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Abstract— This paper presents a silent-speech interface based
on electromyographic (EMG) signals recorded in the facial
muscles. The distinctive feature of this system is that it is
based on the recognition of syllables instead of phonemes or
words, which is a compromise between both approaches with
advantages as (a) clear delimitation and identification inside a
word, and (b) reduced set of classification groups. This system
transforms the EMG signals into robust-in-time feature vectors
and uses them to train a boosting classifier. Experimental
results demonstrated the effectiveness of our approach in three
subjects, providing a mean classification rate of almost 70%
(among 30 syllables).

I. INTRODUCTION

The most natural and powerful way of communication

for humans is the spoken language. For this reason there

has been vast research in learning the design principles of

systems able to understand human speech and expressions.

Natural language communication with machines is typically

done using automatic speech recognition (ASR) systems. The

usual setting is a user that speaks to a microphone, and then,

the ASR recognizes the speech and the integrated application

behaves according to the established dialogue.

One of the main drawbacks of traditional speech inter-

faces is their limited robustness in the presence of am-

bient noise [1], [2]. To overcome this limitation, several

electromyographic (EMG) approaches have been proposed

in which the acoustic speech recognition is substituted by

silent-speech recognition. The classification is based on the

myoelectric signals produced in the facial muscles during

speech [3], [4], [5], [6], [7], [8]. This solution overcomes

the ambient noise but also provides an alternative to human-

machine communication for people with speech disabilities

such as laryngectomy, as well as elderly or convalescent

people. In these cases there is no acoustic signal coming

from the user, or the signal is distorted or very weak.

Focusing in existing and natural EMG speech recognition

systems, there are mainly three possible approaches to the

problem. The first one is based in phoneme recognition. This

problem has about 30 classes (approximately the number

of letters in Spanish language) but the main difficulty is

to delimit where begins and finishes a phoneme inside a

word. Examples of these systems and limitations can be

seen in [4], [5], [6] (vowel recognition) and [7]. Another

possibility is to use complete words recognition [1], [2], [8],
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Fig. 1. The image shows the two steps of our EMG-based speech
recognition system: calibration (top sequence), and online operation (bottom
sequence).

[9]. Here, the difficulty emerges as the number of words to

classify increases dramatically (they cover the full language).

Thus existing systems reduce the search to a very limited

set of words. This paper proposes a halfway solution to

obtain a natural speech recognizer, which is the recognition

of the syllables (common and natural way to divide words in

Spanish language). Syllables are easier to identify inside a

word than phonemes due to the fact that they are simply

voice hits and correspond to abrupt muscle movements.

Additionally, they are several orders of magnitude smaller

in number than words (a person uses about 3000 words in

his/her day by day speech), so it provides a trade off between

the two opposite methods.

This paper presents a silent-speech interface based on

EMG signals recorded from the facial muscles. The prosthe-

sis prototype is displayed in Fig. 1 where it has a calibration

step and then an online step. The calibration step uses

EMG signals recorded during speech to train a classifier.

The second step classifies the online EMG to detect the

intended syllable of the user. As a previous step, this paper

proposes a study of applicability based on offline recognition

of a representative number of Spanish syllables and different

classification strategies.

II. METHODS

This section describes the methodology followed in the

work: the definition of the vocabulary, the anatomic location

and instrumentation issues of the EMG system, and the

feature extraction and classification.

A. Definition of the Vocabulary

The objective of the present recognition system is to rec-

ognize isolated syllables from the Spanish language, which

are usually composed by a consonant followed by a vowel.

All the syllables are divided into five groups according to the
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Fig. 2. Selected facial muscles for EMG recording: Levator labii superioris

(EMG1) , Zygomaticus major (EMG2), Risorius (EMG3), Orbicularis oris

(EMG4), Depressor anguli oris (EMG5), Depressor labii inferioris (EMG6),
Platysma (EMG7) and Anterior belly of the digastric (EMG8).

anatomical articulation origin [10]: labials, dentals, palatals,

velars, and alveolars. In order to have a representative set of

syllables for the system that cover all groups, it was selected

one representative consonant of each group combined with

the five vowels plus the vowels separately. The final set was

composed by 30 syllables, presented in Table I.

TABLE I

COMPLETE SET OF SYLLABLES

Vowels /a/ /e/ /i/ /o/ /u/

Labials /pa/ /pe/ /pi/ /po/ /pu/

Dentals /ta/ /te/ /ti/ /to/ /tu/

Palatals /ya/ /ye/ /yi/ /yo/ /yu/

Velars /ka/ /ke/ /ki/ /ko/ /ku/

Alveolars /la/ /le/ /li/ /lo/ /lu/

B. Facial Electromyography for Speech Recognition

Electromyography signals reflect the electrical activity of

the muscles during a movement. In the case of speech,

EMG signals are generated in the facial muscles responsible

for pursing the lips, lifting the corners of the mouth, or

opening the jaw. Additionally, EMG signals also appear in

the extrinsic muscles of the tongue, which are responsible for

relaxing the tongue up and forward. According to previous

anatomical studies [11], the number of muscles involved

in speech production is very high. This makes the record-

ing of all possible facial EMG-signals almost impractical.

Furthermore, there exists no standard selection of the most

appropriate muscles for EMG-based speech recognition, thus

this selection is typically done in a heuristic way.

In this work, the EMG electrodes were placed on the facial

muscles according to their distinctive movements during

the pronunciation and articulation of speech utterances in

Spanish [10]. To reduce the posterior complexity of the

system, EMG electrodes were placed on muscles only on

one side of the face, since they are symmetric. The final

muscles selection and EMG locations are shown in Fig. 2.

C. Facial EMG Recording

The preparation of the EMG electrodes followed the

guidelines proposed in [12]. Face skin areas over the site

of the facial muscles were previously cleaned with alcohol-

wetted swabs. Conductive electrode gel was added to the

electrodes to minimize the impedance at the skin-electrode

surface contact. Bipolar electrodes were placed in the same

direction of the fibers of the facial muscle and the distance

was fixed to be 1 cm. The ground electrode (GND in Fig. 2)

was placed on the forehead, and the reference electrode (REF

in Fig. 2) was placed on the left earlobe. The impedance at

each electrode was checked to be below 10 kΩ. The eight

bipolar EMG signals were acquired and digitized (using a

gUSBamp amplifier from gTec) at a sampling frequency of

2400 Hz, power-line notch-filtered to remove the 50 Hz line

interference, and band-pass filtered between 5 and 500 Hz

to remove different noise sources out of the EMG signals

frequency band. The general instrumentation was a commer-

cial gTec amplifier, and eighteen gold-made EMG surface

electrodes (diameter: 10 mm). The recording system and

software was developed under the BCI2000 platform [13].

D. Experimental Protocol and Data Collection

Three healthy male students of our university with no

known speech impediments or disorders, and whose native

language is Spanish participated in the experiments. The par-

ticipants were duly informed about the whole protocol of the

study. In the experimental recording sessions, the participants

were sitting in front of a computer screen and the EMG

sensors were placed over the skin surface according to Fig. 2.

In each experimental session, the EMG signals corresponding

to 50 examples of each of the Spanish syllables listed in

Table I were recorded, yielding a total of 1500 collected

examples per subject. One session was divided in 75 trials

(the inter-trial time was 60 seconds), where in each trial 20

syllables were randomly shown to the subject. During the

execution of a trial, a dark screen was first displayed during

10 seconds to rest the participant before the visual stimuli

presentation. Subsequently, an image with the required syl-

lable was shown and the participants articulated the syllable

without producing voice. Each image was displayed during

1 second, and followed by a grey screen of 1 second in order

to relax the facial muscles before the next syllable.

In order to test the robustness of the classifier across time,

one subject repeated a session articulating only the vowels.

Each vowel was repeated 50 times following the previous

protocol.

E. EMG Feature Extraction and Classification

The recorded EMG data was used to train a classifier

for these syllables. There are two steps in this process:

the feature extraction and the classification. On the one

hand, the signal representation is the set of features selected

to represent the raw signals (examples) and to train the

classifier. A relevant selection criterion is that they have to

be robust to time shifts. This is because the user does not

pronounce all the syllables at the same point in time. Thus,
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Fig. 3. True positive classification rates for each of the three subjects.

all the selected features were time-shift invariant to have

a classification process not sensitive to the pronunciation

time. The following features were selected according to

previous works in silent speech recognition [1], [4], [5],

[7], [8], [9]: Fast Fourier Transform (20 components), Root

Mean Square, Average amplitude of the signal, Maximum

amplitude, Kurtosis, Mel-frequency cepstral coefficients (13

values, as in [8]), Mean absolute value, Zero-crossing points,

Sum of all the signal values and Sum of all the rectified signal

values. Each raw signal of an EMG channel is transformed

into a feature vector whose 41 components are the character-

istics listed before. The final feature vector of the complete

signal (representing one syllable example) is obtained by

the concatenation of the different features vectors for each

channel. Notice that the dimension of the final feature vector

is much lower than the dimension of the original signal

(41 × 8 ≪ 2400 × 8), which is a significant reduction in

complexity of the problem without loss in the classification

results (as we will see in the experiments).

On the other hand, a classifier is trained to distinguish

the examples (represented by the previous feature vectors)

from the different syllables. The classifier selected was

the boosting algorithm AdaBoost.M1 [14], using the J4.8

decision tree [15] as the weak classifier. This tree is a

variation of the C4.5 decision tree [16] and applies a post-

pruning method to improve the classification performance of

the final model. The training and classification processes was

carried out using the software Weka [17].

III. EXPERIMENTS

This section describes the classification results of the

30 syllables using an offline 10-fold cross validation, a

validation in different sessions, and an evaluation of different

classifiers.

A. Results with the Complete Set of Syllables

The first experiment validated the recognition system

individually for each subject using 10-fold cross validation.

The true positive classification rates for the three subjects are

depicted in Fig. 3 (a true positive is a syllable that has been

correctly classified). The mean recognition rates for the three

subjects were 78.07%, 66.00% and 62.94% respectively,

and the global mean rate was 69%. Additionally, all the

classes obtained accuracies higher than 40% (notice that
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Fig. 4. Confusion matrix for the classification of the 30 syllables. Dark
values indicate a high classification rate. To increase the visibility, we used
a logarithmic scale. The classifications rates are calculated using the mean
of the classification rates for the three subjects.

a random classifier would provide a 3.33%). Furthermore,

the confusion matrix of the mean classification results for

the three subjects is shown in Fig. 4. Notice that the most

salient confusions in the classification form groups (see

Section II-A and Table I), in which the initial phoneme is

the same (e.g. a clear group of confusions appeared among

the syllables starting with /y*/), or in terminations with

the same letter (e.g. /ta/ and /ya/, /te/ and /ye/...). These

behaviors are not that bad because there are clear patterns

behind the confusions (the most frequent confusions for one

classification inside a group is restricted most of the time to

four or five possibilities). In general, these results suggest

a high performance and potential of the recognition system

given the large number of classes involved in the problem.

B. Training Data from Different Sessions

The second issue is to study the influence of the data

recorded in different days. Table II shows the performance

of the classifier using the articulated vowels of the first

session only. Then, the 50 recorded vowels of the first

session were added to the 50 vowels of a second session

to train the classifier. The performance of the new resulting

classifier is shown in Table III, where can be noticed that

the performance is highly similar. This indicates that, for
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the same user, the trained system has a certain degree

of invariance with respect to different points in time and

possible small variations in the electrodes placement.

TABLE II

CONFUSION MATRIX FOR THE CLASSIFICATION OF THE VOWELS IN THE

FIRST SESSION

/a/ /e/ /i/ /o/ /u/

/a/ 90% 10% 0% 0% 0%
/e/ 8% 60% 30% 0% 2%
/i/ 0% 22% 76% 0% 2%
/o/ 2% 0% 0% 84% 14%
/u/ 0% 0% 0% 14% 86%

TABLE III

CONFUSION MATRIX FOR THE CLASSIFICATION OF THE COMBINED

VOWELS FROM TWO DIFFERENT SESSIONS

/a/ /e/ /i/ /o/ /u/

/a/ 92% 4% 4% 0% 0%
/e/ 5% 71% 23% 1% 0%
/i/ 3% 24% 72% 0% 1%
/o/ 0% 1% 0% 85% 14%
/u/ 0% 2% 1% 19% 78%

C. Comparison of Different Learning Approaches

The last issue is to study the application of four different

strategies to create the final classifier. They are formed

by the combination of two possible representations of the

examples and two learning approaches. The signals could

be represented by the original raw sampled data or by the

computed feature vector introduced in Sect. II-E. Besides,

the classifier could be in one case the J4.8 decision tree, and

in the other a combination of Adaboost.M1 and J4.8 decision

trees (cf. Sect. II-E). The resulting performances are shown

in Table IV.

TABLE IV

CORRECTLY CLASSIFIED INSTANCES GIVEN BY TWO DIFFERENT

ALGORITHMS AND TWO DIFFERENT SIGNAL REPRESENTATIONS.

Decision Tree AdaBoost + Decision Tree

Raw sampled signal 42.2% 61.9%
Computed Features 69.5% 80.2%

According to Table IV, the use of feature vectors improves

the performance of the algorithms in approximately 20%

over the raw sampled signals. Moreover, the use of boosting

augments the classification rates in more than 10%. These

results justify the selection of feature vectors to represent

the signals, and the boosting process to improve the final

performance of the decision trees.

IV. CONCLUSIONS AND FUTURE WORKS

This paper presents a prototype of a silent-speech recog-

nition system based on electromyographic signals recorded

in facial muscles. The approach focussed on syllables of the

Spanish language. The signals from each articulated syllable

were transformed into a feature vector whose components

represented different global characteristics. A classifier based

on boosting was trained using these feature vectors as

input. Experiments carried out with three different subjects

demonstrated the effectiveness of the proposed system when

recognizing new articulated syllables.

The future work focuses on the usage of the current

syllable classifier as basis to build a recognition system of

complete Spanish words. The interest is in using techniques

to classify sequences of observations such as hidden Markov

models.
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