Computers & Graphics 34 (2010) 729-741

Contents lists available at ScienceDirect M

&GRAPHICS

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

New approaches to culling and LOD methods for scenes with multiple

virtual actors™

Rafael Rodriguez?, Eva Cerezo b Sandra Baldassarri®*, Francisco J. Seron

2 Brainstorm Multimedia, Valencia, Spain

b

P Advanced Computer Graphics Group (GIGA), Computer Science Department and Engineering Research Institute of Aragon (I3A), University of Zaragoza, Spain

ARTICLE INFO

ABSTRACT

Article history:

Received 3 December 2009
Received in revised form
15 July 2010

Accepted 15 July 2010

Keywords:

Computer animation
Synthetic actors
Real-time

Culling

LOD

Despite the ever-increasing power of graphics workstations, rendering and animating virtual actors
remains a very expensive task. Current scenegraphs are clearly oriented toward the management of
static scenarios instead of toward scenes with multiple dynamic elements guided by complex
behaviors, as in the case of virtual actors, human or not. Applications that deal with the management of
multiple actors require the development of specific methods that reduce not only the number of
polygons sent to graphics hardware but also the calculations involved in the management of multiple
reference systems and the behavior of actors. In this paper we propose a culling method based on the
use of different types of bounding spheres, which minimizes the number of calculations related to
the behavior of actors and allows better use of the capacities of present-day graphics hardware. With
the same aim in mind, we also propose a method for managing levels of detail which acts not only on
a geometric level but also on skeletal and behavioral levels. These ideas can be implemented on top of
traditional scenegraphs, resulting in significant improvements in computational costs. This improve-
ment is analyzed, as well as the results obtained when managing scenes with thousands of virtual

actors.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction: virtual actors and scenegraphs

The use of a scenegraph-based library is the most standard
method of implementing a simulation application. However, the
way in which present day scenegraphs are defined and processed
clearly reveals that they are geared toward static scenarios or
scenarios with a very small number of reference systems. A
typical example of an application of this kind would be a flight
simulator, in which the majority of objects are static (terrain,
buildings, trees, etc.), and there is a very small number of mobile
elements (airplanes and other types of vehicles), which are not
articulated, and which, moreover, have simple behaviors. Tradi-
tional scenegraphs are geared toward the management of this
type of application. They focus on controlling the number of
polygons sent to the graphics hardware. However, they pay little
attention to the costs derived from the existence of multiple
reference systems, and do not perform behavioral management in
any way whatsoever. Fortunately, as will be shown, the
traditional scenegraph can be seen as a low-level tool on which
new methods can be built.

*This article was recommended for publication by Gladimir Baranaski.
* Corresponding author.
E-mail addresses: rafael@brainstorm.es (R. Rodriguez),
ecerezo@unizar.es (E. Cerezo), sandra@unizar.es (S. Baldassarri),
seron@unizar.es (F.J. Seron).

0097-8493/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cag.2010.07.006

The characteristics of a scene involving virtual actors are very
different: such a scene involves many reference systems (a single
actor may have 40 different reference systems, more than are
usually required for a complete traditional simulation), and the
computational cost of the behavioral management of a virtual
actor tends to be very high. Just like a traditional scenegraph, a
scenegraph which manages multiple virtual actors has to control
the number of polygons sent to the graphics hardware, but it must
pay equal or greater attention to minimizing the calculations
derived from the existence of multiple reference systems
(management of transformation matrixes, processing of bounding
volumes, etc.), and performing behavioral management. In fact, at
the present time, reducing the number of calculations and the
number of polygons sent to the graphics hardware to facilitate
interactive work in scenes with multiple actors is still a challenge.
In Section 2 of this article, we review the efforts undertaken in
this direction.

The paper presented here is the continuation of a previous
paper [1] which proposed a data structure geared toward the
management of virtual actors in real time applications. This paper
is based on those structures (recalled in Section 3 of the present
article), but focuses on the adaptation of several aspects of
scenegraph processing to real-time applications. In particular, two
new methods for minimizing the number of operations required
and making better use of the graphics hardware’s capacities are
proposed: a culling management method (presented in Section 4)

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2010.07.006
mailto:rafael@brainstorm.es
mailto:ecerezo@unizar.es
mailto:sandra@unizar.es
mailto:seron@unizar.es
dx.doi.org/10.1016/j.cag.2010.07.006

730 R. Rodriguez et al. /| Computers & Graphics 34 (2010) 729-741

and a level of detail management method (Section 5). The article
follows with a theoretical estimate of the computational im-
provement yielded by these methods in relation to traditional
scenegraph processing, which is presented in Section 6, along
with an example of application and of the results presented in
Section 7. Our conclusions and possible lines of future research
are put forward in Section 8, and finally an Appendix with extra
data and notation is included.

2. Related work

Despite the ever-increasing power of graphic workstations,
rendering and animating virtual actors remains a very expensive
task. Even very high-end graphics systems can have trouble
sustaining a sufficient frame rate when they have to render
numerous moving figures commonly made up of thousands of
polygons.

In Computer Graphics, reducing the number of polygons sent
to graphics hardware is a problem that has received much
attention, and several techniques have been developed in relation
to it. Generally speaking, acceleration techniques for rendering
large environments can be subdivided into three main categories:
visibility culling methods, level of detail (LOD) methods and
image-based rendering (IBR) techniques. What they all have in
common is the aim of reducing the complexity of the scene while
preserving its visual characteristics. They can often be combined
to produce better results as well. Nonetheless, most of these
techniques were developed for the efficient management of large
static polygonal models, so their application to the management
of thousands of complex dynamic entities such as virtual actors is
not a trivial matter.

Culling algorithms basically discard objects or parts of objects
that are not visible in the final rendered image: if an object lies
outside the view frustum it is not sent to the graphics pipeline
(visibility culling) [2]. The most common culling techniques are:
backface and clustered backface culling, hierarchical view frustum
culling and portal culling [3]. Nevertheless, these traditional ways
of culling render their application to scenes with multiple actors
rather ineffective, since they are implemented after performing a
high number of calculations on all the actors. The method
proposed in Section 4 tries to avoid this problem. Another
possible culling method is based on eliminating those elements
occluded by other parts of the scene (occlusion culling) [3-5]. A
major drawback of occlusion culling algorithms is that they
usually require a specific organization of the entire geometry
database: the scene is typically divided into smaller units or cells
in order to accelerate the culling process, so in its native form it is
not well suited to the treatment of individual, deformable and
mobile objects. Yoon et al. [6] combine conservative occlusion
culling with view-dependent rendering for interactive display of
complex environment, but in their case the occlusion culling
algorithm does not work well with high movement either.

The basic principle of Image-Based Rendering is to replace
certain parts of the polygonal content of the scene with images.
There have been several attempts to apply IBR to scenes with
virtual actors, such as the work of Tecchia et al. [7], which uses
pre-generated impostors, and that of Aubel et al. [8], which
proposes dynamically generated impostors to diminish the
required memory. Ulicny et al. [9] succeed in rendering complex
scenes involving thousands of animated individuals at interactive
frame rates by storing pre-computed deformed meshes in OpenGL
display lists and then carefully sorting them using the OpenGLScene-
Graph 3D toolkit to take cache coherency into account. In [10] they
improved on their performance by using four level-of-detail

meshes for their model, thereby reaching a frame rate which is
several times higher.

Geometric level of detail (LOD) attempts to reduce the number
of polygons rendered by using several decreasingly complex
representations of an object. The appropriate model or resolution
is selected for each frame. The typical selection criterion is the
distance from the viewer, although most games use a combina-
tion of geometric LOD approaches [11]; object motion is also
taken into account (motion LOD) in some cases [12]. Pratt et al.
[13] have applied geometric LODs to virtual humans in large-scale
networked virtual environments. They used a heuristic to
determine the viewing distances that should trigger a LOD switch.
Each simulated human has four different resolutions, ranging
from approximately 500 polygons down to only three. However,
their lowest resolutions are probably too coarse to be actually
used unless the virtual human is only a few pixels high, in which
case a technique other than polygon rendering may be consid-
ered. Dobbyn et al. [14] have presented a hybrid system for real-
time rendering of large-scale animated crowds. This system
implements a Level Of Detail approach by using image-based
representation for virtual humans at a distance, and switching to
geometric representation once the human is within a certain
distance threshold based on a texel to pixel ratio. The shading of
impostors and the introduction of variety into the virtual human’s
geometric and impostor model takes place at run-time through
programmable graphics hardware, and the system allows the
animation of large crowds at interactive frame rates.

Even though the research on levels of detail for simulations of
actors has taken place mainly on a geometric level, approaches
that reduce the complexity of the motions generated have also
been set forth. Cozot et al. [15] suggested a level of detail
architecture that comprised a pipeline of sub-models, in which
each sub-model performs a given task during the animation
process. The architecture is applied to a model capable of walking
on complex terrain. Level of detail is selected according to two
criteria: complexity of the environment and distance from the
camera. Carlson and Hodgins [16] introduced the idea of
simulation levels of detail, and applied it to the animation of
one-legged creatures at multiple levels of detail, according to the
importance of a creature and its visibility. Simulation methods
include rigid-body dynamics and hybrid kinematics/dynamics,
depending on the accuracy required. Developing this idea further,
Brogan and Hodgins [17] use simulation LOD to control the
movements and actions of large groups. By providing a simplified
version (reducing the number of degrees of freedom) of a
physically simulated character, they were able to simulate large
groups by dynamic switching between these LODs. O’Sullivan
et al. [18] describe a framework called ALOHA (Adaptive Level Of
detail for Human Animation), which incorporates levels of detail
for both geometry and motion. Random key-frame animations are
chosen for those characters which are not highly rated, while
more sophisticated motions synchronized with speech are applied
to more salient characters. The switch between animation levels
is performed according to a set of predefined rules, in an attempt
to minimize degradation to the simulation viewer’s perception.
However, they do not specify the number of actors they are able
to work with, nor do they estimate the computational reduction
of their proposal. They also propose the addition of a LOD-AI,
Artificial Intelligence LOD, based on the use of role passing
techniques [19], but only preliminary results have been reported.
As commented before, more recent work has focused on the
geometric LOD management [14]. Their work is directly related to
ours, which proposes integrated management of a geometric,
skeletal and behavioral LOD. In our case, the ideas are imple-
mented within a standard framework like Performer, computa-
tional reduction is assessed and we provide an example

R. Rodriguez et al. /| Computers & Graphics 34 (2010) 729-741 731

application which manages 6000 actors at interactive frame rates.
The skeleton pruning presented in [20] is a similar idea to our
skeleton LOD. Because of the way the authors store and manage
joint transforms, they limit the simplification to cut-off or prune
bones or entire sub-trees of bones at the end of the skeleton when
the details are no longer visible.

3. Data structure for actor management

This paper is based on a previous paper [1] in which we
proposed two new types of specially designed nodes for the
integration of synthetic actors in real-time simulation applica-
tions. The main advantage of using these new structures instead
of standard ones such as H-Anim [21] or MPEG4 [22] lies in the
circumstance that our proposal allows for the development of any
generic articulated structure, whether the latter is an object, an
animal or a person. Our intention is to provide a basic
specification that can help to create a new standard, more generic
and real-time centered, based on the implication of how some de-
facto standard work (OpenGL Performer [23], OpenSceneGraph
[24]). H-Anim, on the contrary, was specifically designed for the
creation and exchange of generic human beings. The H-Anim
structure is very well defined, but it is too complex to be
used in real-time simulations as well as with hundreds of
individuals. MPEG4 also focuses its attention on the encoding of
3D humanoid characters’ facial and bodily animation [25];
however, it does not standardize the geometric models represent-
ing the face or the body, but the parameters on the basis of which
a neutral face or body can be personalized and animated in
real time.

We do not intend to delve deeply into these structures once
again here, although we will briefly summarize them to facilitate
the understanding of the following sections.

Skeleton R

Scene Coordinate System

I

(O Skeleton Root
+ Reference Point

There are two types of nodes, called Actor and Skeleton that
provide the user with high-level control over virtual actors and
implement low-level management, thus minimizing their com-
putational cost.

The Actor node acts as a control center of all the actions of
virtual actors and as a basic reference system for all the nodes that
make up each actor. For the latter purpose, we considered it
convenient that the actor employ two groups of transformations,
the first of which defined the position of a point called Reference
Point, normally associated to the actor’s center of mass, and a
second one, which defines the position of the Skeleton Root, a fixed
point located somewhere on the actor’s bone structure, which
operates as a basic reference system for the rest of its articulated
structure (see Fig. 1). The critical point for the integration of
virtual actors in a simulation application is no doubt the drawing
of the articulated structure. The Actor node functions as the root
node of a hierarchy of Skeleton nodes. Each Skeleton node defines
an articulation point on the actor, such as the elbow, the knee or
the neck. As we shall see in the following sections, the application
of culling and traditional LOD methods to virtual actors is
inadequate; therefore, we will propose specific methods. The
Actor node will be responsible for performing part of this
management, as well as for storing several fields destined to
this purpose.

4. Culling method for actors

Traditional processing of a 3D scene for real-time involves, first
of all, applying all the transformations of the objects (commonly
known as APP), and then selecting the objects within the view
frustum (commonly known as CULL) and sending said objects to
the graphics hardware to be drawn (commonly known as DRAW).
This is, for example, the traditional APP/ CULL/DRAW Performer

3 2

Fig. 1. Skeleton Root storing information on the location of the actor within the scene (above). Examples of the location of the Reference Point in different positions in

relation to the actor (below).

732 R. Rodriguez et al. /| Computers & Graphics 34 (2010) 729-741

pipeline [26,27]. This work outline, geared towards reducing the
number of polygons, is adequate for a traditional simulation
application, but is a waste of many resources when dealing with a
simulation involving elements with complex behaviors or many
transformation matrices. In the case of a scene with virtual actors,
both these circumstances concur.

Let us picture a scenegraph with Actor and Skeleton nodes
processed according to the traditional procedure. Under these
circumstances, the drawing phase of a scene involving multiple
virtual actors would be preceded by the following phases:

Phase 1: Execution of the code required for calculating the
values of the Actor and Skeleton fields of all the actors present
in the scene (behavioral management). These calculations take
up very large amounts of resources (dynamic and reverse
kinematic calculations, facial expression, artificial vision, etc.)
Phase 2: Generation of the Actor and Skeleton transformation
matrices on the basis of the values calculated in the previous
phase. In the modus operandi of the traditional culling process
these multiplications have to be performed in the CPU.

Phase 3: The transformation matrices generated by each Actor
and Skeleton node must be adequately multiplied during the
traversal of the scenegraph.

Phase 4: Hierarchical recalculation of the bounding spheres
(bspheres) of the scene nodes is required: the bsphere of each
node is calculated on the basis of the bspheres of its
descendant nodes.

Phase 5: Verification of intersection between different
bspheres has to be carried out with the vision frustum to
determine which parts of the actors are inside the vision
frustum, which are then stored in the list of objects to be sent
to the graphics hardware.

As can be seen, in a traditional scenegraph it is impossible to
know if an actor is inside the frustum or not until its behavior has
been calculated, the matrices of its nodes have been generated
and applied, and hierarchical recalculation of its bspheres has
taken place. In order to avoid this, the culling method has been
modified in order to determine if an actor is outside of the vision
frustum without resorting to these costly calculations. To achieve
this, we propose the use of static bspheres (Section 4.1) and
modification of culling management (Section 4.2). The connection
between the culling of actors proposed and the traditional
procedure is discussed in Section 4.3.

4.1. Types of bounding spheres used in actor culling

In order to establish whether actors are outside the vision
frustum without managing their behavior or undertaking any
operation whatsoever with their Skeleton nodes, we propose that
the Actor node use static bounding spheres fixed during a phase
prior to the simulation. Bounding spheres have been selected
instead of bounding boxes or line swept spheres [18] since they
behave very well when the orientation of the geometries is
changing (as in the pieces of a virtual actor) and also because they
are used for the default culling in the most standard scenegraphs
like Performer or OpenSceneGraph.

Therefore, in this work, three types of bounding spheres will be
used for the management of a virtual actor, two of which are
static, while the third one is a dynamic bounding sphere similar to
those used in traditional scenegraphs. Let us now look at the
features of the three types of bspheres in more detail (from now,
Bspheres with a capital letter indicates the proper name of a
bsphere):

The Refpoint Bsphere is a sphere which is capable of
encompassing a virtual actor and its movements. The size and
position of the Refpoint Bsphere depend on the type of movement
performed by the actor. This type of bounding sphere makes sense
in the context of actors in which the movement of the Skeleton
root in relation to the Refpoint takes place within a restricted area.
This would be the case of an actor executing a certain key-framing
table, or some kind of movement taking place within a limited
space (such as, for example, the movement of a child on a swing).

The Skisroot Bsphere is a sphere located within the actor’s
Skeleton Root, with a fixed radius large enough to completely
encompass the entire virtual actor regardless of the position he or
she adopts. For the moment, we assigned the radius of this sphere
manually, however this process could be done automatically with
little effort.

Internal Bspheres are the ensemble of bspheres that encom-
pass the different geometries that represent a virtual actor. The
position and size of these bspheres are dynamically modified
according to changes in the degrees of freedom. These bspheres
are organized hierarchically, so in the case of a human actor the
first bsphere to be calculated would be the one corresponding to
the foot; the next bsphere to be calculated would be the one
resulting from the addition of the foot bsphere and the calf
bsphere, following with the addition of the latter to the bsphere of
the thigh would ensue, and so on until the result is a bsphere
which fits the global geometry of the actor, and which would
adapt to it in a similar way to which the Skisroot Bsphere does so.
However, as we have seen, in order to calculate this bsphere, prior
calculation of the values of the actor’s degrees of freedom, as well
as the transformation and composition operations of the bound-
ing spheres have to be completed. In Fig. 2 an example showing
the different types of bspheres used in the processing of a virtual
actor can be seen.

Culling verification in actors is carried out in cascade fashion:
the intersection of the Refpoint Bsphere with the vision frustum is
verified first, and the next verification—the calculation of the
Skeleton root and the analysis of the Skisroot Bsphere in relation to

Refpoint
~ S \/ Bsphere

s Sklsroot
Ve Bspheres

/
/
I —
|
|
|
\ Internal
\ Bspheres
\
\
\
N
N
~N
~
~

Fig. 2. Representation of the different types of bounding spheres used in the
culling management of a virtual actor which is performing a pirouette on the basis
of the values stored in a key-framing table.

R. Rodriguez et al. /| Computers & Graphics 34 (2010) 729-741 733

the vision frustum—is performed only in the event that the latter
is partially inside it. Only in the event that the Skilsroot Bsphere
were partially inside would it be necessary to perform verifica-
tions of the Internal Bspheres, which surround the different
geometries that constitute the actor internally and are calculated
according to the traditional procedure.

4.2. Organization of actor culling in phases

In traditional processing there is a clear difference between the
process that manages the behavior of the objects in the scene
(APP) and the process that determines which polygons are sent to
the graphics hardware (CULL). The use of static bounding volumes,
and the fact that actors’ behavior is managed after verifying if
they are really inside the vision frustum, requires modification of
traditional task organization in the form of a APP/CULL/DRAW
pipeline so that culling and behavioral management of actors can
be jointly performed, as opposed to the two independent phases
resorted to by traditional scenegraphs.

Behavioral management of a virtual actor can be divided into
three types of operations: calculation of Reference Point transforma-
tions, calculation of Skeleton root transformations and calculation of
the degrees of freedom that determine the actor’s posture. When a
traditional scenegraph is used, these operations are performed on all
the actors in the scene prior to the culling phase (see Fig. 3, top). The
culling method proposed here, however, is divided into three phases,
as shown in the bottom part of Fig. 3.

According to the diagram, these are the operations performed
in each phase:

1. Calculation of the values of the transformation matrixes of the
Refpoints of all the Actor nodes in the scene.

2. First CULL phase, in which the transformations are applied to
the Refpoint Bspheres, and the relation of these transformed
bspheres to the frustum is verified, which results in the
rejection of all the actors whose Refpoint Bsphere is outside of
the vision frustum.

3. Calculation of the values of the transformation matrices of the
Sklsroot of the remaining actors.

4, Second CULL phase, in which the absolute positions of the
Skisroot Bspheres of the Actor nodes are calculated and the
relation of said bspheres to the frustum is verified, which
results in the rejection of all actors whose Skisroot Bspheres are
outside the vision frustum.

5. Behavioral management is performed on the actors that pass
the second CULL phase, which generates specific values for the
degrees of freedom of the Skeleton nodes. On the basis of these
values, the resulting transformation matrices are then gener-
ated and applied.

6. A third CULL phase that determines which specific parts of
actors have to be drawn is completed. This entails hierarchical
recalculation of Internal Bspheres and intersection verifications
with the frustum.

7. Only those parts of the actors which are inside the vision
frustum are sent to the graphics hardware.

In both the traditional and the proposed methods, the number
of polygons sent to the graphics hardware is the same. However,
with the new method, behavioral management calculations are
drastically reduced. In a typical scene, 70% of actors may be
blocked during the first culling phase, along with an additional
10% during the second phase, i.e., it is a common occurrence that
only 20% of the original actors ever require the calculation of their
degrees of freedom and management of their Skeleton nodes.

Fig. 3. Processing of actors with a traditional scenegraph (top). Processing of actors with the new culling method proposed (bottom).

Fig. 4. Culling process on actors with different positions in relation to the frustum.

Refpoint SkeletonRoot DOF DRAW
Transform. Transform. Values CULL (only actors”
Calculus Calculus Calculus 100% parts inside the
100% 100% 100% frustum)
Refpoint SkeletonRoot DOF
T(r:ar;st(irm. Transform. Values DRAW

alculus Calculus Calculus
100%

734 R. Rodriguez et al. /| Computers & Graphics 34 (2010) 729-741

Fig. 4 offers an example that clarifies how the culling method
interacts with the processing of virtual actors. In the figure,
the frustum is represented by a rectangle, and the different
bounding spheres are represented by dark circles to indicate that
intersection with the frustum has been verified, and by clear
circles to indicate that this is not the case. In similar fashion, those
parts of the actors which are going to be drawn are represented in
dark colors while those which are not are represented in clear
colors. Clearly, a great deal of work can be avoided.

4.3. Interaction with generic scene culling

In the previous sections, we analyzed the most adequate form
of performing operations related to the culling of virtual actors,
given that the remaining elements of the scene which are not
virtual actors are to be processed using traditional culling
methods. In practice, both culling methods may prove inter-
dependent: culling of virtual actors may affect elements in the
scene and culling of elements in the scene may affect virtual
actors.

The interaction between the culling of virtual actors and
traditional culling may be classified as belonging to one of two
types:

e A piece of scenegraph depends on a virtual actor. This would
be the case of an actor that decides to hold an object which
belongs to the scene (a tool, for instance).

e An actor depends directly on a generic scenegraph node. This
may happen in case there is a superior structure grouping a set
of actors together (a flock of birds, for example), or a group of
actors and a set of traditional scene elements (for example, a
building with all its structure and furniture, with several
people inside it, or a vehicle with several occupants).

In the first case, when a culling verification with the Refpoint
Bsphere or the Skisroot Bsphere of the actor is performed, one must
keep in mind that this operation will necessarily affect the tool
being held by the actor. This is done by increasing the Skisroot
Bspheres radius so that it includes the actor and the object
dependent on him or her, and also increasing, in a coherent way,
the radius of the Refpoint Bspheres.

In the second case, traditional culling affects the processing of
actors. Thus, in the example of the vehicle, the culling of the interior
determines if the actors within it have to be processed or not.

5. Specific LOD management methods for virtual actors

The level of detail within a scenegraph is usually managed by
special nodes called LOD (level of detail). This kind of node has
several descendant branches, each of which represents the same
object with a different level of complexity. When one of these
nodes is reached during the traversal of the scenegraph, the
distance between the viewpoint and the reference point of the
LOD (the central point on the LOD) is calculated, and
the descendant branch to be drawn according to that distance
(and other criteria) is selected. In a traditional scenegraph all level
of detail management is performed by this type of nodes.

Databases used in traditional simulations usually involve few
transformations and very elementary behavioral management.
This confines the management of the level of detail to verifying
the number of polygons sent to the graphics hardware. In the case
of virtual actors, the performance of this type of control, which we
shall call geometric level of detail, is necessary, but so is carrying
out the management of the skeletal level of detail which
determines the number of transformations applied by an actor,

as well as management of the behavioral level of management
that allows distance to reduce the computational cost of
behavioral management. In the following sections we specify
the effect that these three types of level of detail management
have on virtual actors.

To facilitate all three of these types of level of detail manage-
ment, the Actor node will store the eyeDistance and priority fields.
The eyeDistance field stores the distance of the actor’s Skeleton Root
from the viewpoint and is used to select the appropriate levels of
detail. The priority field is a normalized value which determines
the level of detail selection criteria, allowing for an increase of the
quality with which those actors, that are performing a particularly
important activity for the user, are represented.

5.1. Geometric level of detail management

When managing the geometric level of detail of a virtual actor,
it might be thought that it would suffice to have three or four
different models of the same actor, and for each change from one
level of detail to the next to take place simultaneously in all parts
of the actor’s body. However, this approach does not take into
account that a virtual actor is made up of different geometries, not
all of which are equally important in visual terms: in order to
represent a human actor’s head, it may be appropriate to use five
different levels of detail, whereas the forearm could be correctly
represented by using only three. In keeping with this, the
distances at which transition between levels takes place should
also be different.

Besides, the use of traditional LOD nodes may entail excessive
computational cost. This is because each LOD node requires the
calculation of the distance between its central point and the
viewpoint in each frame. There are two drawbacks to this: on
the one hand, it requires knowledge of the absolute position of the
LOD’s central point, which forces operations with transformation
matrices to be performed in the CPU, and on the other, it entails a
high computational cost of the distance calculus operation itself.

Both these drawbacks can be avoided by observing that the
central points of all the LOD nodes that depend on the same
virtual actor always remain close to each other. Therefore, if the
distance between the viewpoint and the central point of the LOD
node corresponding to the head of a human actor is 50 m, the
distance between the central point of the LOD node which
corresponds to the forearm would be within a range of 5041 m.
The solution to the problem lies in performing a single distance
calculus for each virtual actor and having all the LOD nodes that
depend hierarchically on him or her employ it. In order to apply
this mechanism, a slight modification of the modus operandi of
the LOD nodes is required, for which purpose we have defined an
auxiliary data structure called vaLod, which replaces traditional
LOD nodes. The vaLod structure has a pointer to the actor node on
which it depends, which allows it to use the value of the distance
from the camera stored in the eyeDistance field of the vaActor
node. This distance will be used by all the LOD nodes that depend
hierarchically on this virtual actor, thus finishing with the need to
perform multiple distance calculations for each actor and, above
all, with the need to perform operations with matrices in the CPU.

5.2. Skeletal level of detail management

A virtual actor is usually constituted by a considerable number
of Skeleton nodes. However, the effect of some of these Skeleton
nodes on actors that are far away from the camera is almost
negligible and consequently, managing them is a waste of
calculation resources. Therefore, a method which allows the
reduction of the topological complexity of an actor as the latter’s

R. Rodriguez et al. /| Computers & Graphics 34 (2010) 729-741 735

distance from the camera increases is required. The solution
proposed in this paper is to provide each Skeleton node with a
distance beyond which it ceases to be processed, and therefore its
degrees of freedom will not be evaluated, its matrix will not be
generated, and the subgraph depending will not be traversed.

The need to perform this type of management is obvious if we
consider the example of the hands of a humanoid actor: the
definition of the articulated structure of a hand involves the use of
16 Skeleton nodes (three for each finger and an additional one for
the wrist joint). However, it makes no sense whatsoever to
perform any type of management with the fingers of an actor
which is 500 m away from the camera. Beyond a certain distance,
the different distances that define the hand and fingers have to be
automatically replaced by a single geometry which represents
the entire hand, and the different Skeleton nodes which represent
the articulation points of the phalanxes of the fingers have to be
deactivated.

Of course, there must be coordination between the deactiva-
tion distances of an actor’s Skeleton nodes and the transition
distances of the valLod nodes which manage the level of detail of
their geometry. This is shown in Fig. 5, where a scenegraph
containing a very simple humanoid actor is represented.

Three skeletal levels of details are allowed: the first one,
formed by nine Skeleton nodes, the second, formed by four and
the third one, formed by none. The nodes containing geometry are
represented by human figures with the enclosed geometry
colored. The different types of lines show what parts of the
scenegraph are processed in every level of detail. For example, for
LOD level 1, there is a separate representation of head and body,
but in LOD level 2, they share the same geometry. Therefore, it
would be necessary that the deactivation distance of the head
Skeleton node be the same as the distance used to change from
geometric LOD level 1 to 2. Beyond that distance the Skeleton
node will not be processed. This will reduce the number of
Skeleton nodes to be processed, but also it will affect the number
of vertices to be rendered as well as the behavioral management,
as there is no need to calculate anything related to a deactivated
articulation point.

5.3. Behavioral level of detail management

In the case of a simulation application involving virtual actors,
it is common to dedicate more than half of the CPU’s resources to

% 2

i v

Level of Detail 2
4 Skeleton Nodes

Level of Detail 1
9 Skeleton Nodes

Level of Detail 3
0 Skeleton Nodes

the behavioral management of the actors (it must be kept in mind
that complex behaviors that incorporate reverse kinematic
calculations, artificial vision mechanisms, voice synthesis, etc.,
may be being managed). When a virtual actor is far away, the
ability to appreciate the details of his or her geometry is lost, and
likewise the ability to perceive the details of his or her behavior.
The level of behavioral detail affects the precision of the
mechanisms which manage the behavior of actors, reducing
the computational cost as their distance from the viewpoint
increases.

Let us delve deeper into this type of level of behavioral detail
management by considering the example of the control mechan-
ism of a human actor’s visual activity. The mechanism responsible
for an actor’s visual activity has to control not only the movement
of the eyes, but also that of the neck and even the spinal column.
Let us suppose that the deactivation distance for the Skeleton
nodes of the eyes is 50 m, and that the deactivation distance for
the neck is 500 m. As seen in the previous section, this would
require that the valod node that controls the geometry of the
head to have a model that becomes activated at a range of 50 m,
and the eyes to be incorporated in the geometry of the head itself.

Likewise, the LOD which controls the geometry of the thorax
would have to have a model that becomes activated at a range of
500 m, in which the geometry of the thorax would incorporate a
representation of the head. Such topological changes produced, on
a virtual actor due to the deactivation distances of the Skeleton
nodes, directly affect behavioral management mechanisms. Thus,
the visual activity management model can be deactivated at
distances superior to 500 m (the deactivation distance for the
neck’s Skeleton node), and it would make no sense for it to
perform calculations regarding the orientation of eyesight for
distances superior to 50 m. Changes in the topology of the actor
define the minimum number of behavioral detail levels; however,
the number of these may be superior to those imposed by the
disappearance distances of the Skeleton nodes. In the case of
visual activity mechanisms, the deactivation distances of the neck
and eyes requires the existence of LOD change points at 50 and
500 m, but there may be additional ones, the aim of which is to
ensure better control over the precision and speed of calculations.
These additional behavioral levels could be based, in our vision
management example, on different inverse kinematics or approx-
imation methods.

As mentioned before, the distance used to select the proper level
of detail is stored in the Actor node. The management of behavioral

Processing of the different Scene Graph branches
in relation with the Level of Detail management

———— Branches used by Levels of Detail 1, 2 and 3
e BraNChes used by Levels of Detail 1 and 2.

---------- Branches used by Level of Detail 1.
Branches used by Level of Detail 2.
Branches used by Level of Detail 3.

Fig. 5. Combining geometric and skeletal LODs.

736 R. Rodriguez et al. /| Computers & Graphics 34 (2010) 729-741

levels of detail is essential for developing an application in which
there are several virtual actors with average behavioral complexity.

6. Estimate of computational improvement

In this section we will analyze the computational improve-
ment produced by the structures and methods proposed in the
preceding sections.

Many matrix multiplications have to be implemented in
simulation applications containing multiple virtual actors; these
affect the speed of the simulation considerably and sometimes
cause bottlenecks. This limitation can be considerably curtailed if
efficient use is made of the capacity of graphic cards to perform
4 x4 matrix multiplications. The main drawback of these
capacities is that the result of the multiplications remains within
the graphics hardware, and present day scenegraph management
methods require access to these matrices: culling calculations
(knowledge of the absolute position of the nodes’ bounding
spheres in regard to the view frustum), LOD calculations (knowl-
edge of the reference point of the LOD is required to calculate its
distance in relation to the viewpoint) and specific needs of the
application, such as detection of collisions between objects,
inverse kinematic calculations, etc.

The methods presented in the previous sections not only
decrease the number of calculations but also allow better use of
the capacities of present-day graphics hardware. This is due to the
fact that they allow a great deal of the processing of virtual actors
to be implemented without the CPU having to know the result of
the multiplication of matrices. This makes the use of graphics
hardware for this purpose possible, avoiding the characteristic
bottlenecks associated with this type of operations.

In order to accurately estimate the cost of the operations, the
unit of cost measurement, FMULT, is defined as the time invested
to multiply two floating point numbers with the following
equivalences:

1 mult=1 FMULT,

1 add=1 FMULT,

1 div=>5 FMULT,

1 sqrt=7 FMULT,

1 multiplication of two 4 x4 matrices in the graphic
hardware=10 FMULT.

Characterization of the different operations involved in the
processing of virtual actors that take part in the scene is a necessary
part of the estimation. The number of these operations and the cost
of each one are described in Table 1. Obviously, in a real system they
only represent one aspect of the performance but they allow us to
quantify the improvement achieved by using the methods proposed.

Quantitative estimates of the computational improvement will be
highlighted by using the “Global Improvement Factor”, which is
defined as the ratio between the Global Cost of Traditional Processing
(Trad_Proc) of a scenegraph and the Global Cost of Actors’ Processing
(Act_Proc) following the methods proposed in this paper.

GlobalCostTrad_Proc 1
GlobalCostAct_Proc M
In both terms of the ratio of expression (1), the Global Cost is

computed considering the Behavioral Management Cost and the
Scene Graph Management Cost, as follows:

GloballmprovementFactor =

GlobalCost = BehavioralManagementCost
+SceneGraphManagementCost 2)

To obtain a quantitative estimation of these costs, a complex
scene with 100 actors is considered. A complete description of the

Table 1
Types of operations (number and cost) to be performed during virtual actor
processing.

Notation Description

NO_O1 Number of operations required to obtain the matrix
of the articulation of a Skeleton Node

Cost of calculation of the values of the degrees of
freedom (FMULT)

Cost of generation of the transformation matrix
(FMULT)

Number of operations required to obtain the
position/orientation matrices of the Reference
Point

Cost of calculation of the values of the degrees of
freedom (FMULT)

Cost of generation of the transformation matrix
(FMULT)

Number of operations required to obtain the
position/orientation matrices of the Skeleton Root
Cost of calculation of the values of the degrees of
freedom (FMULT)

Cost of generation of the transformation matrix
(FMULT)

Number of operations required for the
recalculation of the bsphere on the basis of the
bspheres of its descendant nodes for culling
processes in one node

Number of operations required for the verification
of the relation between the bsphere and the
frustum for culling processes in one node

Cost of recalculation of the bsphere of the node on
the basis of the bspheres of its descendant nodes
(FMULT)

Cost of verification of the relation between the
bsphere and the frustum (FMULT)

Number of operations required to obtain the
distances for level of detail management

Cost of calculation to obtain the distances for level
of detail management (FMULT)

CO_O1a
CO0_01b

NO_02

CO0_02a

CO_02b
NO_03

CO_03a

C0_03b

NO_O4a

NO_04b

CO_0O4a

CO_04b
NO_O5

CO_05

selected scene is given in Section 6.1, while Section 6.2 presents a
comparison of the results of processing the selected scene with
traditional methods and with the approach proposed in this work.

6.1. Description of the example scene

In order to estimate the computational improvement produced
by our approach, we propose the use of a specific complex scene
made up of 100 actors with different characteristics. The variables
and values for the example scene are shown in Tables 2 and 3. For
more details see the Appendix.

Each of the actors is comprised of 40 Skeleton nodes, with an
average of 2 DOFs per Skeleton node, and 41 LOD nodes, one for
each Skeleton node and an additional one for the Actor node. We
have realized that an average reduction of 50% in the number of
skeleton nodes per actor is suitable for the example scene after
applying our skeletal LOD management method (described in
Section 5.2).

6.2. Computational improvement

The costs of the behavioral and the scenegraph management,
necessary to solve the Global Cost of Eq. (2), must be calculated
considering the number and the cost of the operations involved in
each case, either for the Trad_Proc and for the Act_Proc.

The values for the standard selected scene have been studied
separately, as follows.

R. Rodriguez et al. /| Computers & Graphics 34 (2010) 729-741 737

Table 2

Description of the characteristics of the 100 actors that make up the example scene.

Description Number
Total number of actors (Total Actors=A+B+C) 100
A Number of actors with Refpoint Bspheres totally outside the frustum 20
B Number of actors with Refpoint Bspheres within frustum 30
C Number of actors with Refpoint Bspheres intersecting with frustum edge (C=C1+C2+C3) 50
C1 Number of actors with Skisroot Bspheres totally outside the frustum 20
C2 Number of actors with Skisroot Bspheres within frustum 20
C3 Number of actors with Skisroot Bspheres intersecting with frustum edge (C3=C3.1+C3.2) 10
C3.1 Number of actors with Internal Bspheres totally outside or totally within the frustum 8
C3.2 Number of actors which need culling with Internal Bspheres 2

Table 3

Description of the characteristics of each actor in the example scene.
Description Number
Number of Skeleton nodes per actor 40
Number of Internal Bspheres per actor 80

6.2.1. Behavioral management cost (BMC)

In order to obtain the Behavioral Management Cost only
the computation of the values related with the degrees of
freedom must be taken into account (see Table 1), so that
BMC=NO_01 x CO_01a+NO_02 x CO_02a+NO_03 x CO_03a

The values of the number of operations and the cost of each
operation can be found in the Appendix.

If we also suppose that the cost average (called AverageCost)
of the calculation of the values of the degree of freedom is the
same for [CO_O1la, CO_02a, CO_0O3a] in the case of traditional
processing, and half (AverageCost/2) for CO_O1a and CO_03a due
to the average reduction of the number of Skeleton nodes of an
actor by LOD in the case of actor processing (behavioral level of
detail management), then the resulting expressions for the cost of
behavioral management in the standard selected scene are:

Trad_ProcBMC = 4.200 x AverageCost (expressed in FMULT)

Act_ProcBMC =315 x AverageCost (expressed in FMULT)

6.2.2. Scene graph management cost (SGMC)

The Scene Graph Management Cost must take into account:
the generation of the transformation matrix operations, the
culling operations and the calculation for obtaining the distances
for the level of detail management. Because the configuration of
the bodies changes very little from one time step to the next in
the scenegraph management, the temporal Coherence factor and
the Tracking factor have also been taken into account:

e The temporal Coherence factor (fCoh) is the value resulting
from substracting from 1 the ratio between the time that one
of the matrices remains unaltered and the total simulation
time expressed as a fraction of 1. In other words, the coherence
factor is 1 if the matrix of each frame is updated and O if it is
never modified.

e The Tracking factor (fTrack) is the ratio between the number
of matrix multiplications not performed through hardware in
relation to the total of matrix multiplications required. In other
words, the tracking factor is O if all matrix multiplications are
performed through hardware and 1 if they are performed
outside the graphic hardware.

Therefore, considering the values of the number of operations
(see Appendix) and the cost of each operation (see Appendix), the

final cost of scenegraph management will be

Trad_ProcSGMC = 4.206.240 (expressed in FMULT)

Act_ProcSGMC = 400 x CO_O1b+100 x CO_02b+30
xC0O_03b+23.100

which, if Coherence and Tracking factors are taken into account,
can be expressed as

Act_ProcSGMC = 11.600 x fTrack x fCoh+21.200 x fTrack
+12.350 x fCoh+35290 (expressed in FMULT)

6.2.3. Global Cost

In order to obtain the result of the GlobalCost from expression
(2), the previously calculated Trad_Proc and Act_Proc of both
BehavioralManagementCost and SceneGraphManagementCost
must be taken into account.

Hence, the global cost of managing the actors of the standard
scene according to the traditional management method can be
expressed as

GlobalCostTrad_Proc = Trad_ProcBMC +Trad_ProcSGMC

GlobalCostTrad_Proc = 4200 x AverageCost

+4.206.240 (expressed in FMULT)
And the global cost of actor management according to the
methods proposed in this paper can be expressed as

GlobalCostAct_Proc = Act_ProcBMC + Act_ProcSGMC

GlobalCostAct_Proc =315 x AverageCost+11.600
xfTrack x fCoh+21.200 x fTrack+12.350

xfCoh+ 35290 (expressed in FMULT)
Therefore, the global improvement factor of expression (1) can be
expressed as
4.200 x AverageCost+4.206.240
315 x AverageCost+Act_ProcSGMC
(expressed in FMULT) 3)

GloballmprovementFactor =

The graphic representation of expression (3) is shown in Fig. 6,
taking into account different possible values for the Tracking and
Coherence factors. For common behavioral management values,
with AverageCost < 100 FMULTs, the improvement factor ranges
between 50 and 120, and in the worst cases, for unusually high
behavior management, the improvement factor would be 13.
Details of the calculation can be found in the Appendix.

738 R. Rodriguez et al. / Computers & Graphics 34 (2010) 729-741

—&—fCoh = 0,0 fTrack =0.0
fCoh = 0,7 fTrack =0.1
—¥—fCoh =0,3 fTrack =1.0

—8—fCoh = 0,3 fTrack =0.1
fCoh =0,7 fTrack =1.0
—8—fCoh =1,0 fTrack =1.0

140

120 <

100

80

60

40 -

Global Improvement Factor

20

0 T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 M1

Average Cost (in FMULTSs)

Fig. 6. Global improvement factor according to the average cost of one skeleton
node behavioral management, considering the values of the tracking and the
coherence factors.

Powered By

hatatulglalataatataiat

Powered By
OpenGL FPeriorsrmser

Fig. 7. Sideview of the “Performer Town” scene and its scenegraph (above).
Representation of a virtual actor and its scenegraph (below).

7. Application example
7.1. Implementation in performer

In order to demonstrate the practical usefulness of the results of
this paper, a library equipped with 134 functions that allows access
to the structures and methods described has been developed. The
library, written with an API in C, allows access to the 10 classes used
in the model of objects; it has been used to create an extended

eyeRight eyeLeft
eyelidUR eyelidUL

eyelidBR eyelidBL

wingRight

wingtipR

Fig. 8. Actor’s topological structure.

version of the “perfly” application of OpenGL Performer [23], which
incorporates and allows the management of multiple virtual actors.

The simulation scene in which virtual actors have been
integrated was the model of a small town and its surroundings,
provided as an example of the use of the OpenGL Performer
library. This database, known as “Performer Town”, is shown
above, in Fig. 7, where a fragment of the scene graph is also
represented. The virtual actors perform their activities in the sky
of the aforementioned town, and their sub-scenegraphs are
integrated in the global scenegraph (Fig. 7 below). For details on
the integration of nodes in Performer, see [1].

A method for quick cloning of actors has been developed; there
is no need to make copies of the nodes with geometrical
information nodes, as the actors share the same geometry nodes.
In order to make the method a little more sophisticated, we added
the possibility of each actor having a different texture to this basic
pattern. This is achieved by using callback routines assigned to
the Actor nodes, which are responsible for applying the texture
with which their geometries will be designed. Regardless, the
behavior of each actor is completely autonomous and each of
them may have its own personality. Each actor consists of 13
articulation points (see Fig. 8) and 19 degrees of freedom, and it
supports 5 levels of detail. The implemented control mechanisms
are: flight control, gaze control, facial expression control, blinking
control and phrase control.

In Fig. 9, we see a scene in which several virtual actors are
located at different distances from the camera and therefore have
different levels of detail. The fact that virtual actors that are
further away have fewer polygons is not easily appreciable at first
sight: distances at which levels of detail change are adjusted so
that the numerical loss of triangles does not affect image quality.
Management of level of detail also affects the topology of actors,
reducing the number of articulation points used according to
distance and behavioral management, as well as simplifying
calculations or even blocking certain mechanisms.

Fig. 10 shows how the culling of virtual actors operates in
parallel with standard scenegraph culling. The control editor of
the culling pyramid supplied by the “perfly” application was used
to make the culling pyramid smaller than the vision frustum. This
way we can see if culling is taking place appropriately. Two
images are shown: the first one contains the original scene and
the second one shows the scene with forced culling. The rectangle
of the second image indicates the margins of the culling pyramid;
we can see that certain actors are not drawn, and the same thing
has happened with certain objects within “Performer Town”.

R. Rodriguez et al. / Computers & Graphics 34 (2010) 729-741 739

LOD 1 LOD ?
1240 triangles ~ 658 triangles

LOD 3
200 triangles

LOD5
_ 14 triangles

LOD 4
74 triangles

Fig. 9. Automatic selection of the level of detail according to distance.

Powered-Byz

OpenGL Performier i

Powered By
OpenGL Performer

Fig. 10. Integration between actor culling and scenegraph culling.

7.2. Performance

The computer used was a PC based on a CPU Intel P4 at 3 GHz, as
well as a graphic card based on an Nvidia FX5600 processor. The
operating system was the 7.2 version of Linux RetHat and the library
was the 2.5.2 version of OpenGL Performer. The resolution of the
graphic window used for the simulations was 1024 x 768 pixels.

Regarding the performance of the system, we have proven
that—using a domestic PC—it is possible to integrate 2000 actors
in the “perfly+Performer Town” application with a refreshment
rate of 50 images per second, or 6000 actors with a refreshment
rate of 25 images per second (see Fig. 11).

These results prove not only the computational efficiency of the
system, but also its capacity for integration in an existing scenegraph
and its adequacy for the implementation of motor and behavioral
models, as well as its potential for extension. Unfortunately,
comparing these results with previous techniques is not easy, since
not much research on the integration of virtual actors in simulation
applications has been carried out. There are many real developments
in videogame engines [29], but all of them are very vertical
solutions, and have not been structured to allow any kind of generic
articulated actor, neither their integration in existing scenegraphs.

8. Conclusions and future research

This paper focuses on the adaptation of several aspects of
scenegraph processing to real-time applications that deal with
multiple articulated virtual actors. In particular, a bounding
volume hierarchy approach to efficient culling and LOD has been
proposed. The main idea behind this work is the integration of
geometry, connectivity and behavior to accelerate 3D rendering.
Moreover, the methods proposed are highly applicable to the
rendering of large game-scapes, crowd scapes and behaviorally
realistic populated ecological landscapes.

This approach has several clear advantages in relation to other
works:

e [t shows the importance of managing the LOD at a topological
and behavioral level instead of just focusing on the traditional
geometric level of detail. In fact, it operates in an integrated
fashion with the three types of LODs.

e Unlike the particular structures normally used in videogame
motors [29], the proposed structure is generic and may be used
to represent any kind of articulated actor, regardless of
whether it has a human shape or not.

740 R. Rodriguez et al. /| Computers & Graphics 34 (2010) 729-741

o mL S EFEE By
. OpenGL Perisormer

sgi

Fig. 11. Simulation scene with 2000 (above) and 6000 virtual actors (below).

o The structure is designed to be integrated in present day
scenegraphs, such as Performer or OpenSceneGraph.

e The computational improvement introduced by the use of the
described structures and methods has been theoretically
assessed. The analysis shows that the actors processing is
between 50 and 120 times faster than with the use of a
traditional scenegraph.

However, the proposed system has certain limitations:

e The structure was designed for a fixed pipeline. Nowadays, with
GLSL Shaders [30], alternative methods could be developed.

e The model of an actor based in rigid interconnected geometries
works well at medium or far distances, but when the actor is
very close it is necessary to work with skinning based models
that support facial animation, hair simulation, etc. It should be
noticed that all these techniques are very time consuming and,
therefore, difficult to be included in the simulation of scenes
with hundreds of actors. This is why we have not considered
them for the moment.

Skinning is, therefore, one of the features to be added in the
future. Also, presently, the system includes three different levels of
bounding spheres, but to expand them would be a simple matter. In
particular, it would be interesting to include a new type of bounding
sphere for a group of actors suitable for crowd simulations.

Other possible lines of future research might be the design of
configuration modules of the actor’s library for scenegraphs other

than OpenGL Performer (for instance VTK, OpenSG, osg, etc.) and
the search for a method to add semantics to the scenegraph and
facilitates the perception of their surroundings by the autono-
mous virtual actors. A utility program capable of acting as a
testing ground for the behavior of virtual actors in a phase prior to
their integration in the final application will also be very useful.

Acknowledgments

The authors would like to thank the reviewers for their
suggestions that have contributed to the improvement of the
content of this paper.

This work was partially supported by the Spanish “Direccién
General de Investigacion” No. TIN2007-63025 and by the Aragon
Government through the IAF No. 2008/0574 and the CyT No.
2008/0486 agreements.

Appendix

This appendix details the notation and the data used for the
calculation of the global improvement factor of the test scene. For
complete details, see [28].

All the factors that determine the number of operations
required for processing the scene are described in Table 4.

Table 5 presents an estimation of the number of elemental
operations needed for processing a scene with a traditional
method (Traditional Processing) and with the method proposed in
this paper (Actor Processing). Columns 2 and 3 present the
qualitative estimation for a generic scene while columns 4 and 5
show the quantitative values for the scene selected as an example.

It can be seen in Table 5 that the Actor Processing considerably
reduces the number of operations required in each phase since the
fRefpointBsphsin, fSkisrootBsphsOut, fSkisrootBsphsin, fSkisrootBsphsI-
sect, fCheckIntBsphs and fLODtopo factors all have values lower than
1. Also, in the computation of NO_04b the value of nBsphsPerActor is
divided by 2 since the culling check is done in a hierarchical way.

Table 6 presents the computational cost of each elemental
operation for the Traditional Processing and for the Actor Processing

Table 4
Factors that determine the number of operations required to process the scene.

Factor Description Number Ratio

nActors Number of actors 100

fRefpointBshsIn Actors with Refpoint Bsphere within 30 0.3
frustum

fSklsrootBsphsOut Actors with Skisroot Bsphere totally 20 0.2
outside the frustum

fSklsrootBsphsin Actors with Skisroot Bsphere within 20 0.2
frustum

fSkisrootBsphslsect Actors with Skisroot Bsphere 8 0.08

intersecting the frustum edge
(Internal Bshperes are totally outside or
within the frustum)

fCheckIntBsphs Actors which need culling with Internal 2 0.02
Bspheres

nSkelsPerActor Number of Skeleton nodes per actor 40

nBsphsPerActor Number of Internal Bspheres per actor 80

fLODtopo Estimated average reduction of number 50% 0.5

of Skeleton nodes per actor after
applying our skeletal LOD management
method

R. Rodriguez et al. /| Computers & Graphics 34 (2010) 729-741 741

Table 5

Number of elemental operations involved in the management of the scene, according to the type of processing: Traditional Processing (Trad) and Actor Processing (Actor).

Notation Qualitative data Quantitative data
Traditional processing Actor processing Trad Actor

NO_O1 nActors X nSkelsPerActor (fSklsrootBsphsin x nActors) x (nSkelsPerActor x fLODtopo) 4000 400

NO_02 nActors nActors 100 100

NO_0O3 nActors nActors x fRefpointBsphsin 100 30

NO_O4a nActors X (1+1+nBsphsPerActor) nActors x CheckIntBsphs x nBsphsPerActor 8200 160

NO_04b nActors X (1+fSklsrootBsphsOut+fSklsrootBsphsin nActors x (1+fSklsrootBsphsOut+fSklsrootBsphsin 460 200
+fSklsrootBsphslsect x (nBsphsPerActor/2)) +fCheckIntBsphs x (nBsphsPerActor/2))

NO_O5 nActors x (1+nSkelsPerActor) nActors 4100 100

Table 6 Proceedings of the first international conference on virtual worlds, 1998.

Costs of each elemental operation for Traditional and Actor Processing (expressed
in FMULT).

Notation Traditional processing Actor processing cost
cost
CO_O1a AverageCost AverageCost/2
CO_O1b 908 FMULT fTracksfCoh#29+fTrack53 +fCohx19+10
(1 node Skeleton with 2 DOF)
CO_02a AverageCost AverageCost
CO_02b 454 FMULT fCoh%22+63
CO_03a AverageCost AverageCost/2
CO_03b 566 FMULT fCoh:85+63
CO_0O4a 50 FMULT 50 FMULT
CO_04b 64 FMULT 64 FMULT
05 8 FMULT 8 FMULT

(expressed in FMULT). The costs of generation of the transfor-
mation matrix (CO_O1b, CO_02b, CO_03b) are considerably reduced
in the case of Actor Processing since they can take advantage of
tracking and temporal coherence.

Appendix A. Supplementary material

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.cag.2010.07.006.

References

[1] Seron FJ, Rodriguez R, Cerezo E, Pina. A. Adding support for high-level skeletal
animation. IEEE Transactions on Visualization and Computer Graphics
2002;8(4):360-72.

[2] Cohen-Or D, Chrysanthou YL, Silva CT, Durand. F. A survey of visibility for
walkthrough applications. IEEE Transactions on Visualization and Computer
Graphics 2003;9(3):412-31.

[3] Moller T, Haines E, Hoffman. N. Real time rendering. 3rd ed. A. K. Peters Ltd.;
2008.

[4] Sudarsky O, Gotsman. C. Dynamic scene occlusion culling. IEEE Transactions
on Visualization and Computer Graphics 1999;5(1):13-29.

[5] Chenney S, Arikan O, Forsyth D Proxy simulations for efficient dynamics. In:
Proceedings of Eurographics, Short Presentations, 2001.

[6] Yoon S., Salomon B., Manocha D. Interactive view-dependent rendering with
conservative occlusion culling in complex environments. In: Proceedings of
the 14th IEEE Visualization 2003 (VIS'03), 2003. p. 163-70.

[7] Tecchia F, Loscos C, Chrysanthou Y. Visualizing crowds in real-time.
Computer Graphics Forum 2002;21(4):753-65.

[8] Aubel A, Boulic R, Thalmann D, Animated impostors for real-time display of
numerous virtual humans, Lecture Notes in Computer Science, vol. 1434.

p. 14-28.

[9] Ulicny B, de Heras Ciechomski P, Thalmann D Crowdbrush: interactive
authoring of real-time crowd Scenes. In: Proceedings of the ACM SIGGRAPH
symposium on computer animation, 2004.

[10] De Heras Ciechomski P., Ulicny B, Cetre R, Thalmann.D A case study of a
virtual audience in a reconstruction of an ancient roman odeon in
aphrodisiac. In: Proceedings of the fifth international symposium on virtual
reality, archaeology and cultural heritage (VAST), 2004.

[11] Luebke D, Reddy M, Cohen], Varshney A, Watson B, Huebner. R. Level of
detail for 3D graphics. Morgan Kaufmann; 2002.

[12] Ahn], Wohn K. Motion level-of-detail: a simplification method on crowd
scene. Computer Animation and Social Agents (CASA 2004) 2004:129-37. 7.

[13] Pratt DR, Pratt SM, Barham Paul T, Barker RE, Waldrop MS, Ehlert JF, Chrislip
CA. Humans in large-scale, networked virtual environments. Presence
1997;6(5):547-64.

[14] Dobbyn S, Hamill J, O’Conor K, O’Sullivan C. Geopostors: a real-time
geometry/impostor crowd rendering system. In: Proceedings of the
2005 symposium on interactive 3D graphics and games. ACM, 2005.
p. 95-102.

[15] Cozot R, Multon F, Valton B, Arnaldi B, Animation levels of detail design for
real-time virtual human. In: Proceedings of the Eurographics workshop on
animation and simulation '99, 1999. p. 35-44.

[16] Carlson DA, Hodgins JK, Simulation levels of detail for real-time animation.
In: Proceedings of the Graphics Interface '97, 1997. p. 1-8.

[17] Brogan D, Hodgins], Simulation level of detail for multiagent control. In:
Proceedings of the international joint conference on autonomous agents and
multiagent systems (AAMAS), 2002. p. 199-206.

[18] O’Sullivan C, Cassell], Vilhjalmsson H, Dingliana J, Dobbyn S, McNamee B,
Peters C, Giang T. Levels of detail for crowds and groups. Computer Graphics
Forum 2002;21(4):733-42.

[19] Horswill ID, Zubek R Robot architectures for believable game agents. In:
Proceedings of the 1000 AAAI Spring Symposium on Artificial Intelligence
and Computer Games. AAAI Technical Report SS-99-02, 1999.

[20] De Heras Ciechomski P, Thalmann D Populating virtual environments with
crowds: rendering pipeline optimizations. In: EG 2006 course on populating
virtual environments with crowds, 2006.

[21] Humanoid Animation Working Group, <http://www.h-anim.org/).

[22] Koenen R., editor. Overview of the MPEG-4 standard, 2002. <http://mpeg.
chiariglione.org/standards/mpeg-4/mpeg-4.htm).

[23] Performer: <http://www.sgi.com/products/software/performer/).

[24] Open Scene Graph, <http://www.openscenegraph.org/>.

[25] SNHC Face/Body Ad Hoc Group. Face and body definition and animation
parameters. Document No. MPEG96/N1365, Chicago Meeting of ISO/IEC JTC1/
SC29/WG11, Octubre 1996.

[26] Bar-Zeev A Scenegraphs: past, present and future, ¢ http://www.realityprime.
com/articles/scenegraphs-past-present-and-future).

[27] Kessler GD. Virtual environments models. In: Stanney K, editor. Handbook of
virtual environments. Lawrence Erlbaum Associates, CRC Press; 2002.

[28] Rodriguez R. Ph.D. Thesis, Actores Sintéticos en Tiempo Real: Nuevas
Estructuras de Datos y Métodos para su Integracion en Aplicaciones de
Simulacion. Servei de Publicacions Universitat de Valencia, 2004 [in Spanish].

[29] Eberly D. 3D game engine design: a practical approach to real-time computer
graphics. Morgan Kauffman.

[30] Rost Randi J. OpenGL shading language. 1st ed.. Pearson Education, Inc; 2004.

doi:10.1016/j.cag.2010.07.006
http://www.h-anim.org/
http://mpeg.chiariglione.org/standards/mpeg-4/mpeg-4.htm
http://mpeg.chiariglione.org/standards/mpeg-4/mpeg-4.htm
http://www.sgi.com/products/software/performer/
http://www.openscenegraph.org/
http://www.realityprime.com/articles/scenegraphs-past-present-and-future
http://www.realityprime.com/articles/scenegraphs-past-present-and-future

	New approaches to culling and LOD methods for scenes with multiple virtual actors
	Introduction: virtual actors and scenegraphs
	Related work
	Data structure for actor management
	Culling method for actors
	Types of bounding spheres used in actor culling
	Organization of actor culling in phases
	Interaction with generic scene culling

	Specific LOD management methods for virtual actors
	Geometric level of detail management
	Skeletal level of detail management
	Behavioral level of detail management

	Estimate of computational improvement
	Description of the example scene
	Computational improvement
	Behavioral management cost (BMC)
	Scene graph management cost (SGMC)
	Global Cost

	Application example
	Implementation in performer
	Performance

	Conclusions and future research
	Acknowledgments
	Appendix
	Supplementary material
	References

