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Abstract—Brain-machine interfaces (BMI) allow to decode
motor commands from paralyzed patients’ brains and use
those commands with a rehabilitative or assistive purpose.
However, brain non-stationarities can affect BMI performance
over time in multi-session interventions. The amount and type
of data used for calibration may play an important role on
the posterior decoding performance. This paper studies six
different schemes for BMI calibration, considering subject-
specific and subject-transfer scenarios. Data from a five-session
rehabilitation intervention with four spinal cord injury patients
is used to evaluate the decoding performance of the six
proposed schemes. Our results show that recording some data
at the beginning of each new session to recalibrate the BMI
has a positive effect, although this effect is not achieved if
we do not record enough number of trials. In addition, for
subject-transfer approaches it is possible to achieve similar
performances to those of subject-specific approaches for some
subjects, but for others, generalization is not possible. These
findings constitute a step forward towards the implantation of
BMI for multiple-session rehabilitation therapies.

I. INTRODUCTION

Rehabilitation of neuro-motor disabilities is, in the recent
years, taking advantage of robotic and orthotic devices to
improve the therapeutic outcomes. Different studies have
successfully applied such devices for rehabilitation of para-
lyzed patients with spinal cord injury (SCI) or stroke [1], [2],
[3]. More specifically, rehabilitation systems triggered by
neural commands are interesting as they have the potential to
induce neural plasticity [4]. Brain-machine interfaces (BMI)
allow the real-time decoding of electroencephalographic
(EEG) signals, permitting an additional channel of interac-
tion for paralyzed patients [5], [6], [7]. Indeed, recent studies
have shown the feasibility of BMI to trigger rehabilitative
devices, achieving very promising results [8], [9], [10].

One of the challenges for the outright implantation of
BMI technology in rehabilitation is the optimization of
the decoders that translate human thoughts into computer
commands. Indeed, calibration is one of the most important
factors for the applicability of BMI in daily rehabilitation
practice [11]. Pilot BMI studies are generally performed
with healthy subjects on lab environments, and lots of data
are recorded to evaluate decoding performances. However,
when involving highly dependent patients it is not conve-
nient to execute long experimentation sessions. Moreover,
most of the session time should be used for rehabilitative
purpose, and not for equipment donning or system calibra-
tion. Although several studies have conducted multi-session

BMI interventions for motor rehabilitation, there is still no
consensus about how to calibrate the BMI to improve the
decoding performance. Some different approaches used are:
an initial calibration for all the therapy [12]; calibrations at
the beginning of each session [10], [13]; and recalibrations
combining data from previous sessions [8], [14].

In this line, effort is being conducted towards the de-
sign of systems that require a small calibration time and
work with high performance, providing also stability in
multi-session studies. The evaluation of BMI generalization
across sessions has been studied for classification of event
related potentials [15], [16], [17]. For BMI paradigms to
decode motor commands, several works have studied the
reduction of calibration time in new sessions by considering
information from other subjects [18] or from past sessions
[14], [19]. However, these two generalization approaches
(across sessions or subjects) present additional difficulties for
patients suffering from neurological injuries such as stroke
or SCI. These patients show high variabilities in motor brain
activations, even for those with similar lesions; additionally,
they suffer from a temporal evolution of brain activations due
to the neuroplastic changes following their lesions [20], [21].
Hence, we hypothesize that generalization across sessions
might be more effective than across subjects for multi-
session BMI interventions in this population.

This paper evaluates the influence of the data used to
train a BMI decoder on its decoding accuracy, in a multi-
session rehabilitation intervention. For this analysis, we used
data from a pilot study of BMI-based hand rehabilitation
with SCI patients. The protocol consisted of five sessions,
in which the patients were asked to attempt to move their
paralyzed hand, and were stimulated when the BMI de-
coded the intention of motion. On the first session, a long
screening was performed to calibrate the BMI, while on the
remaining ones, short screenings were conducted for BMI
recalibration. On each session, after collecting the training
data, the patients performed some test blocks. In order to
evaluate the influence that the training dataset has on the
decoding performance, this paper compares four decoding
schemes relying on subject-specific data, and two schemes
that combine data from other subjects. For each scheme,
we evaluated, in a pseudo-online manner, how the BMI
performance would have been on the test blocks.
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Fig. 1. Decoding schemes proposed. On each panel (A-F), the datasets used for training and test on each session are specified. Panels A-D correspond
to subject-specific schemes, and panels E-F to subject transfer schemes. The left part of each panel indicates the blocks of screenings used for training.
The right part of the panels indicates the test sets of each session (i.e., the test blocks of the corresponding session). A: Initial session calibration. B:
Current session short-calibration. C: Short recalibration. D: Complete initial plus short-recalibration. E: Fixed pool of subjects. F: Initial pool plus short
recalibration.

II. METHODS

The data analyzed on this work was acquired during
a pilot study for hand rehabilitation of spinal cord injury
patients. The patients performed an intervention that used a
BMI to trigger a combined feedback, based on functional
electrical stimulation (FES) of the hand, and virtual reality
showing a hand closing on a screen.

A. Patients

Four patients with incomplete tetraplegia participated in
the study. All of them were in a subacute state, and were
hospitalized at the Hospital Nacional de Parapléjicos, in
Toledo (Spain), where the experimental sessions took place.
Clinical details of each patient can be seen on Table I. A
clinician evaluated the patients’ condition before the study in
order to select the most appropriate hand for the intervention.

TABLE I. DETAILS OF PATIENTS

Age Time since Type of Dominant Stimulated
ID (years) lesion (months) lesion Gender hand hand

P1 71 4 C5, ASIA C Male Right Left
P2 38 10 C5, ASIA C Male Right Left
P3 36 7 C5, ASIA B Male Right Right
P4 55 4 C4, ASIA C Male Right Right

B. Data acquisition

EEG was recorded from 32 electrodes placed at AFz,
FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1,
CPz, CP2, CP4, FP1, FP2, F7, F3, Fz, F4, F8, T7, T8, P7,
P3, Pz, P4, P8, O1 and O2 (according to the international
10/10 system). The ground and reference electrodes were
placed on FPz and on the left earlobe, respectively. EEG
was amplified and digitized using a g.Tec amplifier (Guger
Technologies, Graz, Austria) at a sampling rate of 256 Hz,
and power-line notch-filtered at 50 Hz.

C. Experimental design

The experimental protocol consisted of five sessions,
performed within a maximum time of 10 days. During the
sessions, the patients were seated on their wheelchair, facing
a computer screen, and with the FES electrodes attached on
one of their arms. The sessions consisted of screening blocks

and closed-loop test blocks. On the first session, the patients
were asked to perform 4 screening and 2 test blocks, while
on the remaining four sessions, they were asked to perform
2 screening and 4 test blocks. The patients were informed
about the type of block before its start.

Each screening block was composed of 20 trials, which
included a rest interval (with random duration between 4
and 7 seconds), and a movement attempt (MA) interval (3
seconds). The test blocks also consisted of 20 trials, with a
rest interval (10 seconds), and a MA interval (3 seconds).
Visual cues were used to denote each interval. For both types
of blocks, the patients were instructed to stay relaxed during
the rest interval, and to attempt to grasp one of their hands
(see Table I) during the MA interval. During the screening
blocks, the patients did not receive any kind of feedback;
during the test blocks, if one trial was correctly decoded
by the BMI, the patient was stimulated by means of a FES
activation and virtual reality. On each intervention session,
the BMI decoder was calibrated after recording the screening
blocks, using the trials of all the screening blocks of that
subject recorded to that moment.

D. Feature extraction

The BMI decoder used different configurations of train-
ing datasets to distinguish between the rest and movement at-
tempt brain states. One-second time windows were extracted
from the training trials in the interval [-4, -1] s to model the
rest class, and from the interval [0, 3] s for the movement
attempt class1. The windows were slided with an overlap of
0.75 s.

Two types of features were extracted: frequency, for the
event related desynchronization (ERD) [22]; and temporal,
for the motor related cortical potentials (MRCP) [23]. The
ERD features were extracted from 15 channels, includ-
ing fronto-central (FCx), central (Cx), and centro-parietal
(CPx) locations. A Laplacian filter was applied, and an
autoregressive model was used to obtain the power values
in the frequency range [7-30] Hz. The MRCP features
were extracted from 13 channels, (i.e., the same channel
set as for ERD, but removing C5 and C6 locations). A

1Notice that t = 0 corresponds to the time instant where the patients
were indicated to start the movement attempt.
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common average reference was applied, and the signals were
downsampled to 64 Hz and filtered in the range [0.1-1] Hz.
In total, 1192 features were extracted for each one-second
window.

Sparse discriminant analysis [24] was used to select the
most discriminative features, and as online classifier. This
technique, which is a modified version of linear discriminant
analysis (LDA) with a sparseness criterion, has successfully
been used to decode motor brain commands both in healthy
subjects and in SCI patients [7].

E. Calibration schemes

We evaluated subject-specific decoding with four dif-
ferent calibration schemes, and subject-transfer with two
additional schemes.

1) Subject-specific decoding: Four subject-specific deco-
ding schemes were proposed. All of them were tested for
each subject separately. For each scheme, the BMI decoder
was calibrated using different configurations of datasets, and
tested on the test blocks of each session (Figure 1):

A) Initial session calibration (Fig 1A): Initial long
calibration that is used for all the sessions. The
training dataset consists of the four screening blocks
of the first session, and it is used to classify the five
sessions.

B) Current session short-calibration (Fig 1B): Short
calibrations with data recorded every session. On
each session, the training dataset consists of the two
screening blocks recorded on that session (as the
first session included four blocks, the two first ones
are selected).

C) Short recalibration (Fig 1C): Incremental strategy
that combines short recalibrations on each session.
On the first session, the training dataset is initialized
as the two first screening blocks; on the subsequent
sessions, their two screening blocks are added to the
training dataset of the previous session.

D) Complete initial plus short-recalibration (Fig
1D): Incremental strategy that combines an initial
long calibration and short recalibrations on the re-
maining sessions. On the first session, the training
dataset is initialized with the four screening blocks;
on the subsequent sessions, their two screening
blocks are added to the training dataset of the
previous session. Notice that this was the scheme
used during the intervention.

In addition, for the schemes that included short cali-
brations/recalibrations (i.e., B, C, and D), we tested their
performance when considering the two screening blocks of
each session or just one of them (the one recorded first,
in each case). This allowed to compare the differences in
these schemes when using 20 or 40 trials from each session.
Hence, they will be referred to as B1, B2, C1, C2, D1, and
D2, according to the number of screening blocks from each
session considered for their calibration.
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Fig. 2. Examples of correct and incorrect trials. The x-axes represent
the time in seconds, while the y-axes represent the decoder probability.
The horizontal, dashed, black line corresponds to the classifier threshold,
and the vertical, solid, black line denotes the time of presentation of
the MA cue. The time instants where the classifier changes from rest
to movement attempt class are represented with the red vertical lines. If
the classifier continues in movement attempt class during five consecutive
sliding windows, a trigger is generated. This trigger is considered as valid if
it is within MA interval (green solid lines, trials A-B), and not considered if
it is in rest interval (green dashed lines, trials B-C). If the classifier changes
from movement attempt to rest class before the fifth window, the trigger is
not generated (dotted green lines, trial D).

2) Subject-transfer decoding: Two subject-transfer deco-
ding schemes were proposed. The schemes were tested on
each of the four subjects separately, by combining the data
from the remaining three subjects to train the decoder.

E) Fixed pool of subjects: Simulation of a database
of patients that is used for all the sessions. The
training dataset consists of all the screening blocks
from three subjects, and it is used to classify the
five sessions of the remaining subject.

F) Initial pool plus short-recalibration: Initial
database of patients that is updated every session
with data of the studied patient. On the first session,
the training dataset is initialized with the pool of
subjects and the two first screening blocks of the
studied patient; on the subsequent sessions, their two
screening blocks are added to the training dataset of
the previous session.

F. Decoding evaluation

All the schemes were tested simulating the online op-
eration of the system. On each case, the BMI decoder
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TABLE II. PERFORMANCES OF SUBJECT-SPECIFIC DECODING SCHEMES

Decoding Scheme S1 S2 S3 S4 S5 Avg

Initial session calibration (A) 76.9 ± 17.7% 63.8 ± 35.4% 52.6 ± 40.0% 42.8 ± 40.5% 56.6 ± 31.8% 58.5 ± 12.7%

Current session short-calibr. (B1) 56.3 ± 22.4% 66.3 ± 22.4% 76.3 ± 14.4% 67.0 ± 7.4% 67.7 ± 25.6% 66.7 ± 7.1%
Current session short-calibr. (B2) 75.6 ± 9.7% 72.5 ± 23.2% 70.7 ± 14.2% 88.1 ± 12.1% 67.2 ± 19.9% 74.8 ± 8.0%

Short recalibration (C1) 56.3 ± 22.4% 59.1 ± 22.1% 63.6 ± 16.3% 58.3 ± 33.5% 50.7 ± 29.6% 57.6 ± 4.7%
Short recalibration (C2) 75.6 ± 9.7% 78.5 ± 19.3% 77.7 ± 8.1% 75.9 ± 20.0% 57.2 ± 29.8% 73.0 ± 8.9%

Complete init. + short-recalibr. (D1) 76.9 ± 17.7% 64.4 ± 19.4% 71.5 ± 14.6% 56.9 ± 32.0% 50.4 ± 30.5% 64.0 ± 10.7%
Complete init. + short-recalibr. (D2) 76.9 ± 17.7% 88.2 ± 8.0% 82.9 ± 13.2% 77.3 ± 17.9% 62.9 ± 36.5% 77.6 ± 9.4%

was trained with the corresponding datasets, and the test
blocks were evaluated with a one-second sliding window.
The decoding performance of each scheme was evaluated by
computing the percentage of test trials that were correctly
decoded. As we used a cue-based protocol to indicate the
patients when starting the attempt of movement, we defined
the correct detections as the BMI triggers generated after
the presentation of the cue (t = 0). Figure 2 shows four
examples of correct and incorrect trials. To produce a correct
trigger, the BMI had to classify five consecutive windows as
movement attempt class, after being in rest class (Fig. 2A-
B). This was to ensure that the triggers were generated by
consistent brain activations and not by spurious detections,
as in [9]. If one trigger was generated before the cue, it was
considered as invalid (Fig. 2B-C). If the BMI output was not
maintained in movement attempt class during five windows,
the trigger was not generated (Fig. 2D).

III. RESULTS

A. Subject-specific decoding

Table II shows the decoding performances (mean±std) of
each scheme on each session, averaged for the four subjects.
Notice that schemes A, D1, and D2; schemes B1 and C1; and
schemes B2 and C2 present the same accuracies for the first
session as, for that session, they were trained with the same
dataset (cf. Figure 1). Scheme A (first session calibration)
achieved high performance only for the first session (76.9%),
but suffered from a high drop on the subsequent sessions
(53.95% for the average of sessions 2 to 5). This explains
the higher standard deviation of scheme A (12.7) compared
with the other schemes. On the other hand, all the remaining
schemes included some training data from the classified
session to calibrate the decoder, which resulted in lower
standard deviations, but not always in higher accuracies.
Scheme C1 (short recalibration with 1 screening block) pre-
sented the lowest decoding accuracy (57.6%), while scheme
D2 (complete init. plus short recalibration with 2 screening
blocks) presented the highest (77.6%).

Figure 3 displays the boxplots of the decoding accuracies
of each scheme, including all the subjects and sessions. We
compared the data distributions of the schemes that included
one and two screening blocks to measure the influence of
adding to the training dataset more trials recorded on the
current session. We found that the three schemes provided
significantly higher decoding accuracies when were trained
with two screenings instead of with one (3 Wilcoxon paired
tests, comparing B2 vs B1; C2 vs C1; D2 vs D1; p < 0.05,
FDR corrected for multiple comparisons). In addition, we

evaluated the influence of the scheme used for training by
pairwise comparisons between the accuracy distributions of
A, B2, C2, and D2 schemes (6 Wilcoxon paired tests, p <
0.05, FDR corrected for multiple comparisons). The scheme
D2 provided significantly higher accuracies than scheme A,
although no other comparison provided significant results.

B. Subject-transfer decoding

Table III shows the decoding performances (mean±std)
of the four subject-specific (i.e., A, B2, C2, D2 schemes) and
the two subject-transfer schemes on each patient, averaged
for the five sessions. Note that, in this case, we averaged all
the sessions of each patient to evaluate how each scheme
worked for each of the participants. Hence, standard devia-
tions of ”Avg” row correspond to the four patients, unlike
in Table II, where standard deviations of column ”Avg”
corresponded to the five sessions. While scheme A had
a high variability between patients (std of 24.3), schemes
B2, C2, and D2 were considerably more stable (std of 5.2,
9.6, and 15.4, respectively). The subject-transfer schemes
provided, on average, worse decoding performances than
subject-specific ones (53.8% and 53.0% for schemes E and
F, respectively). However, this is due to the fact that these
schemes did not decode the attempts of movement from
patient P4 (0% of decoded trials for scheme E, and 3.4% for
scheme F). The average decoding accuracy for the remaining
three patients (i.e., P1, P2, and P3) was 71.7 ± 7.3% and
69.5±3.3% for schemes E and F, respectively. Furthermore,
the performances of these schemes were rather stables across
sessions for the three patients, and indeed, the addition of
data from previous days in scheme F did not have a positive
effect over sessions.

IV. DISCUSSION AND CONCLUSIONS

In this paper we studied the impact of different calibra-
tion strategies on the performance of a BMI decoder for
motion intention in a rehabilitation context. We compared
four subject-specific and two subject-transfer calibration
schemes, and evaluated their performances using the data
recorded during a five-session intervention for hand reha-
bilitation with four spinal cord injury patients. Our results
revealed that the training dataset used to calibrate the BMI
has a big impact on the decoding accuracy. Indeed, we
observed that recording some data at the beginning of each
session to recalibrate the BMI has a positive effect, although
this effect is not achieved if we do not record enough number
of trials. Furthermore, our results suggest that when using
subject-transfer approaches it might be possible to achieve
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TABLE III. COMPARISON BETWEEN SUBJECT-SPECIFIC AND SUBJECT-TRANSFER DECODING SCHEMES

First Ses. Curr. Ses. Short- Complete Scr. Plus Fixed Pool Init. Pool Plus

Patient ID Calibr. Short-Calibr. Recalibr. Short-Recalibr. of Subs. Short-Recalibr.

(A) (B2) (C2) (D2) (E) (F)

P1 27.5 ± 20.1% 75.5 ± 19.2% 62.0 ± 27.2% 54.5 ± 28.2% 80.0 ± 11.0% 72.5 ± 16.6%
P2 71.4 ± 30.5% 80.1 ± 15.0% 85.5 ± 11.1% 86.5 ± 10.8% 66.3 ± 19.7% 70.0 ± 19.2%
P3 52.3 ± 35.3% 76.0 ± 15.2% 71.3 ± 12.4% 85.5 ± 4.9% 68.8 ± 27.5% 66.0 ± 23.0%
P4 82.9 ± 15.1% 67.7 ± 19.7% 73.2 ± 17.7% 83.9 ± 13.3% 0.0 ± 0.0% 3.5 ± 4.1%

Avg 58.5 ± 24.3% 74.8 ± 5.2% 73.0 ± 9.6% 77.6 ± 15.4% 53.8 ± 36.3% 53.0 ± 33.1%

similar performances to those of subject-specific approaches
for certain subjects, although not for all of them.

The number of training trials recorded on the session
to be tested has a significant impact on the accuracy.
For the three schemes in which we compared the calibra-
tion/recalibration using one or two screening blocks (i.e.,
schemes B, C, and D), we observed significantly higher
accuracies when using two blocks. Based on this analysis,
we can conclude that spending more time at the beginning of
each session to calibrate the BMI has a positive effect on the
BMI accuracy. However, it is important to find a trade-off
between the time spent for calibration and the desired BMI
performance. Taking into account the results we obtained in
these analyses, we consider that recording about 40 trials on
each session (around 6 minutes of recording) can be suffi-
cient. Indeed, the results obtained for scheme B2 (calibration
with 40 trials recorded on the tested session) provided very
similar accuracy (74.8%) to scheme A (calibration with 80
trials recorded on the first session) evaluated on the test
blocks of the first session (76.9%). Hence, in the authors’
opinion, scheme B2 could be the most suitable for future
interventions, as it provided a good balance between time
and accuracy.

As we hypothesized, generalization across sessions pro-

vided better results than across different subjects. For three
of the patients, we achieved around 70% of correct trials
with subject-transfer schemes, even when not considering for
calibration any information of the studied patient (scheme
E). However, for patient P4 we were not able to decode his
motor intention, either when considering just data from the
other patients or when recalibrating the pool of subjects with
P4’s data. This phenomenon is very likely due to differences
in the brain activations of the patients, which is normal in
pathologies such as SCI [20]. Although this may be solved
by building a pool of subjects with a larger number of
patients, further research is needed to verify this hypothesis.

It is important to note that the results presented in this
work correspond to a preliminary study, with four patients
and five sessions. Thus, we cannot predict the asymptotic
performance of our schemes when working with many
subjects and sessions. Some works applying a multi-session
BMI intervention showed that after a certain number of
sessions, recalibration of the decoder did not improve the
decoding performance [8], [14]. Regarding the applicability
of our results to different typologies of patients, we con-
sider that our findings may also apply for stroke or other
neurological injuries. However, further research has to be
conducted to validate if the generalization across sessions
or subjects is affected differently for other neurological
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populations. In addition, factors such as the classification
algorithm chosen and the feature extraction process may
play a role in the session-to-session functioning of the BMI
systems, and hence, the study of their impact can be an
interesting pursuit for future research.

The results presented in this paper are relevant as there
is an increasing interest to include novel technologies in
neurorehabilitation. The importance of recalibration for re-
habilitative systems has also been evaluated for other physio-
logical signals, such as the electromyography [25]. Although
there is still no evidence demonstrating that higher BMI
accuracy provides better rehabilitative outcomes in BMI-
triggered therapies, it is reasonable to think that increasing
the amount of times that the patient is positively rewarded
may increase or accelerate the therapeutic effects. However,
it is important to note that BMI accuracy is not the only
factor affecting this rehabilitative process, as it has been
demonstrated that the temporal precision is also of great
importance in this respect [26].
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[15] E. López-Larraz, I. Iturrate, L. Montesano, and J. Minguez, “Real-
time recognition of feedback error-related potentials during a time-
estimation task,” in 32nd Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, 2010.
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