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Abstract— Feedback error-related potentials are a promising
brain process in the field of rehabilitation since they are related
to human learning. Due to the fact that many therapeutic
strategies rely on the presentation of feedback stimuli, potentials
generated by these stimuli could be used to ameliorate the
patient’s progress. In this paper we propose a method that
can identify, in real-time, feedback evoked potentials in a
time-estimation task. We have tested our system with five
participants in two different days with a separation of three
weeks between them, achieving a mean single-trial detection
performance of 71.62% for real-time recognition, and 78.08%
in offline classification. Additionally, an analysis of the stability
of the signal between the two days is performed, suggesting that
the feedback responses are stable enough to be used without
the needing of training again the user.

I. INTRODUCTION

Feedback is usually an event perceived by a person or an

animal as a return of an executed task, given as a result of a

conduct that was or not appropriate. Human learning mainly

depends on the ability to distinguish between positive and

negative feedbacks [1]. Furthermore, it is known that some

skills do not develop properly if feedback inputs are absent.

In the last few years, therapists have used positive/negative

feedbacks to improve their practice and the motivation of

patients whose advance is slow [2]. Recently, in the field

of Brain-Computer Interfaces (BCI), there has been an in-

creasing interest in their online detection. This is because

they carry information to measure indirect parameters of the

human learning process, that could be used to maximize the

performance of the therapeutic strategy [3].

Event-related brain potentials (ERPs) are evoked responses

to an internal or external event, in contrast with spontaneous

brain activity [3]. Several types of ERPs have been described

in the literature and one broad category are the error-related

potentials (ErrPs) [4]. Some of these potentials have been

characterized when the human realizes that an error has

been committed by himself in a choice reaction task [5],

by observation of another user committing an error [6], or

by observation of a computer [4] or a simulated robot [7]

in interaction or operation tasks. Several of these potentials

have also been successfully recognized online in the context

of BCI [4], [8].
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Another type of error-related potentials is produced when a

subject is informed that he has committed an error (feedback

ErrPs). Studies have shown that the typology of positive

and negative feedbacks is different. Namely, an error-related

negativity (ERN) occurs with higher amplitude (in absolute

value) in the second case [1], [9]. As mentioned before,

the online decoding of this feedback has a great value in

therapies that involve learning new or lost skills.

This paper describes the design of a BCI for the online

detection of these potentials, using the paradigm proposed in

[9]. This paradigm is a time-estimation task, where the user

has to estimate an interval of 1 second, receiving a positive

or a negative response depending on his accuracy. The next

section details the protocol and the analysis made to the EEG

data, section III presents the results obtained, and section IV,

draws the conclusions and future work.

II. METHODS

A. Instrumentation

The instrumentation used to record the EEG signals was a

commercial gTec system (EEG cap, 32 gold EEG electrodes,

2 clip electrodes for the ears and a gUSBAmp amplifier)

connected to a computer via USB. The electrodes were

placed following previous ERP studies [7] at FP1, FP2,

F7, F8, F3, F4, T7, T8, C3, C4, P7, P8, P3, P4, O1, O2,

AF3, AF4, FC5, FC6, FC1, FC2, CP5, CP6, CP1, CP2,

Fz, FCz, Cz, CPz, Pz and Oz (according to international

10/10 system). The ground electrode was placed on FPz

and we used a linked-ears montage for reference. The EEG

was digitized at a sampling frequency of 256Hz, power-

line notch-filtered to remove the 50Hz line interference,

and bandpass-filtered between 0.5 and 10Hz. A Common

Average Reference (CAR) filter was applied to remove

any background activity detected on the signal. The signal

recording, the processing, the visual application and the

synchronization between the feedback stimuli and the EEG

were developed under the BCI2000 platform [10].

B. Experimentation paradigm and protocol

The experimental protocol followed in this work was

proposed by Miltner [9]. The subject had to estimate a

given amount of time and received positive/negative feedback

depending on his accuracy. The setting of the experiment

was a person comfortably sat, observing a computer screen

while the EEG was recorded (Figure 1). Each trial started

with a visual cue to indicate that the subject had to press a

button a given time later (1 second) and then, depending on
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Fig. 1. Participant with the EEG system. The feedback shown on the
computer screen produces a feedback ERP.

Fig. 2. Diagram of the experimentation protocol.

the proximity to this time, a positive/negative feedback was

given 0.6 seconds later.

Five male, right-handed, 24-aged persons participated in

the experiments. The participants were duly informed about

the protocol. For each participant, the experiment was carried

out in two sessions of 30 blocks, where each block had 10

trials (Figure 2). The time between the sessions was three

weeks. To balance the number of signals corresponding to

positive and negative responses, a time window was com-

puted dynamically every 10 trials taking into account all the

previous results (the window was increased as the subject’s

time-estimation performance improved and decreased as the

performance deteriorated). With this strategy, about 150

positive and 150 negative feedback potentials were obtained

for each participant and session.

The first experimentation session was done to obtain

enough data to characterize the potentials and to have plenty

of training examples so as to be able to recognize, in the

second session, the signals online. So, the pathway of the

first experiment done by each participant was exactly as in

Fig. 2. In contrast, in the second, after each trial, a classifier

previously trained determined, in real-time and only taking

into account the EEG, if the feedback that the user had seen

was positive or negative.

C. Analysis of the EEG data

The EEG was filtered with a threshold to eliminate the eye-

blink artifacts. Then, the grand averages were computed for

both conditions and for all participants. Figure 3(a) depicts

the average potentials in the FCz electrode. Notice that the

potentials for both conditions are different, showing different

brain responses. This figure also shows the difference poten-

tial between both conditions, presenting three main peaks:

first, a negative component at about 320ms, a prominent

positive component around 430ms and another negativity at

530ms. This result is very similar to the one obtained in the

original protocol [9].

Additionally, the sLORETA source location technique [11]

was used to analyze the intracranial activity from the EEG

recorded. Studies have shown that the error processing in

the brain activates an area called Anterior Cingulate Cortex

(ACC), corresponding to Brodmann areas 24 and 32 [1],

[12], [6]. This localization was done on the second and third

peaks of the averaged difference (positive minus negative

feedback). The active Brodmann areas for the second peak

were 24 and 32 (Figure 3(b)), and for the third peak were

6 and 24. Notice that the main focus of activity is close to

the ACC, which suggests that exists an error detection and

processing. These results agree with [1] and [12] in their

studies about feedback ERPs.

III. RESULTS

The main objective of this work is to perform real-time

online classification of the feedback ERPs described above as

soon as they are recorded. The first step consists in carefully

selecting the channels and the time window that contain all

the information required for the classification task. To that

effect, we downsampled the raw signals to 64Hz and carried

out a r
2 analysis, broadly used in neurophysiology [3], [10],

in order to determine the areas with the most statistical

difference between the two classes. Figure 4 displays the

r
2 coefficient for every channel during one second after

the feedback presentation, averaged for the five participants.

High statistical significance appears in the fronto-central

channels, as expected from the analysis of the previous sec-

tion. Based on Fig. 4, the channels chosen for classification

were FC1, FC2, CP1, CP2, Fz, FCz, Cz and CPz, whereas

the time interval was [200 − 600] milliseconds after the

feedback. The resulting feature vector is the concatenation

of the samples of all the selected channels within the time

window, making a total of 208 features.

The second step is to feed the feature vectors obtained

from the EEG measurements to train a classifier. Although

the time window and channels selected were common for

all the subjects, we trained a specific classifier for each

participant with his own feature vectors. We have employed

Support Vector Machines (SVM), since they have already

been used to recognize Event-Related Potentials [13]. A

key component of this classifier is the kernel function.

In this paper, we report results for the ν-SVM [14] with

a radial basis function, since it empirically provided the
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Fig. 3. (a) Grand Average signals for the five participants corresponding to positive, negative and difference between them (positive minus negative
feedback) at FCz. Additionally, a baseline of 200ms before the feedback is displayed. (b) Source location at the positive peak (430ms). Yellow and red
zones correspond to high activity.

best classification rates over other kernels such as linear,

polynomial and sigmoid.

In the remainder of this section, we present classification

results in two different settings. First, we analyze the per-

formance of the classifier for single trial classification. Next,

we analyze offline the performance of the classifier using

cross-validation with all the EEG measurements.

Fig. 4. r
2 of the positive versus negative feedback, averaged for all

the participants. Yellow and red areas represent high statistical difference,
whereas blue areas represent low or no statistical difference.

A. Real-time classification results

In a single trial classification framework, the objective is

to classify online the EEG measurements using an already

trained classifier. There are two important aspects that we

have analyzed. First, the amount of training data required

to achieve good classification rates. This is important to

determine the duration of the training sessions, which can be

expensive and tiring for EEG. Second, the performance of the

classifier between different sessions. This helps to understand

up to what extent it is necessary to re-train the classifiers for

online recognition tasks. As described in Section II-B, for

each participant we recorded two datasets (called Day 1 and

Day 2, respectively) with a lapse of several days between

them.

Figure 5 presents the results for single trial online recogni-

tion. Let us first discuss the left half of the plot corresponding

to the classification rates obtained using only data from

the first experiment session (Day 1). The figure shows the

evolution of the classification rate, averaged over the five

participants, as more data has been recorded and used for

training the SVM classifier. The x-axis indicates the percent-

age of data that was used for training and the percentage of

data that was used for testing (e.g. 10-90% indicates that

only the first 10% of the data was used to train the classifier,

while the remainder 90% was used as test cases)1. Results

show that performance increases as more data is available

from a 60% recognition rate to an 80% at the end of the

session (the 90-10% case). Although the figure suggests that

the accuracy of the classifier could still be improved with

more data, in the next section we will show that it is close

to its maximum performance.

Let us now analyze the classification of the second session

(Day 2) using also the data from the first session. Results for

this case are shown in the right part of Fig. 5. The accuracy

rate at the black line (tagged as 100-100%) corresponds to the

case where the classifier was trained with the whole dataset

of Day 1 and the test is the whole dataset of Day 2. As

mentioned in section II-B, this classification was done in

real time while the participant was performing the task. It is

interesting to note that there is a decrease on the classification

rate with respect to the final score of Day 1, but it is

better than the initial rates of Day 1. More precisely, the

decrease in percentage was of 6.33% and 11.35% on negative

and positive feedbacks respectively, suggesting that negative

feedbacks are more stable across different days than positive

feedbacks.

In order to recover from the degradation between Day 1

and Day 2, it is possible to train the classifier with data

from both sessions. The right part of the figure shows the

accuracies obtained for this case. The x-axis ranges from

110-90% to 190-10%. As before, the left number indicates

the percentage of examples used for training (100% of Day

1 plus the corresponding percentage of Day 2) and the right

number indicates the percentage of data of Day 2 used for

testing. The results show an increase in accuracy, as the

percentage of data from Day 2 included in the training set

is increased. Furthermore, the accuracy remains stable after

incorporating only the first 20% of Day 2 measurements

1The SVM training time is under one millisecond for the entire dataset in
a CoreDuo 2.4GHz. Classification requires just a few micro-seconds. These
computational times make possible to even re-train the classifier for every
single new measurement.
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Fig. 5. Classification rates obtained sequentially using different percentages for train and test set from Day 1 (left) and blending data from both days
using the whole dataset from Day 1 and a variable percentage of Day 2 (right). Values 10-90% to 90-10% represent data from Day 1, while values higher
than 100% mean all the data from Day 1 and the remaining from Day 2.

(labeled as 120-80%). This fact points out that appending

a very small number of new examples (60 trials recorded in

about 5 minutes) is enough to obtain the maximum accuracy

around 80%.

B. Offline classification

The previous analysis incorporated the data in a specific

sequential way to analyze the evolution of the classifier

analysis. This section presents results of an offline analysis of

the data using cross-validation to characterize the classifier’s

behavior using all the available data. It provides information

about the maximum accuracy that may be achieved by the

classifier and allows us to compare performances among the

different participants.

Table I shows for each session (Day 1 and Day 2) the

classification rates obtained separately for each participant

using 10-fold cross validation. The recognition percentage

in all the cases is superior than a random classifier and, on

average, gives a rate of 78.08%. The standard deviations were

in all cases below 9%, implying a similar recognition rate

for all the participants.

TABLE I

CLASSIFICATION RATES OBTAINED

Day 1 Day 2
Positive Negative Average Positive Negative Average

P.1 72.05 77.57 74.81 90.42 78.81 84.62
P.2 73.71 81.08 77.40 70.00 75.99 73.00
P.3 78.57 84.83 81.70 87.71 77.14 82.43
P.4 74.43 79.84 77.14 76.21 79.42 77.82
P.5 72.81 73.35 73.08 79.73 77.88 78.81

Average 74.31 79.33 76.82 80.81 77.85 79.33

std 2.54 4.26 3.25 8.35 1.36 4.48

IV. CONCLUSIONS AND FUTURE WORK

This work addresses the problem of single-trial real-

time recognition of feedback potentials. A experiment of

a one-second time estimation task was carried out with

five participants. Results show that it is possible to achieve

good recognition rates (around 80%) using a SVM classifier.

Furthermore, we analyzed the requirements of the classifier

in terms of the amount of training data, its performance

among sessions and the possibility of fast re-training in

order to achieve good performances using data from previous

sessions.

As future work, we plan to investigate the case where

feedback signals are not synchronized with the BCI (e.g.

provided by a therapist). In this case it is necessary to detect

these signals first and then classify them.
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