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Abstract Myoelectric control constitutes a promising interface for robot-aided
motor rehabilitation therapies. The development of accurate classifiers and suitable
training protocols for this purpose are still challenging. In this study, eight healthy
participants underwent electromyography (EMG) recordings while they performed
reaching movements in four directions and five different hand movements wearing
an exoskeleton on their right upper-limb. We developed an offline classifier based
on a back-propagation artificial neural network (ANN) trained with the waveform
length as time-domain feature extracted from EMG signals to classify discrete
movements. A maximum overall classification performance of 75.54 % ± 5.17 and
67.37 % ± 8.75 were achieved for reaching and hand movements, respectively. We
demonstrated that similar or better classification results could be achieved using a
small number of electrodes placed over the main muscles involved in the movement
instead of a large set of electrodes. This work is a first step towards a discrete
decoding-based myoelectric control for a motor rehabilitation exoskeleton.
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1 Introduction

Myoelectric control constitutes a natural and intuitive interface for assistive and
rehabilitative technologies for patients with motor impairment such as stroke
patients. The development of kinematics-decoding models from electromyography
still remains a challenge, especially in patients with an altered EMG activity.
A dexterous EMG-based control of individual degrees of freedom (DoF) of an
exoskeleton is therefore still a challenging approach. However, recent research
findings classifying residual muscle activity related to motor intention during dis-
crete movements in paralyzed limbs of chronic stroke patients suggest that EMG
signals can be a promising source for the control of rehabilitation robots in these
patients [1]. EMG classification of discrete movements during robot-aided motor
rehabilitation tasks can serve as a way of coupling the motor intention reflected in
the patients’ residual EMG with the movement performed by the paralyzed limb. In
this study we use ANNs for the discrete classification of upper-arm and hand/wrist
movements using a reduced set of EMG electrodes. This work serves as a first step
towards the implementation of a myoelectric control strategy for motor rehabili-
tation robots.

2 Materials and Methods

2.1 Experimental Protocol

Eight healthy right handed subjects (5 males, age 25 ± 2.74) were recruited for this
study. Participants performed two different tasks while sitting and wearing a 7-DoF
exoskeleton (Tecnalia, San Sebastian, Spain) on their right upper limb. Task A
consisted of reaching movements (hand relaxed) from a predefined rest position
towards four different goals indicated by targets of different colors around the
workspace (see Fig. 1) and returning to the rest position. In task B, participants
performed five hand/wrist movements: pronation, supination, pointing (index
extension), cylindrical grasp and pinch grip. Each subject performed 50 reaching
trials to each target and 30 trials of each hand/wrist movement. The timing of the
tasks was instructed by imperative auditory cues and an inter-trial rest period was
given to avoid fatigue. Ten bipolar Ag/AgCl electrodes from Myotronics-Noromed
(Tukwila, WA, USA) were placed over the: (1) the abductor pollicis longus,
(2) extensor carpi ulnaris, (3) extensor digitorium, (4) flexor carpi radialis, plamaris
longus and flexor carpi ulnaris, (5) pronator teres, (6) long head of biceps, (7) ex-
ternal head of triceps, (8) anterior portion of deltoid, (9) lateral portion of deltoid
and (10) posterior portion of deltoid. The ground monopolar electrode was placed
over the right clavicle. The EMG signals were acquired at 2500 Hz using a bipolar
amplifier (Brainproducts, Gilching, Germany). Kinematic data were acquired from
the custom made exoskeleton at 18 Hz.
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2.2 Data Processing

The EMG signals were notch filtered, band-pass filtered between 10 Hz and 500 Hz
using a 4th order butterworth filter and rectified. Kinematic data were low pass
filtered at 1.5 Hz. EMG and kinematic data were synchronized offline and kine-
matic data were upsampled to the EMG data frequency. We epoched the EMG data
recorded in task A in six classes based on the kinematic data: reaching movement
towards four different directions (red, green, brown, blue targets), returning phase to
rest position (returning trials from any target to the rest position were considered as
a single class to simplify the future online control of the exoskeleton based on the
classifier output) and resting phase (arm still at rest position). EMG data of task B
were epoched into six classes: pronation, supination, pointing, grasping, pinch grip
and resting phase (hand relaxed). Epoched EMG signals were baseline corrected
and the waveform length (WL) feature was computed on sliding windows of
200 ms every 20 ms.

2.3 Classification Algorithm

ANNs have been broadly used for discrete decoding of upper arm, hand and
individuated finger movements with high accuracies based on EMG [2], especially
when using a high number of EMG electrodes [3]. Here we use an ANN classifier
trained with the extracted WL feature for the pattern recognition of six movements
(see Sect. 2.2). A multilayer perceptron (MLP) neural network was developed using
a single hidden layer of three different numbers of nodes and the number of output
neurons equal to the number of movements to be classified, six in each task type.

Fig. 1 A subject with EMG
electrodes placed over the
upper arm performing task A:
starting from a predefined rest
position, reaching movements
towards four different
directions indicated by targets
of different colors (red, green,
brown, blue) and return to rest
position
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Two independent sets of networks were trained, validated and tested separately for
the classification of movements of task A and B. Tan-sigmoid and softmax transfer
functions were assigned for the hidden and output nodes, respectively, as com-
monly found in the literature [4]. The output neuron with the maximum probability
value was selected as the classifier output. The network underwent training using
the scaled conjugate gradient backpropagation algorithm. We used three different
subsets of electrodes for movement classification: (i) all the electrodes (1–10),
(ii) electrodes over muscles mainly involved in the movements following neuro-
physiology (6–10 for task A, 1-6 for task B), (iii) electrodes over muscles not
involved in the movements (1–5 for task A, 7–10 for task B). For each task type and
electrode set combination case, an inner fivefold cross validation (CV) was per-
formed to find the best network parameters (i.e. number of nodes in the hidden
layer) by searching the network with minimum validation mean square error results
among all the networks trained for such case. The networks were trained using the
best parameters and tested on a separate test dataset in an outer fivefold CV. The
reported performance of the classifier was computed as the mean and standard
deviation of the percentage of true positives (i.e. data points correctly classified)
obtained with networks trained over the fivefolds to classify the independent test set
in the outer CV.

3 Results

The mean and standard deviation of the classification success rate achieved for the 8
subjects in the classification of movements of task A and B are summarized in
Table 1. The table presents the performance of the classifiers for each combination
of task type and electrode set for classification and the chance level in each clas-
sification case.

Table 1 Classification success rates in %

Task Electrodes placed over
All muscles Muscles involved Muscles not involved Chance level

A 75.54 ± 5.17 73.63 ± 5.86 52.23 ± 5.54 16.7 %
B 66.74 ± 6.83 67.37 ± 8.75 39.42 ± 3.67 16.7 %
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4 Discussion and Conclusions

In this work we show that it is possible to classify six functional arm and hand
movements in healthy participants with accuracies above 67 % based on the EMG
activity from six EMG bipolar electrodes only. Similar or better classification
results could be achieved using only a small number of electrodes placed over the
muscles mainly involved in the movement execution instead of a large set of
electrodes. This finding suggests that a combination in parallel of these two clas-
sifiers could allow classifying upper-limb movements involving fore- and
upper-arm muscles simultaneously. However, more data and further analysis are
needed to prove this speculation since muscle activity changes depending on
posture, substantially more in stroke patients [5], and online classification presents
additional issues such as time delays.

Our future work will focus on the design and development of classifiers for fore-
and upper-arm combined movements, the classification of residual EMG activity of
stroke patients and the online implementation and testing of the classifier in a
real-time scenario for the online electromyographic control of the rehabilitation
exoskeleton.
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