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Abstract— Brain-machine interfaces (BMI) can be used to
control robotic and prosthetic devices for rehabilitation of
motor disorders, such as stroke. The calibration of these BMI
systems is of paramount importance in order to establish a
precise contingent link between the brain activity related to
movement intention and the peripheral feedback. However, elec-
troencephalographic (EEG) activity, commonly used to build
non-invasive BMIs, can be easily contaminated by artifacts of
electrical or physiological origin. The way these interferences
can affect the performance of movement intention decoders has
not been deeply studied, especially when dealing with severely
paralyzed patients, which often generate more artifacts by
compensatory movements. This paper evaluates the effects of
removing artifacts from the data used to train a BMI decoder
on a dataset of 28 severely paralyzed stroke patients. We show
that cleaning the training datasets reduces the global BMI
performance for decoding attempts of movement. Further, we
demonstrate that this performance drop especially affects the
test trials contaminated by artifacts (i.e., trials that might not
reflect cortical activity but noise), but not the clean test trials
(i.e., trials representing correct cortical activity). This paper
underlines the importance of cleaning the datasets used to train
BMI systems to improve their efficacy for decoding movement
intention and maximize their neurorehabilitative potential.

I. INTRODUCTION

Non-invasive brain-machine interfaces (BMI) constitute a
feasible and relatively cheap way to control external devices
for communication and motor restoration using brain activity
only [1]. Thanks to this technology, patients with severe
motor deficits have managed to control robotic or prosthetic
systems and used them to facilitate the movement of their
paralyzed arms or legs [2], [3], [4]. Recent studies have
evidenced that the contingent association between the brain
signatures of movement and proprioceptive peripheral feed-
back promotes neural plasticity [5]. Further, rehabilitative
interventions based on this methodology have shown that
functional recovery can be achieved after several weeks or
months of training both in SCI and stroke patients [6], [7].

The electroencephalogram (EEG) constitutes an especially
relevant tool for decoding motor commands from the brain,
as has been demonstrated in the aforementioned studies.
By placing electrodes on the surface of the scalp, in the
regions above the motor cortex, it allows the real-time
acquisition of the cortical activity generated in response to
movement intentions. Paralyzed patients such as stroke and
SCI suffer a cortical reorganization that generally makes
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them produce a pathologic neural activation during their
movement intentions [8], [9], [10], although it is still possible
to decode different movements from their EEG activity [11],
[12], [13], [14]. However, one of the main limitations of
EEG technology is its low signal to noise ratio, and its
easiness to get contaminated by interferences of electrical
or physiological origin: i.e., artifacts.

Different techniques have been proposed to remove ar-
tifacts from EEG datasets used to train motion intention
decoders [15]. We can divide those techniques into two
groups: the ones that filter (or clean) the artifacts, preserving
the amount of data; and the ones that detect the artifactual
trials and discard them. The first group includes methods
like linear regression or independent component analysis
(ICA) to reconstruct EEG data after removing artifacts–such
as eye movements [16], [17]–or median filters to remove
external electric/magnetic contaminations [18]. The second
type is generally based on the use of statistical distributions
to eliminate those segments of signal that exceed a certain
threshold on a given parameter (e.g., amplitude, power on a
frequency band, etc) [19]. Despite many studies and reviews
have addressed the issue of how to minimize the artifacts
for EEG-based BMIs, they generally evaluate the success
of the methods on the resulting signals only. However, the
influence that removing artifacts has for the control of BMIs
that decode movement commands is rarely studied, more
so when considering data recorded with paralyzed patients,
who generally produce higher number of artifacts due to
compensatory activity.

This paper evaluates the effect of removing artifacts from
EEG datasets used to calibrate a BMI decoder of movement
intentions. The study is performed with a clinically relevant
dataset that includes EEG recordings of 28 stroke patients
while they move their healthy hand, or try to move their
paretic hand. An automatized procedure is utilized to elimi-
nate the three main sources of artifacts on EEG datasets: eye
movements, motion artifacts, and muscular contamination.
The performances of a BMI decoder implemented in a
pseudo-online manner are compared after the application or
not of the artifact removal procedure to the training dataset.

II. METHODS

A. Dataset

Twenty eight chronic stroke patients (16 male, age
47.9±13.2, time since stroke 64.9±59.4 months) were in-
volved in this study. From the 28 patients, 14 had the stroke
in the left hemisphere and 14 in the right one. Regarding the
typology of lesion, 14 of them presented mixed and 14 had



subcortical lesions. All the patients suffered hand paralysis
resulting in no residual finger extension in the paretic arm,
and no other psychiatric or neurological condition apart from
the stroke. More details about the inclusion criteria, exclusion
criteria, clinical and demographic data can be seen elsewhere
[6]. The experiments were conducted at the University of
Tübingen, Germany. The experimental procedure was ap-
proved by the ethics committee of the Faculty of Medicine
of the University of Tübingen, and all the patients provided
written informed consent before participation.

The patients were invited to attend to one experimental
session, in which their electroencephalographic (EEG) activ-
ity was recorded while they opened/closed their healthy hand
or attempted to open/close their paralyzed hand. Each patient
performed between 4 and 6 blocks, each of which included,
in a random order, 17 trials moving the healthy hand, and
17 trials attempting to move the paralyzed one. The trials
included audiovisual cues to instruct the patients about the
three phases: rest (5 sec), motor execution/attempt (5 secs),
inter-trial interval (random duration between 3-4 sec). In the
motor execution/attempt interval, the patients were asked to
open and close the indicated hand at their own comfortable
pace.

EEG activity was recorded with a 16-electrodes Acticap
system (BrainProducts GmbH, Germany) from Fp1, Fp2,
F3, Fz, F4, T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz, P4,
and Oz locations, with the ground in AFz and reference in
FCz (according to the international 10/10 system). Vertical
and horizontal electrooculographic (EOG) derivations were
also recorded to capture eye movements. Both signals were
sampled synchronously at 500 Hz.

B. BMI Design

Despite the dataset studied in this paper was analyzed
offline, all the procedures were performed simulating an
online scenario. Sliding windows, causal filters, and auto-
regressive models were used in order to obtain realistic
results that can be replicated in a real-time setting.

A block-based N-fold cross validation procedure was
applied, where N corresponded to the number of blocks
recorded for each patient. All the procedures were applied
separately for the healthy and the paretic arms. In each
fold, the data of the corresponding test block was kept
apart, and the training dataset was constructed with the
rest of the blocks. All the specific procedures involving
data-distribution parameters were performed on the training
data only (e.g., artifact removal or feature normalization).
Subsequently, when applicable, the parameters computed on
the basis of the training data were used on the test trials (e.g.,
normalization and EOG regression).

C. Artifact removal

The artifact removal method was applied only to the data
used for training the BMI. This simulates a scenario in
which, prior to starting a BMI therapeutic session, we have
recorded some data for calibration and we have to decide if
we perform an artifact rejection method to the data or not.

The method to remove the artifacts is designed to eliminate
the three main sources of contamination in EEG data: (i) eye
movements; (ii) motion artifacts; and (iii) muscular artifacts.
Ocular artifacts are due to the electrical currents generated by
blinks or vertical and lateral movements of the eyes. Motion
artifacts are low-frequency oscillations that are due to head
or whole-body movements, and cause an increase in signal
power that can be easily confused with cortical activity [20].
Muscular artifacts are high-frequency interferences due to
the activation of cranial or neck muscles, which lead to high-
power in beta and gamma frequency bands.

1) Removal of ocular artifacts: A linear regression was
used to remove the components of vertical and horizontal
eye movements affecting the EEG channels, as proposed
in [16]. Here is assumed that the recorded signal is a
linear combination between the actual EEG activity and the
contamination coming from the eyes:

Xc,t = EEGc,t +bc,d ·EOGd,t (1)

where Xc,t is the acquired signal in c channels during t
time samples; EEGc,t corresponds to the clean EEG activity;
EOGd,t are the d EOG derivations; and b are the coefficients
that represent the degree of contamination of each EEG
channel by the EOG activity. The coefficients b can be
estimated as the product between the auto-covariance matrix
of the EOG derivations and the cross-covariance between the
EEG and the EOG [16]. The estimation can be done from
a training segment of data, and used to clean such training
segment and new unseen data. The clean signal is calculated
as:

EEG = X −b ·EOG (2)

With this method, the influence of EOG activity is mini-
mized but the amount of data is preserved.

2) Removal of motion and muscular artifacts: Motion
and muscular artifacts cannot be so easily removed by using
linear regression as eye movements, and more complex tech-
niques have been proposed to try to minimize their influence
[15]. Despite independent component analysis (ICA) has
been used to reduce these types of contamination, there is
evidence showing that it can introduce artificial variance
to the signals and bias the classification performance [21].
Therefore, we used a variance-based method to completely
remove the trials contaminated by head/body motions (low
frequency) or muscular activations (high frequency). First,
the power in delta ([0.1-4] Hz) and gamma ([30-48] Hz)
frequency bands was calculated for the rest and movement
intervals of each trial. The mean and standard deviation (std)
of the values calculated during the rest intervals were used
to define the first rejection threshold, set as 3 stds above
the mean delta and gamma power. All the trials exceeding
this threshold either in the rest or in the movement intervals
were marked for rejection. Subsequently, we recalculated the
mean and std of the non-rejected trials and also rejected all
those that exceeded the newly calculated threshold (i.e., 3
stds above the new mean) during rest or movement intervals
in any of the bands.



The removal of artifacts was done considering only the
channels that were used by the BMI (i.e., channels for
feature extraction and for re-referencing, see Subsection II-D
below). All the thresholds calculated on each fold for each
channel to remove the artifacts were saved for an additional
analysis in which we separated the test data between clean
and contaminated trials to evaluate if they were classified
differently.

D. Feature extraction and training

Only the electrodes placed on the contralateral centro-
parietal cortex with respect to the moved (or attempted) limb
were considered: i.e., C3, CP3, and P3 when considering the
right arm, and C4, CP4, and P4 when considering the left
arm. The signals were bandpass filtered between 0.1 and
48 Hz with a 4-th order Butterworth filter. The selected
electrodes were re-referenced using Laplacian derivations
(for the electrodes whose 4 closest neighbors were not
available, we considered the 2 or 3 available neighbors only).

The signals were divided into 7-second trials, from -3
to +4 seconds, with 0 being the presentation of the cue
that instructed the patients to move. We extracted features
from one-second time windows to model the rest and the
movement classes. The windows of the rest class were
extracted from the time interval [-2, 0] s, and the windows
of the movement class were extracted from the interval [1,
3] s, with a sliding step of 0.25 s.

For each one-second EEG window we computed the
average power in the alpha ([7-13] Hz) and the beta ([14-
30] Hz) bands of the 3 contralateral channels (i.e., feature
vectors corresponding to each window included six values).
To compute the power spectral density, we used an order-20
autoregressive model based on the Burg algorithm [22]. All
the feature vectors belonging to the rest and to the movement
classes were normalized to have zero mean and unit variance.
Subsequently, these vectors were fed to an SVM classifier
with a radial basis function (RBF) kernel to build the model
that best discriminates between both classes.

E. Classification

The evaluation of the test trials was done in a pseudo-
online manner, simulating a real-time use of the BMI. The
features were extracted as explained in Section II-D, and
the parameters computed on the basis of the training dataset
were used to normalize the test features and to compute
the regression for EOG correction (when this method was
applied). The trials were evaluated with the one-second
sliding window from -3 to +4 s (notice that the first output
was generated at t = -2 s), with the classifier providing an
output every 20 ms.

We plotted the average outputs of the decoder to analyze
its behavior during the rest and the movement periods. The
three main metrics to quantify the BMI performance were:
true positives (TP), false positives (FP) and average accuracy
(ACC). The TP measure the success of the classifier during
the movement period, which was considered as the interval
[1, 4] s. The FP measure the errors of the classifier during the

rest interval [-2, 0] s. The average accuracy was computed as
the mean between the TP and the true negatives (i.e., 1-FP),
and was used as a threshold-independent metric to deal with
coupled TP and FP differences that are due to an offset in
the classifier output, but do not translate into a better average
performance.

F. Statistical analysis

Two analyses were performed to quantify the impact
of artifacts on BMI performance. First, we compared the
two calibration approaches (i.e., training with all the tri-
als without removing artifacts, or training after applying
the artifact removal method) for classifying the same test
data. Secondly, we divided the test data into clean and
contaminated trials, and evaluated those two datasets with
both calibration methods. We used non-parametric statistical
tests and false discovery rate (FDR) correction for multiple
comparisons, and considered as statistically significant those
p-values smaller than 0.05 after correction.

The influence of the artifact removal applied to the training
was evaluated separately for each hand by comparing the TP,
FP and ACC (two tailed Wilcoxon signed-rank test, FDR
corrected for the three comparisons). For the comparison
between classification performances of clean and contami-
nated test datasets we compared only the ACC values, due
to simplicity reasons. We evaluated, given a fixed test dataset
(e.g., clean or contaminated test trials), the influence of
the two calibration methods; and given a fixed calibration
method (e.g., without or with artifact removal), the influence
of the test dataset. For the results of each hand, two tailed
Wilcoxon signed-rank tests were used with FDR correction
for four comparisons (i.e., two training procedures and two
test datasets).

III. RESULTS

A. Influence of artifact removal applied to the training data

The average number of trials available for training the
BMI on each fold was 59.2±12.3 both for the healthy and
for the paretic arm. The artifact rejection method eliminated,
on average, 28.6±10.0% of the trials corresponding to the
healthy arm and 39.5±20.7% for the paretic arm.

Figure 1 shows the average performance achieved for
the healthy hand (left) and the paretic hand (right) when
applying or not the artifact removal method to the dataset
used to train the BMI decoder. For the healthy hand, both
the percentage of TP and FP were significantly lower when
removing artifacts from the training data (p = 0.0002 and
p = 0.0004, respectively). However, this behavior resembles
an offset in the probability outputs of the classifier (see Fig.
1-left), a problem that can be solved online by adjusting
the classifier thresholds. In fact, the average accuracy was
not significantly different between both methods (p > 0.05).
For the attempt of movement of the paretic hand, the TP
were significantly lower when applying the artifact removal
(p = 0.0002), but the FP were not significantly different
(p > 0.05), which resulted in a significantly lower accuracy
also (p < 0.042).
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Fig. 1. Average decoding accuracies for the healthy (left) and the paretic (right) arms for all the test trials. On each panel, the lines represent the average
of all the patients, and the shades indicate the standard error of the mean. The red color corresponds to the results of the classifier trained without removing
artifacts, while the blue color represents the results of the classifier trained after removing artifacts. The shaded gray area indicates the confidence interval
of the chance level (α = 0.01), computed on the basis of all the test trials, according to [23].

B. Influence of artifacts in testing

The analysis presented in section III-A corresponds to
a simulation in which different datasets are used to train
the BMI and used pseudo-online to classify all the avail-
able test trials, as it would be done in real-time. For the
current analysis, we separated the test data between clean
and contaminated trials. The thresholds to define a trial as
contaminated were obtained from the training dataset used
on each fold (see Section II-C.2). For the healthy arm,
40.8±11.4% of the test trials were marked as contaminated,
while for the paretic arm the percentage of contaminated
trials was 49.1±19.9%.

Figure 2 shows the decoding results of the classifiers,
trained without or with artifact removal, applied to test
datasets consisting of clean or contaminated trials. Table I
shows the accuracies for all the possible combinations of
training (without or with artifact removal) and test (clean or
contaminated trials). Here, we used statistical tests to analyze
two situations: (i) the influence of the training dataset (i.e.,
without or with artifact removal) on a fixed test dataset (e.g.,
in clean trials or in contaminated trials); and (ii) the influence
of the test data (i.e., clean trials or contaminated trials) for
a fixed training dataset (e.g., trained without or trained with
artifact removal).

For the healthy hand, the comparison between both train-
ing procedures revealed that, for the clean trials, there were
no significant differences between both procedures (compar-
ison of both solid lines in Figure 2-left, p > 0.05), while
for the contaminated trials, the classifier trained without
removing artifacts provided significantly higher accuracies
(comparison of both dotted lines in Figure 2-left, p= 0.015).
The comparison between the two test datasets for a fixed
training procedure showed that the clean trials were classified

significantly better than the contaminated trials, both for the
decoder trained without artifact removal (comparison of solid
and dotted red lines in Figure 2-left, p= 0.0005), and for the
decoder trained with artifact removal (comparison of solid
and dotted blue lines in Figure 2-left, p = 0.0003).

When analyzing the decoding of movement attempt of the
paralyzed hand, the clean trials were again similarly classi-
fied by both training procedures (comparison of both solid
lines in Figure 2-right, p> 0.05), and the contaminated trials
were significantly better decoded by the classifier trained
without removing artifacts (comparison of both dotted lines
in Figure 2-right, p = 0.049). The comparison between the
two test datasets for a fixed training procedure showed that,
for the decoder trained without artifact removal, there were
no significant differences between clean and contaminated
trials (comparison of solid and dotted red lines in Figure 2-
right, p > 0.05), while for the decoder trained with artifact
removal, the clean trials were classified significantly better
(comparison of solid and dotted blue lines in Figure 2-right,
p < 0.047).

IV. DISCUSSION AND CONCLUSIONS

When designing a neurorehabilitation intervention based
on brain-machine interfaces (BMI), several methodological
and experimental components have to be carefully designed.
In this paper we focused on the stage when we have to
calibrate the BMI with examples of brain activity of rest and
movement (execution or attempt), and we have to decide if
we clean these training examples to remove potential arti-
facts that might bias the decoding performance. We studied
the effects of artifacts contaminating EEG activity on the
decoding of movement and movement intention in severely
paralyzed stroke patients. The major outcome of this work
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Fig. 2. Decoding accuracies separated for clean and contaminated trials for the healthy (left) and paretic (right) arms. The red color corresponds to the
results of the classifiers trained without removing artifacts, while the blue color represents the results of the classifiers trained after removing artifacts.
Solid and dotted lines correspond to clean and contaminated trials, respectively. The shaded gray area indicates the confidence interval of the chance level
(α = 0.01), computed on the basis of the minimum number of test trials for all the cases, according to [23].

is an empirical demonstration of how the EEG artifacts can
affect the performance of brain-machine interfaces (BMI)
from the training and the testing perspectives, which may
have a negative impact on the use of neuro-robotic and neuro-
prosthetic systems for stroke rehabilitation.

We observed that eliminating artifacts from the training
datasets leads to significantly lower accuracy values when
decoding the attempt of movements of the paretic arm,
although it does not affect the decoding of movements of
the healthy arm. This has two major practical implications
for the development and improvement of clinical BMIs.
Firstly, the fact that the results for the healthy and paretic
arm are different implies that some conclusions extracted
from preliminary studies with healthy subjects might not be
directly applicable to clinical populations. This underlines
the need of investigating how to optimize BMI systems
with the potential end-users of the technology, and not only
with healthy participants [24]. Secondly, even though training
with cleaner EEG signals provided lower accuracy values for
the decoding of motion intentions, this does not necessarily
mean that the efficacy of the BMI is lower. Indeed, the
higher performances achieved when having contaminated
signals in the training dataset might not reflect the ability
of the system to decode cortical activation, but the artifacts
present in the test data. This would cause that the BMI
reinforces abnormal patterns of activity, potentially inducing
maladaptive plasticity [25].

In this line, we studied the test datasets, separating them
between clean and contaminated trials. The relevant result
here was again a difference between the healthy and paretic
hands. For the healthy hand, the clean trials were always

classified better than the contaminated ones (regardless of
having or not artifacts within the training data). This might
reflect that the artifacts occurring during a healthy movement
are not so frequent, and more importantly, they are of smaller
magnitude and do not influence much how the classifier
models the rest and movement classes. Conversely, for the
paretic arm, only having a clean training dataset led to
significantly better accuracies for the clean than for the
contaminated trials (which are more likely to represent non-
cortical activity). A possible explanation for this could be
the extra effort required to try to elicit paretic movements,
which generates more and bigger artifacts (head and eye
movements, or neck and cranial muscle contractions). The
main consequence of this is that if we train the BMI decoder
using signals that include artifacts, we will have a biased
increase in performance that does not reflect the accuracy of
the system to decode correct cortical activation.

Despite the promising results shown so far to induce
functional recovery with BMI [6], there is still a great margin
of improvement for this technology before it can be included
in the portfolio of standard treatments that therapists can use
for motor rehabilitation [26]. The results presented in this
work provide relevant insights for the development of clinical
BMIs for stroke patients. Currently, there is a general trend in
the community aiming at the enhancement of performance
of movement intention decoders, using advanced machine
learning and signal processing strategies. However, BMI-
triggered rehabilitation therapies rely on Hebbian learning,
assuming that the association between the brain activation
and the feedback will promote neuroplasticity. Therefore, it
is reasonable to think that not only it is important to achieve



TABLE I
ACCURACIES FOR ALL THE COMBINATIONS OF TRAINING AND TEST DATASETS.

Healthy arm Paretic arm
Training dataset

without artif. removal
Training dataset

with artif. removal
Training dataset

without artif. removal
Training dataset

with artif. removal
Clean trials 71.76±11.74 71.90±11.57 64.59±10.62 63.92±11.88

Contaminated trials 67.37±10.56 66.50±10.57 64.90±11.83 61.03±10.59

high performances, but to have precise and accurate decoding
of the relevant cortical activation, which would improve the
quality (more than the quantity) of the feedback. As shown
in this paper, the use of artifact-free data to train the BMI
decoders can be very relevant to improve the contingent link
between brain and muscles, and to intensify the long term
rehabilitative effects of this technology.
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