Real-Time Loop Detection with Bags of Binary Words
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Abstract— We present a method for detecting revisited places
in a image sequence in real time by using efficient features. We
introduce three important novelties to the bag-of-words plus
geometrical checking approach. We use FAST keypoints and
BRIEF descriptors, which are binary and very fast to compute
(less that 20us per point). To perform image comparisons,
we make use of a bag of words that discretises the binary
descriptor space and an inverse index. We also introduce the
use of a direct index to take advantage of the bag of words
to obtain correspondence points between two images efficiently,
avoiding a matching of complexity @(nz). To detect loop closure
candidates, we propose managing matches in groups to increase
the reliability of the candidates returned by the bag of words.
We present results in three real and public datasets, with 0.7-
1.7 Km long trajectories. We obtain high precision and recall
rates, spending 16 ms on average per image for the feature
computation and the whole loop detection process in sequences
with 19000 images, one order of magnitude less than other
similar techniques.

I. INTRODUCTION

When a mobile robot traverses an environment, the chal-
lenge to notice if a place has already been visited is called
loop closure detection. It is an important task that must
be solved by a Simultaneous Localisation and Mapping
(SLAM) algorithm to produce consistent maps. Cameras are
nowadays a cheap sensor that produce very rich information,
so that more and more robots are provided with them. For
this reason, there has been a big focus of the community
on appearance-based algorithms to detect loop closures. The
basic technique consists in adding the images the robot
collects online to a database, so that when a new image is
acquired, the most similar one from the database is retrieved.
If they are similar enough, a loop closure is detected.

In recent years, many algorithms that exploit this idea
have appeared ([1], [2], [3], [4], [5]), basing the image
matching on comparing them in the bag-of-words space [6].
A bag of words is a structure that allows to represent an
image as a single numerical vector. This makes it possible
to perform comparisons with thousands of images in dozens
of milliseconds [7]. Bags of words result in very effective
image matchers, but they are not a perfect solution for
closing loops, due mainly to perceptual aliasing [5]. For this
reason, a verification step is performed later by checking the
matching images to be geometrically consistent, requiring
feature correspondences.
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Fig. 1. Execution time of the proposed system in a trajectory with 2723
images, obtaining 100% precision and 57.86% recall.

The bottleneck of the loop closure algorithms is usually
the extraction of features, that is around ten times more
expensive in computation cycles than the rest of steps. In
addition, the dimension of the descriptor vectors can be high,
and this may slow down the feature matching. All this may
cause SLAM algorithms to run in two decoupled threads: one
to perform the main SLAM functionality, and the other just
to detect loop closures and to calculate the data association,
as in [4].

In this paper, we present a fast algorithm to detect loops
and establishing correspondences between matching scenes
in real time, with a usual CPU and a single camera. It is based
on the bag-of-words plus geometrical checking approach,
but presents several novelties. We propose using a slightly
modified version of the state-of-the-art binary descriptor
BRIEF [8], along with FAST keypoints [9], to obtain speedy
features, as explained in Section III. The BRIEF descriptor
is a binary vector where each bit is the result of an intensity
comparison between a pair of pixels around a keypoint. We
modify them to use only local pairs of pixels. Although
BRIEF hardly tolarates scale or rotation changes, these
descriptors have shown a very good compromise between
distinctiveness and computation time, as well as its feasibility
for appearance recognition, according to our experiments.
The modified version we use yields even more distinctiveness
for the same computation time. Furthermore, we introduce
a bag of words that discretises a binary space, and augment
it with a direct index, in addition to the usual inverse index,
as explained in Section IV. To the best of our knowledge,
this is the first time a binary vocabulary is used for loop
detection. These three elements compose our image database.
The inverse index is used for fast retrieval of images poten-
tially similar to a given one. We show a novel use of the
direct index to efficiently obtain correspondences between
images, speeding up the geometrical checking during the
image matching. Similarly to our previous work, [4], [5], to
decide that a loop has been closed, we verify the temporal



consistency of the image matches obtained, as explained in
Section V. One of the additions in this paper is a technique to
prevent images collected in the same place from competing
among them when the database is queried. We achieve this
by grouping together those images that depict the same place
during the matching. We name these groups islands.

We present the results achieved by our technique after
evaluating it in three public real datasets (from the European
Rawseeds project [10]) with 0.7 and 1.7 Km long trajectories.
We demonstrate that we can run the whole loop detection
procedure, including the feature computation, in around 16
ms in a sequence with more than 2700 images (6 ms on
average) (see Fig. 1), or in 49 ms in 19000 images (16 ms
on average), outperforming other similar techniques by more
than one order of magnitude. See Section VI for a detailed
explanation of the conducted experiments and the results.

II. RELATED WORK

Using visual appearance as a means to detect loop closures
is obtaining great attention in the robotics community since
very good results have been achieved. An example of this is
FAB-MAP [1], that detects loops with an omnidirectional
camera obtaining 100% precision with a recall of 48.4%
and 3.1% in 70 Km and 1000 Km trajectories, respectively.
FAB-MAP has become the gold standard regarding loop
detection, but its robustness decreases when the images
depict very similar structures for a long time [4]. In the work
of Angeli et al. [3], two visual vocabularies (for appearance
and colour) are created online in an incremental fashion. The
two bag-of-words representations are used together as input
of a Bayesian filter that estimates the matching probability
between two scenes, taking into account the matching prob-
ability of previous cases. In contrast to these probabilistic
approaches, we rely on a temporal consistency checking
to consider previous matches and enhance the reliability
of the detections. This technique has proven successful in
our previous work [4], [S]. Our work also differs from
the ones above in that we use a bag of binary words for
the first time, as well as propose a technique to prevent
images close in time from competing between them during
the matching, so that we can work at a higher frequency.
To verify loop closing candidates, a geometrical checking is
usually performed. As in [3], we apply an epipolar constraint
to the best matching candidate, but we take advantage of
a direct index to calculate correspondence points faster.
Konolige et al. [2] use visual odometry with a stereo camera
to create in real time a view map of the environment, de-
tecting loop closures with a bag-of-words approach as well.
Their geometrical checking consists in computing a spatial
transformation between the matching images. However, they
do not use any filter to consider consistency with previous
matches, what forces them to apply the geometrical checking
to several loop closing candidates.

In [1], [3], [4], [5] the features used are SIFT [11] or
SUREF [12]. These are the most popular ones in this context
because they are invariant to lighting, scale and rotation
changes and show a good behaviour in view of slight

perspective changes. However, these features usually require
between 100 and 700 ms to be computed, as reported by
the above publications. Apart from GPU implementations
[13], there are other similar features that try to reduce this
computation time by, for example, approximating the SIFT
descriptor [14] or reducing the dimensionality with PCA
(PCA-SIFT [15], GLOH [16]). Regarding this aspect, [2]
offers a qualitative change, since its authors utilise com-
pact randomised tree signatures [17], [18]. This approach
calculates the similarity between an image patch and other
patches previously trained in an offline stage. The descriptor
vector of the patch is computed by concatenating these
similarity values, and its dimensionality is finally reduced
with random ortho-projections. This yields a very fast to
compute descriptor, suitable for real-time applications. Our
work bears a resemblance with [2] in that we also reduce
the execution time by using fast descriptors. We use BRIEF
descriptors [8] which are binary and require very little time
to be computed. An advantage of the binary features is that
their information is very compacted, so that they occupy less
memory and are faster to compare. This also permits to create
a bag of words in the binary space, allowing a much faster
image conversion into bag-of-words vectors.

III. BINARY FEATURES

Extracting local features (keypoints and their descriptor
vectors) is usually very expensive in terms of computation
time when comparing images. This is often the bottleneck
when this kind of techniques are applied to real-time scenar-
i0s. To overcome this problem, in this work we use FAST
keypoints [9] and the state-of-the-art BRIEF descriptors [8].
FAST keypoints are corner-like points detected by comparing
the grey intensity of some pixels in a Bresenham circle of
radius 3. Since only a few of pixels are checked, these
points are very fast to obtain, proving successful for real-
time applications.

For each FAST keypoint, we draw a square patch around
them and compute a BRIEF descriptor. The BRIEF descrip-
tor of an image patch is a binary vector where each bit
is the result of an intensity test between two of the pixels
of the patch. The patches are previously smoothed with a
Gaussian kernel to reduce noise. Given beforehand the size
of the patch, S, the pairs of pixels to test are randomly
selected in an offline stage. In addition to S;, we must set
the parameter L;: the number of tests to perform (i.e. the
length of the descriptor). Given a point p in an image, its
BRIEF descriptor vector B(p) is:

1 ifp+xs<p—+yi
- { ) e <res

0 otherwise Vi € [1..L] @

where B;(p) is the i-th bit of the vector, and x; and y; are
the offset of the test points (randomly selected in advance),
whose value must lie in [—% . %] X [—% e %] Note
that this descriptor does not need training, just an offline
stage to select random points that hardly takes time. The
original BRIEF descriptor proposed by Calonder et al. [8]

selects the test points x and y according to a normal



distribution N (0, %S 2). However, we found that using close
test pairs yielded better results (Section VI-A). We select
these pairs by sampling the distributions x = N(0, 3= S7)
and y = N(x, %5’5). Note that this approach was also
reported by [8], but not used in their final experiments. For
the descriptor and patch sizes, we chose L, = 256 and
Sp = 48, because it resulted in a good compromise between
distinctiveness and computation time.

The main advantage of BRIEF descriptors is that they are
very fast to compute (Calonder et al. [8] reported 17.3ps per
keypoint when L;, = 256 bits) and to compare. Since one
of these descriptors is just a vector of bits, measuring the
distance between two vectors can be done by counting the
amount of different bits between them (Hamming distance),
that is implemented with a xor operation. This is more
suitable in this case than calculating the Euclidean distance,
as usually done with SIFT or SURF descriptors.

IV. IMAGE DATABASE

In order to detect revisited places we use an image
database composed of a hierarchical bag of words [6], [7]
and direct and inverse indexes, as shown in Fig. 2.

The bag of words is a technique that allows to convert
with a visual vocabulary a set of local features coming
from an image into a sparse numerical vector, allowing to
manage big sets of images. The visual vocabulary is created
offline by discretising the descriptor space into W visual
words. Unlike with other features like SIFT or SURF, we
discretise a binary descriptor space, creating a more compact
vocabulary. In the case of the hierarchical bag of words, the
vocabulary is structured as a tree. To build it, we extract a
rich set of features from some training images, independently
of those processed online later. The descriptors extracted
are first discretised into k, binary clusters by using the
k-means++ algorithm [19]. Since k-means++ requires to
compute the centroid of several descriptor vectors, we round
the value of the centroids to obtain binary clusters. These
clusters form the first level of nodes in the vocabulary tree.
Subsequent levels are created by repeating this operation
with the descriptors associated to each node, up to L,
levels. We finally obtain a tree with W leaves, which are
the words of the vocabulary. Each word is given a weight
according to its relevance in the training corpus, decreasing
the weight of those words which are very frequent and, thus,
less discriminative. During the training, we weight each word
w,; with its inverse document frequency (idf):

idf(¢) = log N 2)
1
where N is the number of training images, and n;, the
number of occurrences of word w; in these images.

To convert an image I;, taken at time ¢, into a bag-
of-words vector v; € RW, the binary descriptors of its
features traverse the tree from the root to the leaves, by
selecting at each level the intermediate nodes that minimise
the Hamming distance. This allows us to calculate the term
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Fig. 2. Bag of words and direct and inverse indexes that compose the

image database.
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where n;;, stands for the number of occurrences of word w;
in image I;, and ny,, for the number of words in I;. The i-th
entry of v; is finally given the value v = tf(i, I;) x idf(4),
obtaining the #f-idf weight as proposed in [6]. To measure
the similarity between two bag-of-words vectors vy and s,
we calculate a L;-score s(vy,vs), whose value lies in [0..1]:

1
s(vr,v2) =1— 3

U1 V2
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When the database is queried, all the matches are ranked by
their scores.

Along with the bag of words, an inverse index is main-
tained. This is a structure that stores for each word w; in
the vocabulary a list of images I; where it is present. This
is very useful when querying the database, since it allows
to perform comparisons only against those images that have
some word in common with the query image. We augment
the inverse index to store pairs < I;, v} > to quickly access
the weight of the word in the image. The inverse index is
updated when a new image I; is added to the database, and
accessed when the database is searched for some image.

These two structures (the bag of words and the inverse
index) are often the only used in the bag-of-words approach
for searching images. However, as a novelty in this general
approach, we also make use of a direct index to store for
each image I; the list of words w; it contains, as well as
what local features f;; are associated to each word. We take
advantage of the bag-of-words tree to use it as a means
to approximate nearest neighbours in the BRIEF descriptor
space. So, to compute correspondences between a query
image and any image in the database, only those features that
belong to the same word need to be compared. This prevents
us from matching all the features of two images, which has
complexity ©(n?) in the number of features. The direct index
is updated when a new image is added to the database,
and accessed when a candidate matching is obtained and
geometrical checking is necessary.
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Fig. 3. Precision and recall in 3 test scenes of BRIEF and BRIEF with close pairs for several descriptor length L; values, with patch size Sj, = 48.

V. LOOP DETECTION ALGORITHM

To detect loop closures, we use a method based on our
previous work [4], [5] that follows these steps:

1) We search the database for the current image to retrieve
those scenes whose matching score reaches a threshold.

2) Matches against images gathered close in time are
grouped together as a single match.

3) The match with the highest score is checked for
temporal consistency with previous scenes to obtain
loop closing candidates.

4) Finally, if the best candidate passes a geometrical
verification, the loop closure is accepted.

We use the image database to store and to retrieve scenes
similar to any given one. When the last image I; is acquired,
it is converted into the bag-of-words vector v;. The database
is searched for vy, resulting in a list of matches < vy, vy, >,
< g, Vg, >, ..., associated to their scores s(vy, vy, ). The
range these scores varies depends on the distribution of words
in v;. We then normalise these scores with the best score we
expect to obtain in this sequence for the vector v;, obtaining
a new score 7:

s(ve,ve;)

S(Uu Ut—At)

77(Ut7 Utj) = &)

Here, we approximate the expected score of v, with
s(vt, ve—at), Where vi_a¢, is the bag-of-words vector of the
previous image. Those cases where s(v;, v;—a;) is small (e.g.
when the robot is turning) can erroneously cause high scores,
so that we skip the images that do not reach a minimum
s(vg, vi—a¢) or a required number of features. We then reject
those matches whose 7(v;, v¢;) does not achieve a minimum
value .

As a novelty, to prevent images that are close in time
to compete among them when the database is queried, we
group them into islands and treat them as only one match.
We use the notation 7; to represent the interval composed of

time stamps ¢,,,...,tm,, and Vp, for an island that groups
together the matches with entries vy, , ..., v¢,, . Therefore,
several matches < v, vy, >, ..., < vy, v, > are

converted into a single match < wv;, Vp, > if the gaps
between consecutive time stamps in ¢, ..., {,,, are small.

The islands are also ranked according to a score H:
H(ve, V)= > n(vr, ve,) (6)

J=ni

The island with the highest score H is selected as the match-
ing group. Besides avoiding clashes between consecutive
images, the islands can help to establish correct matches.
If I, and I, represent a real loop closure, I; is very likely
to be similar also to Iy4a¢, Ip742A¢, ..., producing long
islands. Since we define H as the sum of scores 7, the I
score favours matches with long islands as well.

After obtaining the matching island Vz/, we apply a
temporal constraint before accepting the match as valid. In
this paper we extend the temporal constraint applied in [4],
[5] to support islands. The match < vy, V7 > must be
consistent with k previous matches < vi_a¢, V, >, ...,
< V¢—kAt, V1, >, such that the intervals 7; and T;y; are
close to overlap. If the island passes the temporal constraint,
we keep only the match < vy, vy >, for the ¢ € T’
that maximises the score 7, and consider it the loop closure
candidate.

We apply a geometrical checking between the candidate
matching scenes. This checking consists in finding with
RANSAC [20] a fundamental matrix between I; and I
supported by at least 12 correspondences [21]. To compute
these correspondences, we must compare the local features
of the query image with those of the matched one. There
are several approaches to perform this comparison. The
easiest and slowest one is the linear search, that consists in
measuring the distance of each feature of I; to the features
of Iy in the descriptor space, to take later the pairs with
smallest distance. This is a ©(n?) operation in the num-
ber of features. A second technique consists in calculating
approximate nearest neighbours by arranging the descriptor
vectors in k-means or k-d trees [22]. Following the latter
idea, we take advantage of our bag-of-words vocabulary and
reuse it to approximate nearest neighbours. For this reason,
when adding an image to the database, we store the list of
pairs of words and features in the direct index. Therefore,
to obtain correspondences between I; and [/, we look up
I/ in the direct index and perform the linear search only
with those features that are associated to the same word
in the vocabulary. We only require the fundamental matrix
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Precision-recall curves for several values of o and without geometrical checking. On the left, our current method using BRIEF, and on the

right, our previous algorithm using SURF [5] on the same datasets. BRIEF features attain similar results than SURF, but require much less computational

resources.

for verification, but note that after calculating it, we could
provide the data association between the scenes matched to
any SLAM algorithm that would run beneath, with no extra
cost.

VI. EXPERIMENTAL EVALUATION
A. Selecting BRIEF parameters

We ran several tests to compare the performance of BRIEF
by varying the descriptor length Ly, the patch size S, and the
method to select the test pairs x and y. We tried two methods
to choose the test pairs. The first one consisted in choosing
both x and y from a normal distribution N'(0, 3:57), and
the second one, in choosing close pairs such that x =
N(0,5:52), y = N (x, 55552).

To do this test, we took several images (between 14 and
23) of three different scenes. By means of bundle adjustment
[23], we reconstructed the 3D of the scenes and obtained the
groundtruth correspondences of every pair of images. We
computed both versions of the BRIEF descriptor for patches
of size S, = 24, 48, 64 and 80 pixels around a dense set
of FAST keypoints in each image, and matched them. A

match was set if the distance between two descriptors was
minimum, and the ratio between this and the distance to the
second closest descriptor was lower than a threshold. Due to
the random nature of the descriptor, we repeated this for 5
different test pair patterns. In Fig. 3 we show the average
precision and recall against the length of the descriptor
when S, = 48 of BRIEF and BRIEF with close pairs. The
other patch sizes showed the same relation between both
techniques, but S, = 48 exhibited better results. We can
see that the precision of BRIEF with close pairs is always
higher than that of BRIEF with more general pairs for the
same level of recall. This suggests the locality of the pairs
provides more distinctiveness to the descriptor. We also see
that the precision and recall improve when the number of
pairs increases, up to some length. We finally chose BRIEF
with close pairs, descriptor length L, = 256 and patch size
Sp = 48 pixels, for the rest of the experiments.

B. Loop closure detector

We evaluated our loop closing technique in three public
real datasets (from the European Rawseeds project [10]:
Bicocca 2009-02-25b, Bovisa 2008-10-04 and Bovisa 2008-
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Fig. 6. Loops detected in the three datasets. Black lines and triangles denote the trajectory of the robot; deep blue lines, actual loops, and light red lines,

loops detected. There are no false positives.

10-06). These datasets present static indoor, static outdoor
and dynamic mixed indoor and outdoor environments, and
were obtained in two university campuses in different dates.
We use the data of one of the cameras, composed of between
26K and 35K 640 x 480 b/w images, collected at 15 Hz from
0.7-1.7 Km trajectories.

We used a vocabulary tree with k,, = 10 branches and
L,, = 6 depth levels, which yielded one million words.
This was trained with around 10K images and 9M features
acquired from a fourth Rawseeds dataset. During the exper-
iments, the features extracted from each image were limited
to 300, with a threshold in the corner response function of
FAST of 10 units. When querying the database, only the 50 f
returned results were kept, ignoring those which were close
to the current time stamp, being f the frequency at which
the images were processed.

We began testing our system with f = 1 Hz and without
any geometrical constraint. We show in Fig. 4 the precision-
recall curves obtained in each dataset by varying the « value.
We also show the effect of increasing the number k of
temporal consistent matches required to accept a match. The
curve with ¥ = 0 was obtained by disabling the temporal
consistency. We can see there is a big improvement between
k = 0 and k& > 0. This shows the temporal consistency is
a valuable mechanism to avoid mismatches. As one could
expect, as k increases, a higher recall is attained with 100%
precision. This behaviour does not hold for very high values
of k, since only very long closures would be found. We chose
k = 3 since it showed a good precision-recall balance in the
three datasets. Note that for f = 1 Hz, this means a loop
must last 3 seconds at least.

We show in Fig. 5(a) the precision-recall with £ = 3
for several values of . We see the system performed very
well, even without geometrical verification. It obtained high
recall, except for the outdoor dataset, without false positives.
These results bear resemblance to those presented in our
previous work [5] (shown in Fig. 5(b)), where we used a
similar system with SURF features. Apparently, the curve

TABLE I
PRECISION AND RECALL OF OUR SYSTEM

Dataset Length (m) | Precision (%) | Recall (%) | # Images
Indoor 760 100 57.86 2723
Outdoor 1365 100 5.83 2345
Mixed 1750 100 28.08 2247

of the outdoor dataset behaves worse with BRIEF than with
SURF. However with 100% precision, the desired working
point, the recall is slightly higher in the BRIEF case (4.1%).
In both cases, the recall in this dataset is lower than that
shown in the other two datasets. As we noticed in our
previous work [4], [5], this outdoor dataset is particularly
challenging because the depth of the scenes produced very
similar-looking images. In [5], we showed that with our
previous technique, in the best case and without geometrical
constraint, we achieved 1.9% recall with no false positives. In
[4], we also showed that other techniques as FAB-MAP [24]
did not reach 100% precision on this dataset. This proves
that BRIEF descriptors, despite of lacking scale and rotation
invariance, are much faster and as reliable as SURF features
for loop detection problems with in-plane camera motion.

According to Fig. 5, we could select a restrictive value of
a, e.g. 0.6 as in [5], to obtain 100% precision, but this may
depend on the dataset. Another option is to set a lower value
and to verify the matches with the geometrical constraint,
to get maximum precision improving the recall. Following
the latter idea, we set o = 0.3 and added the fundamental
matrix restriction. Fig. 6 shows the loops finally detected
by our whole system. Black lines and triangles denote the
trajectory of the robot; deep blue lines, actual loops, and
light red lines, loops detected. The figures of these results are
detailed in Table I, showing that we attain 100% precision in
the indoor, outdoor and mixed datasets, with recall 57.86%,
5.83% and 28.08%, respectively. The number of checked
images is higher in the indoor dataset because many of them
depicted just blank walls without enough features.
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TABLE I
EXECUTION TIME FOR 2723 IMAGES (MS)

Mean Std Min Max

FAST 2.39 1.07 | 1.37 7.84

Features Smoothing 1.27 0.05 | 1.21 1.43
BRIEF 1.44 | 037 | 0.11 1.74

Conversion 3.00 0.78 | 0.21 3.66

Query 0.17 0.13 | 0.00 | 0.62

Bag of words | r1.nds 006 | 0.02 | 001 | 0.11
Insertion 0.02 | 0.04 | 0.00 | 0.13

e Correspondences
Verification and RANSAC 0.82 1.29 | 0.25 5.79
Whole system 6.15 4.03 | 1.37 | 16.34
TABLE III

EXECUTION TIME OF GEOMETRICAL CHECKING (MS)

Mean Std Min Max
0.82 1.29 | 0.25 5.79
17.82 | 9.67 | 0.14 | 57.07

With direct index
Without direct index

C. Performance

In Fig. 7 we show the execution time consumed per
image in the mixed dataset. This was measured in a Intel
Core @ 2.67GHz machine. We also show in Table II the
required time of each stage for 2723 images. The features
time involve computing FAST keypoints and removing the
less persistent ones when there are too many, as well as
smoothing the image with a Gaussian kernel and computing
BRIEF descriptors. The bag-of-words time is split into four
steps: the conversion of image features into a bag-of-words
vector, the database query to retrieve similar images, the
creation and matching of islands, and the insertion of the
current image into the database (this also involves updating
the direct and inverse indexes). The verification time in-
clude both computing correspondences between the matching
scenes, by means of the direct index, and the RANSAC loop
to calculate a fundamental matrix.

We see that all the steps are very fast, including ex-
tracting the features and the maintenance of the direct and
inverse indexes. The required time of managing the islands
is negligible. This allows to obtain a system that runs in 6
ms per image, with a peak of less than 17 ms, far below
the 33 ms usually available in a real-time video acquiring
images at 30 Hz. The feature extraction step presents the
highest maximum; even so, we have achieved a reduction
of more than one order of magnitude with respect to other
features, such as SIFT or SURF, removing the bottleneck
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Fig. 8. Execution time of the system in the Mixed dataset for f = 10 Hz
TABLE IV
EXECUTION TIME FOR 19344 IMAGES (MS)
Mean Std Min Max
FAST 4.52 2.16 1.39 16.66
Features Smoothing 1.65 0.75 | 1.21 6.90
BRIEF 1.54 0.54 | 0.10 4.77
Conversion 2.98 0.78 | 0.21 7.00
. | Query 4.95 544 | 0.00 | 36.38
Bag of words | r1.nds 0.07 | 0.02 | 001 | 0.18
Insertion 0.02 0.01 | 0.00 0.15
. . Correspondences
Verification and RANSAC 1.03 1.59 | 0.02 6.12
Whole system 15.69 | 6.88 | 1.39 | 4891

of these loop closure detection algorithms. The conversion
of image features into bag-of-words vectors is the second
stage that requires more time. Its execution time depends on
the number of features and the size of the vocabulary. We
could reduce it by using a smaller vocabulary, since we are
using a relatively big one (1M words, instead of 10-60K
[1], [4]). However, we found that a big vocabulary produces
more sparse inverse indexes associated to words. Therefore,
when querying, fewer database entries must be traversed to
obtain the results. This reduces the execution time strikingly
when querying, trading off, by far, the time required when
converting a new image. We conclude that big vocabularies
can improve the computation time when using big image
collections.

We can see in Table II that the execution time of the
geometrical verification is very low. This is because we use
a direct file to retrieve the features of an image associated
to each word. We only compute correspondences between
two features associated to the same word. In Table III we
compare the execution time of computing correspondences
and calculating a fundamental matrix with and without using
the direct index. By using the direct index, we decrease the
execution time by around 90%.

We conducted the same experiments with a frequency
f = 10 Hz to test the system in a longer sequence. We
show in Table IV the execution time of the system for
19344 images. Fig. 8 shows a graph with the results in the
mixed dataset. The execution time is higher than that for the
previous case because the number of entries in the database
is greater now. This causes queries to check more possible
matches, demanding more computation cycles. Even so, the
required time for querying is still very low, between 5 and 37
ms, suggesting this stage scales well with tens of thousands



images. The rest of the stages do not present big differences
with the results of Table II. Our complete algorithm requires
less than 49 ms for closing a loop against a database with
more than 19K images.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a real-time technique to detect loops
in monocular sequences, introducing several novelties to
the bag-of-words and geometrical checking approach. We
have demonstrated we can speed up the execution of these
algorithms by more than one order of magnitude by using
BRIEF descriptors, discretised by a hierarchical bag of
binary words. We have shown that BRIEF descriptors with
close pairs are as reliable for loop detection as SURF features
with in-plane camera motion. To prevent images taken in
close positions from clashing and, thus, to improve the
matching, we group close matches into islands. We have
shown a technique based on our previous work [4], [5]
to impose a temporal constraint on the islands. We have
also introduced the novel use of a direct index to optimise
the geometrical verification, obtaining a speed up of around
90% when computing correspondence points. However, the
direct index may intrinsically forbid some correspondences
between features that do not belong to the same visual word.
We could ease this condition by computing correspondences
between features whose word had some parent node in
common. The number of levels to go up in the vocabulary
tree to find those common nodes would trade off speed and
chances to find more correct correspondences.

The reliability and efficiency of our proposal have been
shown on three real and public datasets from the European
Rawseeds project. We have concluded that a big vocabulary
can lower the execution time when using big databases. We
have shown we can detect loops against databases with 2.7K
images in 16 ms (6 ms on average), and against 19K images
in 49 ms (16 ms on average). This shows an improvement
of more than one order of magnitude from the more than
100-700 ms required by algorithms based on SIFT or SURF
[11, [3], [4], [5]. Our algorithm outperforms as well the
execution time of the loop detector of [2], that uses compact
randomised tree signatures [17], [18], proven very efficient.
According to the figure 6 of [2], their method requires around
200 ms to perform the complete loop detection against a
database with 2700 images.

Our system has been effective detecting loops in scenarios
with perceptual aliasing. In the future, we will research
the automatic learning of the system parameters to test our
algorithm in a wide variety of challenging environments, as
urban areas with highly dynamic objects, as cars or people.
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