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Abstract—We propose a place recognition algorithm for SLAM
systems using stereo cameras that considers both appearance and
geometric information of points of interest in the images. Both
near and far scene points provide information for the recognition
process. Hypotheses about loop closings are generated using a
fast appearance-only technique based on the bag-of-words (BoW)
method. We propose several important improvements to BoWs
that profit from the fact that in this problem images are provided
in sequence. Loop closing candidates are evaluated using a novel
Normalised Similarity Score, that measures similarity in the
context of recent images in the sequence. In cases where similarity
is not sufficiently clear, loop closing verification is carried out
using a method based on Conditional Random Fields (CRFs).
We build on CRF-matching with two main novelties: we use
both image and 3D geometric information, and we carry out
inference on a Minimum Spanning Tree (MST), instead of a
densely connected graph. Our results show that MSTs provide
an adequate representation of the problem, with the additional
advantages that exact inference is possible and the computational
cost of the inference process is limited. We compare our system
with the state of the art using visual indoor and outdoor data
from three different locations, and show that our system can
attain at least full precision (no false positives) for a higher recall
(fewer false negatives).

Index Terms—Recognition, Bag of Words, Conditional Ran-
dom Fields, Computer Vision, SLAM.

I. INTRODUCTION

N this paper we consider the problem of recognising loca-

tions based on scene geometry and appearance. This prob-
lem is particularly relevant in the context of large-scale global
localisation and loop closure detection in mobile robotics.
Algorithms based on visual appearance are becoming popular
because cameras are easily available and provide rich scene
detail. In recent years, it has been shown that taking geometric
information also into account further improves system robust-
ness. Most systems rely on a geometrical checking to verify
spatial consistency [1]-[7].

We propose to solve the place recognition problem by
using two complementary techniques, see Fig 1 (preliminary
versions of this work were described in [8,9]). The first one
is based on the bag-of-words method (BoW) [10], which
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reduces images to sparse numerical vectors by quantising
their local features. This enables quick comparisons among
a set of images to find those which are similar. We use a
hierarchical BoW [11] with several novelties that consider
the sequential nature of data acquisition. First, we define a
novel normalised similarity score (1) to evaluate similarity
with respect to recent images in the sequence. We also enforce
a temporal consistency of the candidate matches to improve
robustness. And finally, we classify the candidates into three
categories according to the normalised similarity score: high
confidence, unclear, and clear rejection.
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Unclear loop closure candidates are verified by matching
the scenes with CRFs, the second technique considered. CRF-
Matching is an algorithm based on Conditional Random Fields
(CRFs) [12], recently proposed for matching 2D laser scans
[13] and matching image features [14]. CRF-Matching uses a
probabilistic model able to jointly reason about the association
of features. Here we extend CRF-Matching to reason about
the association of data provided by a stereo camera system in
both image space and in 3D space. This allows our system
to consider all information provided by a stereo pair, both
near and far. As graph structure for the CRFs in our problem,
we propose the use of the Minimum Spanning Tree (MST),
where vertices are the features detected in the images, and
edge weights are Euclidean distances between them. Because
we code near information in the 3D metric space, and far
information in image coordinate space, each type of visual
information is represented in a separate graph. We also propose
accepting the loop closure candidates based on a normalised
similarity score in terms of the likelihoods of the matched
scenes, also with respect to recent images.

Our basic idea is to exploit the efficiency of BoW for
detecting revisited places in real-time using only appearance
(Section III-A) and the robustness of CRF-Matching to verify,
only in unclear cases, that revisiting matches are correct
(Section III-B).

In Section IV we analyse the performance of our sys-
tem using image sequences from the RAWSEEDS project,
obtained with a frontal stereo camera in both indoor and
outdoor environments. These sequences contain challenging
scenes, including many cases of perceptual aliasing, changes
in illumination due to time of day, and dynamic environments.
We compare our system with the state of the art in visual place
recognition, FAB-MAP 2.0 [5,15]. Our system exhibits better
precision-recall performance.

II. RELATED WORK

Place recognition using visual information has been a prob-
lem of great interest in robotics for some time. Most successful
methods consider appearance or geometric information, or
a combination of both. Williams et al. [16] compared three
loop closure methods representative of each idea: a map-to-
map method that considers mainly geometry, an image-to-
image method that considers only appearance, and an image-
to-map method that considers both. The best results were
obtained for the image-to-image and image-to-map methods,
although the image-to-map method does not scale well in large
environments.

The image-to-image method considered in the work of
Williams et. al. was FAB-MAP, the first successful appearance-
only method, proposed by Cummins and Newman [15]. FAB-
MAP uses the bag-of-words (BoW) representation [10], sup-
ported by a probabilistic framework. This system proved very
successful in large scale environments. It can run with full pre-
cision (no false positives), although at the expense of low recall
(the rate of true positives declines). Avoiding false positives is
crucial because they result in failure to obtain correct maps, but
avoiding false negatives is also important because they limit

the quality of the resulting maps, particularly if large loops are
not detected. Geometric information has shown to be important
in avoiding false positives while sacrificing less true positives.
Angeli et al., [1] proposed an incremental version of BoW,
using a discrete Bayes filter to estimate the probability of loop-
closure. Since the Bayes filter can still exhibit false positives in
cases where the same features are detected, but in a different
geometric configuration, the epipolar constraint was used to
verify candidate matchings. Valgren and Lilienthal [2,3] also
verify topological localisation candidates using the epipolar
constraint, but matching of an image is carried out against
the complete image database, which can become inefficient
for large environments. Regarding false negatives, Mei et al.
[17] apply a query-expansion method based on the feature co-
visibility matrix to enrich the information of the locations and
facilitate loop detection. In the field of object retrieval, Chum
et al. [18] also use a query-expansion method to perform image
queries against large databases, using appearance information
only. All initial candidates are re-ranked using an affine ho-
mography and then query-expansion is carried out. Currently,
the performance of such query-expansion methods is heavily
dependent on parameter tuning [17]. Furthermore, they do not
improve the recall in cases where the image depicts a new
place, or there is perceptual aliasing [5].

Other methods have shown the importance of incorporating
geometric constraints to avoid false positives. Konolige et al.
[7] uses a stereo pair to check for a valid spatial transformation
between two pairs of matching scenes by trying to compute
a valid relative pose transformation. The acceptance criteria
is based on the number of inliers. A very similar strategy for
geometrical checking is used by Newman et al. [6] with stereo,
over the candidates provided from FAB-MAP using an omni-
directional camera. Olson et al. [4] test the spatial consistency
of a set of candidate matchings by additionally considering
their associated pose estimates. This requires odometry or
some other source for the priors on the poses. Cummins and
Newman [5] incorporated a simplified constraint check for an
omni-directional camera installed on a car in FAB-MAP 2.0.
This system was tested using two extremely large (70km and
1000km) datasets. They obtain recalls of 48.4% and 3.1%,
respectively, at 100% precision. Recently proposed by Paul
and Newman [19], FAB-MAP 3D additionally includes 3D
distances between features provided by a laser scanner. This
results in higher recall for the same precision in the first urban
experiment of FAB-MAP. However, the system can only make
inferences about visual features in the laser range.

The place recognition problem has also been addressed
using only 3D range data. Steder et al. [20] extract features
from range images obtained by a 3D laser scanner and query a
database in order to detect loop closures. This system has high
computational requirements compared with systems based on
BoWs, but higher recall is attained for the same precision.
An important limitation is that this system cannot distinguish
between locations with similar shape but different appearance,
for example corridors, or with different background beyond the
sensor’s range.

Our system follows a slightly different approach: in order
to attain full precision and high recall, an improved BoW
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technique is used in a first step for the generation of loop
closing matches. In unclear cases, loop closing verification
is carried out using CRF-Matching based on both image and
3D geometry provided by the stereo camera. CRF-Matching
was introduced in [13] for matching 2D laser scans. If visual
information is available, texture around laser points can be
used for matching, although the remaining visual information
is ignored. The authors proposed the possibility of detecting
loop closures with CRF by taking the maximum log-likelihood
of the match between the current and all previous scans.
Comparing the current location against all the previous ones
is impractical in real applications. Furthermore, that metric
does not provide a way to distinguish between true and false
loop closures. The same framework is proposed in [14] to
associate features in images considering texture and relative
image coordinates. A 2D Delaunay triangulation is used as
graph structure.

In our system, the use of a stereo camera allows us to com-
bine appearance information with 3D metric information when
available. We use the MST as the graph structure instead of the
dense Delaunay triangulation. This idea was previously used
by Quattoni et al. [21] in the context of object classification. In
that work, equivalent classification performance was shown for
MSTs in comparison with more densely connected graphs. In
addition, trees allow exact inference algorithms, as compared,
for instance, with loopy belief propagation for cyclic graphs,
which is approximate and more expensive. As in [21], our
results show that MSTs properly encode connections between
the hidden variables and ensures global consistency.

Anguelov et al. [22] proposed to use Associative Markov
Networks (another discriminative graphical model) for 3D
dense laser data in the context of segmentation of multiple
objects. The graph used by them is a mesh over all the 3D
points. In the same kind of application Lim and Suter [23] use
CRFs and sub-sample the 3D laser data with an adaptive data
reduction based on spatial properties in order to reduce both
learning and inference times. We take advantage of texture
in visual information to sub-sample the 3D dense information
and consider only salient visual features and their coverage
areas.

III. OUR PROPOSAL

In this section we describe the two components of our
system that constitute the core of our approach: loop closing
detection and loop closing verification. Our place recognition
system can be summarized in algorithm 1.

A. Loop Closing Detection

In the spirit of visual bags-of-words [10] we first represent
an image of the scene as a numerical vector by quantising its
salient local SURF-features [24] (see Fig. 2(a)). This technique
entails an off-line stage that consists in clustering the image
descriptor space (the 64-dimensional SURF space, in our case)
into a fixed number N of clusters. This is done with a rich
enough set of training images, which can be independent of
the target images. The centres of the resulting clusters are
named visual words; after the clustering, a visual vocabulary

Algorithm 1 Place recognition system

Input: Scene at time ¢, Database (1,...,t — 1)
Output: Time ¢’ of the revisited place, or null
Output = Null
Search the bag-of-words database for the best matching scene at
t' with score 7 (t,t)
if [t —1,¢1],..., [t — 71, ¢;,] matched and |¢; — t}| < 74 then
{Loop candidate detected}
if nc(t,t') > o then
Output =t/ {Accepted}
else
if n.(t,t') > o~ then
{Loop candidate verification}
Build Gsp and G
Infer with CRFs and compute the scores ng
if 73p(t, 1) < Bsp Anrm(t,t') < Brm then
Output =t/ {Accepted}
end if
end if
end if
end if
Add current scene to the Database

is obtained. Now, a set of image features can be represented
in the visual vocabulary by means of a vector v of length
N. For that, each feature is associated to its approximately
closest visual word. Each component v; is then set to a
value in accordance with the relevance of the i-th word in
the vocabulary and the given set, or O if that word is not
associated to any of the image descriptors. There are several
approaches to measure the relevance of a word in a corpus
[25]; in general, the more a word appears in the data used to
create the visual vocabulary, the lower its relevance is. We use
the term frequency — inverse document frequency (tf-idf) as
proposed by [10].

This method is suitable for managing a large amount of
images; moreover, [11] presents a hierarchical version which
improves efficiency. In this version, the descriptor space clus-
tering is done hierarchically, obtaining a visual vocabulary
arranged in a tree structure, with a branch factor £ and L
depth levels. In this way, the comparisons for converting an
image descriptor into a visual word only need to be done
in a branch and not in the whole discretised space, reducing
the search complexity to logarithmic. Our implementation' of
this data structure is used in this paper with kK = 9, L = 6
and the kmeans++ algorithm [26] as clustering function. This
configuration yielded the best performance in our tests and
experiments.

1) Normalised similarity score: Representing images as
numerical vectors is very convenient since it allows performing
really quick comparisons between images. There are several
metrics to calculate the similarity between two image vectors.
We use a modified version of the one proposed by [11]. Given
two vectors v and w, their similarity is measured as the score
s(v,w):

1 v w
I A 1
s(o,w) 2H||v|| |w|H M
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(b) MST over images o'binates for far features (Gr.,)

(d) 3D visualitation of Gsp

Fig. 2. Scene from an outdoor environment. In each scene we get the SURF features over one image of the stereo pair 2(a), and compute the two minimum
spanning trees: one for features with 3D information (near features), and the other for the remaining ones (far features). On 2(b), we show the graph for far
features (Gy,) in blue, in dark red the graph for near features (Gsp) on 2(c). We apply the CRF-Matching over both graphs. The minimum spanning tree
of G3p is computed according to the metric coordinates, here projected over the images only for visualisation. On 2(d), we show G3p in metric coordinates
with the 3D point cloud (textured) of each vertex in the tree. The MST gives us an idea of the dependencies between features in a scene, and enforce the

consistency of the features association between scenes.

where ||.|| stands for the L;-norm. Note that this score is 0
when there is no similarity at all, and 1 when both vectors are
the same.

In a general problem with bags-of-words, when comparing
a vector v against several others, choosing the vector w whose
score s(v,w) is maximum is usually enough for establishing
a match. However, this is not enough in our context. Ours is
a special case where the acquired data are sequential. This
means that vectors v and w are associated to instants of
time ¢ and ¢ and that we can take advantage of this fact.
Furthermore, it is expected to have lots of very similar images
in our problem, since they are collected close in time. In many
cases the matched vector with the highest score s may be
not the one we are looking for. We want to distinguish those
cases, but the range the score s varies is very dependent on the
query image and the words this contains, so that it is difficult
to set a threshold that works fine in every situation. For these
reasons, we define a novel metric of similarity, the normalised
similarity score (1.), as:

s(vg, wy)
5(vg, Ve—ry)

We normalise the score obtained from a match between vy
and wy with the expected score for the query vector v;. The
expected value for v; is the score obtained when comparing
it against a very similar vector. In our case, this is the vector
obtained v = 1s ago. If the score s(v;, v¢—~) is very small (e.g.
if the robot rotated very fast and those two images were not
similar at all), the normalised similarity score is not reliable.
For this reason, we discard those query vectors v; such that
s(vg, vi—~) < 0.1. For the rest of the cases, the higher 7, is, the
more similar two images are. The effect of this normalisation
is to increase the matching scores of those query images that
obtain small scores s because of their number of features,
bringing them closer to those attaining higher s. Note that the
normalised similarity score can be defined for any similarity
score.

2) Temporal consistency: Our system takes an image at
time ¢ from the stereo pair at one frame per second. The image

ne(t,t') = ©))
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is converted into a bag-of-words vector v;, which is stored in a
set TW/. At the same time, an inverted file is maintained to save
in which images each visual word is present [10]. The set W
and the inverted file compose our database of places already
visited. The current image vector v; is compared against all
the ones previously stored W that have at least one word in
common with v;. The complexity of this operation in the worst
case is linear in the number of stored vectors, but checking the
common words by looking up the inverted file makes it very
quick. The result is a list of matches < vy, wy >, associated to
their scores 7.(t,t’), where w; are the vectors matched from
W. Of these matches, those whose instants ¢ and ¢’ are too
close are discarded to avoid matching images taken very close
in time. We disallow matches against images taken less than
20 seconds ago. This value may depend on the length of the
loops and the velocity of the robot, but we noticed this value
suffices with the usual environment and platforms we use in
our experiments.

To detect loops, we impose a temporal constraint. A loop
candidate between images at time ¢ and ¢y is detected if there
exist matches < vy, we, >, <vi_1, Wy >, <Vp—2, Wiy, >, ..y
for a short time interval of 7; = 4 seconds, that are pairwise
consistent. There is consistency if the difference between
consecutive timestamps tg, ti, ..., is small (i.e. within 74 =
2 seconds). These temporal values were selected according to
the movement speed of the robot in our image sequences, and
the expected reliability of the method.

Finally, the match < v, wy, >, with normalised score
ne(t,to), is checked by a double threshold (o ,a™) in order
to be accepted as a loop closure. If this score is high enough
(Me(t,tg) > ™), the match is very likely to be correct, so the
candidate is accepted as a loop closing. On the contrary, if this
score is small (n.(t,tg) < a~), the candidate is rejected. In
the cases where this normalised score alone is not sufficient
to ensure loop closure (o~ < n.(t,t9) < a™), verification is
necessary.

B. Loop Closing Verification

In this section we describe the process to decide when an un-
clear loop closure candidate from BoW is accepted or rejected.
This process is done by inferring on the data association,
or matching, between SURF-points of the candidates scenes.
Here we refer to SURF-point as the pixel in the image where
the SURF-feature was detected. The matching is carried out
using conditional random fields (CRFs), a probabilistic undi-
rected graphical model first developed for labelling sequence
data [12]. We model the scene as two graphs: the first graph
(G3p) models the near objects, i.e. those pixels with dense
information from the stereo, and hence with 3D information
(see Fig. 2(c) and 2(d)). And the second graph (Gy,,) models
the far objects from pixels without disparity information (see
Fig. 2(b)). The nodes of the graphs are the SURF-points
extracted before, and the edges of the graphs result from
computing the minimum spanning tree (MST), according to
the Euclidean distances between the pixel coordinates in the
case of Gy,,, and between the 3D metric coordinates in the
case of G3p.

CRFs are a case of Markov Random Fields (and thus
satisfy the Markov properties) where there is no need to
model the distribution over the observations [27,28]. If the
neighbourhood of a node A (i.e. all nodes with edges to A)
in the graph is known, the assignment to A is independent of
the assignment to another node B outside the neighbourhood
of A. By definition, the minimum spanning tree connects
points that are close in the measurement space, highlighting
intrinsic localities in the scene. This implies: first, that the
associations are jointly compatible within neighbourhoods, and
second, that the compatibility is enforced and propagated from
neighbourhood to neighbourhood by the edge between them.

1) Model definition: Instead of relying on Bayes’ rule to es-
timate the distribution over hidden states x from observations
z, CRFs directly model p(x|z), the conditional distribution
over the hidden variables given observations. Due to this
structure, CRFs can handle arbitrary dependencies between
the observations. This makes them substantially flexible when
using complex and overlapped attributes or observations.

The nodes in a CRF represent hidden states, denoted
x = (X1,Xg,  *,Xy,), observations are denoted z. In our
framework the hidden states correspond to all the possible
associations between the n features in scene A and the m
features in scene B, ie. x; € {0,1,2,...,m}, where the
additional state 0O is the outlier state. Observations are provided
by the sensors (e.g., 3D point clouds, appearance descriptors,
or any combination of them). The nodes x; along with the
connectivity structure represented by the undirected graph
define the conditional distribution p(x|z) over the hidden states
x. Let C be the set of cliques (fully connected subsets) in
the graph of a CRF. Then, a CRF factorizes the conditional
distribution into a product of cligue potentials ¢.(z,%.), where
every ¢ € C is a clique in the graph, and z and x. are the
observed data and the hidden nodes in such clique. Clique
potentials are functions that map variable configurations to
non-negative numbers. Intuitively, a potential captures the
“compatibility” among the variables in the clique: the larger
a potential value, the more likely the configuration. Using the
clique potential, the conditional distribution over hidden states
is written as:

p(x]z) = %Z) I] ¢.(z.x) @)
ceC

where Z(z) = >, [].cc ¢c(2,%.) is the normalising partition
function. The computation of this function can be exponential
in the size of x. Hence, exact inference is possible for a limited
class of CRF models only, e.g. in tree-structured graphs.

Potentials ¢.(z,x.) are described by log-linear combina-
tions of feature functions f., i.e., the conditional distribution
(3) can be rewritten as:

p(x|z) = ﬁ exp {wa : fc(z,xc>} )
ceC

where w. a weight vector, which represents the importance of
different features for correctly identifying the hidden states.
Weights can be learned from labelled training data.
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2) Inference: Inference in a CRF estimates the marginal
distribution of each hidden variable x;, and can thus determine
the most likely configuration of the hidden variables x (i.e., the
maximum a posteriori, or MAP, estimation). Both tasks can
be solved using belief propagation (BP) [29], which works
by transmitting messages containing beliefs through the graph
structure of the model. Each node sends messages to its
neighbours based on the messages it receives and the clique
potentials. BP generates exact results in graphs with no loops,
such as trees or polytrees.

3) Parameter learning: The goal of parameter learning
is to determine the weights of the feature functions used
in the conditional likelihood (4). CRFs learn these weights
discriminatively by maximising the conditional likelihood of
labelled training data. We resort to maximising the pseudo-
likelihood of the training data, which is given by the product
of all local likelihoods p(x;|MB(x;)); where MB(x;) is the
Markov Blanket of variable x;, which contains the immediate
neighbours of x; in the CRF graph. Optimisation of this
pseudo-likelihood is performed by minimising the negative of
its log, resulting in the following objective function:

wlw

L(w) = = > logp(x;|MB(x;), w) + %)
i=1

The rightmost term in (5) serves as a zero-mean Gaussian
prior, with variance og, on each component of the weight
vector.

The training data are labelled using RANSAC [30] over the
best rigid-body transformation in 6DoF [31] for G3p and over
the fundamental matrix for Gy,,, after SURF matching of two
consecutive scenes.

4) Feature description: The CRF matcher can employ
arbitrary local features to describe shape, image properties,
or any particular aspect of the data. Our features describe
differences between shape (only for Gsp) and appearance (for
both graphs) of the features. The local features we use are the
following:

Shape difference: These features capture how much the
local shape of dense stereo data differs for each possible
association. We use the geodesic, PCA and curvature distance.

The geodesic distance, defined as the sum of Euclidean dis-
tances between points in the minimum spanning tree, provides
information about the density of the neighbourhood of each
node of the graph. It can be calculated for different neigh-
bourhoods representing local or long-term shape information.
Given points 24 4, 2p,; and a neighbourhood k, the geodesic
distance feature is computed as:

2
20w

foeo(is jik,2a,2B) =
i+k—1 J+k—1

Z 24041 — za,l — Z 2,141 — 2Bl (6)

=i 1=y
where ¢ and j correspond to the hidden state x; that associate
the feature ¢ of the scene A with the feature j of the scene
B. The neighbourhood k of x; in the graph corresponds to all
the nodes separated k nodes from x;. In our implementation,
this feature is computed for k& € {1,2,3}. A similar feature is
used to match 3D laser scans in [32].

We also use Principal Component Analysis over the dense
3D point cloud that is contained within some spheres centred
in the graph nodes (textured points in Fig. 2(d)). The radius of
these spheres is given by the keypoint scale provided by the
SUREF extractor. The PCA distance is computed as the absolute

difference between the variances of the principal components

of a dense point cloud z{} in scene A and 2%;’; in scene B:

pca __pca

a _pcay __
) ZAji T ?B,j

%R @)

o pe
fpcali, j, 2%

Another way to consider local shape is by computing the
difference between the curvatures of the dense point clouds.
This feature is computed as:

fcurv(ivjv Zz?ZCB) = sz,l - Z%JH (8)

where z¢ = Slf’sﬁ, and s; > sy > sg are the singular

values of the point cloud of each node.

Visual appearance: These features capture how much the
local appearance from the points in the image differs for each
possible association. We use the SURF distance. This feature
calculates the Euclidean distance between the descriptor vec-
tors for each possible association:

fsurp(i, j, 2555, 25°) = |29 — 255 |  9)

Ramos et al. [14] also include as features the distances
between the individual dimensions of the descriptor space. In
our training and validations data we do not find a significant
improvement in the accuracy of the labelling, and this greatly
increases the size of the weight vector.

All previous features described are unary, in that they only
depend on a single hidden state i in scene A (indices j and
k in the features denote nodes in scene B and neighbourhood
size). In order to generate mutually consistent associations it
is necessary to define features, over the cliques, that relate the
hidden states in the CRF to each other.

Pairwise distance: This feature measures the consistency
between the associations of two hidden states x; and x; and
observations z4,;, z4,; from scene A and observations zp
and zp; in scene B:

fpair(ivjv k7 la ZA, ZB) =

Iza: = za;ll = 2B,k — 2Bl (10)

The z4 and zp are in metric coordinates for Gzp, and in
pixels for Gj,,.

5) Loop closure acceptance: We use the CRF matcher stage
over the loop closing candidates provided by the BoW stage.
Then, we compute the negative log-likelihood (A) from the
MAP associations between the scene in time ¢, against the
loop closing candidate in time ¢/, Ay, and the scene in ¢ — 7,
At,tf'\/’ Y= 1s.

The negative log-likelihood AP of the MAP association
for G3p provides a measure of how similar two scenes are in
terms of close range, and AT™ for Gy, in terms of far range.
Thus, in order to compare how similar the current scene is
with the scene in ¢/, A, with respect to how similar the
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TABLE I
DATASETS
Dataset | Length | Revisited | # Images| Average Overlap with
(m) length (m) speed (m/s) | training data
Indoor 774 113 1756 0.44 no
Outdoor 1718 208 2279 0.75 yes*
Mixed 1892 268 2150 0.88 yes*
Malaga 1195 162 461 2.6 no

* Different path and one month apart.

current scene is with the scene in ¢t —y, Ay ;—., we use again
a normalised similarity score as:

AY

_ t,t’
N
At,t—'y

where G indicates the graph.

Score 7g is compared to g, a control parameter of the
level of similarity we demand for (¢,¢ — ), where a smaller
£ means a higher demand. By choosing different parameters
for near and far information we can make a balance between
the weight of each in our acceptance.

ng (11)

IV. EXPERIMENTS

We evaluated our system with the public datasets from the
RAWSEEDS Project [33]. The data were collected by a robotic
platform in different static and dynamic environments. We
used the data corresponding to the stereo vision system with
18cm of baseline. These are b/w images (640x480px) taken
at 15 fps with the Videre Design STH-DCSGVAR system.

We used a static dataset depicting a mix of indoor and
outdoor areas to perform the offline stages of our system.
These entail the training of the bag-of-words vocabulary and
the learning of the CRF feature weights. We then tested the
whole system in three datasets: static indoors, static outdoors
and dynamic mixed. These three datasets along with the
training one were collected on different dates and in two
different campuses. The trajectory of the robot in the outdoor
and mixed datasets has some overlap in location with the
dataset used for training; this is not the case with the indoor
dataset, which was collected in a different campus. Please refer
to the RAWSEEDS Project [33] for further details.

In addition, in order to evaluate the final configuration of
our system, we used the Malaga parking lot 6L dataset [34].
This is a public dataset with different vehicle, stereo camera
(AVT Marlin F-131C model) and configuration (1024x768px
at 7.5fps and 86cm of baseline), than those in the RAWSEEDS
Project. Table I shows the information related to these datasets.

In this experimental evaluation section, we first show the
effect of each of system components in the loop detection stage
in IV-A. Then in IV-B, we compare the use of the Delaunay
triangulation and MST during the CRF learning process, and
also the influence of each feature proposed above. Finally, we
show the performance of our full system in the aforementioned
datasets in IV-C — IV-E.

A. Loop detection stage

We used 200 images uniformly distributed in time from the
training dataset to create a bag-of-words vocabulary tree with
k =9 branching factor and L = 6 depth levels.
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Fig. 3. Precision and recall obtained by different techniques to select loop
candidates, with no further geometrical verification.

We started evaluating how each step of our loop detection
stage affects the correctness of the resulting matching can-
didates. We compared the effectiveness of the score s and
1. when used with both our proposed BoW algorithm (with
temporal consistency) and a simple bag-of-words approach.
This simple technique consists in selecting the matching image
that maximises the score for a given query. In Fig. 3 we show
the precision-recall curves yielded by each configuration as
varying the minimum required score. We can see that our BoW
with temporal consistency and 7. score obtained the highest
recall for 100% precision in the datasets.

Our BoW with temporal consistency outperforms the simple
bag-of-words approach. This is specially noticeable in the
outdoor dataset, where the simple is not able to achieve 100%
precision, so that final results would be hardly reliable. The
simple bag-of-words approach failed in this dataset because
distant objects, such as buildings, are visible in many images,
causing incorrect matches. Requiring temporal consistency



8 IEEE TRANSACTIONS ON ROBOTICS, VOL. , NO. , MONTH YEAR. REGULAR PAPER

TABLE II
MEAN AND STANDARD DEVIATION OF THE ACCURACY IN A 10-FOLD
CROSS VALIDATION TEST WITH BOTH GRAPH STRUCTURES: DELAUNAY
TRIANGULATION AND MST

G3p Gim
Delaunay MST | Delaunay MST
Training set
Mean 76.65%  88.01% 81.38%  79.53%
Std. dev. 1.70% 0.67% 0.16% 0.17%
Validation set
Mean 75.05%  87.34% 81.36%  79.53%
Std. dev. 8.30% 5.10% 1.32% 0.99%

reduces these cases because it is unlikely to obtain several
consecutive matches with the same wrong place. This makes
clear the usefulness of the temporal consistency, as also
reported before in [8].

Regarding the score, 7). attained higher recall for full preci-
sion than the score s both indoors and outdoors. In the indoor
dataset, the behaviour of both scores with our BoW approach
with temporal consistency was similar, but the advantage of
7. 1s clear with the simple approach, when just the match with
the maximum score is chosen. This shows that 7). is able to
provide more discriminative scores than s.

B. Loop verification stage

With the same 200 images used for training the bag-
of-words vocabulary, we learned the weights for the CRF
matcher. For this, we obtained the SURF-features from the
right image in the stereo rig and selected those with 3D
information from the dense point cloud given by the stereo sys-
tem. Then, we ran a RANSAC algorithm over the rigid-body
transformation between the images at time ¢ and ¢ — §;. Since
the stereo system has high noise in the dense 3D information,
we selected 0; = 1/15s. The same procedure was done
over the remaining SURF features with no 3D information,
where we obtained the labels by calculating the fundamental
matrix between the images. These two steps resulted in an
automatic learning of the CRF labels. Although this automatic
labelling can return some outliers, the learning algorithm
has demonstrated being robust in their presence. We used
the optimisation based on the BFGS quasi-Newton method
provided by MATLAB to find the weights that minimised
the negative log pseudo-likelihood. In both G3p and Gy,,, the
weights obtained suggested that the most relevant features in
the CRF matcher were fsyrr and f,q;,.

Delaunay vs. MST: In order to verify that the accuracy of
the data association using the CRFs as proposed in this paper is
not negatively affected by using MST instead of the Delaunay
triangulation, a 10-fold cross-validation procedure was carried
out. For this, the pairs of images used for learning the weights,
both in 3D and image, were randomly permuted and equally
divided into ten groups. Nine groups were used for training,
and the 10th, for validation (training and validation data are
mutually exclusive). This process was repeated 10 times and
the evaluation metrics were computed across folds for all the
validation trials.

The 10-fold cross validation was performed for Gsp and
G, both with the Delaunay triangulation and the minimum

TABLE III
ACCURACY IN TRAINING AND VALIDATION SETS FOR THE DATA
ASSOCIATION FOR BOTH GRAPHS, REMOVING ONE FEATURE AT A TIME IN
THE LEARNING STAGE

Gsp Grm

Training  Validation | Training  Validation
no fgeo 86.65% 84.48%
no fsyrr 65.87% 60.92% 19.55% 19.28%
no fpca 87.63% 84.99%
no feury 87.86% 84.68%
no fpqir 85.10% 83.27% | 77.84% 77.83%
All features  87.70% 86.45% | 78.92% 78.99%

spanning tree graph structures. The results of the statistic test
in the accuracy of the matching with respect to the labelling
given are shown in Table II. The results in the validation
data suggest that there is not statistical evidence to favour
the Delaunay triangulation as graph structure for our CRF
matching processes over the MST. These results agree with
the conclusion drawn by Quattoni et al. [21].

Relative importance of features: The influence of each fea-
ture proposed in the CRF-Matching is studied in the learning
stage. The set used for learning was randomly divided into
two 60-40% groups; 60% for training and 40% for validation.
The learning was then carried out with all the features but
one each time. The accuracy in data association is shown in
Table III for both graphs.

The accuracy obtained in each case shows that fs;yrp and
f,qir are the most relevant features in the inference process.
However, in the validation set for G3p we lose about 2% in
the mean accuracy of data association when we remove any
other feature. This is a short analysis about the influence of
each feature in the inference process that could be extended.
For instance, we could analyse many more combinations by
adding or removing more than one feature.

Although we have considered a certain set of features in our
system, CRFs are amenable to the use of different or additional
features that might become available through other sensors or
sensing modalities.

C. Full system

In this section we analyse the performance of our detection
and verification stages put together. In addition, we compare
our system with the state-of-the-art technique FAB-MAP
2.0 [5]. The FAB-MAP software? provides some predefined
vocabularies. We used the FAB-MAP indoor vocabulary for
our indoor dataset and the FAB-MAP outdoor vocabulary for
the mixed and outdoor datasets. This technique has a set of
parameters to tune in order to obtain the best performance in
each experiment. We give a short description of the parameters
in the appendix A (for further details please see [15]). We
chose two parameter sets in order to obtain different results
(see Table IV):

o The default parameter set that is provided by the authors.

The probability threshold p is taken as 0.99, considering
obtaining as few false positives as possible. When we

2The software and vocabularies were downloaded from http://www.robots.
ox.ac.uk/~mobile/
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Fig. 4. Precision and Recall without CRF verification or epipolar constraint with BoW and FAB-MAP 2.0 with two parameter sets.

TABLE IV
FAB-MAP 2.0 - PARAMETERS FOR THE EXPERIMENTS

Outdoor | Indoor | Mixed
default modified

p 0.99 0.96 0.5 0.3
P(obs|exist) 039 0.39 0.31 0.37
P(obs|—exist) 0.05 0.05 0.05 0.05
P(newplace) 0.9 0.9 0.9 0.9
o 0.99 0.99 1.0 1.0
Motion Model 0.8 0.8 0.8 0.6
Blob Resp. Filter 25 25 25 25
Dis. Local 20s 20s 20s 20s

use this configuration, we check the results yielded by
FAB-MAP for geometrical consistency.

« A modified parameter set is tuned to obtain the maximum
possible recall at full precision. The idea behind of this
tuning is to use as place recognition system only the
FAB-MAP 2.0, without geometrical verification. For the
outdoor dataset this parameter set is the same than the
default set, only changing the probability threshold.

We filter the results of FAB-MAP 2.0 when using the default
configuration with a geometrical checking. Since the last avail-
able version of the FAB-MAP software does not implement
the geometrical checking described by Cummins and Newman
[5], we implemented a geometrical checking (denoted GC)
based on epipolar geometry. This epipolar constraint consists
in computing the fundamental matrix (by using RANSAC and
the 8-point algorithm [35]) between two matched images. This
test is passed if a well conditioned fundamental matrix can be
obtained.

Firstly, we compared the correctness of our BoW detector
with that of FAB-MAP 2.0, both with no geometrical veri-
fication. Fig. 4 shows the precision-recall curves resulting in
the three RAWSEEDS datasets. We obtained them by varying
the minimum confidence value expected for a loop closure
candidate of BoW, o~ (with fixed minimum confidence level
for a trusted loop closure o™ = 0.6), and the probability of
acceptance p of FAB-MAP 2.0. We can observe that the curve
of BoW dominated those of FAB-MAP 2.0, even without
geometrical checking. As it was expected, when we choose
carefully the parameters of FAB-MAP 2.0, the results we
obtain are much better than when using the configuration
by default. This is specially noticeable in the indoor dataset,
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TABLE V
OUR SYSTEM - PARAMETERS FOR THE EXPERIMENTS
Indoor | Outdoor | Mixed
at 0.6 0.6 0.6
a” 0.15 0.15 0.15
Bsp 1 1.5 1.5
Brm 1.3 1.7 1.7
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Fig. 5. Precision-recall curves for the indoor dataset. In each curve the

working point is marked, as in the Table IV and Table V. We also show our
BoW stage with geometrical checking (GC) as verification. The GC checks the
epipolar constraint with RANSAC. Note that FAB-MAP 2.0 with the modified
configuration needs no GC.

where there were false positives in all the cases with the default
parameters. This is due to the several similar-looking corridors
and libraries this dataset presents.

Later, we added the geometrical verification stage to BoW
and FAB-MAP 2.0 and compared the results of our system
(BoW with CRF-Matching) and other approaches: FAB-MAP
2.0 with GC, and BoW with GC. We show an example of the
results obtained in the indoor dataset in Fig. 5. These were
obtained by varying o~ and p, with a* = 0.6. For our system,
we set the S parameters of the CRF matcher in order to obtain
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Loops detected by each of the methods in the Mixed dataset. Black lines and triangles denote the trajectory of the robot; light green lines, actual

loops, deep blue lines denote true loops detected. In Fig. 10 we show the false negative cases M1 and M2.

100% precision. We performed this test to compare recall with
the state of the art. In view of results shown in Fig. 4, we
selected the working value o~ = 0.15. Since these datasets
are fairly heterogeneous, we think these « values can work
well in many situations. It might depend on the vocabulary
size, though. All the parameters used are shown in Table V.

The results of FAB-MAP 2.0 over the datasets are shown
in Figs. 6(a), 7(a) and 8(a) for the default set of parameters
plus the geometrical checking with the epipolar constraint,
and in Figs. 6(b), 7(b) and 8(b) for the modified set of
parameters. Please, note that FAB-MAP 2.0 with the modified
configuration does not need geometrical verification, since we
selected the parameters aiming to obtain no false positives.

Again, as expected with the modified parameters, FAB-MAP
2.0 obtained greater recall at full precision than with the
parameters by default, although, some loop closures were not
detected. We detail some cases: in the Indoor dataset, Fig. 6(a),
the big area on the beginning of the map (start-end), especially
important in the experiment because if no loop is detected in
that area, a SLAM algorithm could hardly build a correct map
after having traversed such a long path (around 300 metres).
Outdoors, as shown in Figs. 7(a) and 7(b), the biggest loop
was missed in the starting and final point of the experiment,
in the marked area (O1) in the map. An example of a false
negative in this area is shown in Fig. 10(a). This dataset is
challenging due to the illumination and blurring present in the
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(c) False positive of FAB-MAP 2.0 (default) rejected by the GC.

Fig. 9. False positive cases obtained by BoW plus GC in the indoor dataset
in (a) and (b). In (c), two different corridors make FAB-MAP 2.0 produce
a false positive (p = 0.9989) with the default parameters. However, it is
correctly rejected by the geometrical checking.

images. And this entails an added difficulty for FAB-MAP
since the significant overlap of distant objects between con-
secutive images decreases its discriminative ability [36]. For
the experiment in the dynamic mixed environment, important
loop closures were missed again, e.g. M1 and M2 areas in
Fig. 8(a). Examples of those false negative cases are shown
in Figs. 10(b) and 10(c). In the false negative cases that we
show in Fig. 10, both configurations of FAB-MAP 2.0 reported
a probability of new place greater than 0.999.

In order to show the improvements of our loop closure
verification stage, we checked the candidates given by BoW
with the same GC technique we described above. The results
are shown in Figs. 6(c), 7(c) and 8(c). In Fig. 6(c) all the loop
closure areas were detected but with too many false positives
due to the perceptual aliasing (see Fig. 9); this is disastrous for
any SLAM algorithm. In the outdoor and mixed datasets the
precision was 100%, sacrificing recall and, more important, the
detection of loop closure areas. As we can see in Fig. 5 we can
tune the parameters of BoW+GC to attain full precision, but at
the cost of sacrificing recall. This also makes the performance
of this system not good and stable across environments and
conditions.

The results of our system over the datasets are shown in
Figs. 6(d), 7(d) and 8(d), and the comparative statistics of all
experiments is made in Table VI. In the indoor experiment

Seene 11

Seere 2224

Scene 2149

(b) M1

Scene 1862

(c) M2

Fig. 10. False negatives in the outdoor and mixed datasets that our method
can successfully detect but FAB-MAP 2.0 misses. FAB-MAP 2.0 sets query
image of case (a) as new place with a probability of 0.99947; of (b)
with 0.99997 and 0.99902 with the default and modified set of parameters
respectively, and of (c) with 1.0 and 0.9993. These scenes correspond to the
biggest loops in the trajectories.

TABLE VI
RESULTS FOR RAWSEEDS DATASETS
Precision Recall loop zones
found/actual
RAWSEEDS Indoor
FAB-MAP 2.0 def. + GC 100% 14.1% 2/6
FAB-MAP 2.0 mod. 100% 30.6% 2/6
BoW + GC 79.8% 76.3% 6/6
Our System 100% 59.1% 6/6
RAWSEEDS Outdoor
FAB-MAP 2.0 def. + GC 100% 0.7% 2/9
FAB-MAP 2.0 mod. 100% 3.3% 2/9
BoW + GC 100% 7.0% 3/9
Our System 100% 11.15% 6/9
RAWSEEDS Mixed
FAB-MAP 2.0 def. + GC 100% 3.7% 1/8
FAB-MAP 2.0 mod. 100% 19.9% 3/8
BoW + GC 100% 29.9% 4/8
Our System 100% 32.8% 5/8

we can detect all the loop closure areas at 100% precision. In
the outdoor and mixed datasets we keep full precision, higher
recall level and most of the loop closure areas detected.

Our system detected successfully the loops of Fig. 10 as
true positives. The three cases shown were verified by the CRF
stage. Our CRF matcher reports the follow 7 scores: in Ol,
Fig. 10(a), n3p = 1.24 and 7y, = 1.37, in MI, Fig. 10(b),
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TABLE VII
COMPUTATIONAL TIMES FOR OUR SYSTEM (IN S)

SURF BoW | CRF Matcher | Whole

extraction Gsp | Grm | System
Average 0.15 0.01 0.15 0.15 0.47
Maximum 0.30 0.04 0.36 0.65 1.04

nsp = 0.4 and nr,,, = 1.67, and in M2, Fig. 10(c), n3p = 1.29
and 7y, = 1.24. Note that with the 8 parameters for indoors,
such cases would be rejected.

Furthermore, our CRF matcher is robust against perceptual
aliasing. For instance, the false positives obtained with the
geometrical checking in the indoor sequence, see Fig. 9,
was correctly discarded. In the case of F1, Fig 9(a), our
CRF matcher rejected it by both graphs, Gsp and Gy,,, with
nsp = 1.45 and 77, = 1.79. And in F2, Fig 9(b), our CRF
matcher rejected it by the far information coded in Gy,,, with
nsp = 0.95 and 7y, = 1.47.

With the parameters by default of FAB-MAP 2.0 we cannot
obtain full precision in the indoor dataset, even with p = 0.99.
As explained in Fig. 9(c), we have to verify the loop closures
detected with the GC to attain full precision, obtaining lowest
recall in the three datasets. With the modified configuration,
we tuned the parameters of FAB-MAP 2.0 aiming to maximise
the precision. With this approach we obtained 100% precision
in the indoor, outdoor and mixed datasets with 30.6% recall
and 2/6 loop areas detected, 3.3% recall and 3/9 areas, and
19.9% recall and 3/8 areas, respectively.

We also tried to tune the parameters of FAB-MAP to
maximise recall without paying attention to the precision,
which can be improved later by using the geometrical con-
straint. With that approach, we could attain 100% precision in
the outdoor and mixed datasets, but false positives remained
indoors, obtaining 75% precision only. As in the case of
BoW + GC shown in Table VI, the geometrical checking
was not able to filter out all the incorrect loop candidates
suffering from perceptual aliasing. In the mixed dataset the
recall obtained, 15%, was lower than that observed with
the other FAB-MAP 2.0 configurations. The same situation
occurred outdoors, except for unrealistically low thresholds,
like p = 0.3, that yielded a recall up to 5%.

In light of these results, we can see that our verification
stage is better suited to discriminate near-far information for
decision-making.

D. Timing

The on-line system runs at 1 fps. We have a research
implementation in C++ using the OpenCV library. In Table VII
we show the average and maximum times for each stage
of the system on a 2.3 GHz IntelCore i3 CPU M350 and
4GB of RAM. For the whole system, the average and the
maximum times were computed only when all the stages were
executed. Note that the maximums for each stage happened
in different cases. That is more evident in the inference
process for Gsp and Gj,,: when an image provides more 3D
points, less background information remains. In an image, the
number of nodes and hidden states between G3p and Gy, are
complementary. The execution time reported for the CRFs in

TABLE VIII
RESULTS FOR MALAGA DATASET
Precision | Recall loop zones
found/actual
FAB-MAP 2.0 def. + GC 100% 67.9% 475
FAB-MAP 2.0 mod. 41.5% 81.2% 475
Our System 100% 41.8% 4/5

the graphs includes computing the MSTs, the corresponding
features and the inference for each one. The time for the
whole system includes computing the 3D point cloud from the
disparity map and writing and reading the SURF descriptors
and point clouds on disk.

E. No hands test

After obtaining the best results in the different datasets of
the RAWSEEDS Project comparatively, we tested our system
over a different dataset, the Malaga parking lot 6 [34]. As
before, we carry out the place recognition task at 1fps. This
dataset, as the indoor one above, was collected in a completely
different location from the one were our training images were
acquired. The main challenge is to test our system with the
configuration already used in the previous experiments on a
different vehicle and stereo camera system.

For that, we kept the same vocabulary and CRFs’ weights,
as well as the parameters used in the Outdoor dataset, as shown
in Table V. In order to compare the results, we ran FAB-MAP
2.0 with the configuration that obtained better result for the
outdoors experiment, and also with the default parameter set,
p = 0.99, and filtering the results with the epipolar constraint
GC as above.

The results over the Malaga parking lot are shown in
Fig. 11 and in Table VIII. With no changes in our system
we attain full precision despite the increased speed of this
vehicle. Using FAB-MAP with the configuration for best
performance in the outdoors experiment, we can obtain higher
recall here, but precision falls down to 42%, unacceptable for
any SLAM system. If we use the configuration that exhibited
bad performance in recall in the outdoors experiment, FAB-
MAP 2.0 def. plus GC, attains higher recall compared to
our system (68% vs. 42%); both methods find 4 out of 5
loop closure zones. This makes our system more stable across
different environments and conditions. We show in Fig. 12 two
examples of those loops found by one and not by the other,
Mal and Ma2.

Note in Fig. 11(c) that FAB-MAP alone has bad perfor-
mance. It returns a large number of detections, more than half
false loops. The increase in the number of alarms as compared
with the RAWSEEDS experiments is due to the higher speed
of the vehicle, 2.6m/s vs. 0.8m/s (see Table I). This results in
less overlap between consecutive processed frames, increasing
the maximum values of the probability distribution over the
sequence. Still, it is susceptible to perceptual aliasing due to
overlapping in the far information. This is corrected with GC
because this dataset does not suffer from strong perceptual
aliasing in near information, in contrast with the indoor
dataset, Fig. 9.
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Loops detected by our system and FAB-MAP 2.0 in the Malaga parking lot dataset. Black lines and triangles denote the trajectory of the robot;

light green lines, actual loops. In (a) high confidence detections (light blue) are accepted and unclear detections (magenta) are subject to verification. In (c)
detections with p = 0.99 (default) are in dashed light blue, detections with p = 0.96 (mod.) are magenta. Detections with p = 0.99 which are verified with

GC are shown in (d). In (b) and (d), deep blue lines denote true loops detected.

(b) Ma2.

Fig. 12. Cases marked in 11(b) and 11(d) from Malaga dataset. These
correspond to loops found by one and not by the other method.

Our loop closing detection stage discriminates better, still
detecting the most of loop closure zones, see Fig. 11(a). As
expected, our verification stage correctly decides over the
unclear cases (magenta lines in Fig. 11(a)). The final result
of our full system is shown in Fig. 11(b).

V. CONCLUSIONS AND FUTURE WORK

We have presented a system that combines two powerful
matching algorithms, bag-of-words and conditional random
fields, to robustly solve the place recognition problem with
stereo cameras. We have evaluated our place recognition
system in different environments (indoor, outdoor and mixed)
from public datasets. In all cases the system can attain 100%
precision (no false positives) with higher recall than the state of
the art (less false negatives), and detecting the most (especially
important) loop closure zones.

No false positives means that the environment model will
not be corrupted, and less false negatives means that it will be
more precise. The important lesson that we can learn from this
is that we must always apply a verification stage over detected
loops based on appearance. As we have seen in situations
of perceptual aliasing our verification stage with the CRF
matcher is more robust than the geometrical checking using
the epipolar constraint.

As mentioned in [36], the effectiveness of FAB-MAP
decreases when the camera looks forward, because FAB-
MAP models the environment as “a collection of discrete
and disjoint locations” [15]. However, in our experiments the
stereo camera system faces forward, and distant objects (e.g.,
buildings in outdoor scenes) persist for many frames, making
scenes overlap and be less discriminative. This causes the
matching probability mass of FAB-MAP to be flattened over
the scenes. It is easier for our system to overcome those cases
because our normalised similarity scores (1., N3p, Nrm) for
matching acceptance are computed at each frame and take
into account the similarity between consecutive frames.

By using jointly the CRF-Matching algorithm over visual
near 3D information (here provided by stereo vision, but also
possible with range scanners, etc.) and far information, we
have demonstrated that challenging false loop closures can de
rejected. Furthermore, CRF-Matching is also able to fuse any
other kind of information, such as image colour, with ease.

Our place recognition system is able to run in real time,
processing scenes at one frame per second. In most cases, after
extracting the SURF features (max. 300ms), our system only
takes 11ms to detect if there are possible loop closures, and
300ms to check them when necessary. We are considering the
use of cheaper feature extractors that can speed up this process
without a negative impact in precision and recall.

In our experiments, the best 3 thresholds for acceptance of
the CRF matching turned out to be clearly different for indoor
and for outdoors scenarios. These parameters will also depend
on the velocity of motion, mainly because we use images
from the previous second as reference in the comparisons.
Incorporating the computation of these thresholds as part of the
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learning stage would also make the system more flexible. Nev-
ertheless, our system has demonstrated a stable performance,
always at full precision, for different environments, cameras
and conditions. Systems such as simple BoWw or FAB-MAP,
both aided by GC, can obtain good results if adequately tuned
in each case. However, the same configuration can result in
very poor performance in others.

An important line of future work is addressing the place
recognition problem over time. Our system performs well
in multi-day sessions using parameters learned in different
months, and this is also true of alternative systems such
as FAB-MAP. The environment can also change during the
operation in the same session (see Fig. 10). Our algorithm is
also able to detect places revisited at different times of day,
while alternative systems sometimes reject them in order to
maintain high precision.

Several extensions are possible for operation in longer
periods of time. The vocabulary for the BoW has shown to be
useful in different environments, which suggests that a rich
vocabulary does not require frequent updates. The learned
parameters in the CRF stage can be re-learned in sliding
window mode depending on the duration of the mission. The
system will then be able to adjust to changing conditions.
In cases of periodical changes, such as times of day or
seasons, we will need to maintain several environment models
and selecting the most appropriate for a given moment of
operation.

APPENDIX
FAB-MAP PARAMETERS DESCRIPTION

The parameters that we have modified are the following
ones (for further details please see [15] and [5]):

o p: Probability threshold. The minimum matching proba-
bility required to accept that two images were generated
at the same place.

o P(obs|exist): True positive rate of the sensor. Prior
probability for detecting a feature given that it exists in
the location.

o P(obs|—exist): False positive rate of the sensor. Prior
probability for detecting a feature given that it does not
exist in the location.

o P(newplace): Probability for new place. Prior probability
to determine whether the last image is a new place.

e o: Likelihood smoothing factor. Factor for smoothing the
likelihood values through consecutive places.

e Motion Model: Model Motion Prior. This biases the
matching probabilities according to the expected motion
of the robot. A value of 1.0 means that all the probability
mass goes forward, and 0.5, means that probability goes
equally forward and backward.

e Blob Resp. Filter: Blob Response Filter. All the SURF
points with a blob response below this threshold are
discarded.

e Dis. Local: Disallow N local matches. Set the prior to
be zero on the last N places. We use the same parameter
in our system during the BoW stage for not producing
matches against the last N scenes.
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