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Abstract— Low-frequency electroencephalographic (EEG)
activity provides relevant information for decoding movement
commands in healthy subjects and paralyzed patients. Brain-
machine interfaces (BMI) exploiting these signals have been
developed to provide closed-loop feedback and induce neuro-
plasticity. Several offline and online studies have already demon-
strated that discriminable information related to movement
can be decoded from low-frequency EEG activity. However,
there is still not a well-established procedure to guarantee that
this activity is optimally filtered from the background noise.
This work compares different configurations of non-causal (i.e.,
offline) and causal (i.e., online) filters to classify movement-
related cortical potentials (MRCP) with six healthy subjects
during reaching movements. Our results reveal important
differences in MRCP decoding accuracy dependent on the
selected frequency band for both offline and online approaches.
In summary, this paper underlines the importance of optimally
choosing filter parameters, since their variable response has an
impact on the classification of low EEG frequencies for BMI.

I. INTRODUCTION

Brain-machine interfaces (BMI) have been proposed over
the past years as a promising rehabilitative tool for patients
who suffered stroke or spinal-cord injury. BMI-based ther-
apies close the loop between the brain signals associated
to movement intentions and the stimulation of paralyzed
limbs, promoting neuroplasticity [1]. For that purpose, motor
information is decoded from the brain and translated into
control commands for controlling, for instance, prosthetic
and robotic rehabilitative devices or virtual reality environ-
ments [2], [3]. The online detection of motor intentions
is an important and challenging task in non-invasive (e.g.,
electroencephalogram–EEG–based) BMI, due to the low
spatial resolution and signal-to-noise ratio of the signals.
Different cortical signatures of movement have been pro-
posed for decoding this information, such as the event related
(de)synchronization (ERD/ERS) of sensorimotor rhythms [4]
and the movement-related cortical potentials (MRCP) [5].

The MRCP consist of slow changes in the EEG ampli-
tude beginning up to 1.5 s before the execution, attempt,
and imagination of movements [5]. These potentials are
especially relevant due to their good temporal precision for
decoding the onset of movements or movement attempts
[6], [7]. In fact, studies have demonstrated that, linking
peripheral stimulation with the peak negativity of the MRCP
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can facilitate neuroplasticity [8], [9]. Furthermore, there is
recent evidence showing that low frequencies in the EEG
contain information to decode different movements of the
same limb [10], [11].

Despite there is a large body of literature exploiting low
EEG frequencies to decode movement information, there is
not a consensus about the optimal methodology to filter and
process these signals. Filtering is, however, a critical point
in the classification results since most of the low-frequency-
based decoders use temporal features for characterzing the
waveform. Hence, optimizing filter characteristics like phase
response could have an important impact in the decoding
performance. Many studies have used zero-phase config-
urations (i.e., non-causal), filtering in diverse frequency
ranges, to demonstrate that movement information can be
decoded from low-frequency EEG: some of them using
infinite impulse response (IIR) filters (e.g., Butterworth) [6],
[7], [10], [12], and others with finite impulse response (FIR)
filters [13]. However, these FIR filters are not valid for
online applications since they require a high order to achive
the specifications required (i.e. narrow transition band) that
would induce a large delay (e.g., 5 seconds for the FIR with
order N = 10 x sampling rate used in [13]). IIR filters have
been successfully applied online with causal configurations,
although their non-linear phase distortions can induce a drop
in decoding performance (see [6] versus [14]).

An analysis comparing offline and online filtering tech-
niques can help to better understand the viability of low
frequencies for BMI systems. The objective of the current
study is to compare these techniques to filter MRCP activity,
and quantify their influence in the decoding accuracy. In this
study, we used different commonly used metrics to extract
more solid conclusions about how MRCP should be filtered
in a real-time scenario.

II. METHODS

A. Dataset

1) Subjects: Six healthy right-handed subjects without
any neurological disease history (three males and three
females, mean age 24 years) participated in one recording
session. Subjects were informed about the experimental
procedure and signed a written consent form. The study
was approved by the ethical committee of the Faculty of
Medicine, University of Tübingen, Germany.

2) Experimental Setup: Subjects were seated in a com-
fortable chair with their right arm and hand wearing a
7 degrees of freedom (DoF) exoskeleton (Tecnalia, San



Sebastian, Spain) to track their movement kinematics and an
EEG cap with 32 electrodes. The task consisted of a center-
out reaching movement from a starting position (rest posi-
tion). Upon the presentation of an imperative auditory cue
specifying the target, participants were asked to perform the
movement and return to the starting position at a comfortable
pace but within 3 seconds. The auditory cues and the EEG
data were presented and acquired using BCI2000 software.
The experiment was divided in 5 runs of 40 trials. Each of
these trials consisted of a rest period of a random duration
between 2-4 seconds, in which the subjects were asked to
relax and try not to move. Right after, an auditory cue was
presented and the subject had to prepare the movement. After
2 seconds, an imperative ”go” cue was reproduced, and the
subject had 3 seconds to reach the target and go back to the
initial position.

3) Data acquisition: Brain activity was recorded with
multi-channel EEG amplifiers (Brain Products GmbH, Ger-
many) using 32 channels at a sampling frequency of 2500
Hz. The cap contained the electrodes FP1, FP2, F7, F3, Fz,
F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, TP9, CP5,
CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO9, O1, Oz,
O2 and PO10, using AFz and FCz as ground and reference,
respectively. Kinematic data of the 7 DOFs exoskeleton was
recorded at 18 Hz and then resampled to 2500 Hz using
cubic interpolation to match the EEG signals. Additionally,
horizontal and vertical electrooculogram (EOG) signals, were
recorded.

4) Preprocessing: In order to reduce the computational
cost, EEG data was downsampled to 100 Hz after applying an
antialiasing filter (Butterworth 4th order low-pass filter at 45
Hz). An automated method for reducing EOG artifacts [15]
was applied. Finally, in order to re-reference the EEG signals,
we applied a common average reference (CAR), where the
average across all the motor cortex channels (FC1, FC2, C3,
Cz, C4, CP1, CP2) was subtracted for each channel for each
time sample.

B. Spectral filters

FIR filters introduce a large delay (several seconds),
making IIR filters (i.e., Butterworth or Chebyshev) the only
option for an online BMI application. Unlike the other IIR
filters, Butterworth filters present a maximally flat frequency
response and a more linear phase response. For this reason
all or analyses are generated using Butterworth filters only.
We studied several lower (0.01, 0.05, 0.1, 0.2 and 0.3 Hz)
and upper (1, 2, 3, 5, 10 Hz) cut-off frequencies, following
[13]. The order of the filter was not evaluated in the present
study since orders above 2 would lead to an unstable IIR
filter for most of the proposed bands. Therefore, all the filters
analyzed were 2nd order Butterworth.

C. Feature extraction and classification

The preprocessed and filtered EEG data was aligned to
the movement onset obtained from the kinematics recorded
with the exoskeleton. Then, we extracted two one-second
epochs per trial. The epoch from -4 to -3 seconds (being

0 the movement onset) will be used for characterizing the
rest brain state, and the epoch from -1 to 0 seconds, for the
movement intention state. Time features were extracted from
channel ’Cz’, subsampling each epoch to 20 Hz, resulting in
a set of 20 features.

A block-based N-fold cross validation was applied in order
to evaluate the performance using all available epochs, but
avoiding overfitting. Feature vectors corresponding to the
training epochs were standardized according to the z-score
procedure: first, the mean of each feature was subtracted and
then those features were divided by their standard deviation.
A support vector machine (SVM) with a radial basis function
(RBF) kernel was trained using these standardized feature
vectors. Posteriorly, feature vectors corresponding to the
test epochs were normalized using the mean and standard
deviation obtained from the training data and then classified
using the previously trained SVM model.

D. Metrics

The grand averages of the filtered EEG trials were com-
puted to observe the waveshape differences produced by each
analyzed filter. All the trials were aligned to the kinematic
onset. Then, a baseline correction was applied by subtracting
the mean of the time samples between -3 and -2 seconds.

We computed two different metrics in order to evaluate
the influence of the filtering. Firstly, the accuracy of the
decoder was evaluated as the percentage of epochs well
classified divided by the total number of epochs. For this
metric, only two epochs per trial were considered: [-4, -3]
s as the rest class and [-1, 0] s as the movement class.
Secondly, the percentage of correct trials was computed.
This metric represents the number of executions that would
provide an accurate detection of the movement onset without
false positives before the movement starts [7]. Hence, a trial
is considered correct if no movement detection is produced
during the interval between [-4. -2] s, and at least one detec-
tion is produced in the [-2, 0] s interval. In this analysis, we
evaluated the performance using one-second epochs between
-4 and 0 seconds, with a sliding step of 50 ms.

III. RESULTS

A. Grand Averages

Figure 1 shows the grand averages of channel ’Cz’,
varying both lower and upper cut-off frequencies, for causal
and non-causal filtering.

The left part of the figure (A and C) shows the results of
applying causal filtering. On one hand, modifying the lower
bound greatly impacts the slope of the MRCP: sharper slope
of the MRCP for the smaller values (i.e., below 0.1 Hz)
and an increase in the variance when decreasing the lower
limit (see Figure 1.A). On the other hand, the upper bound
of the bandpass range does not modify the resulting shape
but influences importantly the time of the negative peak: the
(0.1-1) Hz filtered grand average presents a delay of 160 ms
with respect to the other upper limits studied (see Figure
1.C).
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Fig. 1. Grand averages and standard errors, channel ’Cz’. (First row: varying the lower cut-off frequency, second row: varying the upper cut-off frequency.
First column: causal filters, second column: non-causal filters)

Non-causal filtering shows less prominent differences for
the studied bands. The upper bound of the filtered range
does not affect the resulting shape (see Figure 1.D), while
modifying the lower bound greatly impacts the slope of the
MRCP, showing sharper shape and higher variance for the
smaller values of the lower bound (see Figure 1.B).

B. Influence on classification performance

Figure 2 summarizes the single-window classification re-
sults obtained for the different filters. Both groups, causal
and non-causal, present almost identical performance when
modifying the upper limit. However, the lower limit has
an impact on the classification accuracy. The lower cut-
off frequencies above 0.1 Hz provide lower performances.
Regarding the frequencies below 0.1 Hz, either in causal and
non-causal approaches, the best accuracy values are obtained
for the bands [0.05-1] Hz and [0.1-1] Hz.

The results obtained computing the metric of correct trials
with a continuous decoding strategy are shown in Figure 3.
The best results are achieved using the [0.1-1] Hz band, both
in causal and non-causal filtering. However, these differences
in performance are smaller in the causal approach, where
the band [0.05-1] Hz has a similar performance to [0.1-1]
Hz. Again, lower limits above 0.1 Hz show a decrease in
performance. Upper limits above 2 Hz present also a drop
in the performance.

Due to the results obtained, we performed a post-hoc
analysis evaluating the performance of the [0.05-2] Hz band.
This filter showed a decoding accuracy slighly higher than
the performance obtained using the [0.1-1] Hz and the [0.05-
1] Hz band (see Figure 2). However, the percentage of correct
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Fig. 2. Decoding accuracy (mean and standard error across the subjects)
obtained for the different filters
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standard error across the subjects).



trials using the [0.05-2] Hz band was lower than the result
obtained using the [0.1-1] Hz (see Figure 3).

IV. DISCUSSION AND CONCLUSIONS

This paper studies the impact of an IIR filter frequency
band on movement intention decoding based on EEG slow
oscillations (MRCPs). In the non-causal approach, we found
that a second-order Butterworth [0.1-1] Hz achieves the best
performance results. Increasing the lower limit above 0.1 Hz
has an important and negative impact in both performance
results and grand average MRCP shape. Since the phase
response of the filter does not play any role in the non-
causal approach, this finding suggest the [0.1-1] Hz band as
the spectral location of the MRCP. In the causal approach
the results are slighly different. Firstly, a delay of 160 ms
appears in the MRCP peak location between the 1 Hz upper
cut-off frecuency and the higher values. This might be caused
by the phase distortion introduced by the filter in the band
edges (i.e., 0.1 and 1 Hz). Non-linear phase desynchronizes
the MRCP harmonics, producing changes in the shape of
the waveform. When increasing this upper limit to 2 Hz,
the resulting phase response is more linear around 1 Hz,
leading to smaller phase distorsion in the MRCP spectral
location. This can be an important point in those studies
where the feedback is coupled with this peak location [8],
[9]. In addition, the differences between the [0.1-1] Hz and
[0.1-2] Hz performances are almost negligible, proving this
2 Hz upper cut-off frequency as a more robust choice.

Regarding the lower cut-off frequency, although the [0.1-1]
Hz filter got the best performance in the non-causal approach,
the difference with the [0.05-1] Hz is small when a causal
filtering was applied. Again, this might be due to the phase
distorsion produced around 0.1 Hz, when the signal was
filtered using the [0.1-1] Hz filter. Therefore, reducing the
lower limit would produce a more linear phase around 0.1
Hz. However, observing the grand averages and standard
errors, we found that when reducing the low-frequency limit
below 0.05 Hz, the resulting signal presents a larger variance.
This can be due to the variability introduced by the infra-slow
oscillations (ISOs), present in the EEG signals below 0.1 Hz
[13]. This may explain why the [0.01-1] Hz filter showed a
much lower performance in terms of decoding accuracy.

In summary, for a real-time analysis, filtering the signal
between [0.05-2] Hz can provide us with a good compromise
between a precise temporal detection and an accurate decod-
ing. Nevertheless, a [0.1-2] Hz filter has also to be considered
in order to correctly attenuate the infra-slow oscillations
mentioned above. Furthermore, our findings confirm previous
studies [13] showing the [0.1-1] Hz filter as the most suitable
choice for an offline analysis.
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(GRUENS ROB-1), the Deutsche Forschungsgemeinschaft
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