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Abstract Coupling motor intentions decoded from cortical activities with coherent
proprioceptive feedback is of interest for the motor rehabilitation of neurological
patients with lesions in the central nervous system. For these interventions to be
effective, repeated sessions need to be carried out to achieve functional long-lasting
plastic changes of cortical circuits. Electroencephalography-based Brain-Computer
Interfaces typically show significant decreases in accuracy when used across
multiple sessions with fixed parameters. Therefore, it is important to look for
optimal strategies to recalibrate these classifiers. Here we compare different recal-
ibration strategies for systems decoding motor intentions based on electroen-
cephalographic data of neurological patients.

1 Introduction

The analysis of electroencephalographic signals preceding voluntary motor actions
allows the decoding of valuable task-related cortical changes [1, 2]. This infor-
mation can be used to characterize cortical activities in neurological patients and to
identify when a subject is intending to perform a movement online [3].

J. Ibáñez (✉) ⋅ J.L. Pons
Neural Rehabilitation Group, Spanish National Research Council, Madrid, Spain
e-mail: jaime.ibanez@csic.es

E. López-Larraz
Institute of Medical Psychology and Behavioral Neurobiology,
University of Tübingen, Tübingen, Germany

L. Montesano
BitBrain Technologies, Saragossa, Spain

E. Monge ⋅ F. Molina-Rueda
LAMBECOM Group, Universidad Rey Juan Carlos of Alcorcón,
Móstoles, Madrid, Spain

© Springer International Publishing AG 2017
J. Ibáñez et al. (eds.), Converging Clinical and Engineering Research
on Neurorehabilitation II, Biosystems & Biorobotics 15,
DOI 10.1007/978-3-319-46669-9_127

775



Brain-computer interfaces (BCI) based on motor-related electroencephalo-
graphic (EEG) signals may be used to promote motor neurorehabilitation in patients
with neurological conditions affecting the links between the brain and the peripheral
muscles. BCIs in this case associate motor-related EEG patterns with proprioceptive
feedback that can be mechanical or electrical. Systems based on low-latency
detections of motor intentions are expected to boost the BCI impact of the patients’
function [4]. However, these interventions may only produce meaningful functional
benefits when applied repeatedly for a certain period of time.

Since EEG signals vary substantially across different recording sessions due to
their intrinsic non-stationary behavior and vulnerability against subtle perturbations
of the recording conditions (electrode-skin impedances, electromagnetic interfer-
ences, patients’ arousal, etc.) [5], BCI performances can vary substantially across
days.

Up to date, the most frequently used strategy to calibrate EEG-based decoders of
motor-related cortical states is to carry out an initial screening session that provides
enough examples to train the BCI system for the subsequent interventions (see for
example [6]). However, no studies have been performed comparing different
recalibration strategies for BCI systems relying on the detection of motor intentions.

This abstract compares results of three different recalibration strategies for BCI
systems based on the detection of pre-movement cortical changes in multiple
recording sessions.

2 Methods

2.1 Patients, Recordings and Protocol

Data from four stroke patients (all males, age 54 +/− 12 years, mean +/− SD) was
used. Patients participated in an experiment involving the execution or attempt of a
set of reaching voluntary movements in eight sessions along one month.
A self-paced paradigm was used: in each session, patients were asked to perform
self-paced movements (∼1 movement every 10–15 s). The experimental protocols
in which the patients took part were approved by the Ethical Committee of the
‘‘Universidad Rey Juan Carlos’’ (stroke patients), and warranted their accordance
with the Declaration of Helsinki. All patients signed a written informed consent.

EEG was recorded from F3, F1, Fz, F2, F4, FC5, FC3, FC1, FCz, FC2, FC4,
FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3, P1, Pz
and P4 (according to the international 10/10 system). The data were amplified and
digitized at a sampling rate of 256 Hz, and notch-filtered at 50 Hz. In addition to
the EEG signals, the arm and hand movements were measured with three gyro-
scopes placed on the hand dorsum, the distal third of the forearm, and the middle of
the arm to measure the limb kinematics. These data were used to extract the
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movement events by estimating the moments at which self-initiated movements
started (a threshold at 7 % the maximum angular velocity of each session was used
to locate the movement onsets).

2.2 EEG-Based Detection of Motor Intentions

Features were extracted by computing the event related desynchronization
(ERD) and the movement-related cortical potentials (MRCP). For this, only
channels from the frontal, fronto-central, central, centro-parietal, and parietal rows
were considered. To model the resting state, the interval [−4, −2] s with respect to
the movement onset was used. For the movement state, the interval [−0.5, 0.5] s
was used. ERD features were the power values within [7–30] Hz calculated using
an autoregressive model. MRCPs features were the signal amplitudes after filtering
the EEG signals in the range [0.1–1] Hz. Sparse discriminant analysis was used to
select the most discriminant features and as the pseudo-online classifier of motor
intentions.

To obtain training examples of rest and movement intention classes, and to
extract the features, a one-second long sliding window was applied with a step of
250 ms between −4 and −1 s for the rest class and between −0.5 and +0.5 s for the
movement class (with 0 being the onset of the movements as estimated with
gyroscopes).

In those recalibration schemes in which data from a same session was used for
calibration and validation, a trial-based leave-one-out cross-validation was used: for
each trial, the rest of the trials of the same session were used to train the classifier.
Training trials were in turn applied a tenfold cross-validation procedure to obtain
the optimal threshold: in each iteration, 90 % of the training set was used to obtain a
classifier which was applied on the other 10 % of the data and then the optimal
threshold was obtained for the whole training dataset. The criterion to select the
optimal threshold was to maximize the percentage of good trials (as defined in
Sect. 2.4).

2.3 Recalibration Schemes Compared

Three schemes were compared. In Scheme 1, the classifier of each session was
trained with data from the previous session (for session 1, data from the last session
was used). In Scheme 2, the classifier was trained with data from the same session.
Finally, in Scheme 3 the classifiers were trained with both, data from the current
session and from all previous sessions (for session 1, data from only the first session
was used).
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2.4 Classifier Validation and Statistics

To analyze the performance of the different recalibration schemes, the percentage of
good trials (GT %) in each classified session was computed. In this case, good trials
were those in which no false activations were given during the resting phase and, in
addition, one activation was generated in the interval [−0.5, 0.5] s with respect to
the onset of the movements estimated with the gyroscopes. GT % allows a sim-
plified analysis of the detection results combining false activations and true
positives.

To test the statistical differences between the three recalibration schemes, a
Friedman test with Nemenyi post-hoc was used. P-values under 0.05 were con-
sidered significant.

3 Results

Table 1 summarizes the results (GT %) obtained with the decoder of motor
intentions using the three recalibration schemes. These results are in line with what
has been presented in previous studies on BCIs based on motor intention detection
[7]. Decoding results were significantly different between the schemes, with
Scheme 3 (use of historical data in combination with data from the current session)
returning the best results. Post-hoc paired comparisons showed that Scheme 3
provided significantly better results than Scheme 1 (p = 0.013).

No statistically significant differences were found between the recalibration
schemes in terms of the detection latencies achieved (Table 2 shows average
results). The absolute value of the mean latency for Scheme 3 (3 ms) was lower
than for the other two schemes (−57 ms and −70 ms), which may indicate that
Scheme 3 achieved a more accurate model of the motor intention condition (which
was defined as the EEG epochs finishing at t = 0 ms).

Table 1 Average (across
sessions) GT % for each
patient and for each of the
three recalibration schemes
compared

Scheme 1 Scheme 2 Scheme 3

P01 67.8 82.0 86.0
P02 71.6 89.6 92.1
P03 37.5 40.9 51.0
P04 48.0 57.6 68.4
Avg. 56.2 67.5 74.4
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4 Conclusion

According to the results presented here, combining data from different sessions
(including data from the session in which the BCI is to be applied) constitutes the
best solution for recalibrating BCI systems based on motor intentions for inter-
ventions carried out along multiple sessions.
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