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Abstract— Spinal cord injury (SCI) associates brain reor-
ganization with a loss of cortical representation of paralyzed
limbs. This effect is more pronounced in the chronic state,
which can be reached approximately 6 months after the lesion.
As many of the brain-computer interfaces (BCI) developed to
date rely on the user motor activity, loss of this activity hinders
the application of BCI technology for rehabilitation or motor
compensation in these patients. This work is a preliminary
study with three quadriplegic patients close to reaching the
chronic state, addressing two questions: (i) whether it is still
possible to use BCI technology to detect motor intention of the
paralyzed hand at this state of chronicity; and (ii) whether it
is better for the BCI decoding to rely on the motor attempt
or the motor imagery of the hand as mental paradigm. The
results show that one of the three patients had already lost the
motor programs related to the hand, so it was not possible to
build a motor-related BCI for him. For the other patients it
was suitable to design a BCI based on both paradigms, but
the results were better using motor attempt as it has broader
activation associated patterns that are easier to recognize.

I. INTRODUCTION

Spinal cord injury (SCI) is a devastating disease that leads

to loss of motor and sensory functions. The vertebrae damage

results in an interruption of some of the pathways that con-

nect the brain to the limbs and as a consequence, the brain ar-

eas responsible for the control of those limbs become unused.

Several research studies have explored the changes produced

in the brain of SCI patients after years of chronic injury.

Some studies have shown that brain plasticity produces a

long-term brain reorganization: the cortical representations

of intact body areas expand to the representations of body

areas affected by such deafferentiation. However, conflicting

results have been obtained and therefore, there is no accepted

theory comprising all obtained results. On one hand, it has

been indicated that SCI patients presented weak (or none)

brain activity on the motor cortex during attempts of moving

paralyzed limbs (Müller-Putz with electroencephalography

–EEG– [1], and Turner with functional magnetic resonance

imaging –fMRI– [2]). These results could be explained by

a significant reduction in gray matter in the motor cortex

of chronic SCI patients [3]. On the other hand, studies [4]

(EEG), and [5] (fMRI), suggest that motor brain activity on

SCI patients was altered, but there were still recognizable

patterns present in motor tasks.
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Brain-computer interface (BCI) is a technology that has

recently emerged to translate user intentions into commands

with applications in many fields, such as in neuro-robotic

or neuro-prosthetic device control [6], [7], [8]. Many of

the BCIs developed to date are based on the decoding of

motor intentions using the activity of the motor cortex.

Thus, for the application of this technology to SCI patients,

it is necessary that these patients could produce certain

recognizable motor brain patterns. As SCI patients present

an association of brain reorganization together with a loss of

motor representation of paralyzed limbs, there are questions

that need to be addressed: (i) is there a time limit from which

this technology cannot be used? ; and (ii) which is the most

suitable motor paradigm that encodes motor intention?

This paper addresses both questions in a preliminary study

with three patients close to the chronic state (4.5 and 5

months after the lesion). Addressing the first issue, patients

were selected before the chronic state (clinical evidence

indicates that SCI patients reach the chronic state between six

months and one year after the damage). For the second issue,

motor brain activity can be elicited either by motor attempt

(MA) of a paralyzed limb or by motor imagery (MI) [5] (both

with different neural circuits and partially different activity).

Both paradigms have been used in the design of BCIs and in

their application to SCI patients [1], [9]. However, there is no

clear evidence of which is more suitable for an online BCI.

In the experimental paradigm, the patients performed MA

and MI grasping tasks with the right hand while EEG was

recorded. Time-frequency analyses were carried out on the

EEG to explore the activation patterns over the motor cortex.

Additionally, a BCI was built for both motor paradigms and

performance was compared for different patients.

II. METHODS

A. Participants and Signal Recording

Three male quadriplegic patients (age range 33± 1 years)

participated in this study. A summary of their type of lesion

and time elapsed since injury is included in Table I.

Patients were selected as a homogeneous group according

to age, time elapsed since injury, and type of lesion criteria.

All patients were unable to perform grasping movements, al-

though some mobility in elbows and shoulders was retained.

All patients were hospitalized at the Hospital Nacional de

Parapléjicos de Toledo, where the experimentation sessions

took place. Patients were duly informed before the experi-

mentation session, and all gave informed consent.

EEG was recorded using a commercial gTec system,

consisting of 16 active EEG electrodes. The electrodes were

placed at AFz, FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6,
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CP3, CP1, CPz, CP2 and CP4 (according to the international

10/10 system). The ground and reference electrodes were

placed on FPz and on the left earlobe, respectively. The EEG

was digitized at a sampling frequency of 256Hz, and power-

line notch-filtered to remove the 50Hz line interference.

TABLE I

PATIENTS CHARACTERISTICS

Year Time since Level of ASIA
of birth lesion (days) Injury Impairment Scale

P01 1978 150 C6 B
P02 1977 156 C4/C5 A
P03 1979 136 C4/C5 A

B. Experimentation Paradigm and Protocol

During the recording sessions, the patients were seated

in a wheelchair, facing a computer screen. The experiment

consisted of two different tasks: (i) motor attempt (MA) of

grasping with the right hand, and (ii) motor imagery (MI) of

grasping with the right hand. For MI, patients were instructed

to perform a kinesthetic imagery of the movement to involve

the motor cortex [10].

Visual cues were present on the screen as guidance during

the different stages of the experiment. The first cue instructed

patients to relax the body and to be prepared for the next

cue (three seconds). The second cue indicated the start of

the attempt or the imagination of movement (lasting three

seconds). The third cue indicated the trial end (lasting three

seconds). During the first and second cues, the patients were

asked to avoid blinking or compensating movement with

the rest of the arm, while during the third cue they where

allowed to relax and blink. The experiment was executed

in six blocks of 4.5 minutes each, divided into three blocks

of MA trials, and three blocks of MI trials. Blocks of MA

and MI were alternated. Thirty trials were recorded for each

block, resulting in a total of 180 trials (90 for each condition).

After each block patients could rest as long as necessary to

avoid fatigue.

Note that in both MA and MI cases, there is an intrinsic

delay between the time instant when the patient was cued

and the time in which he actually started the action. However,

since there is no motor output or any measurement indicating

the actual starting time with certainty, the delay can not be

reliably measured. This issue will be taken into account in

the subsequent analyses.

C. EEG Data Preprocessing and ERD/ERS Analysis

EEG trials lasted nine seconds, with the time reference

set from -3 to 6 seconds with respect to the presentation of

the second cue (initiation of MA/MI). All EEG trials were

trimmed to the [-3,3] window and bandpass-filtered from 0.5

to 50Hz using a zero-phase shift filter. Two different spatial

filters, a Laplacian and a common average reference (CAR),

were applied independently to the EEG of each patient

to obtain reference-free trials with better discriminability

between rest and MA/MI classes.

Fig. 1. Snapshot of the experimental setup showing a participant with the
EEG system and temporal sequence of one trial during the execution of the
experiment.

The temporal evolution of the power spectra of the artifact-

free EEG activity was computed for all trials with a time-

frequency analysis, using the complex Morlet’s wavelet [11].

ERD/ERS maps were computed taking as baseline interval

the time window [−2, 0]s. The statistical significance of the

ERD/ERS values was verified by applying a t−percentile

bootstrap statistic to calculate confidence intervals with α =
0.05 [12]. This type of analysis has been reported as a good

descriptor of brain activity related to motor tasks [13].

D. BCI for MA/MI detection

The feature selection process was based on the previous

ERD/ERS analysis. Channels close to the motor cortex and

frequency bins in the motor-related bands (α and β) were

individually identified by visual inspection for each patient.

The spectral power at those frequency-channel pairs was

computed using a 16th order autoregressive model [14]. The

window length (δw) used to compute the power spectra has

an impact on the quality of the features xt at time t for

MA/MI detection. Different δw (0.25, 0.5, 0.75, 1, 1.5, 2

and 2.5 s) were evaluated to assess the impact of the time

window in the classifier performance.

The features xt were used to detect the grasping MA or

MI from the EEG measurements at time t, using a Support

vector machine (SVM) with a radial basis function kernel.

This classifier has been previously used in different BCI ap-

plications [15]. The features xt extracted in the time interval

t ∈ (−3, 0] were labeled as rest, while features extracted in

t ∈ (0, 3] were marked as MA or MI. The classification

performance was evaluated by a ten-fold cross-validation

procedure, where the full set of trials was sampled without

replacement to create independent training and test sets for

each fold. Features were z-score normalized, according to the

train set on each iteration of the cross-validation procedure.

The training of the classifier used only non-overlapping

features of the training trials, i.e., xt was sampled according

to δw (t ∈ {−3 + δw, ..., 3}). As there might exist a delay

between cue presentation (t = 0) and MA/MI beginning

(Sec. II-B), features with t ∈ [0, 0.5] were excluded from the
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training set, since they were labeled as MA/MI but could con-

tain rest activity. Subsequently, that interval could probably

be misclassified during online operation. The performance

of the classifier was obtained as the percentage of correctly

predicted labels. Labels were predicted every 50ms in each

test trial. Note that at time t, the features are computed using

exclusively the EEG activity from [t− δw, t).

III. RESULTS

A. ERD/ERS Analysis

For each patient, Figure 2 displays the ERD/ERS maps

in the frequency range [0, 50]Hz for both MA (left column)

and MI (right column). In patients P01 and P02, significant

desynchronization patterns occurred in α and β frequency

bands over the left motor cortex (contralateral area to the

grasping hand) for both tasks. The highest ERD patterns

for P01 were in channel CP1 with a CAR filter, while for

P02 these were obtained in channel C1 with a Laplacian

filter. For both patients, the ERD patterns produced in MA

were more significant and with a larger portion of the time-

frequency map than in MI. However, for patient P03 (patient

with most recent injury) there was no significant ERD/ERS

in any of the tasks (since there was no significant activity for

all combinations of filters and channels close to the motor

cortex, channel C3 with a Laplacian filter is displayed in his

corresponding figures). Thus, P01 and P02 are still able to

produce significant brain activity during both motor tasks,

while P03 did not produce any recognizable brain pattern

over the motor cortex by means of MA or MI.

This result indicates that there might be other factors

apart from the time of lesion that affect the loss of cortical

representation in the motor cortex of paralyzed limbs. In

addition, P01 and P02 could be potential users of a BCI

based on the ERD/ERS, while for P03 it would be very

difficult to build a decoder as there are no differentiable

features of the motor intention. P03 would need a different

mental paradigm behind the BCI, not dependent of motor

rhythms, or would have to undergo training intervention to

restore motor brain patterns [16] prior to BCI usage.

B. Continuous decoding

The first analysis assessed the impact of different δw in

the classifier accuracy. The results indicated that higher δw
provided higher accuracies, but entailed higher delays in the

detection of the MA/MI onset. After several tests, δw was

set to 0.75s for P01, and 0.5s for P02, as these values

represented the best trade-off between accuracy and delay.

P03 did not provide better-than-random results with any δw,

so he was excluded from the remaining decoding analysis.

The next analysis studied the classification accuracy along

time in both tasks. The classifier provided a decision value

every 50ms of the interval (−3 + δw, 3]. Figures 3a-d show

the percentage of correct classification for both conditions

of P01 and P02. Note that the first prediction time for P01
was at -2.25s, as this is the first time instant where a full

time window (0.75s) was available. For P02, in contrast, the

first value was at -2.50s, since the δw was set to 0.5s.

P01: Channel CP1, CAR filter
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P02: Channel C1, Laplacian filter
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P03: Channel C3, Laplacian filter
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Fig. 2. Significant ERD/ERS maps for all patients for motor attempt
(left), and motor imagery (right). Y-axis represents frequency (Hertzs); X-
axis indicates time (in seconds) with respect to the cue given to start MA
or MI.

Figures 3a-d show the decoded class at each point in

time for the different patients. The horizontal lines mark an

accuracy of 70%. It has been argued that this is the minimum

accuracy for a correct and reliable BCI operation [17] and,

therefore, the lines indicate whether the decoding of the task

achieved this value. Although labels change at t = 0, it is

important to recall that there is an implicit delay originated

by two different factors: (i) the latency of the brain due to the

mental processing of the stimulus and action preparation (as

mentioned in Sec. II-B), and (ii) the use of sliding windows,

which establishes the classifier decision in time instant t

based on the features from time interval [t − δw, t). Thus,

mixed labels around t = 0 are expected due to the lack of a

perfect synchronization signal across trials.

For P01, the classification accuracy of rest was slightly

under 70%, while for MA it achieved more than 80%

approximately at t = 1 and then started to degrade (Fig.

3a). Regarding MI, the accuracy was lower both in rest

and MI. Rest detection rate was always slightly under 70%
and MI was only above this threshold for a short period

of time approximately at t = 1 (Fig.3b). The decoding of

P02 achieved better results than P01. For MA, detection

rates where, on average, above 85% both for rest and MA.

Furthermore, the accuracy was more stable along time and

the change between labels was sharper around t = 0.4
(Fig. 3c). For MI, average accuracy was lower than in MA,

but still higher than the aacuracy achieved for patient P01,
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Fig. 3. Time-course of classification accuracies. Upper row presents results for P01, and lower row for P02. Left column corresponds to MA, while
right column corresponds to MI. Dark areas represent the accuracy of rest interval, while bright areas represent accuracy of MA/MI. The horizontal lines
represent an accuracy of 70%.

since accuracies were more often above the 70% threshold,

especially when detecting the MI class (Fig. 3d).

In summary, for the two patients where the power spectra

contained significant differences in terms of ERD/ERS, it

was possible to build a continuous decoder that could provide

control signals for a BCI. In addition, the usage of motor

attempt task (MA) resulted in better decoding performance

than the use of motor imagery task (MI).

IV. CONCLUSIONS AND FUTURE WORK

This paper studied the feasibility of building a motor-

related BCI for SCI patients through a preliminary study with

three quadriplegic patients close to reaching the chronic state.

The results point out that, even though the three patients

have not reached the chronic state, one of them already

did not present significant ERD/ERS neither in MA or MI

paradigms. As this patient’s lesion was the most recent, it

seems that there might be other factors apart from time af-

fecting the loss of cortical motor representation of paralyzed

limbs in SCIs. For the other two patients, significant but

different ERD patterns were found between MA and MI (in

line with [5]) indicating that both tasks were candidates for

BCI design. Subsequent analysis of the decoders for both

tasks revealed that MA led to higher accuracies, maybe due

to the fact that the significance of the ERD/ERS is higher in

this paradigm for both patients.
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