frameworks [1, 3, 4]. Several decoding methods and training protocols have been
tested to develop an efficient rehabilitation therapy with motor recovery. Despite the
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limitations of EEG technology and the moderated performance of EEG-decoding
methods, the aforementioned studies demonstrated the potentiality of EEG-based
BMIs as a tool for post-stroke rehabilitation. The focus has lately turned towards the
development of BMI-based rehabilitation platforms that allow a more natural and
dexterous control of multiple degrees of freedom (DOFs), and boost motor recovery.

In this study we present an EEG-based BMI platform for the control of a multi-
DOF exoskeleton (Tecnalia, Spain) in a rehabilitation framework. The platform com-
bines EEG-decoding methods proven to induce significant motor recovery [4] with a
control platform and a rehabilitation exoskeleton that allows the training of complex
functional tasks, involving several DOFs of the arm, wrist and hand. The rehabilita-
tion platform is described and validated here with 6 healthy subjects and a chronic
stroke patient, who followed a motor imagery and a motor attempt procedure, respec-
tively.

2 Methods

2.1 Experimental Protocol

Six healthy participants (3 female, age 24–30, all right handed) and a chronic stroke
patient suffering from a right hemiparesis (male, 67 years old, 3 years from stroke)
participated in the study. All of them were naive to motor imagery/attempt and gave
written consent to the procedures approved by the ethics committee of the Faculty
of Medicine of the University of Tübingen, Germany.

They underwent a single session consisting of two parts: a screening phase and
a real-time BMI operation phase. The data collected during the initial phase was
employed to select the electrodes and frequency bands that would constitute the input
to the BMI. During the second part, the participants controlled a 7-DOF exoskeleton
using an EEG-based BMI in real-time. The exoskeleton was placed over a mat and
allowed movements in 7-DOFs (details in [5]).

During the screening phase, the participants were asked upon auditory and visual
cues to either imagine their right hand opening and closing (in case of the patient to
try to open and close his paretic hand) or to relax for 5 s. Healthy subjects and the
patient completed 5 and 3 blocks amounting to 55 and 33 trials of each condition,
respectively. During the real-time phase, participants performed functional move-
ments towards four different positions in the worskpace (see Fig. 1), while sitting
and wearing the exoskeleton on their right upper limb. More precisely, they were
instructed, by means of imperative auditory cues, to imagine/to attempt to reach a
target while opening their hand and pronating their wrist and then back to a prede-
fined rest position. Trials always started with a rest period of 3–5 s, followed by an
auditory cue, a 2 s-long preparation time and a movement period. The maximum
length of the movement period was 7 s. If the target position was not reached within
this time, the same target position was kept for the next trials until reaching it in
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Fig. 1 A hemiparetic stroke
patient controlling the
7-DOF exoskeleton with the
EEG-BMI. The patient’s arm
is at the initial rest position
and the colored cylinders
define the four target
positions around the
workspace

all the DOFs. Otherwise, the trial ended as soon as the target was reached and sub-
jects were instructed to head to the next position. The healthy subjects completed 5
blocks comprising 8 reached targets each, while the stroke patient performed 3 of
those blocks.

2.2 Data Collection and Processing

EEG data from 32 channels: FP1, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7,
C3, Cz, C4, T8, TP9, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO9, PO10,
O1, Oz, O2 and two EOG channels were collected at 1 kHz (Brain Products GmbH,
Germany). EEG signals were bandpass filtered (5–80 Hz), notch-filtered at 50 Hz
and spatially filtered with a short-Laplacian filter. An autoregressive model of order
20 and its power was computed using 0.5 s-long windows and a step window of 50
ms. Finally, the mean power within the chosen frequency bands and electrodes were
used as input features for the classifier. Kinematic activity of the above mentioned
DOFs was recorded at 20 Hz with an optical symbol recognition system and motor
encoders [5].

2.3 Real-Time Decoding and Operation of the Exoskeleton

The electrodes and frequency bands used as input to the BMI were selected based
on a visual inspection of the r-squared coefficients obtained when comparing the
sensorimotor rhythms (SMR) from the EEG activity recorded during the “relax”
and “movement” screening trials. Features were computed on those electrodes and
bands, as described in Sect. 2.2 and fed to the classifier in real-time. Linear dis-
criminant analysis was used to classify the input features as “Movement” or “Rest”.
The classifier was trained using the screening data and then, retrained online at the
end of each trial using the last two minutes of data from each condition. The out-
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puts of the classifier were ignored during the rest and preparation periods, in which
the exoskeleton remained still. However, during the movement period, if the output
was classified as “Movement” (i.e. the participant produced a desynchronization of
his/her pre-identified SMR), the exoskeleton moved his/her right arm towards one of
the target positions along a predefined trajectory adjusted to his/her range of motion.
On the other hand, outputs classified as “Rest” prevented the exoskeleton from mov-
ing. To achieve a more stable control and avoid twitching movements due to EEG
signal noise, the current condition (i.e. exoskeleton in motion or in rest) was held
as long as the decoder didn’t classify 5 consecutive outputs of the other condition,
following [4].

To measure the performance offline, we analyzed the true positive rate (TPR),
which represents the percentage of time the robot was moving (i.e. percentage of
outputs classified as “Movement”) during the movement period, in which partici-
pants received feedback. Additionally, we compared this TPR to the false positive
rate (FPR: percentage of outputs classified as “Movement” during the rest period).

3 Results

The mean TPR for all the healthy subjects was 62.8 ± 10.4 % and for the stroke
patient was 54.9 %. The difference between the TPR and FPR (healthy subjects:
mean = 39.8 ± 7.3 %; patient: 43.6 %) was significant (p = 0.018). In addition, all
the healthy subjects and the stroke patient could successfully operate the exoskeleton
in real-time using the EEG-BMI and accomplish all the trials.

4 Discussion and Conclusions

This study presents and validates a novel control platform based on an EEG-BMI that
links brain activity with the movement of a 7-DOF rehabilitation exoskeleton in real-
time. The results show that the TPR was significantly higher than the FPR. Although
the performance of the decoder was not high, it should be taken into account that all
the subjects were naive to motor imagery and a higher performance and more skillful
control could be expected after several training sessions. Nevertheless, it is not clear
how strong the correlation between decoding performance and level of recovery is. In
fact, Ramos-Murguialday et al. [4] demonstrated that the algorithm used here, albeit
not the most accurate one, could serve to elicit certain degree of motor recovery,
in combination with a dedicated BMI-based rehabilitation therapy. This is the only
double-blinded study that showed an EEG-BMI based therapy that induced motor
recovery in chronic stroke patients. Therefore, although several algorithms could be
used to decode EEG signals as part of a BMI system, we chose this one.

We have demonstrated that the participants were able to control the movement
of the exoskeleton in real-time. Therefore, this system constitutes a potential reha-
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bilitation platform for various reasons: (i) it establishes a contingent link between
the movement intention decoded from the brain activity and the actual movement
of the paralyzed limb; (ii) it provides a rehabilitation scenario in which functional
movements towards various targets as well as the interaction with objects are pos-
sible; (iii) it allows for the rehabilitation of distal and proximal joints, proven to be
beneficial [2]; (iv) even patients with no residual movement at all could benefit from
it; (v) it can integrate other biosignals [5] and establish a hybrid control.
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