Performance aware open-world software in a 3-layer

architecture
Diego Pérez-Palacin José Merseguer Simona Bernardi
Dpto. de Informatica e Dpto. de Informatica e Dpto. de Informatica
Ingenieria de Sistemas Ingenieria de Sistemas Universita di Torino
Universidad de Zaragoza Universidad de Zaragoza Torino, Italy
Zaragoza, Spain Zaragoza, Spain bernardi@di.unito.it
diegop@unizar.es jmerse@unizar.es
ABSTRACT Kramer and Magee in [6, 7] proposed an architecture for self-

Open-world software is a new paradigm that stresses the conceplm"’magec_j sy_stems, i.e. thos_e which are capable of self-configuration,
of software service as the pillar to build applications. Services are S€l-monitoring and self-tuning. When a sel-managed system suf-
continuously deployed elsewhere in the open-world and are usedfers from dynamic changes during operation, it should configure

on demand Consequently, the performance of these applications itself' to satisfy the ;pecification or it may be capable of reporting
relies on the performance of probably unknown third-parties. An- that it cannot. Obviously, open-world software also embraces the

other consequence is that prediction methods can no longer assuméelf-managed systems challeng(?s. _Kramer and Magge defend that
that the service times for the software activities are well-known, @n architectural approach for this kind of systems brings several
More feasible solutions defend that they should be monitored. So, beryeﬂts, among 0t|_1ers, generallt_y_ to be app_ll_ed in dlffere_nt do-
there is a need for new methods to predict performance and it is mains, abstraction in the composition, scalability or potential for
likely that they have to be applied also during software execution. an integrated sc_)ftwa(ljrehapprﬁach. Id softw i
In this paper, we build on a three layer architecture, taken from lit- IlNe Zre convmceh that the opc(ejn-wor Sr? atre paradigm can
erature, to present an architectural approach for performamee pr ti_e a Vantliﬁ/le Oit $hKraT]er ?d" Magtlaet ree-layer referenc';e ar-
diction in open-world software. Once the approach is presented, ¢ ltec_ture (X -3L). This should not only mean to_lntegrat_e L e
the paper focuses on the intricacies of its more challeging compo- benefits prewously enumerated. In particular, we will study in this
nent, i.e., the generator of strategies to meet performance goals byVO'k how to exploit KM-3L for the open-world software to incor-
selecting the best available set of services. porate a performance-aware property, i.e. the system should con-
figure itself to satisfy a performance goal. The contributions of the
paper in this regard are:
Keywords

UML-MARTE, software components, self-managed systems, open-
world software, Petri nets

e First, we discuss how open-world software could be adapted
to KM-3L. In particular, we stress the implications for KM-
3L to carry out performance-aware reconfigurations in this
context. We will accomplish it in Section 3.

1. INTRODUCTION

The open-world software paradigm [1] encompasses and abstracts
concepts underlying a wide-range of approaches and technologies;
among them, grid computing, publish-subscribe middleware or ser-
vice oriented architectures. In the open-world, an accepted ap-
proach considers software as madesefvicesprovided bycom-
ponentslsewhere deployed that interplay without authorities. The
software achieves its goals by selecting and adapting services which

e Once the architectural implications for performance has been
presented, we will address an explanation about the most
challenging component in this architecture. This is the com-
ponent in charge of generating tegategieshat know how
to carry out performance-aware reconfigurations. Section 4
describes algorithms for this component.

e The last contribution is an example, developed in Section 5,

evolve independently. Then, this software evolves itself in unfore- that demonstrates the feasibility of the proposed module and
seen manners that depend on third-parties, which means that the shows how the strategies it develops may improve the system
performance for this software strongly relies on that of the ser- performance.

vices it trusts. Therefore, the methods traditionally proposed in
the software performance field to predict “non open-software” can The paper will end up in Section 6 with a brief conclusion, a

now hardly be completely reused in this new context. discussion of the closest related work and ideas about the future
work.

2. A3-LAYER ARCHITECTURE

Permission to make digital or hard copies of all or part of thizknfor In this section we summarize the Kramer and Magee'’s vision of
personal or classroom use is granted without fee providatidbpies are a reference architecture for self-managed systems (KM-3L). Their
not made or distributed for profit or commercial advantage aatidbpies proposal was inspired by the architectures developed for robotics

bear this notice and the full citation on the first page. Toyomherwise, to systems, in particular following Gat’s description in [3]. Indeed, as
republish, to post on servers or to redistribute to listguees prior specific

permission and/or a fee. commented by Kramer and Magee both robotics and self-managed
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00. systems are kinds of autonomic systems. For them, the idea is not

to propose an implementation architecture but to identify what a it. In the open-world software this means that this layer manages
self-managed system needs to carry out its mission, of course with-the components making up the current configuration. Therefore, it
out human intervention. In the following we describe KM-3L by is responsible for establishing the current bindings and unbindings

referencing for each layer its goals. when a component has to be called.
Component control Concerning performance, we identify for this layer different re-

This layer is made of those components that make up the self- sponsibilities. They are the minimum set an open-world software
managed system. It senses and reports the costi@xisto its up- may need to actually develop activities leading to manage performance-
per layer. aware reconfigurations. Firstly, it will be in charge of tracking
Change management the performance of the services involved in the current configura-

This layer has a set of plans strategiesto achieve the system tion. Secondly, it has to discover new components offering services
goal ormission When the lower layer reports here the current con- equivalent in functionality to those required by the workflow. Fi-
text status it can mean for this layer to produce a new configura- nally, it has to be aware about which ones of the current providers
tion. For this purpose, it executes the strategies to change the un-are no longer available.
derlying component architecture into one that fits with the current ~ For an open-world software to carry out these responsibilities it
context or environment. This may imply either to introduce new would be of interest to constructaonitormodule that takes charge
components or to change the interconnections or the componentof all them. This monitor should be incorporated to the target open-
parameters. When the environmstdtusreported is not supported ~ world software as a module. For the first task, it will control the
by any of the existing strategies, then this layer asks the upper onetime elapsed in the calls to the services and for the second and third
for a new strategy to manage the situation. it will use the normal means in open-world (i.e., through service
Goal management discovering).

This layer manages the system mission and has to produce strate- From a practical point of view, this layer also needs a represen-
gies that satisfy the mission taking into account the current envi- tation of theworkflowto be executed and of the set of components
ronment. The strategies are produced when the mission changes athat conform the currertonfiguration In this work, we will con-
well as when the change management layer requests. sider that such workflow has the form of a UML activity diagram

The duration of the activities has been the criteria taken into ac- while the current configuration will be represented by a UML com-
count to place a function in a given layer. Hence, immediate ac- ponent diagram (indeed an instance of the one in the Change Man-
tivities appear in lower levels, so to quickly react to changes in the agement level). Whatever other standard representation could be
environment. However, long term activities are accomplished by valid such as BPEL for the first or Darwin component model for
the upper layer that may involve deliberation. the latter.

This layer reports the currestatusto the upper one each time
3. 3-LAYER ARCHITECTURE FOR OPEN- t_he ()exicuticlm ofr? se_rvice ends (to inforr]m about the moni_torid
time), but also when it cannot execute the current service in the
WORLD SOFTWARE workflow (e.g., the target component may be unreachable). The

In this section, we describe how to adapt KM-3L to the open- upper layer can respond with a new configuration.
world software context, and at the same time how to manage the
performance-aware property. Then, for each layer we have te iden 3 2 Change Management
tify what responsibilities it has to take so the system eventually can
accomplish this property. Hence, we are pursuing an architecture
for performance-aware open-world software.

Concerning the architecture, we keep the point in the previous
section, therefore we want it to be a reference, then we aim at iden-
tifying these responsibilities and their purpose in the overall of this
comprehesive goal.

The missionof an open-world software is obviously carried out
through its own execution, here abstracted by the workflow. The
workflow execution may need sucessive self-reconfigurations jwhic
may attend different criteria, for example the cost of the services or
the performance. For each criteria of interest, this level can asso-
ciate at least oneeconfiguration strategylt would also be desire-
able that a given strategy could gather more than one criteria, for
example the previous two. In any case, for this paper purposes the
interest is that this layer has defined and can manage a performance

Performance Reconfiguration System Workflow

Goals Strategy withl o %)
Goal Generator SPE Specification aware reconfiguration strategy.
Management New Strateg A Strategy Request For an open-world software to execute strategies, we identify the
need of areconfiguration controllemodule. The inputs for this
Reconﬁgurano:: Reconfiguration | | component mod_ule would be of course the set of strategies, _but alstttes
Change Stratedy | | controller | | Diagram provided by the monitor and a UML component diagram (CD). The
Management \ output will account for the computed new system configuration.
The CD describes for each component its mode, later explained.
ggﬁggjraﬁon Status The status is the subset of currently active components in the CD.
Component Y Let us briefly discuss how this layer could manage the compo-
Control Configuration— SYSIEM - wonitor nentsmode Themodecan be a tuplecstate, MST> . The first

field to be chosen frofunavailable, standby, active}
and the second to represent the mean service time for the module.
Figure 1: 3-layer architecture adapted to open-world Following the proposal in [6], the mode could be managed through
ports using &etmode operation.
Moreover, this layer shouldreate the new components and

3.1 Component Control delete those no longer useful, remember that the achiradl

As previously discussed, this layer is in contact with the execu- andunbind is responsibility of the lower level. Therefore, when
tion environment and has to quickly react to changes produced inthe monitor reports the status, this layer has to manage different

situations:

e A component is no longer availableThe reconfiguration
controller (ReCtrl) sets the mode tmavailable and if the
component is in use then the ReCtrl executes the strategy to
find a proper substitute and eventually will report a configu-
ration change.

A provider is available for a given servic& he statushere
reported has to include the provider's and service’s name an
a MSTt of the service. As long as this provider has an
entry in the CD, the reconfiguration controller updates it with
the new service asstandby,t> . Otherwise, it performs
acreate for the provider (as a component) and sets the
service mode asstandby,t>

d

A service is currently not providing the required Qolhe
reconfiguration controller executes the strategy and decides

report to theChange Managemetdayer the strategy obtained. Be-
sides, a warning is raised when the target strategy does not meet the
performance goal.

Information managed in the algorithms.

We assume that the system workflow needs to l€adixternal
servicess, k € [1..K]. Inthe CD in Fig. 3K=3, thought that the
same service could be requested in different calls. Given sesvjce
it may be provided by.* components, say,; | k € [1.K] Al €
[1..L*] is thel'™ component serving;. In Fig. 3, services3 is
served by two component81, ¢32, thenC* = U, cwi is the set of
all components that offes;,, andC = |J, C*

We assume that there exists a Time Table (TT), like Table 1,
describing for eacfy; its working phasesa phase; is a pair<
mest;j, mjt; >, wheremst;|j € [1..J*'] means the mean service
time of ¢x; in phasej, andm;jt; means its mean sojourn time. This
information would come from the provider or from our experience

about a service change. If the change is necessary, then it setsnonitoring the environment. A reconfiguration strategy is repre-

the mode of the degraded component freactive, ¢1>to
<standby, t;>andthat of the one selected freratandby,
to <active, t2>. When the new configuration will be re-
ported, the lower lever takes the responsibility to perform the
correspondinginbind andbind .

to>

Sometimes the current strategy cannot produce a new configu-
ration for the reportedtatus(e.g., the selected providers are not
available or the performance goal cannot be satisfied). Then this
layer will request theGoal Managemenfor a new performance
aware strategy.

Finally, we remark that the operations in this layere@ate,
delete, setmode and the strategy execution) are supposed to
be immediate regarding the system execution time. This is impor-
tant since this level will not overload the system.

3.3 Goal Management

From our point of view, themissionof the system will be not
only to carry out the workflow functionality, but also to do it meet-
ing a performance goal For us this layer has to produce perfor-
mance aware reconfiguration strategies, then we devitetegy
generatormodule. Irrespective of this module, the system could
create strategies to meet other goals of interest in the scope of th
open-world software.

The strategies are provided on tBdange Managemerayer
demand and they could be afforded under two assumptions:

e There could exist a library of strategies and tienerator
will decide the appropriate one, for the current request, out
of this set.

e Thegeneratorcould actually create the strategy on demand.

In this work we just explore the second choice, thengarer-
ator inputs should be: theerformance goalthe workflow with
a specification of certain performance properties, and the current
configuration that will be provided with thehange Management
request. The output is the target strategy that meets the define
performance goalfor the sake of simplicity we will consider only
system response time. The performance specification will use the
MARTE [8] profile.

4. GENERATION OF STRATEGIES

In this section, we offer a high-level view of tiggneratormod-

sented as a directed graph= (N, E), see example in Fig. 5. A
node is interpreted as a system configuration, but it is also important
to know for each component thphasewe guess it is performing.

An edge is interpreted as a change of system configuration (i.e.,
cri, Will replacecy;, with i1 # l2; e.g. in Fig 5 fromNodey to
Nodes) or as a change in a component phase (e.g. in Fig 5 from
Nodey to Nodei). An edge is labeled as s, condition >,
wheresy, is the service andondition is a ratio representing our
minimun confidence levefr the change to be produced, consider
that being stochastic our analyses, then there exist a probability that
the strategy fails its prediction.

Description of the algorithms.

Algorithm 1 summarizes the strategy generation, it starts creat-
ing the strategy initial node (line 2) and from this node produces
its adjacent ones (line 11) and the edges that join them (line 16). It
keeps creating nodes and edges, while there are nodes whose outgo-
ing edges have not been created yet. Finally, it creates a set of “way
back” edges (line 21), “ways back” represent changes of configu
ration or component-phases due to timeouts insteaccohdition
as it happened to forward edges. The rational behind a “way back”

é's to bring back the system to a configuration that after some time

would be working better than the current one.

Algorithm 2 solves the calls in Algorithm 1 (lines 2,11), i.e.
how to create a node in the strategyhaselListis a list of pairs
< cpi, phase > that for eachry,;, € C assumes its phase. When
Algorithm 2 creates the initial nod&haseLis{(line 3) is created
assuming that eacty; is in its phase with minimurmnst. How-
ever, for the rest of the nodes (line PhaseLists constructed with
ExtractListOfPhasethat will implement an algorithm choosing ap-
propiate phases. In section 5 we exemplify our algorithm proposal.
FunctionAllPossibleConfiggline 9) creates all the possible con-
figurations with the nodes in thehaseList All these configura-
tions will parameterize the workflow GSPN that will be evaluated
to get its response time (lines 11..13). As an exampleMotie,
in Fig. 5, there will exist four possible configurations (see table 2).

hemst; in ph; is used to actually parameterize the GSPN.

Algorithm 3 solves the call in Algorithm 1 (line 16), i.e. how
to create a forwarded edge, not a “way back". If servgeof a
givenNode® cannot be replaced by afyode® with a newphaseor
component then no edge is created (line 1). FundEixinactListOf-
Phasegletected this situation ar@@teateNodavill return null. When
Node' exists, the edge is annotated with the source node, the target,

ule. The previous section described the module goal and interfaces.and the labeling information, i.e. the and thecondition. Con-

Algorithms 1, 2 and 3 synthesize the module functionality, i.e. they

cerning thecondition, it is created using functio®etConfLevel

(line 9) that needs the response time evaluated using the workflowAlgorithm 3 CreateEdge

GSPN forNode® and Node'. A simple example oBetConfLevel

will be given in Section 5.

Algorithm 1 Strategy generation

Require: From Goal Management Layer:

Ensure: A New Strategy (and a possible warning meaning that the

[Eny

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

oNUORWON

(AD), Performance Goal (PerfGoal)

From Change Management Layer: Components with their tim-

ing specification (CD,TT)

PerfGoal is not achieved)
{Initialization}

. setG =< N,E >. N = () {nodes}, E = () {edges}

{Create Initial Node}

: Node® — CreateNode(AD,CD,TT,null,null)

setNodes = ()
Nodes = Nodes U Node®

. while Nodes # () do

SourceNode «— ExtractOneNodé&y odes)
AlreadyCreated— CheckNodelV, SourceN ode)
if not AlreadyCreatedhen

N «— N U SourceNode

{Create SourceNode adjacent nodes}

forall k € [1..K] do

TargetNode + CreateNode(AD,CD,TT,§ourceN ode)

AlreadyCreated- CheckNodelV, T'arget N ode)
if not AlreadyCreatedhen

Nodes < Nodes U TargetNode
end if

Edge <« CreateEdgefourceNode, TargetNode,k,TT)

E— EU Edge
end for
end if
end while
N = N U CreateWayBackEdges(G,TT)
return <G, AnalizeStrategy(G,PerfGoal CD,TT)>

Algorithm 2 CreateNode

Require: AD,CD,TT,service (k), previousNode (pnode)
Ensure: A node

16:

: setPhaselList (Vector of vectors)
o if (k==null A pnode==null}then

PhaseList— extractInitial ListO f Phases(CD,TT)
else

PhaselList— extractListO f Phases(C D, TT, pnode, k)
end if

: RTs =0 {set of response times}

. setPossibleConfigs #

: PossibleConfigs— AllPossibleConfigs(PhaseList)
: for all confige PossibleConfigdo

11:
12:
13:
14:
15:

GSPNconyig < createGSPN(config)

Tteonfig < evaluateGS P Neonfig)

RTs — RTsU < config,rtconfig >
end for
BestNode «— config | < config,rtnode > € RT's A
V < Teon pigis config’ >€ RTS, teonfig < Tleon pigi {ThE
resulting node is the best config based on response time}
return BestNode

5.

CASE STUDY

System Workflow

Require: Source Node ode®), Target Node Node"), service
K, TT
Ensure: Edge betweemode® Node' with its information

1: if Node® ==null then

2: return null

3: end if

4: set edge =< Source,Target, service, condition >:
Source = Node®,Target = Node',service =

k, condition = null {float, confidence level}
{response timeVode*}
" GSPNpoges < createGSPNYode®)
C TtNodes — evaluateGSPNNOdes)
{response timeVode'}
GSPNypqet — CreateGSPN{ ode")
Tt nodet — €valuateGS PNy get)
. condition «— SetConfLevelVode®, rtnodes, Node', 7t yoget , TT)
: return edge

[e29)]

S ©®~

We exemplify the algorithm of the strategy generation, described
in Section 4, with a case study of a system under development
(SUD) that executes three operations, in a sequential manner. All
such operations consist in service calls to providers in the open-
world environment. The UML system specification is shown in
Figures 2 and 3. The activity diagram (Figure 2), annotated with
the MARTE profile [8], represents the system workflow. The type

<<GaWorkloadEvent>>
{pattern =(open =(interArrivalTime=(exp(500,tu))))}

Call s1 -:7%<éaA}:dsiép’>>’ 777777 <<PaStep>>
N = {extOpDemands=$S1provider;
{acgRes = CO,
resUnits=1} extOpCount=1}
Call 2 |-._.
"1 <<PaStep>>
{extOpDemands=$S2provider;
extOpCount=3}
Call S3 |- .
N <<PaStep>>
;:iBRa;F;e_ISCt%p» {extOpDemands=$S3provider;
resUnit;:l} ’ extopCount=1}

Figure 2: UML activity diagram

of workload GaWorkloadEventis open and requests arrive to the
SUD with an exponential inter-arrival time, with a mean500

time units (i.e., “tu”). The requests are processed, one at a time,
by acquiring GaAcqStepand releasingGaRelStepthe resource

co. Each activity stepRaStep models an external service call

to a provider in the open-world. In particular, tegtOpDemands
tagged-value is a parameter that is set to the current provider of ser-
vice s; and theextOpCountagged-value indicates the number of
requests made for each service call.

The component diagram (Figure 3) represents the currently avail-
able providers of the services required by the system. In partic-
ular, component’s names are given according to the name of the
service they provide. There exists only one providgr of ser-
vice s1, while two providers are available for each servigeand
s3. Table 1 (TT) shows the working phases, in time units, of the
providers. In particular, for each provider, the estimated mean ser-
vice timesmst; and mean sojourn timej¢, of the offered service,

St System s2 cat
C11 —O} under <

development c22

X

C31 C32

Figure 3: UML component diagram

are given.

Component service time estimation
phasey phases phases
C11 | (5,3000) (20,6000)
C21 | (10,6000) (70,2000) (250,200(
C22 | (35,6000) (140,4000)
C31 | (20,2000) (70,2000)
C32 | (300)

In formatphase; = (mst;, mjt;)

~

Table 1. Mean service times for open-world providers (TT)

5.1 Strategy Generation

GSPN = (N, {Asiprovider As2providers Ns3provider })
RequestArrival
L=\ = 1/500tu

AcqRes,Start_CallS1

AS3provider

|
|
|
|

| Call S1
. [__] S1OpDemand }

Slprovider

Asy |
|
End_CallS1 |
|
|
Start_CallS2 |
w=23/4 |

| Call S2
Res_CO S20pDemand }
S2provider |
|
|
==
|
|
|

S30pDemand \Ca" S3
|
|
|
|
o

RelRes,End_CallS3

Figure 4: Parametric GSPN

sponds to the configuration that revealed the minimum system (mean)
response time. Observe that, in this simple example, the active
providers in the initial configuration correspond to those ones hav-
ing the minimum service times. However, this property does not

The TT and the UML specification, properly annotated with MARTEIways hold in a general case where several providers contend for
provide the input for the Algorithm 1 described in Section 4. A shared resources.

parametric GSPN model is then created from the activity diagram

In the next main step of the Algorithm 1 (line 11), the nodes

(Figure 2) that will be used to estimate the mean response time of adjacent to the initial one are created, considering that the active

the system under different configurations, usingrthatisolve

facility of GreatSPN [5]. The GSPN model is shown in Figure 4

providers inNodeo can degrade their performance. Eventually,
there will be three configuration nodes adjacent to the initial node,

and it is characterized by three rate parameters representing the exene for each external service requested by the SUD (Figure 5). Let

ecution mean rates of the service callss. andss.

Observe that the call to servieg, in the activity diagram, in-
cludes3 requestséxtOpCountagged-value) this is modeled by the

us consider the creation of the first two nodésde; and Node,
adjacent toNodeo: the algorithm will iterates over the created
nodes to produce their adjacents, until all the possible system con-

free-choice subnet, where the weights assigned to the conflictingfigurations are examined.

transitionsStart_CallS2andEnd_CallS2are equal, respectively, to

3/4 and1/4.

The first main step of the algorithm (Algorithm 1 - line 2), con-
sists of creating the initial node of the reconfiguration strategy graph
(Algorithm 2). This is accomplished by assuming that each provider
works under the best mode. We consider, then, the minimum esti-

mated (mean) service times from each provider, dflé?,tl = btu,
e = 10tu, chy’™ = 35tu, cpi®"' = 20tu andcyy™t = 30tu.

There are four possible system configurations: for each one, we
instantiate the parametric GSPN, in Figure 4, by setting the rate pa-

rameters\siprovider, As2provider 8Nd Assprovider 10 the inverse

of the considered service time§°" (k = 1,2, 3) of each current
provider of services:, s2 andss, respectively. Once instantiated,
the GSPNs are solved and the system (mean) response times are

computed (see Table 2).

Mean response time estimation (pl=phase;)

C11:pl C21:p1C31:p] 605 C1l:pl C22:pl C31p] 177.6

CllplC21pl C32:p] 72.5| Cll:pl C22:p1l C32:p] 193.8

Table 2: System candidates mean response time

In the strategy graph (Fig. 5), the initial nodéode, corre-

<s2,0.72>

________ Node g
<staflests00)> Node ; C11: phase?
g C22: phasel
C11: phase2 |
<s1,0.77> C31:phasel

C21:phasel
C31:phasel

Node g ()
C11: phase2
Node o C21:phasel
Cliphasel C32: phasel o
C21:phasel Cl1:phasel
C31:phasel C22: phasel .
C31:phasel Node 7
<sTfter(500)>! Cl1:phasel [)
! C21: phase2
<s3,0.81> C31:phasel

Cll:phasel
C21:phasel
C32: phasel

Cll:phasel
C22: phasel
C32: phasel

<s2,after(500)>

Figure 5: Partial reconfiguration strategy graph

The Node; is added considering the active provider of service
s1 in Nodeog (i.e., c11) changes itphaseby answering to service
requests with a mean service time20tw, instead obtu, i.e. from

phasey t0 phases. Sinceci; is the unique provider of,, the Finally, theway-backedges are created (Algorithm 1 - line 21)
Node; is characterized by the same active provider&Vagle, as to allow the system to move back to a previously considered con-
well as the same provider mean service times but the oneg; of figuration after a (mean) sojourn time period in the source node.
which is equal t020tu. The GSPN model of Figure 4 is used So there will be an edge fromVodes to Node:, labeled with a
to compute the system mean response time of the configurationmean sojourn time period as a timeout, if there exists a provider
Node . ¢k in Nodes with its final phase jx: and in Node; with its initial

The Nodes is created assuming the active providersgfin phasey. In Figure 5, way-back egdes are dashed and, for read-
Nodey (i.e., c21) changes itphaseby increasing the mean ser- ability, only five of them are shown. The choice of the ideal mean
vice time from10tu to 70tu. Then, four candidate configurations sojourn time period that allows the system to achieve the perfor-

were possible: two of them still include; as active provider of mance goal (i.e., minimum response time) is a future work issue.
with degraded performance. They correspond to the configurationsin the example, we set such period equal to the mean inter-arrival
in the first column of Table 2 with the provides; in phases. In time of a service request to the SUD (i.800¢w).

the other two configurations, the active providegofs cs- (i.e, the In order to validate our proposal, we carried out the analysis of

configurations in the second column of Table 2). The GSPN model the system, considering several assumptions: the system does not
in Figure 4 is then used to select the best configuration among thefollow the strategy modeled by the reconfiguration graph in Fig-
candidates, that is the one with the minimum system (mean) re- ure 5 (case 1), and the system undergoes reconfigurations accord-
sponse time. Then, th&ode,; actually corresponds to the con- ing to the strategy graph (case 2). We obtained the following results
figuration with the minimum system (mean) response time, i.e., for the system mean response tim@tu (case 1) and36tu (case
177.6tu. 2). This means that partially applying our performance aware re-
Once a new adjacent node is created, the algorithm generatesonfiguration (eight nodes in Fig. 5) we have improved the system
the corresponding forward edge (Algorithm 1- line 16). An edge response time in 11%.
from Nodes to Node,; includes information about the servieg
and the goodness of the prediction (confidence-level) forr¢he
configuration controlleto decide whether it is worth to change the 6. CONCLUSION AND RELATED WORK
configuration fromNodes to Node:. Observe that, since we are During this paper elaboration, we have learnt that there exist a
dealing with the open-world environment, every decision about the lot of challenges for the performance prediction of the open-world
providers is based on predictions. We propose an ad-hoc heuristicsoftware to become a reality. However, we believe that this pa-
that works under the open workload assumption and consideres theper has proposed a clear reference architecture, which mearts a firs
performance goal (i.e., obtain the best system mean response timegttempt to accomplish comprehensively most of such challenges.
as well as the available timing specifications (i.e., provider working Also, we have explored how to generate strategies, that can recon-
phases). figure this software while performance goals have to be achieved.
Let us consider an edge froiiode, to Node, where the source Ourgenerationtechnique tried to show up where the problems are
and the target nodes have different active components, su€¢hds and it demonstrates a possible solution using Petri nets. However
and Nodes in Figure 5. The computation of the corresponding other generation approaches could be feasible and would be desir-
minimum confidence level is related to two quantities: able, we validated our solution through a case study. The future
)] work has to address all these open challenges to get a real compre-
e The performance improvement when the system reconfigures pensjve proposal. Besides performance, other properties such as
properly, that is the provider has changed its phase and the gependability will be considered by our approach. In this work, we
strategy realizes it (e.g., the providesi has changed from haye not considered network transmission times, however they can
phase, 10 phases and the system moves fromodey to be easily incorporated through the UML deployment diagram.
Nodez). This is estimated as: Regarding to the related work, we believe that the idea of intro-
ducing a reference architecture coming from self-managed systems
in the open-world software is original. Therefore, our solution to
wherertsc,, —phase,; ., 1S the system mean response time introduce and manage performance aspects in such architecture is
with the same active providers as Mode,, but changing also new. Probably, the closest work to ours is the one in [4], the
the working phase of providey,; from phase; to phase; 11, authors also evaluate performance in open-world assuming compo-
andrt; is the system mean response timeVinde:. nents that can evolve independently and unpredictably. However,
they use queueing networks and further comparisons are difficult
- .)) since they do not deal with the problem of strategy generation. The
awrong predlc_:tlon, tha_t Is the provider has occa3|_onally had work of Garlan in [2] also proposes an architecture for performance
a slow execution, but it has not really changed its curre_nt_ evaluation but restricted to self-healing systems, besides they do not
phgse, however the system moves to the target node. This 'Suse of formal methods. Finally, in [9] is proposed an architecture
estimated as: to manage the adaptation for evolvable systems, but this work does
Per fioss = Tty — rts, not deal with performance evaluation.

Perfimprove = Tts\cklephase]'+1 — i,

e The performance loss when the system reconfigures due to

wherert is the system mean response timeéNindes.

7. REFERENCES

[1] L. Baresi, E. D. Nitto, and C. Ghezzi. Toward open-world

Then, the minimum confidence level is given by the formula:

conf_level = Per fumprove) 1) software: Issue and challeng€omputer 39(10):36—43,
- Perfimp'rove + Perfloss 2006
When the source and target nodes of an edge have the same activi2] D. Garlan and B. Schmerl. Model-based adaptation for
components, such dsodeg and N ode1, the minimum confidence self-healing systems. WOSS '02pages 27—-32, New York,

level is computed ason f_level = ”ﬁ . NY, USA, 2002. ACM.

Tt

(3]

(4]

5]
(6]

E. Gat, R. P. Bonnasso, R. Murphy, and A. Press. On
three-layer architectures. Aurtificial Intelligence and Mobile
Robots pages 195-210. AAAI Press, 1997.

C. Ghezzi and G. Tamburrelli. Predicting performance
properties for open systems with kami.QuSA volume 5581
of LNCS pages 70-85. Springer, 2009.

The GreatSPN tool.

http://www.di.unito.it/"greatspn .

J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. IROSE '07: 2007 Future of Software
Engineering pages 259-268, Washington, DC, USA, 2007.

[7]

(8]

9]

IEEE Computer Society.

J. Kramer and J. Magee. A Rigorous Architectural Approach
to Adaptive Software Engineeringournal of Computer
Science and Technolog®4(2):183-188, March 2009.

Object Management Group,
http://www.promarte.org
MARTE, 2005.

P. Oreizy, N. Medvidovic, and R. N. Taylor.
Architecture-based runtime software evolution|l@SE '98
pages 177-186, Washington, DC, USA, 1998. IEEE
Computer Society.

. A UML Profile for

