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†IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
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Abstract—In recent years, a significant effort has been
invested in the development of kinematics-decoding models
from electromyographic (EMG) signals to achieve more natural
control interfaces for rehabilitation therapies. However, the
development of a dexterous EMG-based control interface
including multiple degrees of freedom (DOFs) of the upper limb
still remains a challenge. Another persistent issue in surface
myoelectric control is the non-stationarity of EMG signals
across sessions. In this work, the decoding of 7 distal and
proximal DOFs’ kinematics during coordinated upper-arm,
fore-arm and hand movements was performed. The influence of
the EMG non-stationarity was tested by training a continuous
EMG decoder in three different scenarios. Moreover, the gener-
alization characteristics of two algorithms (ridge regression and
Kalman filter) were compared in the aforementioned scenarios.
Eight healthy participants underwent EMG and kinemat-
ics recordings while performing three functional tasks. We
demonstrated that ridge regression significantly outperformed
the Kalman filter, indicating a superior generalization ability.
Furthermore, we proved that the performance drop caused by
the session-to-session non-stationarities could be significantly
mitigated by including a short re-calibration phase. Although
further tests should be performed, these preliminary findings
constitute a step forward towards the non-invasive control of
the next generation of upper limb rehabilitation robotics.

I. INTRODUCTION

In recent years, several studies have been carried out
in the field of myoelectric control for applications such
as teleoperation of robots, prosthesis for amputees and
rehabilitation of patients with paralyzed limbs [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10]. However, the development
of dexterous and natural myoelectric control interfaces with
multiple degrees of freedom still remains a challenge.

Most of the studies in this field have emphasized the use
of EMG signals for the classification of different movement
classes [1], [2]. However, these approaches have limited
success when natural and smooth control of the trajectory is
necessary. A decoder that maps EMG signals into a contin-
uous profile of upper limb kinematics could overcome this
limitation. Studies developing such decoders have already
been performed, although most of them are limited to simple
movements of either distal [3], [4], [5] or proximal [6], [7],

[8] degrees of freedom (DOFs) of the upper limb. To the best
of our knowledge, the only study that reported decoding of
several distal and proximal DOFs of the upper limb [9] was
not focused on rehabilitation approaches. Moreover, in that
study target-specific and object-specific models were built
for the decoding of reach-to-grasp movements, which led to
high error values.

A ubiquitous issue in the field of EMG control interfaces
is the non-stationarity of EMG signals that occurs across
multiple sessions. Factors such as sweat, fatigue, varying
upper limb configurations, electrode shift and impedance
changes, could change the EMG signal distribution. This
change is referred to as covariate shift and could notably
affect the performance of the decoder.

In this study we aimed to decode the motion of seven
DOFs (distal and proximal) of the upper limb from surface
EMG signals, while participants performed different func-
tional tasks of increasing complexity. Three different de-
coding schemes were implemented: within-session decoder
(WS), session-to-session decoder (SS) and re-calibrated
session-to-session decoder (RSS). As re-calibration was
shown to improve decoding performance (e.g. by classifier
adaptation [11]), a re-calibration phase using data from the
beginning of the subsequent session was used to compensate
for the negative effects of the session-to-session covariate
shift. The performance of these three decoders was compared
in order to assess the influence of the EMG non-stationarity
on the decoding accuracy. Furthermore, this analysis was
performed using two different algorithms, namely, ridge
regression [12] and Kalman filter (KF) [13]. Up to this point,
Kalman filter has been the most widely used algorithm for
these applications [3], [6], [8]. However, the ridge regression
technique is often underestimated and has been included in
very few recent studies [4] for the decoding of EMG signals.
Nevertheless, we hypothesized that, due to regularization
(i.e. penalizing model complexity by imposing a constraint
to the coefficients to prevent overfitting), the ridge regression
technique could have a better generalization ability than the
KF (i.e. predict kinematics under variable conditions more
accurately).
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II. METHODS

A. Experimental Protocol

Eight healthy participants (3 females, 5 males, age 20-
28, all right-handed) participated in this study. None of
them had any neuromuscular disorder and all of them gave
written consent to the procedures as approved by the ethics
committee of the Faculty of Medicine of the University of
Tübingen, Germany. Participants performed three different
tasks while sitting and wearing a 7-DOF exoskeleton (Tec-
nalia, San Sebastian, Spain) on their right upper limb placed
over a 70×50 cm mat. The exoskeleton allowed movements
in 7 DOFs (see Fig. 1): displacement and rotation of the
forearm in a 2D horizontal plane parallel to the mat’s plane
(3 proximal DOFs: (i) px position; (ii) py position; (iii)
θxy orientation angle), pronation and supination of the wrist
(1 distal DOF: (iv) φwrist angle) flexion and extension of
the thumb, index and the group of middle, ring and pinky
fingers measured as the angle of rotation with respect to the
metacarpophalangeal joints (3 distal DOFs: (v) δthumb; (vi)
ψindex; (vii) α3fingers).

All the participants underwent two sessions that were
separated by 2-9 days. During these sessions they were
instructed, by means of imperative auditory cues, to perform
three different tasks that always started and ended at a
predefined rest position.

1) The first task consisted of reaching movements
(hand relaxed) towards one of the four different
targets around the mat.

2) In the second task, participants were asked to reach
and point to two different targets with his/her index
finger, moving towards the first target from the rest
position and towards the second target immediately
after reaching the first target.

3) In the third task, three objects of different shapes
and sizes were located in one of the four target
positions. Participants had to reach a target, grab the
object placed in that position, move it to another
target and then come back to the rest position. It
should be noted that each of the objects required
a different grasp type, which were: pinch grip, key
grasp and cylindrical grasp.

Each of the tasks was divided in 5 blocks, which con-
sisted of a set of 10-40 trials depending on the task type (40
for task 1; 10 for task 2; 22 for task 3). Resting intervals of
1-5 minutes were included between blocks in order to avoid
fatigue. Participants were asked to perform the movements
at their own pace and were given 4 seconds to complete
task 1 trials and 6 seconds for task 2 and task 3 trials.
This makes a total of approximately 30 min (task 1), 7 min
(task 2) and 15 min (task 3) of recorded data per participant
in each of the two sessions. It should be pointed out that,
although participants performed the trials at their own pace,
the aforementioned trial durations (task 1: 4 sec; task 2 and
task 3: 6 sec) implied that they had to keep a rapid pace in
order to accomplish the trials within the given time limits.
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Fig. 1. (Left): Workspace where the experiments were performed. Pos1,
Pos2, Pos3 and Pos4 correspond to the four targets and Rest was the
predefined rest position where all the trials started and ended. (Right):
Schematic of the 7 DOFs of the exoskeleton: (1) px; (2) py ; (3) θxy ;
(4) φwrist; (5) δthumb; (6) ψindex; (7) α3fingers

B. Data Collection

Surface EMG activity from 10 disposable bipolar elec-
trodes (Myotronics-Noromed, Tukwila, WA, USA) over the
upper-arm and fore-arm was acquired at 2500Hz using a
bipolar amplifier (Brain Products GmbH, Gilching, Ger-
many). The electrodes were placed over: 1) the abductor
pollicis longus, 2) the extensor carpi ulnaris, 3) the extensor
digitorium, 4) the flexor carpi radialis, palmaris longus and
flexor carpi ulnaris, 5) the pronator teres, 6) the long head of
biceps, 7) the external head of triceps, 8) the anterior portion
of deltoid, 9) the lateral portion of deltoid and 10) the poste-
rior portion of deltoid over the teres minor and infraespinatus
muscles. The ground monopolar electrode was placed over
the right clavicle. Kinematic activity of the above mentioned
DOFs was recorded at 18Hz and synchronized offline with
the EMG signals. The kinematics of the fore-arm DOFs,
namely, px, py and θxy , were collected with a camera
attached to the bottom of the exoskeleton, which tracked
the movements by using an optical symbol recognition
system (more details in [14]). The prono-supination angle
φwrist was captured from a motor encoder and the fingers’
angles δthumb, ψindex and α3fingers were acquired using
potentiometers. Nevertheless, all the kinematic data was
acquired with the same software and at the same frequency.
Therefore, only the synchronization of the kinematics with
the EMG signal had to be done. For this purpose, the EMG
recording was initiated first. At the beginning of each block,
along with the initiation of the kinematics recordings, a step
signal was generated and fed into the EMG recording so that
both signals could be synchronized offline.

C. Data processing

EMG data was filtered using a 4th order Butterworth
band-pass filter (10-500 Hz) to remove movement artifacts
and high frequency noise. In addition, a 50 Hz comb filter
was utilized in order to remove power line noise and its
harmonics. Kinematic data was low-pass filtered with a 4th

order Butterworth filter (fc = 1.5 Hz). The derivation of the
positions and angles with respect to time was computed in
order to obtain linear and angular velocity profiles, which
were the variables to be predicted from EMG signals. The
kinematic signal predicted from the decoder was filtered
using a moving average with a backwards time window of
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180 ms to improve movement smoothness towards online
robot control.

Seven time-domain features typically used for myoelec-
tric interfaces (Mean of absolute values, Variance, Wave-
form Length, Root-mean-square error, Willison Amplitude
(WAMP), Zero crossing (ZC) and Slope sign changes (SSC))
[15] were extracted from each of the 10 EMG channels in
200 ms windows, resulting in a 70-element EMG feature
set (7 features x 10 channels). The thresholds for the last
three features were empirically selected and fixed to the
same values for all the participants (THWAMP = 30 μV;
THZC = 30 μV; THSSC = 700 μV). Each of the EMG
features of the generated set was normalized to zero mean
and unit variance before being fed to the decoder. The testing
data was normalized using the mean and standard deviation
computed on the training dataset.

D. Algorithms

1) Kalman filter

A Kalman filter models the system by the state
transition equation:

xt+1 = Atxt + wt (1)

Where xt is the state at time t, At is the state
transition matrix and wt is the model white noise
∼ N (0, Q).

The observations of the state are made through a
measurement system which can be represented by
the following linear equation:

yt = Ctxt + vt (2)

Where yt is the observation or measurement at time
t, xt is the state at time t, Ct is the measure-
ment matrix and vt is additive measurement noise
∼ N (0, R).

2) Ridge regression

The relationship between the dependent variable of
length n, y ∈ �1×n, in this case velocity, and the
independent variable, a p-dimensional EMG feature
set X ∈ �pxn, is modeled as follows:

y = βTX + β0 s.t.
p∑

j=1

β2
j ≤ s (3)

With βT ∈ �px1 being the vector of coefficients and
β0 the intercept term. The regularization consists of
constraining the sum of squared coefficients with
some value s > 0.

The solution is the one that minimizes the penalized
residual sum of squares, which is expressed as:

n∑

i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑

j=1

β2
j (4)

With λ being the regularization parameter. Since the
penalized residual sum of squares in equation 4 is
convex, it has a unique solution given by:

βridge = (XTX + λIp)
−1XT y (5)

E. Decoding schemes

Three decoding schemes were implemented by using
different training and testing conditions:

• Within-session decoder (WS): This decoder was
trained and tested with data from the same session.
It was implemented in order to have a metric of how
good our decoder could work. Since we collected
data during two sessions, we developed two types of
decoders: one using only data from the first session
S1 (WS1) and the other one only with data from the
second session S2 (WS2).

• Session-to-session decoder (SS): This decoder was
trained and validated in the first session S1 and
tested in the next session S2. A performance drop
due to the session-to-session transfer was expected
when comparing its performance to the one of the
WS decoder.

• Re-calibrated session-to-session decoder (RSS):
This decoder was similar to the SS decoder ex-
plained above with the difference that a few minutes
of data were collected at the beginning of S2 in
order to re-calibrate the decoder. This was useful
in order to check if this re-calibration phase could
compensate for the expected performance drop due
to the session-to-session transfer.

F. Cross-validation

All three of the decoding schemes were implemented for
each task and DOF separately. The data from each session,
task and DOF was divided into 5 blocks, each of them
containing trials of all the trajectory types. These five blocks
were divided into the training and test sets as follows:

For the WS decoding scheme, a 5-fold cross-validation
(CV) was applied using only data from either S1 (for WS1)
or S2 (for WS2). The values obtained from the testing phase
of each CV-fold were averaged to compute the reported final
performance. The SS decoding scheme, instead, consisted
of a training phase with all 5 blocks of S1 and a testing
phase with all 5 blocks of S2. For the RSS decoding scheme,
all 5 blocks of S1 and the first block of S2 were included
in the training set in order to re-calibrate the decoder. The
remaining 4 blocks of S2 were assigned to the test set.

It should be mentioned that in the case of ridge regres-
sion, a nested CV was applied in all the decoding schemes
because an optimum value for the regularization parameter
had to be found. In each fold of the inner CV-loop, one of
the blocks from the training set was employed as validation
data in order to find the optimum regularization parameter. A
grid search of values in the range [10−7 − 107] was utilized
to find the best parameter. After this, the decoder was once
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Fig. 2. Correlation coefficient (left) and normalized root mean squared error (right) for each combination of decoding scheme (WS1, WS2, SS or RSS)
and algorithm (Kalman filter or ridge regression) after averaging over all subjects, tasks and involved DOFs. The median and the 25th and 75th percentiles
are shown. Significant differences found between the decoding schemes using ridge regression are marked with an asterisk.

again trained with this optimized parameter and tested in the
outer loop.

G. Performance evaluation

The correlation coefficient (CC) and the normalized
root mean squared error (NRMSE) were employed as per-
formance metrics. The reported performance values for
each combination of decoding scheme and algorithm were
computed as the average over the three tasks and the 8
participants. Each task’s performance was in turn computed
as the mean performance of the DOFs involved (i.e. actively
used) in the corresponding task only.

Both for the CC and NRMSE values the following tests
were applied:

Data was assumed to be normally distributed and a
2-way repeated measures Analysis of Variance (ANOVA)
test with two factors (Algorithm and Decoding Scheme)
was performed. The algorithm factor was comprised of two
levels: Kalman filter and ridge regression while the decoding
scheme factor consisted of three levels: WS2, SS and RSS.

This first test was used in order to find out which
algorithm performed better overall and if that difference
in performance was significant. Subsequent tests were then
limited to the best algorithm. Secondly, a one-way repeated
measures ANOVA was performed to test the effect of the
decoding scheme factor only for the best algorithm. Post-hoc
pairwise comparisons of the three decoding schemes were
performed and controlled for multiple comparisons using
Bonferroni correction.

For the best algorithm, a paired t-test comparing WS1
and WS2 decoding performance was also carried out in order
to analyze the performance stability of the WS decoder and
by extension, the reliability of session S1 and S2 data.

III. RESULTS

For both metrics, the ANOVA resulted in a significant
effect for both the algorithm (CC: p = 10−6; NRMSE: p =
10−5) and decoding scheme (CC: p = 10−6; NRMSE: p =
0.011) factors while the interaction turned out to be non-
significant (CC: p = 0.075; NRMSE: p = 0.070). The ridge
regression algorithm performed significantly better than the
Kalman filter and thereby, the subsequent tests were reduced

to the comparison of the different decoding schemes using
only ridge regression.

With the factor algorithm fixed at ridge regression, the
one-way ANOVA test resulted in a significant decoding
scheme effect in both cases (CC: p < 10−6; NRMSE: p =
10−5). Post-hoc Bonferroni corrected test results differed for
each metric (see Fig. 2). For the CC, post-hoc tests revealed
significant differences between the three decoding schemes.
(WS2 vs SS: p < 10−6; SS vs RSS: p = 2.1 · 10−4; WS2
vs RSS: p = 3.1 · 10−5). However, for the NRMSE metric,
significant differences were found for the comparisons WS2
vs SS (p = 4.5 · 10−3) and SS vs RSS (p = 7.5 · 10−4)
while the comparison WS2 vs RSS showed no significant
difference (p = 0.129).

The paired t-test comparing WS1 and WS2 decoding
schemes performance showed no significant difference for
both CC (p = 0.918) and NRMSE (p = 0.859).

Additionally, for each of the three decoding schemes
based on the ridge regression algorithm, the performance
values (CC and NRMSE) for each of the DOFs separately
were computed (see Fig. 3 and values in Table I). The
performance values obtained for each DOF were consistent
across decoding schemes. A significantly (p = 10−6) lower
CC for the distal DOFs (mean CC = 0.39) compared to the
proximal DOFs (mean CC = 0.68) can be seen. However,
the NRMSE stayed stable at a mean value of 0.077 (7.7%)
for all the DOFs.

IV. DISCUSSION

In this study, multiple decoding schemes and algorithms
for the continuous mapping of EMG signals into upper limb
kinematics were tested. The analysis included the decoding
of distal and proximal DOFs during complex functional
movements involving coordinated upper-arm and fore-arm
muscle activity. Kalman filter and ridge regression tech-
niques were compared across different decoding scenarios
in order to test their ability to overcome the EMG non-
stationarity as well as the variability in the performed
movements. All these aspects are of great importance and
have a direct impact on the clinical applications of EMG
decoding.

The Kalman filter model has been extensively used
before for myoelectric control applications. However, simple
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Fig. 3. Mean and standard deviation values of correlation coefficient (top) and normalized root mean squared error (bottom) for the decoded linear or
angular velocities in each individual DOF, obtained with the WS2 (left), SS (middle) and RSS (right) decoding schemes. DOFs 1-2 correspond to linear
velocities of: (1) px, (2) py ; and DOFs 3-7 correspond to angular velocities of: (3) θxy ; (4) φwrist; (5) δthumb; (6) ψindex; (7) α3fingers.

TABLE I. MEAN AND STD VALUES OF CC AND NRMSE FOR EACH DOF AND DECODING SCHEMES USING ONLY RIDGE REGRESSION

CC NRMSE

DOF WS2 SS RSS WS2 SS RSS

1 0.70 (± 0.08) 0.58 (± 0.09) 0.64 (± 0.08) 0.081 (± 0.004) 0.080 (± 0.008) 0.074 (± 0.007)
2 0.70 (± 0.06) 0.55 (± 0.09) 0.63 (± 0.06) 0.078 (± 0.002) 0.085 (± 0.003) 0.077 (± 0.004)
3 0.82 (± 0.03) 0.70 (± 0.06) 0.77 (± 0.04) 0.074 (± 0.005) 0.084 (± 0.007) 0.076 (± 0.007)
4 0.51 (± 0.11) 0.38 (± 0.12) 0.46 (± 0.09) 0.054 (± 0.006) 0.053 (± 0.007) 0.049 (± 0.007)
5 0.47 (± 0.06) 0.30 (± 0.04) 0.39 (± 0.06) 0.083 (± 0.006) 0.076 (± 0.005) 0.072 (± 0.005)
6 0.45 (± 0.09) 0.27 (± 0.08) 0.33 (± 0.09) 0.096 (± 0.004) 0.094 (± 0.011) 0.089 (± 0.007)
7 0.45 (± 0.08) 0.28 (± 0.04) 0.37 (± 0.08) 0.085 (± 0.007) 0.075 (± 0.015) 0.074 (± 0.013)

algorithms like ridge regression are often underestimated
and therefore excluded from EMG decoding studies. Reg-
ularization methods impose a constraint to the model co-
efficients (i.e. control how large the coefficients are). This
introduces the advantage of preventing overfitting and thus,
of having a model with good generalization characteristics.
This is highly desirable, especially in situations in which the
decoder should be able to generalize to movements from
which sufficient training data is not available. The results
of the work presented here confirm our hypothesis that
ridge regression generalizes to new EMG data better than
the Kalman filter. Therefore, ridge regression constitutes a
desirable algorithm for the continuous EMG decoding of
upper limb kinematics.

Factors such as external interference, electrode shift and
lift, electrode impedance changes, muscle fatigue, sweat and
varying upper-limb positions alter the EMG signal distribu-
tion. Sources of variation like external interference can be
mostly suppressed by filtering or electromagnetic shielding
techniques. However, the remaining sources constitute a
persistent issue in clinical practice and severely affect the
performance of myoelectric decoders. In fact, we believe
that in this particular study, one of the main factors affecting
the performance stability could have been the variable posi-
tioning of the EMG electrodes from session-to-session since
they were just placed within the general vicinity. A daily re-
calibration phase was proposed as a solution to alleviate the
effects of such non-stationarities. The additional time of re-
calibrating the decoder and the cost of recording new data at
the beginning of each session could be a concern for certain
applications. Nevertheless, the performance comparisons be-

tween the three developed decoding schemes showed that
there was a significant improvement in performance (a 14%
increase in CC and a 8% reduction in NRMSE with respect
to SS) when a re-calibration of the decoder was carried out.
Moreover, the NRMSE values of the re-calibrated decoder
were not significantly different from those achieved when
training and testing the decoder with data from the same
session (WS2 decoder). This implies that a re-calibration
phase could reduce the error to the extent that the values
would be just as low as if the decoder was trained using
a larger amount of data only from the current session. It
should also be mentioned that the calibration data length
was 5 min, 1.5 min and 3 min for each task respectively and
that it took a negligible amount of time to build the decoding
model and choose the optimal regularization parameter, as
opposed to other more complex algorithms. Therefore, the
proposed approach was not very time and computationally
demanding and served to significantly raise the performance.
Nonetheless, the benefits and disadvantages of including a
daily re-calibration phase should be carefully considered
in order to choose the most suitable approach for each
particular scenario.

The majority of recent studies in the field of myoelectric
control interfaces are constrained to the decoding of a few
distal or proximal DOFs. These devices could be employed
for those cases in which impaired function of a few specific
DOFs is present. However, the ability for interfaces to
control multiple DOFs of the upper limb during dexterous
and functional movements is necessary, especially for pa-
tients who are undergoing rehabilitation therapies for motor
impairment of an entire extremity. Our protocol included the
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decoding of coordinated multi-joint movements. While the
NRMSE was stable at a very low value for all the DOFs, the
lower CC values achieved for the distal DOFs might be due
to the limited number of electrodes used for the decoding of
distal DOFs. Extensors and flexor muscles of the forearm are
often more difficult to target and it is usually hard to isolate
the EMG activity from each recorded muscle. This makes the
discrimination and decoding of individual finger movements
more challenging. The minimum number of electrodes on
the forearm that are necessary to attain an accurate decoding
of distal DOF movements has been extensively investigated
before [1], [4], [16], [17]. From the results presented in
these previous studies, it can be concluded that a minimum
of 12-16 electrodes are necessary to distinguish between
multiple individual finger and wrist movements. Therefore,
future studies should be performed with additional electrodes
placed over the fore-arm in order to improve the decoding
accuracy of distal DOFs.

V. CONCLUSION

This study addressed important aspects for the use of
myoelectric control interfaces in clinical practice, which
were: (i) the choice of a decoding algorithm with good
generalization characteristics; (ii) the training procedure to
follow in order to develop a decoder, which is robust to non-
stationarities; and (iii) the decoding of coordinated distal and
proximal DOF movements during complex functional tasks.
From the results presented here, we concluded that a simple
regularized algorithm such as ridge regression has good
generalization characteristics for the EMG-based continuous
decoding of multiple DOFs of the upper limb. Moreover,
we demonstrated that by introducing a daily re-calibration
phase the effects of the session-to-session non-stationarities
could be significantly mitigated. Further studies including
additional electrodes over the fore-arm should be performed
in order to more accurately discriminate individual finger
movements. Nevertheless, this pilot study is an important
step towards the development of a robust myoelectric in-
terface for the online control of coordinated multi-joint
movements in robot-aided rehabilitation therapies.
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