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Abstract— Current brain-machine-interface (BMI) rehabil-
itation approaches typically focus on a specific aspect of
neural activity. Auxiliary signals, derived from independent
measures of neural activity and recorded in parallel might be
useful in quantifying and tracking a subjects mental state and
performance. In this work, we demonstrate that event-related
potentials can be reliably observed in stroke survivors with
chronic paralysis during a BMI intervention. The averaged
evoked response remains stable over sessions and varies between
subjects. A prominent negativity, positivity complex emerges
whose features can be tracked across subjects and sessions.

I. INTRODUCTION

Over the course of the past decades Brain-machine-

interface (BMI) driven rehabilitation therapies have been

developed to address the lack of proper therapeutic interven-

tions for chronic paralysis after stroke. Such systems estimate

the neuronal activity of their users (patients) by various

techniques (e.g. electro- or magneto-encephalography, elec-

trocorticography, microelectrode recordings, near-infrared

spectroscopy etc.) to derive markers of movement intention

and/or cortical pre-motor activation and provide coherent

visuoperceptive feedback to the users by means of electrical

stimulation or robotic actuation of their paretic limbs. The

efficacy of the general concept has been demonstrated [1]

and confirmed [2], [9], [7], [12].

However, while the method has been proven to be ef-

ficient on the population level it features a high inter-

subject variability. Individual subjects will respond to the

training with individual progress and success which spans

from appreciable to zero improvements. It remains unclear

to what extend the observed differences can be attributed to

physiological or functional dissimilarities. Concordantly it

remains unexplored whether or not such dissimilarities can

be compensated for by the therapeutic system yielding an

optimal therapy for all subjects.

Meanwhile current BMI rehabilitation approaches typ-

ically focus on a specific aspect of neural activity (i.e.

event-related desynchronization in the case of motor imagery

BMIs). To ensure that the chosen aspect is present in the

data, let it be a certain channel or an aggregate of multiple

channels, the systems tend to record much more data than
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they need to drive the actual control. Various aspects of neu-

rophysiological data in the time and frequency domain are

known to capture a plethora of behavioral neural correlates

[5], [4] , but it remains unclear to what extent the information

present in such auxiliary signals can be used to track and aid

the progress of a subject performing in BMI rehabilitation.

In this study we pose the question whether it is possible

to track a secondary neurophysiological marker (of sensory

processes i.e. features of auditory event related potentials)

over the course of an BMI interventional study in which the

subjects primarily train a different neurophysiological marker

(i.e. desynchronization of the sensory-motor rhythm). With

this we hope to establish the foundation for nested loop BMI

interventions in which the secondary marker is used to drive

the adaptation of the BMI system towards individualized and

optimized therapeutic efficacy.

II. METHODS

A. Participants and Paradigm

This work is built upon data acquired during a previ-

ous study with 32 stroke survivors suffering from chronic

paralysis of the arm and hand (cFMA 12 ± 9) undergoing

either BMI or sham-BMI training. Over the course of 2-

4 weeks of training each participant performed between

250 and 300 runs, each run consisting of 11 trials. In

each trial, the subjects were provided with an auditory

instruction/priming cue followed two seconds later by a

imperative/go cue, the latter being coincident with the start

of a 5 second BMI feedback period. During this period

the subjects controlled a robotic orthosis with the relative

desynchronization of their ipsilesional rolandic (sensorimotor

rhythm [SMR]) brain oscillations. The trials were separated

by an 8 seconds relaxation interval. For further details on the

subject population, demographics and intervention design we

refer to the original works [11], [1].

B. Data Processing

Data processing was performed adhering to the guidelines

provided in [8], [14]. The raw data was zero-phase bandpass

filtered between 0.1 - 40 Hz with a transition band of

0.25 around the respective band-edge frequencies. All EEG

channels were re-referenced to their common average (CAR).

Epochs spanning 2 s before and 3 s after stimulus onset

were extracted and baseline corrected using the pre-stimulus

time. Traces of Cz were selected for further analysis. Epochs

that showed EEG fluctuations larger than 100uVp-p were

rejected (approx. 10% of trials). Evoked potentials were

calculated as the arithmetic means of Epochs for each subject



and session. Aligned correlation coefficients were calculated

as the maximum of delayed correlations between evoked

potentials. Waveform metrics were extracted as indicated in

5.

III. RESULTS

A. Single Session

In figure 1A the epochs of the central electrode Cz

of a single session and subject are displayed as a color

matrix in which rows represent individual epochs, columns

represent time points and pixel color signals voltage value.

The coherent coloring across columns indicates time-locked

activity, which is summarized in the arithmetic mean across

epochs shown in 1B. Gray shading marks the 95% confidence

interval obtained by bootstrapping. In the long-term display,

a three-phase picture typical for most subjects emerges: (1)

about 300ms after cue onset an event-related potential com-

plex emerges from the noise background. (2) It follows a 2

seconds interval of slight negativity (baseline or positivity in

some subjects). (3) After 2.5s a second potential complex can

be observed. The short-term dynamics of the first potential

complex (PCo1) shown in figure 1C reveal a smaller negative

potential peaking about 350ms after stimulus onset followed

by a larger positivity peaking at 425ms.
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Fig. 1. Epochs and average of a single session. A: Individual epochs shown
as rows, color representing voltage. B: Average of epochs (black) with 0.95
confidence interval (gray). C: Zoom on the average potential around first
cue onset.

The full topography of the primary potential complex is

shown in figure2. Electrode configuration and the setups

focus on central electrode signal quality leads to a somewhat

limited topographic mapping of the event-related potential

components. Never the less an initial negativity between

central and parietal electrodes emerges about 325ms con-

taining the negative peak on Cz, followed by a bilateral

temporalization of the potential peaking at about 425ms

and leaving Cz as saddle-node between temporal-parietal

negativities and frontal positivity. About 600ms post-stimulus

the potential topography equalizes and continues to invert

its orientation to a lower amplitude frontal negativity with

parietal positivity beyond 800ms.

Fig. 2. The topography of evoked potentials. Instantaneous potential
distributions are shown for multiple post stimulus time-points, marked in the
electrode traces plotted below. The spatial color coding of electrode traces
is shown in the head-pictogram (top left corner of the box).

B. Across Sessions

Averaging over the epochs of individual sessions yields

approximations of the evoked potential for the respective

session (3). The rows of traces were derived from successive

training sessions from first (top) to last (bottom). Stereotypic

waveforms are observable for a single subject across ses-

sions. The negativity and positivity described before can be

identified in almost all sessions for both subjects. While the

general shape of the waveform is consistent over sessions,

amplitude and timing are not. The property of (linear) shape

similarity is quantified in figure 4 and also compared across

subjects.
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Fig. 3. Evoked potentials across sessions. Averaged epochs over one session
yield one trace, successive sessions are shown as rows starting with the first
training session on the top.



C. Across Subjects

The two subjects shown in figure 3 feature similar wave-

forms featuring both a negativity, positivity and a subsequent

downward slope. Comparable patterns on electrode Cz were

only observable in 19 of the 32 subjects under investigation.

Quantification of the degree of (linear) similarity between

waveforms of subjects and sessions is shown in figure 4.

The relative correlation coefficient of aligned waveforms

is highest between sessions of a single subject (≈ 0.9)

visible as four blocks on the diagonal of the matrix. The

similarity between the waveforms of different subjects is

lower (≈ 0.75) but still profound.
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Fig. 4. Aligned correlation matrix of evoked responses. Each entry of the
matrix is the maximum over delayed correlations of each session’s evoked
response. Values range between 1 (similarity) to 0 (independence). Rows
and columns correspond to the individual sessions of all subjects.

D. Tracking ERP Metrics

Relative and absolute amplitude and delay metrics were

extracted from the session-wise ERP waveforms as shown in

figure 5A. Regression analysis for each subject shows that

the data does not support a linear relationship between any

of the metrics and the training sessions (small adjusted R2

and p values above 0.1 in figure 5B).

IV. DISCUSSION

A. Identifying ERPs During Convoluted Tasks

The paradigms performed by the subjects over the course

of a BMI rehabilitation analyzed in this work are quite

different from those used in classical ERP experiments.

While the general structure of ”instruction/ready” and ”go”

cues followed by active or passive movements remains

comparable to regular paradigms the fast succession of tasks,

the complex and long stimuli and the relationship between

stimuli delivery and task demands are very different from

typical paradigms, in which the sensory input modality is

well defined (e.g. auditive or visual) and the output is limited
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Fig. 5. Measures of PCo1 for all subjects along sessions.A: Description
of the extracted metrics (top), evoked waveforms and average for individual
subjects (left) and time-course of the described markers over sessions
superimposed with regression fits and bootstrapped 95% confidence intervals
(center). B: Summary of the regressions adjusted R values and p values for
the associated F-statistic.

to a specific muscle contraction (i.e. pressing a button). The

convoluted nature of the task-setup presented here can be

described along figure 1B. The first consistently observable

fluctuation seen in our data is PCo1 consisting of a negativity

and subsequent positivity starting 325 ms after stimulus onset

in some subject preceded by another positivity. The timing

matches that of an N2/P3 like event. However, P3 is typically

described as part of an orienting response towards novel

stimuli in the framework of context updates [6] and vanishes

when novelty is missing, while our paradigm doesn’t feature

any novel stimuli but a fixed sequence known to the subject.

Judging from the order of appearance and topography the

potentials might also be identified with a very delayed

N1/P2 vertex potential [8], [10], whose delay might be

a consequence of the relatively long stimulus (full verbal



phrase) and less controlled delivery (technical delay). The

second potential complex (PCo2) that is visible in the long-

term evoked response coincides with the delivery of the ”go”-

cue and constitutes an independent second auditory ERP,

possibly in superposition with the late Bereitschaftspotential

(late BP) of movement planning and initiation as well as the

motor-potential (MP) of movement execution [13]. Between

both complexes, a slight negativity is observed that one

might identify with a contingent negative variation (CNV)

described in classical two-stimulus configurations [8]. The

slow components of PCo2 and following potentials have

been analyzed in detail in preceding work [15], in which

the authors observed prolonged late BP/MP activity in stroke

survivors when they attempted movements with their healthy

limb compared to their impaired limb.

B. Stability of the ERP Complex PCo1

Complementary to prior work we focus our analysis on

the other reliably observable complex PCo1, which shows

stability in terms of waveform shape across sessions and to

some extent across subjects (see figures 3 and 4). Individual

differences in ERP component composition, timing and to-

pography are well known in the literature, sometimes called

ERP finger-prints. They are found to be a consequence of (1)

the unique arrangement cortical neuron orientation in gyri

and sulci that yield unique dipole-moment configurations

when simultaneously active and (2) individual differences

in those synchronized activation dynamics which combine

to become manifest in an individual time-course and topog-

raphy of the potentials on the skull as measured by EEG [8].

In the case of stroke survivors, the lesioned section of the

cortex and/or subcortical structures further individualizes the

observed ERPs. Either through the distortion of the dipole

moments through passive e.g volume conduction effects or

through the alteration of neuronal activation patterns on the

functional level. Despite individual differences, the positive

potential can be observed in all, the negative in most subjects

that show any consistent ERP on Cz.

C. Tracking PCo1 Amplitudes and Latencies

To demonstrate that tracking of ERP components is feasi-

ble across sessions and subjects we extracted six absolute and

relative metrics (peak-amplitudes and peak-times and their

differences) from the from PCo1 components and observed

their behavior over training sessions. Linear trends on a by-

subject basis are not supported by the data as documented

by regression analysis (figure 5B), which indicates that any

processes associated with the observed potentials are not

subject to long-term changes over the course of the BMI

intervention. This finding is to some extent complementary

to the results of recent analysis on the same data that

revealed long-term changes in the primary EEG marker used

to control the BMI, sensory-motor rhythm desynchronization

(SMRD)[Ray et al. in Review]. This puts the observed

ERP components in a somewhat orthogonal position to

the SMR, further supporting their identification with N1/P2

stimuli processing correlates. Following this interpretation,

any changes in potential metrics are expected to happen on

the single trial level [8] rather than over the course of the

full training. In Future work, the waveforms derived for each

subject (fig. 5A left) can be used to derive optimal filters

that might enable ”online” single trial analysis (and possibly

online manipulation) of the PCo1 metrics.
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