
Volume 0 (1981), Number 0 pp. 1–10 COMPUTER GRAPHICS forum

BqR-Tree: a Data Structure for Flights and Walktroughs in
Urban Scenes with Mobile Elements

J.L Pina1, F. Seron1 and E. Cerezo1

1Advanced Computer Graphics Group (GIGA)
1Computer Science Department, University of Zaragoza

1Engineering Research Institute of Aragon (I3A), Zaragoza, Spain
1jlpina@zaragoza.es, seron@unizar.es, ecerezo@unizar.es

Abstract
BqR-Tree, the data structure presented in this paper is an improved R-Tree data structure based on a quadtree
spatial partitioning which improves the rendering speed of the usual R-trees when view-culling is implemented,
especially in urban scenes. The city is split by means of a spatial quadtree partition and the block is adopted
as the basic urban unit. One advantage of blocks is that they can be easily identified in any urban environment,
regardless of the origins and structure of the input data. The aim of the structure is to accelerate the visualization
of complex scenes containing not only static but dynamic elements. The usefulness of the structure has been tested
with low structured data, which makes its application appropriate to almost all city data. The results of the tests
show that when using the BqR-Tree structure to perform walkthroughs and flights, rendering times vastly improve
in comparison to the data structures which have yielded best results to date, with average improvements of around
30%.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.6]: Graphics data structures
and data types—

1. Introduction

Among the largest and most complex scenes are urban envi-
ronments; urban scenes are particularly interesting for sev-
eral simulation applications: crowds in motion, emergency
evacuations, virtual tours, urban planning, military opera-
tions, traffic management and its impact of noise to the sur-
rounding buildings, etc.
Not only the size and the complexity of actual virtual ur-
ban environments are increasing, but the need to populate
them with more than just a few mobile elements (charac-
ters, cars,...). In fact, real-time rendering of highly populated
urban environments requires the resolution of two separate
problems: the interactive visualization of large-scale static
environments, and the visualization of animated crowds or
other mobile elements. Both tasks are computationally ex-
pensive and only now are beginning to be addressed by
developers. Several techniques commented in next section,
have been developed to accelerate the rendering of complex
scenes. This paper focuses on one of them, view-culling and

in particular, in the use of a proper data structure to acceler-
ate it.

As it is well-known, a scene graph is a directed acyclic
graph, which describes the entities and dependencies of all
the graphic elements in the scene. A view frustum culler
culls away all the scenegraph’s nodes that lay outside the
view frustum, i.e. those objects that are outside the ob-
server’s field of view, by using the nodes’ bounding vol-
umes. Faster view frustum cullers are particularly important
if complex and large scene graphs are traversed. Dividing
complex geometry, consisting of multiple triangles, into an
adequate data structure can greatly improve the ability to
cull away triangles that lie outside the view frustum, result-
ing in less triangles to be sent to the rendering pipeline. The
advantage of using a data structure is that the work of cre-
ating the data structure is performed in pre-processing time
with little addition to the real-time computation. Afterwards,
other techniques can be applied to further improve the fram-
erate. Data structures are commonly designed considering

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



J.L Pina, F. Seron & E. Cerezo / BqR-tree

only static environments, but they should also be effective
in environments populated by mobile elements, therefore,
both type of elements should be taken into account. R-tree
is the most common data structure implemented in urban
scenes because its management of bounding volumes in gen-
eral leads to an efficient view-culling. Its main drawback is
overlapping, especially concerning large objects, which are
common in urban scenes.
On the other hand Quadtree is the most common data struc-
ture implemented in terrain scenes. It leads to a spatial
decomposition without overlapping and in which objects
which are near to each other remain close in the data struc-
ture, which requires less culling time for the scene graph.
It was originally developed for point scenes and is not well
suited for complex objects such as urban blocks or build-
ings. When compared with an R-Tree decomposition, the
Quadtree decomposition is more adequate to the spatial dis-
tribution of urban elements and requires less culling time,
but the bounding volumes of an R-tree are more efficient
than the quadrants of the Quadtree for testing the view-
frustum.
The aim of this paper is to find a data structure capable of in-
teractively performing urban walkthroughs and flights con-
taining numerous dynamic entities without the use of pre-
defined paths. In order to fulfill these requirements, all el-
ements of the city are grouped into a basic unit: the urban
block, since the basic urban unit is a natural way to inte-
grate static and mobile elements in the data structure. Setting
out from a typical quadtree decomposition, a data structure
named BqR-Tree or Block-Quadtree R-Tree is built. The use
of a Quadtree decomposition leads to a very efficient spatial
decomposition of the urban scene; afterwards, the data struc-
ture is populated like an R-tree to take advantage of the use
of bounding volumes of urban objects. This data structure
leads to a great increase in frames per second (FPS), both
in flights and walkthroughs, even in environments populated
by mobile elements. BqR-Tree is capable of being applied
to urban data with low structure or no structure at all. There-
fore, the proposed data structure can be applied to data ac-
quired from several sources: 2D GIS, terrain measurements,
etc. Another advantage of this method is that identification
of buildings is not required. The basic unit, the urban block,
can be automatically identified under any circumstances and
is well suited to integrate, seek and perform fast culling of
the mobile elements in the scene graph.
The organization of the paper is the following: next sec-
tion is devoted to discuss previous related work. Section 3
presents the new data structure and section 4 shows the re-
sults, whereas in section 5 conclusions and future work are
outlined.

2. Related work

A great variety of solutions can be found in the bibliography
related to the rendering of large data models in real time.
Methods can be classified into five main groups of tech-

niques: LOD or level of detail, billboards, occlusion culling,
view-culling and ray tracing. Several of them are often
combined to produce better results as well. Nonetheless,
most of these techniques were developed for the efficient
management of large static polygonal models, so their
application to the management of thousands of complex
dynamic entities, such as virtual actors, is not a trivial matter.

LOD is one of the most frequently used techniques: con-
tinuous LODs have been tested [DB05], but they reduce
rendering speed; so have hierarchical models [FS93] that
choose the proper resolution according to the node of the
tree being displayed. However, it is very difficult to avoid
bothersome drops between frames of different resolutions.

Billboards and impostors [ADB08], are based on the use
of images of objects instead of the 3D objects themselves.
They are very effective in reducing rendering time. But, in
fact, the task of visualizing models with many polygons is
not really solved, but avoided. Relief impostors techniques
have been implemented recently with a very good perfor-
mance, by means of a quadtree [ADB08] or by means of
texturised blocks [CMG∗07] which outperforms hierarchi-
cal Lod [EMB01] in urban scenes. A minor variation of bill-
boards is the image reuse technique implemented in static
environments, or the technique implemented by Ulicny et al.
[UCT04] for animated individuals by storing pre-computed
deformed meshes. Dobbyn et al [DHOO05] have presented
an hybrid system for animated crowds, combining image-
based representations and geometric representations.

The occlusion culling technique resorting only to software
techniques or taking advantage of the GPU [BWPP01], in-
volves culling away objects that are not visible due to their
being hidden. The identification of hidden objects from the
camera’s point of view for each frame every time the camera
or an object moves is its main drawback. This technique is
widely used in urban environments [COCSD03] [GBSF05]
but it is not suited to urban flights in real time. In its native
form, it is not well suited to the treatment of mobile ele-
ments.

View frustum culling is an acceleration technique well
studied in static environments [SMM08], [Pla05], [AM00]
but it is rarely implemented in dynamic scenes. Seron et
al. [SRCP02] proposed two new types nodes for the inte-
gration of mobile elements into the scene graph, Nirnimesh
et al. [NHN06] proposed multiple view-frustum.

Ray tracing algorithms are very powerful for comput-
ing advanced lighting effects. Off-line rendering has pri-
marily used ray tracing for this reason. Unfortunately, ray
tracing is computationally demanding and has not yet bene-
fited from special purpose hardware. Consequently, it could
not be supported at interactive frame rates until very re-
cently. Searching to obtain real time frame rates ray trac-
ing has taken advantage of data structures. Kd-trees could
be the most popular and have been declared the "best known

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



J.L Pina, F. Seron & E. Cerezo / BqR-tree

method" for fast ray tracing [Sto05]. But Kd-Trees are not
well suited to dynamic updates, because even small changes
to the scene geometry use to invalidate the tree. Thus, re-
searchers have again started to actively explore better ways
to support dynamic scenes with other acceleration struc-
tures as BVHs (Bounding Volume Hierarchies). Most Kd-
Tree and BVH based ray tracers today employ a surface area
heuristic (SAH) for building the data structure. The heuris-
tic SAH [Wac07] it is optimal, although the minimization
cost function poses demands which can not be fulfilled in
real life (np-complete problem) and leads to extremely long
pre-calculation times. An approximation of the cost-function
will result in a decreased quality of the hierarchy. Most re-
search incorporates the coherence within successive frames
[AM00] to reduce the number of rays to be traced, but it
is not well suited to walkthroughs with large rotations and
movements of the camera. Nowadays, ray tracing is still too
slow for rendering urban dynamic scenes. Nevertheless, fast
construction techniques are being implemented on manycore
processors or GPUs [LGS∗09] [WIP08].

Most of the previous algorithms incorporate an index-
ing data structure to accelerate rendering which results in
a great improvement in rendering times, and this is done
in preprocessing time. Two main categories can be found
among the most widely used indexing structures: Hierar-
chical structures and Bounding Volume Hierarchy (BVH).
The main difference between these two categories lies in
their approach to dividing data space. Structures which be-
long to the first category use space partitioning methods that
divide data space along predefined hyper-planes regardless
of data distribution. The resulting regions are mutually dis-
joint and their union completes the entire space. Kd-Tree and
Quadtree belong to this category. Structures which belong to
the second category use data-partitioning methods which di-
vide data space in buckets of MBV (Minimum Bounding
Volumes) according to its distribution, which can lead to
possible overlapping regions. R-Tree belongs to this cate-
gory. Those data structures which belong to the R-Tree fam-
ilies yield the best performance [GG98], being the VamSplit
R-Tree the best performance R-tree [KS97] [WJ96]. This
is why this structure has been chosen to make comparisons
with the proposed data structure. The R-tree data structure is
very sensitive to the order in which objects are inserted, but
its real drawback is the overlap, especially affecting large
objects common in urban scenes [GG98]. The criterion of
object insertion, minimal bounding volumes, usually leads
to the separation of large objects on the tree although they
may be near to each other in the scene. On the other hand,
Quadtree is not sensitive to the order in which objects are
inserted and there is no overlapping, it keeps objects that are
near to each other in the scene together in the scene graph,
therefore it is a very efficient spatial decomposition. Never-
theless, it has been designed like a point access method and
although there are more complex versions capable of manag-

ing polygonal data, they are not well suited to manage large
urban objects.

Hybrid data structures have been proposed to overcome
the drawbacks of the traditional spatial index structures. The
K-D-Tree with overlapping [XP03], or the Q+Rtree [CM99],
which is an hybrid tree structure consisting on an R-tree and
a Quadtree. The Rtree component indexes quasi-static ob-
jects and the Quadtree component indexes fast moving ob-
jects.

In this paper, an hybrid indexed data structure to be built
in preprocessing time for acceleration purposes is proposed.
Instead of using MBV as is usual in an R-Tree, and in most
urban applications, a Quadtree decomposition [ABJN85] has
been chosen, which is rare but not unique in urban environ-
ments [Man08] [ADB08]. The Quadtree decomposition im-
plemented is a region quadtree (detailed in section 3), but
should not be confused with a Loose-quadtree [Sam90], in
which elements of a given size are always in a given tree
level. Details of the proposed data structure are facilitated in
the next section.

3. The BqR-Tree

3.1. Building the scene graph from the blocks

The proposed BqR-Tree is based on the decomposition of a
city into blocks: the block is considered the minimum and
indivisible unit of the city as well as the basis of the pro-
posed structure. The term block is used to name the group of
urban elements completely surrounded by streets, i. e., the
usual meaning of urban block.
The BqR-Tree structure is an improved R-Tree whose
method of space partitioning is a quadtree decomposition,
once the tree structure is built, it’s populated with MBVs
and geometry like an R-tree, therefore the BqR-Tree struc-
ture requires less culling time. The structure also incorpo-
rates a second improvement. The MBVs of the nodes are
bounding-spheres according to the results of [KS97]. This
produces improvements in node access speed and storage re-
quirements. Nevertheless, the use of bounding-spheres pro-
duces too much overlapping, which is the reason for the use
of the intersection of bounding-boxes and spheres for the
leaves (from now on bounding-boxes-spheres), as it will be
explained later on.
For every city it is necessary to identify all the basic indivis-
ible elements. In particular, in order to build the BqR-tree, it
is necessary:

• To identify all the blocks in the town and calculate its ge-
ometric centers and bounding spheres,

• To assign every graphic element of the town to an urban
block.

In Figure 1 a part of the city under consideration (Zaragoza,
Spain) with the blocks and its centers already identified is
displayed. Identification of blocks takes place setting out

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



J.L Pina, F. Seron & E. Cerezo / BqR-tree

from the streets, which are identified from the outset. Block
status is assigned to any portion of terrain completely sur-
rounded by streets.
The data used to test our model has been exported from a
2D-GIS. In the initial files neither buildings nor blocks were
already identified as entities. Therefore, filtering, structuring
and 3D elevation have been necessary. To build the BqR-

Figure 1: Identifying the blocks and its centers in a city

Tree, the first step is to take the smallest rectangle bounding
the city. This rectangle is divided into four equal rectangles
called quadrants or buckets; all quadrants are recursively
subdivided in this manner. The BqR-Tree tree is formed by
recursive division of the city into quadrants. A quadrant is
considered to be indivisible if it contains only one block. No
splitting of the objects (urban blocks) is implemented, since
this would involve a scattering along the tree of the pieces of
urban blocks, which would in turn lead to a poorer perfor-
mance of the data structure. Should a division cross a block,
the entire block is assigned to a single quadrant, the one that
contains the geometric center of the block. At the end of the
process, every final quadrant contains a single block or re-
mains empty. Figure 2 presents a quadtree decomposition
performed on the example shown in Figure 1.
The second step is to build the tree. To do this, every quad-
rant is assigned to a node or sub-node and every block is as-
signed to a leaf. Figure 3 shows a graphic representation of
the BqR-Tree structure corresponding to the example of Fig-
ure 1 and 2. Leaves are represented by squares and nodes
by ellipses. Empty quadrants are not assigned to nodes, thus
categorizing the quadtree as an adaptive quadtree. Each leaf
of the tree stores the entire geometry of the block as well
as the bounding volume for that block. Each node stores
a pointer to its descendants and to the bounding-sphere of
the node. In the case of the leaves, the bounding-box-sphere
of each block (intersection of the sphere and the box of the
block) (see Figure 4) is calculated and stored. For each node,
the bounding sphere is composed of the union of bounding-
volumes of its descendants, in a bottom-up manner.
Therefore, the resulting structure is a tree of the nodes’

Figure 2: Quadtree decomposition of the example seen in
Figure 1

Figure 3: Tree representation of the example seen in Figure
1

Figure 4: Bounding Volume of a Block. The left image cor-
responds to the block (seen from above ) with its bounding
box and bounding sphere (2D). The right image shows the
bounding volume from the intersection of its bounding box
and bounding sphere (2D)

bounding-spheres which ends with the bounding-boxes-
spheres and contains the geometry of the blocks as well.
A linear codification, corresponding with its quadtree de-
composition, based on a numeric key, is used to identify all
the elements of the tree, nodes and leaves. Storage of the
key of each element of the tree is required due to the non-
representation of empty nodes. The quadrants’ dimensions

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



J.L Pina, F. Seron & E. Cerezo / BqR-tree

are not needed to be stored in the tree, they are only needed
for the spatial distribution, also the bounding-volumes of the
quadrants are not calculated.
Regarding the performance of object-location, there are two
possibilities:

• If the object-location is referred to an object initially in-
dexed, such as a block, location is trivial because of the
quadrants decomposition and indexing of the blocks and
quadrants.

• If the object-location is referred to an object not initially
indexed, as a point, the procedure is the usual point-
location operation in R-Tree family. Location is easy and
fast due to the bounding-volumes.

Summarizing, the properties of the BqR-Tree data structure
are the following:

• The structure is a tree of the nodes’ bounding-spheres
(quadrants are disjoint but not the bounding-spheres of the
nodes associated with them) and ends with the bounding-
boxes-spheres and the geometry of the blocks.

• Although very similar to an SR-Tree and VamSplit R-
Tree, the most important difference is the use of the
quadtree decomposition with no splitting blocks, and the
use of bounding-boxes-spheres for the leaves.

• The complexity of the search for an element is propor-
tional to the depth of the tree, being O(n) in the worst case,
where n is the maximum depth of the tree, which tends to
be small. Union, intersection and complement share the
same complexity, all of which leads to very efficient tree
culling.

3.2. Incorporation of the mobile elements to the scene
graph

Every mobile element (ME) is always associated with a
street and a direction. Each street is composed of two di-
rections and every direction (semi-street) is associated with
a block. Therefore, every ME is associated in an unambigu-
ous way to only one block, and the geometry of each mo-
bile element is stored in the corresponding leaf of a final
node. Thus, the position and speed of every ME is easy and
quickly known every time. When the MEs are moving, it is
necessary to inspect their connections. Only the MEs whose
movement leads them to another street should be inspected.
If the new street belongs to a different block, then the ME
must be disconnected from its old block and connected to the
new block. But in fact, not all MEs have to be re-connected,
only those that are inside the view-frustum or have just aban-
doned it. For the rest of the Mes, it is enough to annotate
the change and implement it when they come into the view-
frustum. Connections are performed by means of a pointer to
the ending node of the block (the parent of the geometry of
the block). If the ME is defined as a simple geometry model,
without Lod, the geometry of the ME is stored into a leaf
which has a pointer to its parent, the node of the block. Thus

leaves of the block and the ME are siblings. If the geome-
try of the ME is more complex, with Lod, the root node of
the tree of the ME is connected with a pointer to the parent
node block. Re-connection is performed by a re-writting of
the pointer of the ME, from its old parent to its new parent.

4. Tests

The data used belong to the city of Zaragoza (Spain) and
have been kindly provided by the city council. The initial file
was in Microstation format and its data were converted to a
2,013,900 point text format. The BqR-Tree structure built
was comprised of 145 nodes and 96 leaves. Auxiliary files
for the 96 blocks as well as one file with the 300Mb 3D
model and 1,688,218 triangles were created. All tests were
performed with a computer provided with a DualP4 Xeon
Pentium 4 processor at 2.8 GHz and a memory of 2Gb. The
graphic card is a GeForce Fx 6800 Ultra with a memory of
256 Mb. The operating system is Windows XP.
The scene graph OpenGL Performer has been used to test the
proposed BqR-Tree data structure. In order to load the struc-
ture, a file with all the geometry and the BqR-Tree structure
elements arranged in nodes and leaves is supplied to Per-
former. A dll reads it, nodes are loaded as pfGroup, blocks
are loaded as pfGeoset and pfBuilder creates the tree in Per-
former format.
Of course, any other scene graph may be used, as only a new
dll, which can be generated for the new format, is required.
Besides, the preprocessing programs are in tcl, and the as-
sociated dll in C. Both are independent from the operating
system and hardware and are, therefore, totally portable. Al-
though Performer is equipped with tools for speeding up
rendering, in order to show that the increase in rendering
speed is caused only by the new structure, the only accel-
eration technique implemented is view culling, which is di-
rectly derived from the culling of the structures. The aim of
the next tests is to show the increase in rendering speed using
the Bq-Rtree data structure at the view culling process, it is
not the aim to perform a complete application which should
moreover implement backface culling, occlusion culling and
LOD. Anyway, backface culling and LOD equally would af-
fect to all data structures and occlusion culling would be
applied after the view culling; therefore the effect of all of
them would be an increase of the rendering speed for all data
structures.
Performer, as the other scene graphs, implements its view
culling in a top-down manner. The bounding-volume of the
first node, the root, is tested against the view frustum, if the
bounding-volume of the node is completely or partially in-
side the view frustum, the culling process continues with its
descendant, otherwise the node and its descendant are culled
away because they are not visible.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



J.L Pina, F. Seron & E. Cerezo / BqR-tree

4.1. Tests on a city model

The starting point for the tests was the previously mentioned
3D model of the city, which is comprised of 1,688,023 tri-
angles (see Figure 5). A program with the essential ele-

Figure 5: 3D City model. In order to facilitate the identifica-
tion of urban blocks these are coloured instead of texturised.

ments allowing free or guided camera movements was im-
plemented. A route containing all the usual camera move-
ment in flights and walkthroughs was designed; this route
remains the same for all tested structures. The route (see
Figure 6) begins at the outskirts of the city at ground level,
and undertakes a walkthrough to the heart of the city. Once
there, the camera rises vertically until it is above the rooftops
facing the ground. Finally, a diagonal flight is performed
from this position to the ground, along with camera rotations
pointing in the direction of the movement.
To determine the real improvement resulting from the use

Figure 6: Camera route

of BqR-Tree, it was decided to compare it with the VAM-
Split data structure [WJ96] an optimized R-Tree. It is a static
index structure (an insert or delete operation implies a re-
organization of the whole tree), unlike quadtree. The tree
construction algorithm is based on the K-D-Tree and it is
created by recursively selecting dataset splits using the max-
imum variance dimension and choosing a split that is ap-
proximately the average.
The view culling is applied for both data structures in the
same manner: the bounding volumes of the nodes and leaves

are tested against the view frustum pyramid. An unstructured
model was also used as a reference.
The evolution of the time required (in seconds) to render
each frame for each of the previously mentioned three data
structures can be seen in Figure 7:

• The yellow (top line) line corresponds to the unstructured
mode.

• The red line (middle line) corresponds to the VamSplit R-
Tree structure, and the blue line (bottom line) corresponds
to the BqR-Tree line.

As explained, the only acceleration technique implemented
is view culling, which is derived from the culling of the
structures. The yellow line is constant, and therefore the time
required for rendering is always the same for each frame.
This was predictable, since there can be no view culling
if there is no data structure. As might also have been an-
ticipated, it is slower than any of the other two data struc-
tures. Regarding the other two lines, the first consideration
is that the blue line (which represents the BqR-Tree) is the
line with the quickest rendering time for each frame, and
is markedly inferior than the red line (which represents the
VamSplit R-Tree). In fact, the red line is not better at any
point of the route; at the very most, it is equal to the blue
line in a small number of frames. The BqR-Tree line is also
noticeably more regular than the line which represents the
VamSplit R-Tree. The latter shows two great depressions and
multiple oscillations. If the results are analyzed the reason
for this becomes apparent.
At the beginning of the route, the camera sees the city from
far away, and therefore with no opportunity for view culling,
thus the initial equivalence of the red and blue lines. Never-
theless, the more the camera advances into the city, the more
important view culling becomes and the more both lines de-
viate. The ascent of the camera takes place between frames
48 and 140; this is the interval where both structures approxi-
mate the most. Later on, a diagonal flight towards the ground
separates them once again. In the last 20 frames both lines
come together again when the camera is facing the floor and
is about to land and view culling possibilities are similar for
both structures.
The explanation for these differences between the two data
structures is confirmed analysing the visible triangles per
frame (see Figure 8). The yellow line (top line) is constant
once again, as might have been expected: absence of view
culling forces the system to test every triangle in the city for
each frame. The behaviour of the other two lines is similar
to that of Figure 7. The same oscillations are repeated once
again.
Therefore, it can be clearly concluded that the new data
structure BqR-Tree (blue bottom line), allows for more ef-
ficient culling.
Additionally, the average performance of each structure is
shown in Table 1. If the ratio between the average rendering
time of both structures is calculated, a marked improvement
may be appreciated: the result of the BqR-Tree/VamSplit R-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



J.L Pina, F. Seron & E. Cerezo / BqR-tree

Figure 7: Evolution of rendering time for each structure. A few images of what the camera sees at key moments have been
added.

Figure 8: Evolution of visible triangles per frame

Tree division is 0.638 and that of the BqR-Tree/No Tree di-
vision is 0.261. Therefore an improvement of almost 40%
can be observed in relation to the VamSplit R-Tree structure
and the results are 75% better than when no structure is used.

4.2. Impact of the size and distribution of the city
models

The final step was to ascertain how the size and distribution
of the city affect the rendering time results. In order to estab-
lish this, six different models of cities were built (Figure 9).

Table 1: Average values for each structure

seconds/frame triangles/frame
No tree 0.1850 1,688,023

VamSplit 0.0758 704,873
BqR-Tree 0.0483 420,894

The first of them (see Figure 9A), was named C1 and has
less triangles than any other but the same volume of the ini-
tial city. It consists of 361,218 triangles obtained by elimina-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



J.L Pina, F. Seron & E. Cerezo / BqR-tree

8A C1 Model 361,218 triangles 8B C2 Model 1,688,023 triangles 8C C3 Model 1,942,734 triangles

8D C4 Model 1,889,745 triangles 8E C5 Model 1,874,131 triangles 8F C6 Model 2,367,088 triangles

Figure 9: Models of the city generated for the tests

Table 2: Average rendering times (s/frame) for each city
model

C1 C2 C3 C4 C5 C6
Bq 0.021 0.048 0.053 0.055 0.057 0.064
Vs 0.031 0.076 0.079 0.084 0.079 0.094

tion of every element of the initial city except for buildings.
This allows to test the influence of triangle density on the
performance of each structure. The second city, C2, (see Fig-
ure 9B), is the initial model, which has already been tested.
The third city, C3, (see Figure 9C), is made up of 1,942,734
triangles and is the result of joining the two previous models,
C1 and C2. Model C1 is added to C2 in the direction of the
axis of the Xs. The fourth city, C4, (see Figure 9D), is like
C3 but with C1 added to C2 in the direction of the Y axis,
and is made up of 1,889,745 triangles.
The fifth city, C5, (see Figure 9E), is like C3 and C4 but
now C1 has been added in the diagonal XY direction. It is
made up of 1,874,131 triangles. Finally, the sixth city, C6,
(see Figure 9F), is C2 added to three C1, one in each axis
direction, X, Y, XY, and is made up of 2,367,088 triangles.
It is very interesting to observe the evolution of rendering
time for each structure in relation to the number of trian-
gles of the cities. Table 2 shows the average values of ren-
dering time in seconds/frame for each data structure. As it
might have been expected, a larger number of triangles in
the model entails more rendering time per frame, but the in-
crease in rendering time is not linear with the increase in the
number of triangles. In order to analyze the comparative evo-
lution of rendering time in relation to the number of triangles
for each city model, each column of Table 2 was divided by
the value of the first column (C1). Figure 10 plots the results
for the BqR-Tree. The yellow line (top line) represents just

the number of triangles of each city divided by the ones in
C1. The blue line (bottom line) represents the average value
of BqR-Tree’s rendering time in relation to the C1 value. As
it can be observed:

• Model C2 has 4.6 times as many triangles as C1, but the
rendering time of BqR-Tree is only 2.3 times greater than
C1’s (exactly the half).

• Model C6 has 6.5 times as many triangles as C1, but the
rendering time is only 3 times greater than of C1’s (less
than the half).

Figure 10: Number of triangles and rendering times in rela-
tion to C1 for the different city models (using the BqRT)

So, the increase in rendering time is much lower than the
increase in the number of triangles; the separation between
the two lines even increases when the number of triangles
does likewise.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



J.L Pina, F. Seron & E. Cerezo / BqR-tree

Figure 11: Evolution of rendering time for each structure with 1,000 cars, each car is composed of 387 triangules.

4.3. Tests with Mobile Elements
Cars have been used as mobile elements for tests purposes.
The car model used is composed of 387 triangles.
The cars’ geometry is stored in an independent node, to
which neither LOD nor backface-culling is applied. Tests
are implemented in the previously mentioned C2 city model,
and cars are initially randomly situated on the streets of the
city. In every frame every car is displaced a fixed amount.
Tests with cars attached to the BqR-tree data structure
and the previously mentioned VamSplit-Rtree data structure
have been performed.
The evolution of the time required (in seconds) to render
each frame for each of the previously mentioned two data
structures with 1,000 cars moving in the city can be seen
in Figure 11: where the red line (middle line) corresponds
to the VamSplit R-Tree structure, and the blue line (bottom
line As shown in Figure 11, many little peaks appear for
both lines. This is caused by the re-connection of the MEs.
However, after the addition of MEs, the differences between
both data structures remain equal. In Figure 12, shows aver-
age rendering times plotted for both data structures with 100
and 1,000 cars moving in the city. As shown in the figure,
the differences between both data structures remain after the
addition of MEs. In order to improve rendering times it is
necessary the addition of other acceleration techniques. The
usual solution is the implementation of LODs. Therefore, the
same previous tests have been performed with cars with dif-
ferent levels of details: the models range from 18 triangles
to 1,701 triangles. The evolution of the average rendering
times for both data structures when increasing the number
of cars is plotted in Figure 13. It is easy to realize that the
differences between both data structures persist although the
absolute rendering time has decreased in both cases due to
the implementation of LOD.

5. Conclusions and Future Work

We have presented a data structure, the BqR-Tree. This
structure is especially suited to urban environments and its
main features are:

Figure 12: Evolution of the average rendering time (in sec-
onds per frame) with the number of cars in the city for both
structures (Vs dotted line: VamSplit-Rtree, Bq continuous
line: BqR-tree)

Figure 13: Evolution of the average rendering time of both
data structures (Vs dotted line: VamSplit-Rtree, Bq contin-
uous line: BqR-tree) when increasing the number of LOD
cars

• It is defined by considering the city block as the basic and
logical unit. The advantage of the block as opposed to the
traditional unit, the building, is that it is easily identified

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



J.L Pina, F. Seron & E. Cerezo / BqR-tree

regardless of the data source format, and allows the inclu-
sion of mobile elements in a natural way.

• The usefulness of the structure has been tested with low
structured city data, which makes its application appropri-
ate to almost all city data.

• The results of the tests show that when using the BqR-
Tree structure to perform city walkthroughs and flights
(with or without mobile elements populating the city) ren-
dering times improve an average of 30% in comparison to
the data structures which have yielded best results to date.

Regarding next steps, the idea is:

• To perform semantic view culling, ie, to take into account
semantic information when performing the view culling.

• To implement relief impostors based on blocks or
quadtrees, because both techniques allow a direct imple-
mentation on the BqR-tree data structure.

6. Acknowledgements

This work has been partly financed by the Spanish Dirección
General de Investigación, contract number TIN2007-63025
and by the Government of Aragon by way of the WALQA
agreement.

References
[ABJN85] AYALA D., BRUNET P., JUAN R., NAVAZO I.: Object

representation by means of nonminimal division quadtrees and
octrees. ACM Trans. Graph. 4,1 (1985), 41–59.

[ADB08] ANDUJAR C., DÍAZ J., BRUNET P.: Relief impostor
selection for large scale urban rendering. IEEE Virtual Reality
Workshop on Virtual Citiscapes: Key Research Issues in Model-
ing Large-Scale Immersive Urban Environments (2008).

[AM00] ASSARSSON U., MOLLER T.: Optimized view frus-
tum culling algorithms for bounding boxes. J. Graph. Tools 5,
1 (2000), 9–22.

[BWPP01] BITTNER J., WIMMER M., PIRINGER H., PUR-
GATHOFER W.: Coherent hierarchical culling: Hardware occlu-
sion queries made useful. Computer Graphics Forum Proceed-
ings of EUROGRAPHICS 2004 (2001), 615–624.

[CM99] CHAKRABARTI K., MEHROTRA S.: The hybrid tree: An
index structure for high dimensional feature spaces. In Proc. Int.
Conf. Data Engineering (1999), 440–447.

[CMG∗07] CIGNONI P., M D. B., GANOVELLI F., GOBBETTI
E., MARTON F., SCOPIGNO R.: Ray-casted blockmaps for large
urban models visualization. Computer Graphics Forum 26 3
(2007), 405–413.

[COCSD03] COHEN-OR D., CHRYSANTHOU Y., SILVA C.-T.,
DURAND F.: A survey of visibility for walkthrough applications.
IEEE Transaction on Visualization and Computer Graphics 9 3
(2003), 412–431.

[DB05] DOLLNER J., BUCHHOLZ H.: Continuous level-of-detail
modeling of buildings in 3d city models. Proceedings of the 13th
annual ACM international workshop on Geographic information
systems (2005), 173–181.

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: A real-time geometry/impostor
crowd rendering system. In Proceedings Of Symposium On
Interactive 3d Graphics And Games (2005), 95–102.

[EMB01] ERIKSON C., MANOCHA D., BAXTER W.: Hlods for
faster display of large static and dynamic environments. SI3D 01:
Proceedings of the 2001 symposium on Interactive 3D graphics
(2001), 111–120.

[FS93] FUNKHOUSER T., SEQUIN C.: Adaptive display algo-
rithm for interactive frame rates during visualization of complex
virtual environments. Computer Graphics 27, Annual Confer-
ence Series (1993), 247–254.

[GBSF05] GRUNDHÖFER A., BROMBACH B., SCHEIBE R.,
FRÖHLICH B.: Level of detail based occlusion culling for dy-
namic scenes. In Proceedings of the 3rd international Conference
on Computer Graphics and interactive Techniques in Australasia
and South East Asia,. GRAPHITE 05. ACM (2005), 37–45.

[GG98] GAEDE V., GUNTHER O.: Multidimensional access
methods. acm comput. surv. Computer Graphics 30 2, Annual
Conference Series (1998), 170–231.

[KS97] KATAYAMA N., SHINICHI S.: The SR-Tree: an index
structure for high-dimensional nearest neighbor queries. Pro-
ceedings of ACM SIGMOD (1997), 369–380.

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast bvh construction on gpus.
Computer Graphics Forum 28,2 (2009), 375–384.

[Man08] MANOCHA D.: Real-time motion planning for agent-
based crowd simulation. Proceedings of 2008 IEEE Virtual Re-
ality Workshop on Virtual Cityscapes (2008).

[NHN06] NIRNIMESH, HARISH P., NARAYANAN P.: Culling
an object hierarchy to a frustum hierarchy. Springer Berlin
4338/2006, Computer Vision, Graphics and Image Processing
(2006), 252–263.

[Pla05] PLACERES F.: Improved frustum culling. in Pallister, K.
(Ed.). Game Programming Gems 5 (2005), 65–77.

[Sam90] SAMET H.: The design and analysis of spatial data struc-
tures. Addison-Wesley Longman Publishing Co., Inc. (1990).

[SMM08] SHAHRIZAL M., MOHD A., MOHD T.: Improved
view frustum culling technique for real-time virtual heritage ap-
plication. The International Journal of Virtual Reality, 3 (2008),
43–48.

[SRCP02] SERON F., RODRIGUEZ R., CEREZO E., PINA A.:
Adding support for high-level skeletal animation. IEEE Trans-
actions On Visualization And Computer Graphics 8, 4 (2002),
360–372.

[Sto05] STOLL G.: Part ii: Achieving real time , optimization
techniques. Slides from the Siggraph 2005 Course on Interactive
Ray Tracing (2005).

[UCT04] ULICNY B., CIECHOMSKI P.-D.-H., THALMANN D.:
Crowdbrush: Interactive authoring of real-time crowd scenes.
Proc. ACM SIGGRAPH Symposium on ComputerAnimation
(2004).

[Wac07] WACHTER C. A.: Quasi-monte carlo light transport sim-
ulation by effcient ray tracing. geb. in Ochsenhausen Institut fur
Medieninformatik, 2007, thesis (2007).

[WIP08] WALD I., IZE T., PARKER S.: Special section: Paral-
lel graphics and visualization: Fast, parallel, and asynchronous
construction of bvhs for ray tracing animated scenes. Comput.
Graph. 32, 1 (2008), 3–13.

[WJ96] WHITE D., JAIN R.: Similarity indexing: Algorithms and
performance. Proc SPIE Vol .2670, San Diego, USA (1996), 62–
73.

[XP03] XIA Y., PRABHAKAR S.: Q+rtree: Efficient indexing for
moving object databases. Proceedings of the Eighth Interna-
tional Conference on Database Systems for Advanced Applica-
tions (2003), 175.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.


