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Abstract— Myoelectric control of rehabilitation devices 

engages active recruitment of muscles for motor task 

accomplishment, which has been proven to be essential in 

motor rehabilitation. Unfortunately, most electromyographic 

(EMG) activity-based controls are limited to one single degree-

of-freedom (DoF), not permitting multi-joint functional tasks. 

On the other hand, discrete EMG-triggered approaches fail to 

provide continuous feedback about muscle recruitment during 

movement. For such purposes, myoelectric interfaces for 

continuous recognition of functional movements are necessary. 

Here we recorded EMG activity using 5 bipolar electrodes 

placed on the upper-arm in 8 healthy participants while they 

performed reaching movements in 8 different directions. A 

pseudo on-line system was developed to continuously predict 

movement intention and attempted arm direction. We 

evaluated two hierarchical classification approaches. 

Movement intention detection triggered different movement 

direction classifiers (4 or 8 classes) that were trained and tested 

over a 5-fold cross validation. We also investigated the effect of 

3 different window lengths to extract EMG features on 

classification. We obtained classification accuracies above 70% 

for both hierarchical approaches. These results highlight the 

viability of classifying online 8 upper-arm different directions 

using surface EMG activity of 5 muscles and represent a first 

step towards an online EMG-based control for rehabilitation 

devices. 

I. INTRODUCTION 

Rehabilitation devices such as robotic exoskeletons have 
shown great potential in the field of motor rehabilitation as 
they permit a repeatable and intensive proprioceptive 
stimulation of paralyzed limbs in terms of goal-oriented 
mobilizations. However, robot-aided treatments do not 
necessarily contribute to regain motor function unless active 
and voluntary participation of patients’ paretic muscles is 
present during movement [1], [2]. In this context, myoelectric 
interfaces for controlling robotic exoskeletons constitute a 
promising potential tool to effectively involve muscle 
recruitment for motor task accomplishment.   

Current myoelectrical interfaces applied in rehabilitation 
chiefly focus on the control of single-DoF actuators based on 
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EMG amplitude. EMG-based control systems that 
continuously modulate mechanical assistance provided by a 
robotic exoskeleton have been developed for single-DoF 
movements such as wrist extension [2] and hand grasping [3]. 
Nevertheless, while continuous control of a single DoF based 
on EMG activity can be feasible, the decoding of myoelectric 
signals during movements that involve several DoFs 
simultaneously remains still challenging, especially in stroke 
patients. Simpler approaches based on EMG-triggered 
interfaces have also been applied in order to train multi-joint 
tasks such as multi-directional movements with the upper 
arm [4]. This approach enables to trigger the movement of 
the actuator without the need of self-producing any actual 
movement, which may allow even highly-impaired 
participants to activate robot assistance [5]. Nonetheless, 
although EMG-triggered approaches might reinforce muscle 
strength by requiring constant activation of specific muscles 
above a certain threshold during movement, they fail to 
provide specific feed ack regarding the user’s 
inappropriately co-activated EMG patterns. On the other 
hand, discrete approaches in which rehabilitation devices are 
triggered by EMG activation only at the trial onset fail to 
provide feedback about the muscle recruitment continuously 
during the entire movement execution.  

In spite of inappropriate co-activation of muscles due to  
incorrect muscle synergy recruitment in stroke patients [3]–
[6], successful results in classifying residual EMG activity of 
stroke patients have been reported [7],[8]. Diverse functional 
movements involving multiple joints at the upper-limb, wrist 
and hand levels have been discriminated based on the 
residual activity of stroke patients, achieving better results in 
moderately impaired patients (71.3%) than in severely 
paralyzed subjects (37.9%) [7]. From these results, it is 
concluded that the recognition of different discrete 
movements involving several upper-limb DoFs based on 
residual EMG can still be feasible. 

Therefore, myoelectric interfaces for the EMG 
continuous classification of discrete multiple-joint 
movements present a promising option for the training of 
functional movements using rehabilitation devices. In this 
work, we developed a “pseudo-online” system to predict 
movement intention and attempted direction during point-to-
point reaching movements in the horizontal plane based on 
the EMG activity of five upper-limb muscles in healthy 
participants. 

II. METHODS 

A. Experimental Protocol 

Eight right-handed naïve healthy participants (5 males, 
age 25±2.74) were involved in the experiment after giving 
written informed consent to the procedures approved by the 
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ethics committee of the Faculty of Medicine of the University 
of Tübingen, Germany. Participants performed reaching 
movements with their right arm while sitting and wearing the 
IS-MORE 7-degree of freedom upper-limb exoskeleton 
(Tecnalia, San Sebastian, Spain). The motor task consisted of 
reaching movements in the horizontal plane from a 
predefined start position towards four different goals 
indicated by targets of different colors around the workspace 
(see Fig.1) and returning to the start position. Participants 
moved their upper-limb actively and had to overcome 
minimal friction and weight of the exoskeleton attached to 
their limb in order to perform the movements.  

Each participant performed 50 reaching trials from the 
start position towards each direction (four reaching 
directions) and return to the start position (four returning 
directions), completing 200 trials in total in 5 separate runs. 
An inter-trial rest period of a random time between 2 and 3 
seconds was given to avoid fatigue. After the inter-trial rest 
period, an auditory cue indicated the participant the color of 
the target to reach in that trial and two seconds later a “Go” 
cue indicated the instruction to start the movement. The 
participants had 4 seconds to perform the reaching movement 
towards the indicated target and return to the resting position 
(trial timing schema in Fig.1). We placed five bipolar 
Ag/AgCl electrodes from Myotronics-Noromed (Tukwila, 
WA, USA) over the: 1) long head of biceps, 2) external head 
of triceps, 3) anterior portion of deltoid, 4) lateral portion of 
deltoid and 5) posterior portion of deltoid. The ground 
monopolar electrode was placed over the right clavicle. The 
EMG signals were acquired at 2500Hz using a bipolar 
amplifier (Brainproducts, Gilching, Germany). Participants 
moved the exoskeleton on top of a mat with printed 
DATAMATRIX codes, which were tracked by a webcam 
located in the base of the exoskeleton. The position of the 
forearm in the horizontal plane was acquired at 18Hz.  

B. Data Processing 

The EMG signals were notch filtered, band-pass filtered 
between 10Hz and 500Hz using a 4th order Butterworth filter 
and rectified. For all filtering processes, we employed a 
causal filter that can be used for online real-time applications. 
Kinematic data were processed for artifact removal and low-
pass filtered at 1.5 Hz using a 4th order Butterworth filter. 
We synchronized EMG and kinematic data off-line and 
upsampled the kinematic data to the EMG data frequency by 
applying cubic interpolation. Forearm movement velocities in 

the horizontal plane were computed offline from acquired 
position data. We searched for four time points along each 
trial: 

 EMG activation onset and end: we applied the Teager–
Kaiser energy operator (TKEO), rectified and low-pass 
filtered at 50Hz (2nd order Butterworth) the previously 
band-pass filtered EMG signals. Mean (µ) and standard 
deviation (σ) of the rest period prior to each trial 
(baseline) were computed. We used a threshold-based 
method to detect the onset on the EMG activation where 
threshold T was determined for each muscle as follows:  

  

where h is a preset variable, defining level of the 
threshold. Threshold level was set to 20 since it was 
empirically found to be the most robust and introduced 
the smallest detection errors. Onset and end time for 
each muscle were identified as the first and last point 
when the smoothed signal exceeded the threshold T for 
more than 30ms, respectively (needed to be considered a 
muscle contraction and not an artefact) [9]. Each 
movement direction was initiated by a different muscle 
depending on the initial starting point in each trial and 
the trajectory of each user to approach the targets. We 
therefore considered as overall EMG activation onset 
and cessation of each trial the earliest onset and latest 
end from the five muscles in order to generalize for all 
trial types and participants. 

 Movement onset: after convolving and normalizing the 
absolute value of the base of the exoskeleton in the 
horizontal plane, we considered as movement onset the 
time point in which the base reached the 5% of the 
maximum velocity amplitude registered during that trial 
[10] after the “Go” cue (see Fig. 2). The average time 
between EMG activation onset and actual movement 
onset detected by the exoskeleton was 0.55±0.07 
seconds. 

 Transition time used to split the data between reaching 
and returning phases: was considered as the time where 
the participant reached the furthest point with reference 
to the starting position in the horizontal plane in each 
trial, before starting the returning phase (see Fig. 2). 

 The period starting from the EMG activity onset until the 
cessation of EMG activation, was considered as a movement-
related period and labeled with the performed reaching 
direction. Participants used an average time of 2.06±0.18 and 
1.34±0.24 seconds to complete reaching and return 
movements, respectively. 

C. EMG Feature Extraction and Classification 

In order to test how our classifier would perform online, 
we constructed a pseudo-online feature extraction and 
classification process. We computed the waveform length of 
the previously recorded EMG signals on sliding windows 
with a step size of 50ms, i.e. every 50ms of data. We used 
three different window lengths for feature extraction (1s, 
500ms and 200ms) to test the effect of using larger or 
smaller amounts of preceding EMG data for movement 
prediction. The input for training and testing the classifiers 
therefore consisted in a vector of five waveform length 

 
Fig.1. Left: a participant performing a reaching task towards four 

different directions towards red, green, brown and blue and return to the 

rest position from red, green, brown and blue. Right: trial timing and 

reaching trajectories of one participant towards the targets.  

T = µ + hσ 



  

values (one from each muscle) extracted from the EMG data 
comprised in each sliding window all along the training or 
testing dataset, respectively. For the testing dataset, the 
classifiers generated a prediction for every input value (i.e. 
every feature vector extracted from each sliding window), 
thus giving an output every 50ms (20Hz). Hence, the output 
given at a specific time point corresponded to the 
classification of the features extracted from the EMG data 
window preceding that point. Training and testing data were 
recorded within the same sessions and normalized using the 
Z-scores computed from the training data set. We trained 
and tested different support vector machines (SVM) with 
radial basis function kernel using LIBSVM [11]:   

a) Movement attempt classifier (MovC): binary classifier 
trained using resting activity data from inter-trial periods and 
movement-related data (including the EMG during the 
forward reaching and backward returning movements in the 
eight different directions).  

b) Direction classifiers: we built three different classifiers or 
detecting the direction attempted by the participant:   

b.1) Reaching classifier (ReachC): a 4-class classifier 
trained with data of the four forward reaching directions 
that included Blue-Forward (Bl-F), Red-Forward (Red-F), 
Green-Forward (Gr-F) and Brown-Forward (Br-F).  

b.2) Return classifier (ReturnC): a 4-class classifier 
trained with data of the four backwards returning 
directions that included (Blue-Backwards (Bl-B), Red-
Backwards (Red-B), Green-Backwards (Gr-B) and 
Brown-Backwards (Br-B).  

b.3) General classifier (GeneralC): an 8-class classifier 
trained with data of the four forward reaching and four 
backwards returning directions. 

D. Performance Evaluation 

All classifiers were trained and tested independently 
within a 5-fold cross validation (CV). In each fold, each 

classifier was trained with concatenated EMG data of four 
entire runs (80% of data) and tested over the remaining fifth 
run (20% of data). We evaluated each classifier exclusively 
during the same movement periods that were used to train 
them. Therefore, MovC classifier was evaluated during the 
whole testing run (including rest, forward reaching and 
backward returning periods), while ReachC and ReturnC 
were evaluated only during forward reaching and backward 
returning periods, respectively. Testing data for GeneralC 
included both forward reaching and backward returning 
periods. 

a)  Influence of window length in feature extraction for 

classification 

In this work we first evaluated the effect of the window 
length used for feature extraction in the classification of 
movement intention (using MovC) and forward direction 
(using ReachC) in the time period short after the EMG 
activation onset and during the reaching movement. All 
trials (50 trials x 8 participants) were aligned with reference 
to the EMG activation onset. For each window length, we 
evaluated the amount of points that were correctly detected 
as movement state (using MovC) and classified as the 
correct reaching direction (ReachC) in each time point after 
the EMG onset. The time interval between EMG onset and 
the time when the MovC classifier reached classification 
accuracy above 98% was considered as movement detection 
latency.  

Due to small sample size we performed Friedman 
nonparametric tests for investigating the effect of the 
window length factor on the 1) movement detection latency 
for MovC, 2) classification accuracy for MovC and 3) 
classification accuracy for ReachC. Post-hoc pairwise 
comparisons of the three window lengths were performed 
and controlled for multiple comparisons using Bonferroni 
correction (statistical significance considered when p < 
0.016). 

 
Fig. 2. Average classification accuracy of all trials for all 8 participants of the movement intention binary classifier and the ReachC four-class direction 
classifiers. In x axis, 0 corresponds to the EMG activation onset. The continuous lines represent the correct classification rate of the movement attempt 

binary classifier using different window lengths for feature extraction. The dashed lines correspond to the correct classification rate of the multiclass 

direction classifier. The line at 25% represents the chance level of ReachC classifier. Below, normalized kinematics activity and filtered EMG activations of 
a representative trial. The black line represents the distance of the base of the exoskeleton from the initial starting point while the red line represents the 

velocity. Upper-arm muscle activities are plotted at different heights. EMG and movement onset and transition point are represented with vertical lines. 



  

b)  Multiple direction continuous hierarchical 

classification approaches 

Subsequently, we evaluated two different approaches 
for multiple direction continuous classification. In strategy 
A), two independent 4-class classifiers were used to detect 
the movement direction intended by the user: ReachC during 
the forward movement (Bl-F, Red-F, Gr-F, Br-F) and 
ReturnC during the backward phase (Bl-B, Red-B, Gr-B, Br-
B). In strategy B), one single general 8-class classifier was 
used during the whole movement to predict the movement 
direction.  The continuous off-line classification schemas for 
both strategies are shown in Fig. 3.  

The MovC was trained with the waveform length 
extracted from 200ms-long windows, whereas we used 1s-
long windows for all direction classifiers, as they were opted 
as the windows sizes that best worked for each classifier 
type (see Results). Each classifier received as input the 
waveform length continuously extracted from the filtered 
five EMG signals (using the respective window size) during 
the whole testing run and gave an output every 50ms (20Hz). 
We estimated the overall performance of each classification 
strategy considering the output of the multiple direction 
classifier (ReachC, ReturnC, GeneralC) only if movement 
was detected by MovC, i.e. we used a hierarchical approach.  

III. RESULTS 

A. Influence of window size in feature extraction for 

classification 

Classification accuracies before and after EMG onset 

for MovC (continuous lines) and ReachC (dashed lines) are 

shown in Fig. 2, upper plot. Movement detection during 

preparation (arm in rest position) was nearly zero, while 

movement direction correct around chance level (25%). The 

time with reference to the EMG onset to reach a correct 

classification rate for movement detection above 50% 

(chance level) and above 98% by the binary classifier MovC 

using different window sizes for feature extraction are 

reported in Table I. Faster EMG activation detection was 

achieved with shorter window sizes of 200ms and 500ms, 

significantly better than with 1s-long windows (p=0.012 and 

p=0.011), and achieving a mean classification accuracy of 

93.03% and 93.55%, respectively.  

The effect of using 200ms and 500ms of precedent data 
for feature extraction was almost significant in movement 
detection latency (p = 0.017) but not significant in 
classification accuracy (p =0.069). As it can be observed in 
the upper plot in Fig. 2, the classifier trained using a window 
size of 200ms (dark blue line) presents a more rapid increase 
in the detection accuracy of movement short after EMG 
onset. Because of this, a 200ms-long window was selected 
for the feature extraction of EMG signals for MovC used in 
the following hierarchical approach. 

For the pattern recognition of the forward reaching 
direction by ReachC, using longer EMG windows (1s) 
resulted in a higher overall discrimination accuracy of 
78.28% (see Fig. 2). However, the influence of the window 
length was not found to be significant for reaching 
movement recognition (p < 0.016) in average for the entire 

 
Fig. 3. EMG feature extraction and classification schemes for Strategy A and B during four representative consecutive trials to different targets. MovC is 

active during the whole testing run and gives an output indicating if movement intention has been detected (mov) or not (rest). Below, the continuous 
outputs of each direction classifiers. Correctly classified points are plotted in green color (MovC classifier) or in the color of the target indicating the 

movement direction (ReachC, ReturnC and GeneralC), while misclassified points are gray. 

 

Table I MovC and ReachC classification accuracies and delays from 

EMG onset.  

 

Classifier 

type 

 

Measured Metric 

Window size for  

feature extraction 

1s 500ms 200ms 

 

 

MovC 

Time from EMG onset to 
acc. > 50%  (s) 

0.28 0.22 0.18 

Time from EMG onset to 
acc. > 99%  (s) 

1.06 0.96 0.84 

True Positive Rate (%) 92.47 92.84 93.03 

ReachC True Positive Rate* (%) 78.28 76.15 73.77 

* Evaluating points where the MovC classifier detected movement 

intention correctly only. 

 



  

reaching phase. As it can be observed in Fig. 2, however, 
unlike classifiers trained with longer window lengths 
(dashed yellow line), shorter windows (dashed dark blue 
line) present a drop in classification accuracy as the reaching 
end goal (transition) is approached. We therefore opted for a 
1s-long window for the waveform length extraction used as 
input for the direction classifiers used in both hierarchical 
classification approaches. Classification performance 
dropped progressively to chance level during the returning 
phase, due to ReachC classifier uncertainty when 
recognizing such unfamiliar EMG patterns.  

B. Multiple direction continuous hierarchical classification 

approaches 

Fig. 3 describes the feature extraction and classification 
schemes for Strategy A and B during four representative 
consecutive trials to different targets. The average 
percentage of points correctly classified as movement or rest 
state (colored in dark green in “ ovement detection 
classifier output”) during the whole testing run  y  ov  
over the 5-fold CV was 93.03%. Points plotted in colors of 
the different targets were points correctly classified, while 
gray points represent misclassified points. We obtained an 
overall performance accuracy of 78.28% and 79.52% for 
ReachC and ReturnC 4-class classifiers, respectively (78.9% 
for strategy A). On the other hand, in strategy B, a single 8-
class general classifier was accurate on average in 70.62% of 
the points considered for evaluation (see Fig. 4). 

IV. DISCUSSION 

This study represented the first step towards an online 

electromyographic interface to continuously control reaching 

movements of a robotic upper-limb exoskeleton.  

We explored the effect of window length to calculate the 
features in the direction classification accuracy and onset 
detection. Our results indicated that a relatively short 
(200ms-500ms) window size resulted in faster EMG 
activation detection short after EMG onset, without 
compromising the classification accuracy [14],[15]. 
Nevertheless, the influence using precedent EMG data of a 

window between 200ms and 1s did not show to be 
significant for movement direction recognition. However, 
classifiers trained and tested using features extracted from 
shorter windows of data decreased in performance as the 
transition point was approached. This drop was the result of 
an increasing presence of data points that were closer or 
already belonged to the returning phase (in case of trials 
with shorter reaching phase).  

The time between the EMG and actual movement onset 
was higher than the delays reported in the literature for 
upper-arm free movements without constraints [14]. We 
hypothesized that the weight and mechanical friction 
imposed by the exoskeleton required longer EMG 
activations for movement initiation.  

During multiple directions classification, the reaching 
movement towards adjacent targets was commonly 
misclassified as one of the neighbor targets. A similar result 
was observed when classifying returning directions from 
contiguous targets (see confusion matrices in Fig. 4). As it 
can be observed in Fig.1, the trajectories towards the green 
targets did not differ too much from the trajectories towards 
the adjacent targets, complicating the discrimination 
between these similar movement directions. From these 
results we concluded that a workspace maximizing inter-
target distance may reduce misclassification errors. 

We proposed a hierarchical myoelectric interface control, 
in which a first movement intention binary classifier 
triggered a second four-class/eight-class classifier that 
identifies the reaching direction attempted by the user. A 
hierarchical approach avoided incrementing the number of 
possible outputs in the multiclass classifiers, leading to 
higher performance than in previous works where a single 
classifier was used [15]. Using the selected window sizes 
each classifier (200ms for movement detection, 1s for 
attempted direction), we were a le to recognize participants’ 
motion intention above chance level (50%) in all cases 
before actual movement onset. At this point, the intended 
direction of the user was recognized with 51.21% accuracy 
(lowest accuracy during the trial after movement detection; 
change level being 25%), revealing certain classifier 

 
 

Fig. 4. Confusion matrices of 4-class ReachC, 4-class ReturnC and 8-class GeneralC classifiers show the correct (in diagonal) and incorrect (out of the 
diagonal) classification rates of each movement direction. To calculate the off-line classification rates, only points where movement intention was detected 

by the binary classifier within the reaching and returning phases were considered for evaluation. 



  

uncertainty during the movement initiation interval. 
However, classification rates increased rapidly during the 
initial phase after EMG activation movement. As the MovC 
reached acceptable movement detection (above 98%) within 
440ms after EMG onset, the intended direction was 
discriminated already with 73.77% accuracy. This indicated 
that acceptable direction recognition could be achieved 
before actual motor action, which is an important point to 
study in cases of paralyzed limbs. 

Using two separate classifiers during each task phase 
(reaching and returning) might constitute a good option in 
those patients whose residual EMG activity is clearly 
different between the forward and backward movements. 
Hence, a more accurate feedback using classifiers with less 
output possibilities (and therefore more accurate) could be 
provided. However, a classifier that considers only a limited 
possible discrete directions in each phase of the movement 
(only forward directions are considered during the reaching 
phase and backwards during returning phase) will fail to 
provide the correct feedback to the users in cases where the 
direction of the intended movement is opposite to the 
expected one (e.g. when the EMG activation patterns 
indicate an intention to move the arm backwards to the 
resting position rather than moving forward during a 
reaching phase). Nevertheless, with the general classifier we 
obtained an average classification accuracy of 70.62% 
(significantly above chance-level=12.50%) confirming that 
controlling the exoskeleton movement online in all 8 
directions could be feasible using 5 bipolar surface EMG 
electrodes only. Most misclassification events arose nearby 
the transition points between the reaching and returning 
phases. A protocol with slower transitions for direction 
change (e.g. by introducing a short inter-phase rest) would 
facilitate the differentiation of the phases, thus reducing 
misclassification errors. Also, features extracted using 
shorter windows (containing information from only recent 
precedent EMG activity) were more sensitive to fast changes 
in EMG patterns (e.g. involuntary reflexes, changes of 
movement direction) than longer windows. Because of this, 
using shorter window sizes would certainly improve the 
classification accuracy of a general multi-directional 
classifier, enabling a faster detection of changed EMG 
activations in the transition between two different movement 
directions.   

V. CONCLUSION 

In this work we developed a “pseudo-online” 
classification system to predict movement intention and 
attempted direction during point-to-point reaching 
movements in the horizontal plane based on the EMG 
activity of five upper-arm muscles in healthy participants. 
Continuous prediction of movement intention in real time 
during functional movements is essential in order to provide 
users a contingent feedback about their muscle recruitment 
using myoelectrically controlled robotics. Acceptable 
classification accuracies above 70% were achieved in this 
off-line evaluation with healthy participants performing 
reaching movements. Nevertheless, further experiments with 
healthy participants and stroke patients using this 
myoelectric interface online are needed to confirm the 

feasibility of this approach for controlling a robotic 
exoskeleton in real time. 

ACKNOWLEDGMENT 

This study was funded by the Baden-Württemberg 

Stiftung (GRUENS ROB-1), the Deutsche 

Forschungsgemeinschaft (DFG, Koselleck), the Fortüne-

Program of the University of Tübingen (2422-0-0), and the 

Bundesministerium für Bildung und Forschung BMBF 

MOTORBIC (FKZ 13GW0053) and AMORSA (FKZ 

16SV7754). N. Irastorza- anda’s work has been supported 

by the Basque Government. 

REFERENCES 

[1] L. E. Kahn, M. L. Zygman, W. Z. Rymer, and D. J. 

Reinkensmeyer, “Robot-assisted reaching exercise promotes arm 

movement recovery in chronic hemiparetic stroke: a randomized 

controlled pilot study.,” J. Neuroeng. Rehabil., vol. 3, p. 12, 2006. 

[2] R. Song, K.-Y. Tong, X. Hu, and W. Zhou, “Myoelectrically 
controlled wrist robot for stroke rehabilitation,” J. Neuroeng. 

Rehabil., vol. 10, p. 1, 2013. 

[3] D. Leonardis et al., “An EMG-controlled robotic hand 
exoskeleton for bilateral rehabilitation,” IEEE Trans. Haptics, 

vol. 8, no. 2, pp. 140–151, 2015. 

[4] L. Dipietro, M. Ferraro, J. J. Palazzolo, H. I. Krebs, B. T. Volpe, 
and N. Hogan, “Customized interactive robotic treatment for 

stroke: EMG-triggered therapy,” IEEE Trans. Neural Syst. 

Rehabil. Eng., vol. 13, no. 3, pp. 325–334, 2005. 
[5] M. C. Hammond, S. S. Fitts, G. H. Kraft, P. B. Nutter, M. J. 

Trotter, and L. M. Robinson, “Co-contraction in the hemiparetic 

forearm: quantitative EMG evaluation,” Arch. Phys. Med. 
Rehabil., vol. 69, no. 5, pp. 348–351, 1988. 

[6] T. M. Stoeckmann, K. J. Sullivan, and R. a Scheidt, “Elastic, 

Viscous, and Mass Load Effects on Post-Stroke Muscle 
Recruitment and Co-contraction During Reaching: A Pilot 

Study,” Phys. Ther., vol. 89, no. 7, pp. 30–38, 2009. 

[7] S. W. Lee, K. M. Wilson, B. A. Lock, and D. G. Kamper, 
“Subject-specific myoelectric pattern classification of functional 

hand movements for stroke survivors,” IEEE Trans. Neural Syst. 
Rehabil. Eng., vol. 19, no. 5, pp. 558–566, 2011. 

[8] A. Ramos-Murguialday et al., “Decoding upper limb residual 

muscle activity in severe chronic stroke,” Ann. Clin. Transl. 
Neurol., vol. 2, no. 1, pp. 1–11, 2015. 

[9] S. Solnik, P. Rider, K. Steinweg, P. Devita, and T. Hortobágyi, 

“Teager-Kaiser energy operator signal conditioning improves 
EMG onset detection,” Eur. J. Appl. Physiol., vol. 110, no. 3, pp. 

489–498, 2010. 

[10] B. Cesqui, H. Krebs, and S. Micera, “On the development of a 
new EMG–controlled robot-mediated protocol for post-stroke 

neurorehabilitation,” Proceeding ISG, 2008. 

[11] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support 
Vector Machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 

3, p. 27:1--27:27, May 2011. 

[12] H. J. Hermens et al., “European Recommendations for Surface 
ElectroMyoGraphy,” Roessingh Res. Dev., pp. 8–11, 1999. 

[13] M. Kim, J. Lee, H. Ko, and K. Kim, “A preliminary analysis of 

analysis window size and voting size with a time delay for a 
robust real-time sEMG pattern recognition,” in 2014 11th 

International Conference on Ubiquitous Robots and Ambient 

Intelligence, URAI 2014, 1997, pp. 121–126. 
[14] P. R. Cavanagh and P. V. Komi, “Electromechanical delay in 

human skeletal muscle under concentric and eccentric 

contractions,” Eur. J. Appl. Physiol. Occup. Physiol., vol. 42, no. 
3, pp. 159–163, 1979. 

[15] N. Irastorza-Landa et al., “EMG Discrete Classification Towards 

a Myoelectric Control of a Robotic Exoskeleton in Motor 
Rehabilitation - Proceedings of the 3rd International Conference 

on NeuroRehabilitation (ICNR2016), October 2016, Segovia, 

Spain,” 2017, pp. 159–163. 
 


