
ACCELERATING URBAN SCENES VISUALIZATION
USING A QUADTREE

DECOMPOSITION OF URBAN BLOCKS

J.L. Pina
Grupo de Informática Gráfica

Avanzada (GIGA)
Departamento de Informática e

Ingeniería de Sistemas
Universidad de Zaragoza

 Spain

jlpina@ivo.cps.unizar.es

F.J. Serón
Grupo de Informática Gráfica

Avanzada (GIGA)
Departamento de Informática e

Ingeniería de Sistemas
Universidad de Zaragoza

 Spain

seron@unizar.es

E. Cerezo
Grupo de Informática Gráfica

Avanzada (GIGA)
Departamento de Informática e

Ingeniería de Sistemas
Universidad de Zaragoza

 Spain

ecerezo@unizar.es

ABSTRACT
A data structure based on urban blocks which vastly improves rendering speed in urban walkthroughs and
flights is presented in this paper. The city is split by means of a special quadtree partition and the block is
adopted as the basic urban unit. One advantage of blocks is that they can be easily identified in any urban
environment, regardless of the origins and structure of the entry data. Results are promising and lead to a factor
three increase in rendering speed.

Keywords
Visualization Urban Quadtree Block Walkthrough Fly.

1. INTRODUCTION
The aim of this paper is to find a data structure

capable of interactively carrying out urban
walkthroughs and flights without the use of
predefined paths. In order to fulfill both possibilities,
all the elements of the city are grouped into a basic
unit: the urban block. Setting out from a typical
Quadtree decomposition [Paj98a], a data structure
that we named B-Quadtree or Block-Quadtree was
built. The use of this data structure leads to a great
increase in FPS, both in flights and walkthroughs.
One of the requirements imposed on the new data
structure was that it was capable of being applied to
urban data with low structure or no structure at all.
Therefore, the proposed data structure can be applied
to data acquired from several sources: 2D GIS,
terrain measurements, etc. Another advantage of our
method is that identification of buildings is not

required. Our basic unit, the urban block, can be
easily identified under any circumstance, which is
not the case with individual buildings. Moreover, the
use of blocks has an impact on the number of nodes
in the structure: there are not as many there would be
if we were using buildings, but there are enough for
fast tree culling.
The data used to test our model has been exported
from a 2D-GIS. In the initial files neither buildings
nor blocks were already identified as entities.
Therefore, filtering, structured and 3D elevation has
been necessary. The results obtained prove that it is
possible to improve to a great extent the rendering
speed using an adequate data structure.
The organization of the paper is the following: next
section is devoted to discuss previous related work.
Section 3 presents the new data structure and section
4 shows the load of the structure in Performer in
order to test visualization speed. In section 5 results
are presented whereas conclusions are outlined in
section 6.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

2. RELATED RESEARCH
A great variety of solutions can be found in the
bibliography related to urban walkthroughs and
flights. The challenge still remains: to visualize a
large amount of geometric elements all together and

in real time. Methods can be classified into four main
groups of techniques: LOD or level of detail,
billboards, occlusion culling and preprocessing.
LOD is one of the most frequently used techniques:
continuous LODs have been tested [Dol05a], but
these reduce rendering speed; so have hierarchical
models [Fun93a] that choose the proper resolution
according to the node of the tree being displayed.
However, it is very difficult to avoid bothersome
drops between frames of different resolutions.
Billboards [Sil97a] and impostors [Jes05a], are based
on the use of images of objects instead of the 3D
objects themselves. They are very effective in
reducing rendering time. The correct use of this
technique allows for realistic visualizations with less
graphics cost. In fact, the task of visualizing models
with many polygons is not really solved, but avoided.
A minor variation of billboards is the image reuse
technique [Sha94a]: the images of the object are
stored in real time for the duration of a frame, and
then the images are reused providing changes remain
below a certain threshold.
The occlusion culling technique resorting only to
software techniques [Tel91a] or taking advantage of
the GPU [Bit04a], involves culling away objects that
are not visible due to their being hidden. The
identification of hidden objects from the camera’s
point of view is the major challenge involved. A new
identification is needed for each frame every time the
camera or an object moves. Nonetheless, occlusion
culling is one of the most common techniques,
because in an environment full of graphic elements
which are very close to one another, as far as height
is concerned, certain objects —those nearest to the
camera— will hide more distant ones. Although the
algorithm required to fix hidden objects is time
consuming, the time saved is worthwhile (Cohen-Or,
2002). This technique is widely used in urban
environments, but it is not suited to urban flights in
real time.
Preprocessing is the name given to all those
techniques that rely on data structuring to facilitate
the visualization phase. They have proven to be very
helpful for visualization without being time
consuming. One form of preprocessing is the Out-of-
Core technique, which has been intensively used in
other areas. The Out-of-Core technique is used
whenever it is desirable to store scene data in discs.
These data are dynamically loaded in real-time when
needed. Adequate distribution of the data in the disc
allows for efficient pagination [Dav99a]. All the
related information is stored in the same disc page;
afterwards, when needed, it is recovered [Els00a].
Also, preprocessing can be used to improve the
performance of the other techniques already
mentioned, reducing the number of visible polygons

in the model in the case of occlusion culling, by
building trees of occluders, such as a binary tree
[Bit01a]. Preprocessing to build an indexed data
structure is the acceleration option chosen in this
paper: we will be using an efficient tree type data
structure called B-Quadtree. The structure will be
generated on the basis of a region quadtree
decomposition [Fin74a]. The region quadtree is a
decomposition of the space into four equal quadrants,
which are usually rectangular, although other shapes
may also be used. Quadrants are recursively
subdivided into four subquadrants, as long as the
subdivided region maintains a minimum number of
elements. The quadtree decomposition [Aya85a] is
the most commonly used decomposition for terrain
visualization, whereas in urban scenes the R-tree
[Gut84a] is the structure used most often.
From the comparative survey of data structures
published by [Gae98a], we may conclude that those
data structures which belong to the Quadtree and R-
tree families yield the best performance. The best
improvements of the R-tree family have been
analyzed by [Kat97a], and are:
R*-tree [Bec00a] is an R-tree with an optimized
insertion method, and is one of the most used R-
trees.
SS-tree [Whi96b] is an R*-tree with bounding-
spheres instead of bounding-boxes .
SR-tree [Kat97a] is an index structure which
integrates bounding spheres and bounding rectangles,
and is an improvement on the SS-tree.
The VAMSplit R-tree [Whi96a] is an optimized R-
tree. The tree construction algorithm is based on the
k-d-tree and, like R-tree, uses bounding-boxes.
According to the performance tests considered in
[Kat97a], VAMSplit R-Tree is the data structure with
the greatest rendering speed up.
On the basis of these results and those obtained by
[Gae98a], as mentioned earlier, a new VAMSplit R-
Tree optimized data structure was developed, based
on a Quadtree decomposition, instead of a K-D-tree
decomposition of the scene, using bounding-spheres
for nodes and bounding-boxes for the leaves.
A Quadtree is implemented instead of a K-D-tree
because the data structure obtained is more adequate
to the spatial distribution of the blocks.
The bounding-boxes of the nodes have been
replaced by bounding-spheres according to the
results of [Kat97a]. The use of bounding-spheres has
resulted in improvements in node access speed and
storage requirements. Nevertheless, the use of
bounding-spheres produces too much overlapping,
which is the reason for the use of bounding-boxes in
this instance.

No splitting of the objects (urban blocks) is
implemented, since this would involve a scattering
along the tree of the pieces of urban blocks, which
would in turn lead to a poorer performance of the
data structure.

3. THE B-QUADTREE STRUCTURE
The data structure developed has been called B-
Quadtree because it is a decomposition of a city’s
blocks in quadtrees. In this paper, the term block is
used to name the group of urban elements completely
surrounded by streets, i. e., the usual meaning of
urban block.
In order to build the structure, certain tasks have to
be carried out first. In particular, we must:
- identify all the blocks in the town
- assign every graphic element of the town to an
urban block
- calculate the bounding-box of each block and the
bounding-sphere of each node.
In this paper the block is considered the minimum
and indivisible unit of the city as well as the basis of
the proposed structure. In Figure 1 a part of the city
under consideration (Zaragoza, Spain) with the
blocks already identified is displayed.

Figure 1 Identifying the blocks in a city

Identification of blocks takes places, in this case,
setting out from the streets, which are identified from
the outset. Block status is assigned to any portion of
terrain completely surrounded by streets. To build
the B-Quadtree, the first step is to take the minor
rectangle bounding the city. This rectangle is divided
into four equal rectangles called quadrants; all
quadrants are recursively subdivided in this manner.
The B-Quadtree tree is formed by recursive division
of the city into quadrants. A quadrant is considered
to be indivisible if it contains less than two blocks.
Should a division cross a block, the entire block is
assigned to a quadrant. The division ends when each

block has been assigned to a quadrant and to one
only. At the end of the process, every final quadrant
must contain a single block or remain empty. Figure
2 presents a B-Quadtree decomposition performed on
the example shown in Figure 1.

Figure 2 Quadtree decomposition: every

quadrant is identified

Figure 3 shows a graphic representation of the B-
Quadtree structure. Quadrants containing a block are
called leaves, and are represented by squares;
quadrants that have been subdivided are called nodes
and are represented by ellipses. Empty quadrants are
not stored in the tree, thus categorizing the quadtree
as an adaptive quadtree.

Figure 3 Tree representation of the example seen

in Figure 1

Each leaf of the tree stores the entire geometry of the
block as well as the bounding-box calculated for that
block. Each node stores a pointer to its descendants
and to the bounding-sphere of the node, which in
turn is the result of the union of its descendants’
bounding boxes. Therefore, the resulting structure is
a tree of the quadrants’ bounding-spheres which ends
with the bounding-boxes and contains the geometry
of the blocks as well. A linear codification based on
a numeric key is used to identify all the elements of
the tree, nodes and leaves. Storage of the key of each

element of the tree is required due to the non-
representation of empty blocks.
These are the properties of the B-Quadtree data
structure:

• Quadrants are disjointed (but not his
bounding-spheres) and they have the
same size at a specific level

• The complexity of the search for an
element is proportional to the depth of
the tree, being O(n) in the worst case,
where n is the maximum depth of the
tree, which tends to be small. Union,
intersection and complement share the
same complexity, all of which leads to
very efficient tree culling.

• Although very similar to an SR-tree and
VAMSplit R-tree, the most important
difference is the use of the quadtree
decomposition with no splitting blocks.

4. VISUALIZATION WITH
PERFORMER
OpenGL Performer, specifically, the perfly
application, has been used to test the proposed B-
Quadtree data structure. In order to load the
structure, a file with all the geometry and the B-
Quadtree structure elements arranged in nodes and
leaves is supplied to perfly. A dll reads it, quadrants
are loaded as pfGroup and blocks are loaded as
pfGeoset, pfBuilder creates the tree in Performer
format.
The choice of Performer as our tool for testing the
structure is due to its widespread use. It is one of the
most used scene graphs and is supported by certain
tutorial applications, such as perfly. Therefore the
data structures developed were tested easily and
impartially. Of course, any other scene graph may be
used, as only a new dll, which can be generated for
the new format, is required. Besides, the
preprocessing programs are in tcl, and the associated
dll in C. Both are independent from the operative
system and hardware, and are therefore totally
portable. Although Performer is equipped with tools
for speeding up rendering, no acceleration technique
has been used, in order to show that the increase in
rendering speed is caused only by this structure.
Figure 4 shows the B-Quadtree tree implemented by
Performer while flying over the city. In order to
facilitate the identification of urban blocks these are
coloured instead of texturised.

Figure 4 Tree implementation in Performer

In Figures 5, 6 and 7, some images of the town
visualized with perfly are shown. Figure 5
corresponds to a flight over the city, Figure 6 shows
a snapshot of a walkthrough the city streets, and
Figure 7 shows the wired composition of the urban
elements.

Figure 5 Flight over the city

Figure 6 Walkthrough through the city

Figure 7 View of the model wired

5. RESULTS
The data used belong to the city of Zaragoza,
(Spain), and have been kindly provided by the city
council. The initial file was in Miscrostation format
and its data were converted to a 2,013,900 point text
format. The B-Quadtree structure built was
comprised of 145 nodes and 96 leaves. Auxiliary
files for the 96 blocks as well as one file with the
300Mb 3D model and 1,688,218 triangles were
created. Two other files were generated on the basis
of the latter file, one of which contained 610,325
triangles, and the other 2,358,953. All tests were
performed with a computer provided with a DualP4
Xeon Pentium 4 processor at 2.8 GHz and a memory
of 2Gb. The graphic card is a GeForce Fx 6800 Ultra
with a memory of 256 Mb. The operative system is
Windows XP. Table 1 shows the evolution of FPS
speed for each of the models. The first row shows
results without using B-Quadtree structure; the
second row shows results using the new structure.
All the results are in frames per second (FPS), and
belong both to flights over the city as well as
walkthroughs at ground level. In both cases, tests
have been performed under the same conditions,
using Perfly and its options by default (occlusion
culling not being one of them). The only difference is
the inclusion of the B-Quadtree data structure in the
second case (second row) which is therefore the sole
possible explanation for the resulting improvement.
Each time the B-Quadtree structure is used, a
substantial increase in frames per second becomes
evident.

 Triangles

 610.325 1.688.218 2.358.953

Perfly 9 fps 4 fps 2 fps

Perfly + B-Quadtree 9-20 fps 4-15 fps 2-12 fps

Table1. Rendering speed in FPS according to the
data structure used and the number of triangles

of the model

Table 1 shows the results obtained without any
additional acceleration technique. The use of B-
Quadtree structure allows us to apply Performer’s
usual culling algorithm, from top to bottom and from
left to right, based on the bounding-box of the nodes.
The culling begins testing the root node, after its
descendents are tested. If necessary, the more
leftward node, along with its descendent is tested,
and all the following nodes are recursively tested,
ending with the most rightward node. This culling
explains the speed interval obtained in the second
row: the closer the camera is to the city, the more
nodes are culled away, and the larger the
improvement in speed. If no data structure is used, a
constant number of FPS is obtained because triangles
are not culled away when they disappear from the
screen. Better results, in FPS terms, are obtained
when more polygons are visualized: FPS may be
multiplied by up to 6, a figure which corresponds to
the bigger model. It should be noted that the rate of
improvement obtained is similar or superior to those
obtained in other relevant research. Thus, in their
paper [Kat97a] reported improvements between 1
and 6 times in CPU time consuming, with the use of
VAMSplit R-tree.

6. CONCLUSIONS
We have presented a new data structure, the B-
Quadtree. This structure is especially suited to urban
environments. These are its main features:

• It is defined by considering the city block as
the basic and logical unit. The advantage of
the block as opposed to the traditional unit,
the building, is that it is easily identified
regardless of the data source format.

• The usefulness of the structure has been
tested with low structured city data, which
makes its application appropriate to almost
all city data.

• Tests have been carried out with a standard
application, and it could equally be used
with any scene graph application.

The results obtained by the tests show that when
using the B-Quadtree structure to perform city

walkthroughs and flights, rendering times are divided
by up to a factor of 6.

7. FUTURE WORK
Adaptation to a Workbench has been initiated,
exploring stereoscopy. Inclusion of textures is
immediate.
The next great step will be the rendering of certain
mobile agents, people, cars, etc, and the study of
their incorporation to our structure. There is a great
amount of applications based on the movement of
groups of people: studies of evacuations, troops
maneouvres, etc.

8. ACKNOWLEDGMENTS
This work has been partly financed by the Spanish
Dirección General de Investigación, contract number
Nº TIN2004-07926 and TIN2004-07672-C03-03 and
by the Government of Aragón by way of the
WALQA agreement (ref. 2004/04/86).

9. REFERENCES
 [Aya85a] Ayala, D., Brunet, P., Juan, R., and Navazo, I.

1985. Object representation by means of no
minimal division quadtrees and octrees. ACM
Trans. Graph. 4, 1 (Jan. 1985), 41-59

[Bec00a] Beckmann, N. Kriegel, H-P. Schneider,R. and

Seeger, B. The R*-tree: An efficient and robust
access method for points and rectangles. In
Proceedings of the 1990 ACM SIGMOD
International Conference on Management of
Data, pages 322-331, Atlantic City, NJ, 1990

 [Bit01a] Bittner, J. and Havran, V., Exploiting Temporal

and Spatial Coherence in Hierarchical Visibility
Algorithms, Proceedings of Spring Conference
on Computer Graphics SCCG 01, IEEE
Computer Society, 2001, 213--220

[Bit04a] Bittner, J. and Wimmer, M. and Piringer, H. and

Purgathofer, W., Coherent Hierarchical Culling:
Hardware Occlusion Queries Made Useful,
Computer Graphics Forum Proceedings of
EUROGRAPHICS 2004, 3, 23, 615—624

 [Coh02a] Cohen-Or, D. and Chrysanthou, Y. and Silva,

CT. and Durand, F., A Survey of Visibility for
Walkthrough Applications, IEEE Transaction on
Visualization and Computer Graphics, 2002

[Dol05a] Dollner, J. and Buchholz, H., Continuous level-

of-detail modeling of buildings in 3D city
models: Proceedings of the 13th annual ACM
international workshop on Geographic
information systems, Bremen, Germany, 2005,
173—181

[Da99a] Davis, D. and Ribarsky, W. and Jiang, T. Y. and

Faust, N. and Ho, S., Real-Time Visualization of

Scalably Large Collections of Heterogeneous
Objects, IEEE Visualization 99, San Francisco,
1999, 437—440

[Dow01a] Downs, L. and Moller, T. and Sequin, C.H.,

Occlusion horizons for driving through urban
scenery, SI3D 01: Proceedings of the 2001
symposium on Interactive 3D graphics, ACM
Press, New York, NY, USA, 2001, 121—124

[Els00a] El-Sana, J. and Chiang, Y., External Memory

View-Dependent Simplification, Computer
Graphics Forum, 19, 3, 2000

[Fin74a] Finkel, R. and Bentley, J.L, Quad Trees: A Data

Structure for Retrieval on Composite Keys, Acta
Informatica 4, 1, 1974, 1-9

[Fun93a] Funkhouser, T.A. and Séquin, C.H., Adaptive

Display Algorithm for Interactive Frame Rates
During Visualization of Complex Virtual
Environments, Computer Graphics Annual
Conference Series, 27, 1993, 247—254

[Gae98a] Gaede, V. and Günther, O. Multidimensional

access methods. ACM Comput. Surv. 30, 2 (Jun.
1998), 170-231.

[Gut84a] Guttman, A. and Yormark, B., R-Trees: A

Dynamic Index Structure for Spatial Searching,
SIGMOD 84 Proceedings of Annual Meeting,
Boston, Massachusetts, June 18-21, 1984, 47-57

[Jes05a] Jeschke, S. and Wimmer, M. and Schumann, H.

and Purgathofer, W., Automatic Impostor
Placement for Guaranteed Frame Rates and Low
Memory Requirements, Proceedings of ACM
SIGGRAPH 2005 Symposium on Interactive 3D
Graphics and Games,2005, 103—110

[Kat97a] Katayama, N. and Shinichi, S., The {SR-tree}: an

index structure for high-dimensional nearest
neighbor queries, Proceedings of ACM SIGMOD
, May 1997, 1997, 369—380

[Paj98a] Pajarola, R., Large scale terrain visualization

using the restricted quadtree triangulation, VIS
98: Proceedings of the conference on
Visualization 98, Research Triangle Park, North
Carolina, United States, IEEE Computer Society
Press, Los Alamitos, CA, USA, 1998, 19—26

[Sil97a] Sillion, F. G. and Drettakis, B. B., Efficient

Impostor Manipulation for Real-Time,
Visualization of Urban Scenery. Computer
Graphics Forum Proceedings of
EUROGRAPHICS 97, 16, 3, 1997, 207—218

[Sha96a] Shade, J. and Lischinski, D. and Salesin, D. H.

and DeRose, T. and Zinder, J., Hierarchical
image caching for accelerated walkthroughs of
complex environments, SIGGRAPH 96:
Proceedings of the 23rd annual conference on

Computer graphics and interactive techniques,
1996, 75—82

[Tel91a] Teller, S.J. and Séquin, C.H, Visibility

preprocessing for interactive walkthroughs,
Computer Graphics 4, 25, 1991, 61—68

[Whi96a] White, D.A. and Jain, R, Similarity indexing:

Algorithms and Performance, Proc SPIE Vol
.2670, San Diego, USA, pp 62-73, Jan. 1996.

[Whi96b] White, D.A. and Jain, R, Similarity indexingwith

the SS-tree, Proc of the 12th Int.Conf on Data of
Engineering,New Orleans,USA, pp 516-523,
Feb. 1996.

	1. INTRODUCTION
	2. RELATED RESEARCH
	3. THE B-QUADTREE STRUCTURE
	4. VISUALIZATION WITH PERFORMER
	5. RESULTS
	6. CONCLUSIONS
	7. FUTURE WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

