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Abstract— Motor rehabilitation based on brain-machine in-
terfaces (BMI) has been shown as a feasible option for stroke
patients with complete paralysis. However, the pathologic EEG
activity after a stroke makes the detection of movement inten-
tions in these patients challenging, especially in those with dam-
ages involving the motor cortex. Residual electromyographic
activity in those patients has been shown to be decodable,
even in cases when the movement is not possible. Hybrid BMIs
combining EEG and EMG activity have been recently proposed,
although there is little evidence about how they work for
completely paralyzed stroke patients. In this study we propose
a neural interface, relying on EEG, EMG or EEG+EMG
features, to detect movement attempts. Twenty patients with
a chronic stroke affecting their motor cortex were recruited,
and asked to open and close their paralyzed hand while their
electrophysiological signals were recorded. We show how EEG
and EMG activities provide complementary information for
detecting the movement intentions, being the accuracy of the
hybrid BMI significantly higher than the EEG-based system.
The obtained results encourage the integration of hybrid BMI
systems for motor rehabilitation of patients with paralysis due
to stroke.

I. INTRODUCTION

Chronic stroke patients with complete paralysis have
few or null rehabilitation options [1], and brain-machine
interfaces (BMI) have been recently proposed as one of
the only therapeutic options to help them regaining their
lost motor function [2]. These BMI interventions aim at
reorganizing the motor pathways by creating a contingent
link between the damaged brain and the peripheral nerves
and muscles [2]. For that, the brain activity is monitored
(generally with electroencephalography–EEG), and when the
patients attempt to move their paralyzed limb, an external
device helps them to perform an actual movement. Despite
BMI therapies could overcome the results of traditional
physiotherapy for severely paralyzed patients, the degree of
recovery after BMI training is still limited, and further im-
provements are necessary before these interventions become
a standard treatment for stroke rehabilitation [3].

One important limitation of BMI systems for stroke reha-
bilitation is the difficulty to accurately detect the intentions of
movement from the ongoing EEG activity. Different factors
contribute to this problem. Firstly, stroke patients produce
uncontrolled compensatory activity during movement at-
tempts, which causes a large amount of EEG artifacts that
mask the relevant brain activation [4]. Secondly, their cortical
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2Wyss Center for Bio and Neuroengeneering, Geneva, Switzerland.
3TECNALIA Health Technologies, San Sebastian, Spain.
∗Correspondence: eduardo.lopez-larraz@uni-tuebingen.de

activation during the attempts of movement is reduced,
especially in patients with damages that involve the motor
cortex [5]. For these reasons, the classification accuracies that
are achieved with EEG-based BMIs in patients with cortical
stroke are significantly lower than in patients with subcortical
lesions or in healthy controls [6].

To try to provide more robust control signals for BMI-
based rehabilitation, hybrid approaches combining brain and
muscle activity have been proposed [7]. Even in stroke
patients with complete hand paralysis, it has been shown that
residual electromyographic (EMG) activity can be classified
to detect movement intentions [8]. In a pilot approach, we
developed a hybrid BMI that allowed a chronic stroke patient
to control a robotic exoskeleton by detecting his intentions
to move with via EEG and EMG activity [9]. However, the
amount of information that each type of signal is providing
is still not fully understood, and further research is required
to improve new hybrid BMI developments.

In this study, we analyzed data of 20 chronic patients
with stroke lesions that involved the motor cortex. Their
EMG and EEG activity were recorded while the patients
attempted to move their completely paralyzed hand. Three
approaches were tested to detect the movement intentions of
the patients: (1) relying on EEG only, (2) relying on EMG
only, (3) relying on EEG and EMG. The accuracy of each
approach is compared to evaluate if the information provided
by each type of activity can be complementary and improve
the performance of the BMI.

II. METHODS

A. Patients

Twenty chronic stroke patients were considered in the
study (7 female, age 48.5±14.5 years, time since stroke
54.9±61.0 months). All of them had a stroke that involved
the motor cortex, and complete hand paralysis with no
residual finger extension in the affected arm (12.8±8.4
average score in the modified upper-limb Fugl-Meyer assess-
ment, excluding coordination, speed and reflexes; max. 54
points). The experiments were performed at the University of
Tübingen (Germany). The study was approved by the Ethics
Committee of the Faculty of Medicine of the University of
Tübingen, and all the patients provided written informed
consent before participation.

B. Experimental protocol and data acquisition

The patients participated in one experimental session,
where their electroencephalographic (EEG) and electromyo-
graphic (EMG) activity was monitored while they attempted



to move their completely paralyzed hand. Each patient exe-
cuted between 4 and 6 blocks that included 17 trials each, in
which they were asked to try to open and close the affected
hand. Audiovisual cues were presented to the patients to
indicate them when to rest (random duration between 4-5
seconds), when to attempt the movement (for 4 seconds),
and the inter-trial intervals (random duration between 8-9
seconds).

EEG activity was recorded with a 16-electrodes Acticap
system (BrainProducts GmbH, Germany) from Fp1, Fp2,
F3, Fz, F4, T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz, P4,
and Oz locations, with the ground in AFz and reference
in FCz. Vertical and horizontal electrooculographic (EOG)
derivations were also recorded to capture eye movements.
EMG activity was recorded using bipolar Ag/AgCl electrodes
(Myotronics-Noromed, USA) from four muscles: extensor
carpi ulnaris, extensor digitorum, biceps and triceps. All
signals were synchronously sampled at 500 Hz.

C. Movement detection scheme

We designed a pseudo-online simulation of a
brain/muscle/brain+muscle machine interface to detect
when the patients attempted to move their hand. All the
methods were applied in the same way as they would be
used in a real-time setup, including causal filtering, sliding
windows and auto-regressive models for feature extraction.

We followed a block-based N-fold cross-validation (with
N being the number of blocks performed by each patient). In
each fold, one block was separated for testing, and the rest of
them were used for training the system. The signals from the
training blocks were trimmed down to 7-second trials (i.e.,
from -3 to +4 seconds, with respect to the presentation of
the cue that asked the patients to move). These training trials
were processed to extract examples of activity corresponding
to rest and movement attempt, using one-second windows
from the EEG and/or the EMG signals. These examples
were used to train a classifier that was subsequently tested
on the remaining test block. The mean of all the folds was
afterwards computed for each patient.

D. Removal of artifacts

Before training the classifier, and to avoid using informa-
tion relying on artifacts, an automated rejection procedure
was applied to the training datasets. Trials were considered
to have artifacts if: (1) presented muscle activation during
the rest periods (in any of the EMG channels); (2) presented
motion or muscular artifacts in the EEG (measured by z-
scoring the power in delta and gamma frequencies and
rejecting the trials that exceeded in more than 3 std of the
power during rest). In addition, ocular contaminations were
removed using linear regression with the EOG derivations.
Further details of the artifact rejection procedure can be
found elsewhere [4].

E. Feature extraction and training

We aimed at comparing how reliable EEG, EMG and
the combination of EEG and EMG signals are for detecting

the attempts of movement of the patients. In each training
trial, 5 one-second windows were extracted as examples of
the rest class (i.e., from the time interval [-2, 0] s, with a
sliding step of 0.25 s), and 5 one-second windows for the
movement attempt class (i.e., from the time interval [1, 3] s,
with a sliding step of 0.25 s). Feature vectors were built by
computing the features from EEG, EMG or EEG+EMG.

1) EEG features: The EEG signals were bandpass filtered
between 0.1 and 48 Hz (4th-order Butterworth filter), and
re-referenced with a Laplacian montage. The features were
extracted from the electrodes placed over the ipsilesional
hemisphere (i.e., contralateral to the involved hand): i.e., C3,
CP3, P3 if the right hand was involved; C4, CP4, P4 if the
left hand was involved. The average power in the alpha ([7-
13] Hz) and in the beta ([14-30] Hz) frequency bands was
computed using an order-20 autoregressive model based on
the Burg algorithm. For each one-second window, 6 features
were obtained (i.e., 2 frequency ranges, 3 EEG channels).

2) EMG features: The EMG signals were high-pass fil-
tered at 20 Hz (4th-order Butterworth filter). The features
were extracted from the extensor carpi ulnaris and extensor
digitorum muscles by computing the waveform-length of
the one-second windows. For each one-second window, 2
features were obtained (i.e., one for each muscle).

The system for detecting the movement intention was
evaluated three times: (1) using EEG features only, (2) using
EMG features only, (3) combining EEG and EMG features.
The feature vectors were normalized to have zero mean and
unit variance. Then, they were fed to a linear-discriminant
analysis (LDA) classifier, which computed the hyper-plane
that best separates the features from the two classes (i.e., rest
and movement attempt).

F. Performance evaluation

The classification of the test data was done simulating an
online scenario. A one-second sliding window was evaluated
every 20 ms (from -3 to 4 s), extracting the features and
obtaining an output of the classifier. The features in the test
data were calculated with the same procedure as explained
in Section II-E. The feature normalization and the EOG
correction of the test windows was done by applying the
parameters previously computed from the training data.

We evaluated the response of the classifier when trained
with each set of features. Firstly, we obtained the true
positives (TP) as the percentage of correct outputs during
movement attempt (i.e., which we measured in the time
interval [1.5, 4] s). Secondly, we calculated the false positives
(FP) as the percentage of erroneous outputs during rest (i.e.,
measured in the time interval [-2, 0] s). Finally, we computed
the average accuracy as the mean between TP and 1-FP (i.e.,
the true negatives).

G. Statistical comparisons

In order to evaluate if the different types of features had an
influence on the classification accuracy, a Friedman’s test was
applied, considering the type of feature as factor (3 levels:
EEG, EMG, EEG+EMG), and the accuracy as dependent
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Fig. 1. Average outputs of the classifier when detecting the move-
ment attempts with the three configurations of features: EEG, EMG,
and EEG+EMG. The colored lines represent the percentage of classifier
outputs detected as movement averaged for all the patients, with the shades
indicating the standard error of the mean. The values before t = 0 represent
false positives, while the values after t = 0 represent true positives. The
shaded gray area indicates the confidence interval of the chance level
(alpha=0.01, computed as in [10].)

variable. Paired post-hoc comparisons were performed using
the Wilcoxon signed-rank test, with Bonferroni correction for
multiple comparisons. Statistical significance was considered
when corrected p-values were smaller than 0.05. Correlation
between pairs of features was computed using the Spear-
man’s correlation coefficient.

III. RESULTS

Figure 1 shows the average time responses of the classifier
in the test trials with each of the three feature configurations
(i.e., EEG, EMG, EEG+EMG). As previously reported in
[6], the performance of a BMI relying on ipsilesional activity
of patients with cortical stroke is close to the chance level.
However, despite having a complete paralysis of the hand,
the patients produced some muscular activity that could
be classified above chance. Furthermore, the combination
of EEG and EMG features leads to an improvement in
performance, both reducing false positives and enhancing the
true positives.

Figure 2 displays the mean classification accuracies in a
barplot. We found a significant effect of the type of features
in accuracy χ2(2) = 6.91; p = 0.03. Post-hoc comparisons
revealed significantly different accuracies between the classi-
fier trained with EEG features and with EEG+EMG features.

To better understand such increase in performance, we
performed a correlation analysis between all the pairs of
features (Figure 3). The correlation between EEG features
and EMG features was low in all the cases, which explains
why the information added by the EMG complements the
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Fig. 2. Mean classification accuracy, averaging true positive and true
negative values, for each type of features. The vertical bars indicate the
standard deviation. Significant pairwise differences are denoted with an
asterisk (p < 0.05 after correction).

information of the EEG, leading to an improved classification
accuracy. The two EMG features were highly correlated
among themselves. The EEG features in the alpha band
correlated well among themselves, the same as the beta
features; however, the correlation between alpha and beta
EEG features was lower.

IV. DISCUSSION AND CONCLUSIONS

This paper reported how the combination of ipsilesional
brain activation with residual muscle activity boosts the
performance for the detection of movement attempts in
completely paralyzed patients with cortical stroke. We im-
plemented a classifier that continuously monitored EEG
and/or EMG activity, simulating an online neural interface
to, for instance, control a rehabilitation robot. Our results
demonstrate that EEG and EMG activity provide comple-
mentary information, and that both types of signals should
be considered in future neuro-rehabilitative platforms based
on brain-machine interface technology.

Previous studies have shown that patients with chronic
paralysis due to stroke–and especially those with insults that
affect the motor cortex–display modest EEG activation in
the ipsilesional hemisphere during attempts of movement
[5], [11]. For this reason, online classification of ipsilesional
EEG signals to detect those movements provides accuracy
values close to chance in these patients [6]. Although con-
tralesional activity can also be exploited for brain-machine
interfacing [12], such activity is more prone to contamination
by muscular artifacts [4], and therefore should be considered
with caution as it may provide a less accurate associative
feedback, with a worse rehabilitative potential. Furthermore,
the efficacy of reinforcing ipsilesional activity in BMI motor
rehabilitation has been proven, but using contralesional or
whole brain activity to induce functional plasticity, albeit
promising, needs further investigation [2].
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Fig. 3. Spearman correlation coefficient between all the pairs of features.
EEG1 corresponds to C3 or C4 electrode, depending on the laterality of the
stroke of each patient; EEG2 corresponds to CP3/CP4; EEG3 corresponds to
P3/P4; EMG1 corresponds to the extensor carpi ulnaris muscle; and EMG2
corresponds to the extensor digitorum muscle.

Myoelectric interfaces, on the other hand, have been
proposed with a great potential for decoding different types
of arm movements [13], [14]. Stroke patients with complete
hand paralysis can still elicit some residual muscle activation,
at least in 45% of the patients [8], which could be decoded
and used to control a rehabilitation robot or even to train
them to reduce abnormal muscle co-contractions [15].

The combination of EEG and EMG in a hybrid BMI
results advantageous in several aspects. Firstly, as shown
in this article, the combination of both types of features
guarantees a higher performance when classifying the patient
intentions. Secondly, the hybrid strategy can be used to
force the patients to activate the whole motor network,
from brain to muscles, traveling through the spinal cord [9].
This may turn their sensory/motor pathways more excitable,
which may, as a result, make the network more prone to
reorganize by activity-dependent plasticity [16]. However,
temporal contingency between brain/muscle commands and
output might need further investigation to ensure positive
motor related neuroplasticity.

Future research should focus on extending this approach to
different movements of the arm, where the muscular activity
can provide more selective information. Furthermore, the
validation of the proposed hybrid BMI in a real rehabilitation
intervention should be conducted to quantify the potential
of the system to help the patients recover their lost motor
function.
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