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Abstract—Electroencephalography (EEG)-based brain-

machine interfaces (BMI) have been proven effective for motor 

rehabilitation of severely paralyzed patients. The brain activity 

is classified and translated into a go vs no-go feedback (i.e., 

mobilizing, or not, the paralyzed limb). Patients performing the 

same movements but unrelated to their brain activity showed 

poorer or no recovery, which suggests that an accurate 

feedback expedites motor recovery. Being able to decode 

different movements from the EEG would allow providing a 

more accurate feedback, maximizing the rehabilitative 

potential. However, a dynamic rehabilitative environment with 

different types of movements would likely be accompanied by 

involuntary motions with the eyes and the head, which can 

contaminate the measured EEG signals. In this study we 

analyze how external movements associated with the task (i.e., 

eye or head movements) influence the performance of an EEG-

based decoder of reaching movements. Our results reveal that 

different reaching directions could only be decoded when eye 

and head movements occur and only using low frequency 

features (delta band). In summary, this paper highlights the 

importance of carefully designing protocols to avoid eye and 

head movements to contaminate EEG signals. 

I. INTRODUCTION  

Brain-machine interfaces (BMI) for motor rehabilitation 
of severely paralyzed patients have been proven to be 
effective [1]. Those studies showed that linking brain activity 
with the actual movement of the paretic limb promotes 
neuroplasticity, leading to motor recovery [2]. The electrical 
activity produced by the brain is recorded, usually in a non-
invasive way via electroencephalogram (EEG), and translated 
into a binary feedback (i.e., go/no-go). Therefore, when 
patients try to move, an external rehabilitative device 
mobilizes their paralyzed limb, linking their brain activity 
and the actual movement. Importantly, other patients that 
received a sham feedback (i.e., same amount of time 
receiving therapy but unrelated to the brain activity) 
presented poorer or no recovery[1], [3]–[5]. Those findings 
highlight the importance of the link between brain activity 
and movement, and suggest that a more accurate feedback 
might boost the rehabilitative outcome of those interventions. 

Extracting more detailed information about the movement 
performed would allow providing a more accurate feedback, 
potentially boosting the benefits of such an intervention. 
Previous invasive studies have already shown that directional 
information of reaching movements can be extracted from 
delta (<4 Hz) band [6]–[9]. Although this information could 
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also be measured with EEG, several aspects have to be taken 
into account when interpreting those signals. Firstly, brain 
activity captured via EEG presents a much lower signal-to-
noise ratio (SNR), leading to a less discriminant activity. 
More importantly, EEG recordings are easily contaminated 
by other external activity like eye or head movements (head 
and neck muscle activity and movement of the sensors and 
cables). Additionally, these contaminations mainly affect the 
delta band [10], [11]. This external activity can be 
substantially reduced by instructing the subjects. However, 
this approach can hardly be applied in rehabilitative BMI 
interventions with patients since overloading the task with 
too many instructions might compromise its outcome.  

Recent offline studies have shown that the decoding of 
movements from the same limb can be performed using 
EEG. These findings represent an encouraging achievement 
that might take rehabilitative interventions to the next step. 
However, none of those methods has been applied in an 
online application so far. However, understanding how head 
and eye movements affect the decoding might be critical 
before moving these findings to practical applications.  

The objective of this study is to analyze how involuntary 
movements associated with the task (i.e., eye or head 
movements) influence the performance of an EEG-based 
decoder to classify reaching movements. To do so, we 
compared the performance of a state of the art classifier when 
the task is performed under two conditions: one in which 
subjects were instructed not to move the head or eyes during 
the task, and other one in which subjects were free to follow 
their arm movements with their gaze and head orientation. 

 

II. METHODS 

A. Experimental setup 

Five right-handed healthy subjects (2 females, mean age 

30,2 ± 3,4 years) without any neurological disease history 

participated in two experimental sessions. During the 

experiments, the subjects were comfortably seated in a chair 

with their right hand attached to a 7 degrees of freedom 

(DoFs) arm exoskeleton (Tecnalia, San Sebastian, Spain) 

and wearing an EEG cap (see Figure 1a). Subjects were 

instructed to perform reaching movements towards four 

different directions under two conditions: one in which the 

subjects were deliberately instructed to avoid head and eye 

movements during the task (constrained condition), and one 

in which they could perform the task freely, following their 

arm movements with their gaze and/or head (unconstrained 

condition—as patients would do during a rehabilitative 

intervention). In each session, the subjects performed 20 

center-out reaching movements, divided in 5 runs of 5, to 
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Figure 1. (a) Experimental set-up. Subject wearing the exoskeleton while performing a reaching movement towards the green target. (b) EEG 
montage. Electrodes included in the recording displayed in green color. Yellow color indicates the electrodes used for the CAR filter. The electrodes 
colored as red, further referred as contralateral motor cortex electrodes, were used for the subsequent feature extraction and classification processes. 

each of the four targets placed in front of them. The task 

onset, as well as the target to be reached, was presented to 

the subject via auditory cues, according to the following trial 

structure: a rest period of 2-3 seconds was followed by an 

auditory cue indicating the color of the target to be reached. 

Two seconds after, a ―go‖ cue indicated the beginning of the 

movement. Subjects had 3 seconds to reach the target and go 

back to the initial position. Thus, trials had an average 

duration of 7.5 seconds. 

 
  

B. Data acquisition 

The EEG data was recorded from 64 channels (ActiCap, 
Brain Products GmbH, Germany) following the montage 
shown in Figure 1b, with AFz and FCz as ground and 
reference, respectively. Electrooculographic activity (EOG) 
was recorded using four passive electrodes. The impedances 
of EEG and EOG signals were kept below 5 kΩ during the 
recording sessions. EEG data was recorded at 1000 Hz 
(BrainAmp, Brain Products GmbH, Germany). Additionally, 
kinematic activity from the 7 DoF of the exoskeleton was 
recorded from its sensors at 18 Hz. Before any other 
preprocessing, kinematic activity was resampled to 1000 Hz 
using cubic interpolation to match the EEG and EOG signals. 

C. Preprocessing and onset extraction 

EEG signals were downsampled to 100 Hz after applying 
a 45 Hz low-pas filter (4

th
 order Butterworth). Subsequently, 

signals were re-referenced by using a customize common 
average reference (CAR): from all the channels 
independently, we subtracted the mean of all the channels 
placed over the motor cortex (see Figure 1b). The trials were 
aligned based on the movement onset extracted from the 
kinematics of the robot. Thus, the onset was set when the 
kinematic activity showed activation above 5% of its 
maximum activity during this trial (similar to [12]). 

D. Feature extraction 

Two one-second epochs were extracted per trial: one 
between -5 and -4 seconds to characterize rest and one 
between 0 and 1 second to characterize movement (being t = 
0 the kinematic onset). Features were extracted from the 
electrodes placed over the contralateral motor cortex (Figure 
1b). To analyze how head and eye movements affect different 
features commonly used in BMI, we analyzed separately two 
features: the movement related cortical potentials (MRCP) 
and the event-related desynchronization (ERD) of the alpha 
and beta rhythms [13], [14].  

 MRCP: The EEG signals were band pass filtered ([0.05-
2] Hz) using a 1st order Butterworth following [15]. After 
that, temporal features were extracted by downsampling the 
epochs to 10 Hz, therefore obtaining 10 features per 
electrode. Note that, to avoid the effect of the transient 
response of the filter, the signals were filtered before 
extracting the epochs (therefore this effect is produced only at 
the beginning of the signal instead of in all the epochs).  

 ERD: After multiplying the epochs by a Hamming 
window, a 16th order autoregressive model was solved using 
Burg’s algorithm to calculate the power spectral density 
(PSD).  Posteriorly, the mean logarithmic power for the alpha 
(([7-13] Hz) and beta ([14-25] Hz) bands was computed, 
resulting in a set of 2 features per electrode.  

E. Classification and metrics 

We configured two different classifiers: a binary classifier 
to discriminate movement execution from rest and a 
multiclass classifier to decode the 4 different reaching 
movements. Notice that, while the binary classifier was 
trained using the two epochs previously described, the 
multiclass was trained only with the epoch between 0 and 1 
second (since this is the epoch that contains brain activity 
related with the reaching movements). For both classifiers, a 
linear support vector machine (SVM) was implemented. To 
assess the performance of the classifier, a block-based N-fold 



  

 

Figure 2. Decoding accuracy of the binary and multiclass classifiers. Gray bars indicate the performance using MRCP features and white bars using 
ERD. (a) Binary classification results obtained without using any artifact removal technique. (b) Multiclass classification results obtained without using 
any artifact removal technique. (c) Binary classification results obtained after artifact removal. (d) Multiclass classification results obtained after artifact 
removal. 

cross validation procedure was implemented. Four blocks 
(160 trials, 320 epochs) were used to train the classifier, and 
the remaining one (40 trials, 80 epochs) was kept for testing.  
The features were z-score normalized, resulting in a set of 
values with zero mean and unit variance. Mean and std 
values extracted from the training set were used to normalize 
the epochs of the test set. For all the trials assigned to the test 
dataset, the epoch between 0 and 1 (being t = 0 the kinematic 
onset) was classified by the binary and the multiclass 
classifiers independently. For both of them, the percentage of 
epochs correctly classified was computed to evaluate the 
performance of the classifier. Thus, for the binary classifier, 
this metric represents the percentage of movement executions 
correctly detected, and for the multiclass classifier, the 
percentage of reaching movements correctly decoded. This 
process was repeated iteratively so that all the blocks were 
included once in the test set.  

F. Artifact rejection methods 

To study if the presence of these contaminations affects 
the performance of the decoder, we applied state of the art 
artifact removal techniques. First, ocular artifacts were 
removed by applying a regression-based method. This 
method cleans the EEG signals by decorrelating EEG and 
EOG signals assuming that the recorded EEG is a linear 
combination between both (see [16] for a more detailed 
description). Secondly, a variance-based method was applied 
to remove the most contaminated epochs from the training 
dataset. This method computes the power in delta ([0.1-4] 
Hz) and gamma ([30-45] Hz) bands, where motion and 
muscular artifacts occur [11], [17]. Then, an epoch is rejected 
if any of those two values is larger than three standard 
deviations from the mean. More information about how to 
apply this method can be found in [18]. 

 

 

III. RESULTS 

A.  Decoding motor execution and reaching directions 

Figure 2a summarizes the performance of the binary 
classifier for both the constrained and the unconstrained 
condition. In the constrained condition, using MRCP and 
ERD features yielded similar results of almost 80% of 
correctly classified epochs. Similar values were obtained in 
the unconstrained condition, with almost 80% for both 
features. Interestingly, the performance for each type of 
feature was similar between the constrained and 
unconstrained conditions.. 

Figure 2b shows the performance obtained by the 
multiclass classifier under the constrained and the 
unconstrained condition. In the constrained condition, the 
performances of the classifier using both features remained at 
the chance level (i.e., 25 % for 4 classes). In contrast, for the 
unconstrained condition, the performance obtained using 
MRCP features reached almost 70%, while the performance 
of the ERD features presented values at almost chance level. 

B.  Influence of artifact removal on performance 

Figures 2c and 2d illustrate the performance obtained 
with the binary and multiclass classifiers, respectively, after 
artifact removal. No differences could be observed in the 
binary classification between MRCP and ERD features for 
any of the conditions studied with and without applying 
artifact removal. However, in the multiclass classification 
under the unconstrained condition, the accuracy showed a 
drop of 30% when using MRCP features. The results 
obtained when using ERD features did not vary after 
applying artifact removal for any of the conditions. 

  



  

IV. DISCUSSION AND CONCLUSION 

With a growing interest in EEG-based BMIs to train 

different movements of the upper limb, the present study 

investigates how movement-related artifacts (i.e., head or 

eye movements) influence the output of the BMI. We 

proposed an investigation in which we compared the 

decoding results when the subjects avoided moving their 

head and eyes during the task, versus when they performed 

the task freely. Furthermore, to recreate a realistic 

application of a BMI for upper limb, the experiment was 

performed in a rehabilitative-like setup that includes several 

reaching movements and a rehabilitative arm exoskeleton. 

Our results show that reaching movements could only be 

decoded using low-frequency features, MRCP features, and 

only during the condition in which head and eye movements 

occurred and potentially contaminated the EEG signals. 

Notably, the average performance of the binary did not 

change between conditions suggesting that the presence of 

these head and eye movements did not affect the decoding of 

movement execution.  

Applying state of the art techniques to remove the most 

contaminated epochs lead to very similar results for go vs 

no-go classification. and only MRCP features in the 

unconstrained condition lead to a multiclass classification 

above chance level. However, the performance of the 

multiclass classification for the MRCP features in the 

unconstrained condition, in which subjects could move 

freely, showed a 30% drop in performance when artifacts 

were removed. The fact that the binary classification was not 

affected by removing those epochs suggests that the 

classification is not relying on eye and/or head movement 

activity to ―miss-detect‖ movement. However, the drop in 

performance observed in the multiclass classification 

indicates that this external activity (head and eye 

movements) is providing discriminative information that can 

bias the results. 

These findings do not imply that different reaching 

movements cannot be decoded from EEG activity, but 

underlines the importance of designing protocols so that the 

influence of such external signals can be controlled. 

Nonetheless, the here presented analysis was performed 

under specific conditions (reaching movements) and with a 

limited amount of subjects and thus these results need to be 

interpreted with caution.  
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