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EEG Single-Trial Classification of Visual, Auditive and Vibratory
Feedback Potentials in Brain-Computer Interfaces

Eduardo Lépez-Larraz, Marco Creatura,

Abstract— Feedback stimuli are fundamental components in
Brain-Computer Interfaces. It is known that the presentation
of feedback stimuli elicits certain brain potentials that can
be measured and classified. As stimuli can be given through
different sensory modalities, it is important to understand the
effects of different types of feedback on brain responses and
their impact on classification. This paper presents a protocol
used to obtain brain potentials elicited by visual, auditive or
vibrotactile feedback stimuli. Experiments were carried out
with five different subjects for each modality. Four different
single-trial classification strategies were compared, according
to the information used to train the classifier, achieving a
classification rate of approximately 80% for each modality.

I. INTRODUCTION

Feedback is a performance information given to a subject
as a response of a conduct or task executed. Feedback is
known to be a central aspect of learning processes, as it gives
the subject a direct association between an accomplished
behavior and its desirable or undesirable consequence [1].
Positive and negative feedbacks help to guide the acquisition
of new skills and hence are used by therapists to improve
the motivation of patients in certain rehabilitation programs
[2]. An important aspect of rehabilitation therapies is the
type of sensory modalities chosen to provide feedback to the
user, which is usually (a combination of) visual, auditive, and
tactile feedback [3].

Recently, there has been an increasing interest in the
evaluation and monitoring of the user response to feedback.
Such information can provide the therapist with indirect pa-
rameters of cognitive variables, such as attention, or variables
related to the engagement and adherence of a subject to the
therapy process [4]. In particular, it is known that feedback
stimuli elicit event-related potentials that can be measured
with an electroencephalogram (EEG). Furthermore, positive
and negative feedbacks produce different brain responses [1],
[5]. Negative feedback is related to a family of well-studied
potentials known as error potentials, whose online detection
has been incorporated in Brain-Computer Interfaces [6].
Based on these results, [7] demonstrated the online classifi-
cation of feedback potentials evoked by visual feedback.

Despite the visual system being the sensory input that
produces the best improvements in learning processes [8],
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there are many situations where other types of feedback
are required, due to the pathology itself or requirements
of the rehabilitation process. This is the reason supporting
the first attempts to analyze from a psychological point of
view different feedback modalities in complex settings, such
as driving a wheelchair [3]. This paper analyzes the event-
related potentials induced by different modalities of feedback
inputs (visual, auditive, and vibrotactile) in a context of per-
formance tasks. This paper also proposes several strategies
for single-trial classification of these potentials, with further
comparison for the different modalities.

II. METHODS
A. Experimentation Paradigm and Protocol

The experimental protocol followed in this work is based
on the proposal by Miltner in [5]. It consisted of a time-
estimation task, where a subject received positive or negative
feedback depending on his/her accuracy when trying to
delimit a time interval of one second. Each trial started with
a visual cue to indicate that the subject had to press a button
one second later. Feedback was given 0.6 seconds after the
button was pressed. It was positive if the actual elapsed time
was closer to 1 second than a threshold «, and negative
otherwise. o Represented the accuracy required (the higher
a, the lower accuracy required to receive positive feedback).

Three types of feedback modalities were integrated: visual,
auditive, and vibrotactile. Visual feedback was given as a
green tick (positive) or a red cross (negative). Auditive
feedback stimuli were given through two speakers as an
harmonious jingle (positive) or a low tone (negative). Vibro-
tactile feedback was given through five low-power vibrator
devices assembled as a customized gadget, and controlled
through an Arduino programmable board'. The gadget was
placed on the left forearm of the subjects, fastened with an
elastic band. It vibrated with a low intensity for positive
feedback (one vibrator moving at half-power), or with high
intensity for negative feedback (five vibrators moving at
the same time). Note that vibratory feedback signals were
not painful, and the intensities were clearly perceptible and
distinguishable by all subjects.

Five different subjects participated in each feedback
modality (i.e., totaling 15 subjects). The participants were
duly informed about the protocol. For each participant, the
experiment was carried out in two sessions, where each
session consisted of 30 blocks of 10 trials. The two sessions
were performed in different days. In order to balance the
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number of potentials corresponding to positive and nega-
tive responses, the threshold o was dynamically computed
every ten trials, taking into account all previous results («
decreased as the time-estimation performance of the subject
improved, and increased as the performance deteriorated).
With this strategy, approximately 150 positive and 150 neg-
ative feedback potentials were obtained for each participant
and session.

B. Instrumentation

The EEG was recorded using a commercial gTec system,
consisting of 32 active EEG electrodes. The electrodes were
placed at FP1, FP2, F7, F8, F3, F4, T7, T8, C3, C4, P7,
P8, P3, P4, O1, 02, AF3, AF4, FC5, FC6, FC1, FC2, CP5,
CP6, CP1, CP2, Fz, FCz, Cz, CPz, Pz and Oz (according to
the international 10/10 system). The ground and reference
electrodes were placed on FPz and on the left earlobe,
respectively. The EEG was digitized at a sampling frequency
of 256Hz, power-line notch-filtered to remove the 50Hz line
interference, and bandpass-filtered between 0.5 and 10Hz.
A Common Average Reference (CAR) filter was applied to
remove any background activity detected on the signal. The
signal recording and processing, the visual application, and
the synchronization between the feedback stimuli and the
EEG were developed within the BCI2000 platform [9].

III. RESULTS

This section describes a characterization of the feedback
potentials with the different modalities, and the results of the
different classification strategies.

A. Characterization of Feedback Potentials

The grand averages were computed for both types of
responses (to positive and negative feedbacks) and for all
participants, separately for each feedback modality (visual,
auditive, and vibratory). The grand averages at FCz channel
(commonly used for ERP analysis) are displayed in Figures
la-c along with the difference between negative and positive
responses (referred as difference potentials). Difference po-
tentials evoked by visual and auditive feedbacks are similar
in terms of components (the negative components in the
auditive case are more pronounced). The difference potential
of vibratory feedback shows a significantly different behav-
ior, presenting a notably lower amplitude, and a more os-
cillating morphology. A deeper analysis of vibratory-evoked
responses revealed that the grand averages of each subject
presented considerable different typologies. Hence, the total
average suffered a great reduction in amplitude. However,
the negative component at approximately 500 ms after the
stimulus remained similar to the other two modalities.

The brain areas involved in the generation of potentials
were studied using source localization (sLoreta [10]). Figures
1d-f display the results. For each feedback modality, the
Anterior Cingulate Cortex (ACC, Brodmann Areas 24, 32)
was activated at some points in time. The activation was
expected, as prior studies showed that erroneous mental
processing (measured as the differential activity between

negative and positive responses) activates the ACC brain area
[1]. In particular, visual and auditive modalities, analyzed
on its positive peak (approximately 400 ms after feedback)
showed a clear focus of activity on ACC, with best matches
being Brodmann Areas 24 and 32 (visual), and 32 and 6
(auditive).

Vibratory modality required extensive analysis. When us-
ing sLoreta with the average of all subjects, no focus of
activity was found in the areas related to error processing.
However, when exploring the individual averages of the
participants, ACC was activated for some grand average
peaks (see Fig. 1f that shows activation at a negative peak
for participant 3). A detailed inspection of the EEG mea-
surements revealed that potentials elicited by vibrotactile
feedback had great variations in time latencies, which had
an impact on the grand averages. This could be due to the
fact that this modality was not obviously associated to what
a subject understands as a erroneous/correct stimulus and to
differences in reaction time. These dependencies could have
an impact on the cognitive process involved in the potentials
and thus in the event-related response obtained in the EEG.
The users filled out a Likert scale questionnaire to further
analyze these effects. The results indicated that the visual
feedback group showed a higher satisfaction level than the
other groups, being vibrotactile feedback the worst valued.
Subjects belonging to the vibrotactile group reported that the
two vibration intensities did not evoke directly the associated
positive or negative information.

B. Feature Extraction and Classification

An 7?2 analysis was carried out to find the spatiotem-
poral areas with the most significant differences between
positive/negative conditions. Figures 1g-i display the aver-
age r? coefficients for the three feedback modalities. This
analysis indicated that the most representative information
to differentiate between the two conditions was found in the
fronto-central channels (FC1, FC2, CP1, CP2, Fz, FCz, Cz
and CPz), at time instants between 200 and 600 milliseconds
after feedback presentation. The raw signal for these channels
at the time interval selected was downsampled to 64 Hz,
and normalized to the range [0-1]. Eight feature vectors
(one per selected channel) were concatenated and the total
feature vector was composed of 208 features. Note that 2
coefficients were lower for vibrotactile feedback, suggesting
that potentials in this modality were not very discriminative.

Two types of classification results are reported. The first
type is an offline classification validated by cross-validation
to study the generalization properties. The second type is
constituted of four strategies to achieve an online classifica-
tion more adapted to the online usage of this technique in
real settings. The selected classifier was a Support Vector
Machine (SVM), as it has been used previously to detect
feedback potentials [7], [4]. The SVM was used with a
radial basis function kernel and a bandwidth dependent on
the number of features.

The offline classification performance is first discussed
as a performance benchmark between subjects and modali-
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Fig. 1. Analysis carried out for feedback potentials. Left, center and right columns correspond respectively to visual, auditive, and vibrotactile modalities.
(a-c) Grand average signals for positive, negative, and difference potentials. The X-axis indicates the time in milliseconds with respect to feedback
presentation. (d-f) Source localization main activities found for the average of the subjects in visual and auditive modalities in the main positive peak, and
for participant 3 in vibratory modality in its main positive peak. (g-i) > Coefficients averaged for all participants in each modality. Blue areas represent

high statistical difference, whereas white areas represent low or no statistical difference.

ties. Results were obtained using a 10-fold cross-validation
strategy for each subject, using the datasets from the two
sessions together. Results are presented in Table 1. The
results showed similar accuracies between modalities and
subjects. The mean performance for all types of potentials
was over 70% in all modalities, and the average accuracies
of the three modalities were higher than 75%. Also, all
participants achieved similar classification rates, suggesting
that the recognition of potentials is stable across participants.

TABLE I
CLASSIFICATION RATES
Visual Auditive Vibratory

| PosF. NegF | Avg. || PosF. NegF. | Avg. || PosF.  NegF. | Avg.

P1 72.61 79.97 76.38 89.38 90.40 89.32 70.99 61.97 66.69

P2 | 7421 78.32 76.32 76.70 68.43 73.34 78.80 68.75 73.97

P3 80.26 83.91 82.01 91.75 81.10 85.95 80.74 73.77 77.02

P4 | 87.27 76.06 81.66 88.45 87.10 87.62 86.02 79.41 82.67

P5 | 73.75 80.66 76.99 81.33 74.23 78.33 89.54 78.66 84.33
Average | 77.62 79.78 78.67 85.52 80.25 82.91 81.22 72.51 76.94

The online single-trial classification of feedback potentials
is now analyzed. Four different strategies were evaluated,
differing in the data used to train the classifier (i.e. to
calibrate the BCI system). In all strategies, the calibration
was refined incrementally by retraining the classifier after
a certain number of new examples was available. For the
results described below, recalibration analysis was done by
adding blocks of 10% of the testing dataset (30 trials for
the first strategy and 60 for the remaining), and the new
retrained classifier was used to classify the following block
of the same size.

The first strategy corresponded to a user-specific calibra-

tion session (the first experimentation session) and studied
the online classification submitted to incremental re-training
in the second session. Figure 2a represents the average
classification results obtained with this strategy for the three
different modalities individually and their average.

Second strategy used a database of participants to train
the classifier for each modality. Namely, for each subject, the
corresponding classifier was initially calibrated with the other
four participants of the same modality. Figure 2b depicts
mean classification results of this strategy when executed
singly for each modality, and the average between modalities.

The third and fourth strategies used a database of feedback
potentials from other subjects and other feedback modalities.
The third strategy used only one modality in the calibration
process (e.g., training using visual feedback potentials to
classify the vibratory potentials), whereas the fourth strategy
used two modalities (e.g., visual and auditive feedbacks to
classify vibratory). Figure 2c presents the results of training
with the five subjects of one modality, and testing with other
modality (third strategy). The results are averaged for the
five subjects tested individually in each possible combination.
Figure 2d shows the results for the three possible train-test
settings used by the fourth strategy, in which a classifier
was trained with the data of two different modalities, and
tested with the subjects of the remaining modality. As in
the previous case, the average over the five subjects of the
test modality is reported. Recall that the classifiers were
incrementally retrained with each subject’s own data.
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Fig. 2.

Results of the incremental classifiers retrained sequentially with data of the studied subject in each case. The X-axis represents the percentage of

new examples added to retrain the classifier. The Y-axis indicates the average performance for each classifier configuration. (a) Classifiers built with data
of the calibration session of each participant, retrained sequentially with data of the same participant. (b) Classifiers built with data of participants of the
same modality, retrained sequentially with data of the studied participant. (c) Classifiers built with data of participants of a different modality, retrained
sequentially with data of the studied participant. (d) Classifiers built with data of participants of two different modalities, retrained sequentially with data

of the studied participant.

The results provided interesting insights. Firstly, in all
cases the classification rate improved as more data from
the subject whose potentials were being classified became
part of the training set. Secondly, the first strategy gave the
best results, as it eventually obtained an average accuracy
of 80.22% for the three modalities. For the second strategy,
the classification rate started at approximately 70%, without
a user-specific calibration, and did not improve much by
adding new data (72%).

These two facts indicate that, even within a single modal-
ity, the variation of the responses among subjects affects
the classifier performance. Also, modalities induce variations
in the responses, with auditive feedback achieving the best
offline and online classification rates. Finally, the classifi-
cation rates for strategies that combined different modalities
were not as good as the strategies considering only examples
of the same modality. This is another clear indication that
there are important differences that hinder generalization of
classification for the potentials across modalities. However,
both classification strategies show an ascending tendency
which leaves the door open to improve these results with
larger databases, which will better represent the variations
of the potentials.

IV. CONCLUSIONS AND FUTURE WORK

This paper addressed the problem of classifying brain
potentials evoked after the presentation of feedback in dif-
ferent sensory modalities. The responses obtained using an
EEG-based BCI system were analyzed in three different
modalities (visual, auditive, and vibratory), with further com-
parison of four different strategies for online classification
of the potentials. The results showed that potentials vary
across subjects and modalities. The best classification results
were obtained through a user-specific calibration approach,
although multiple-user calibration for each modality also
provided reasonable performances. The authors are currently

investigating the use of these techniques within rehabilitation
therapies to provide a measure of the involvement of the
subjects. There are also plans of exploring more sophisticated
techniques to improve generalization across modalities.
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