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Abstract – In this paper we present a dense visual
odometry system for RGB-D cameras performing
both photometric and geometric error minimisation to
estimate the camera motion between frames. Contrary
to most works in the literature, we parametrise
the geometric error by the inverse depth instead of
the depth, which translates into a better fit of the
distribution of the geometric error to the used robust
cost functions. To improve the accuracy we propose
to use a keyframe switching strategy based on a
visibility criteria between frames. For the comparison
of our approach with state-of-the-art approaches we
use the popular datasets from the TUM for RGB-D
benchmarking as well as two synthetic datasets. Our
approach shows to be competitive with state-of-the-
art methods in terms of drift in meters per second,
even compared to methods performing loop closure
too. When comparing to approaches performing pure
odometry like ours, our method outperforms them in the
majority of the tested datasets. Additionally we show
that our approach is able to work in real time and we
provide a qualitative evaluation on our own sequences
showing a low drift in the 3D reconstructions. We
have implemented this method within the scope of PCL
(Point Cloud Library) as a branch of the code for large
scale KinectFusion, where the original ICP system for
odometry estimation has been completely substituted by
our method. A PCL fork including the modified method
is available for download .

1 Introduction

Visual localisation and mapping has become one of the
most active robotics research topics in the last decade.
Traditional monocular vision systems track sparse features
detected in the images, to both estimate the camera pose
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and build a map either using filtering [7] or bundle
adjustment techniques [34] [24]. However, due to their
purely projective nature, monocular vision systems do
not directly provide depth measurements of the observed
environment. This implies the existence of an unknown
scale parameter for the camera poses and map estimates.
In a SLAM context, this scale ambiguity results in an
increased odometry drift and in initialisation issues.

One straightforward way to address the scale problem is
to use stereo vision systems [37, 38, 30] in which a fixed
baseline between two cameras allows for depth estimation.
However with respect to monocular systems they are much
more expensive, bigger and more difficult to calibrate, and
also they cannot accurately measure the depth of distant
scene points or poorly textured areas.

For this reason the recent advent of new RGB-D sensors
has aroused great interest in the development of visual
odometry and SLAM systems. Their cheapness and
their ability to provide dense depth measurements of the
environment in contrast to traditional stereo cameras makes
them quite appealing to address not only localisation
and mapping but also many other problems for which
monocular systems are typically used. The main limitation
is their use being limited to indoor environments.

Some of the first systems using RGB-D sensors for
SLAM [14], [19], [9] tended to adapt the sparse feature
based approaches from monocular vision, using the depth
information to straightforwardly lift the features to 3D
points and occasionally to apply the iterative closest
point (ICP) algorithm for refinement of the pose estimate.
Preference for systems using sparse features for localisation
might be caused by the fact that in monocular systems,
direct odometry estimation from raw frames, i.e., without
extracting sparse features, inherently forced to estimate
the dense depth or optical flow map between frames
simultaneously or prior to the camera motion. These are
ill posed problems with more unknowns than constraints
and requiring from the use of regularisation and variational
methods for their resolution [36]. In addition to this,
dense methods require high computational power for real
time computation of pixel-wise operations. In this sense,
advent of new generation CPUs and high performance
GPUs almost simultaneously to RGB-D sensors allowed
for a significant cost reduction of dense algorithms due



to new programming paradigms which allowed for high
paralellisation of per pixel operations.

One of the first and maybe most known approaches for
direct odometry estimation is KinectFusion [35], which
using only the depth channel, is able to estimate the
odometry and a dense map by using only the ICP algorithm.
Almost alongside with KinectFusion came more direct
approaches for odometry estimation either minimising the
pixel-wise photometric error [41] or both photometric and
geometric errors [46] between pairs of close enough frames.

This paper extends on our previous conference paper
[12] which presented a direct visual odometry method
minimising both types of error. Our main contribution
is the novelty of using the inverse depth to parametrise
the geometric error instead of the depth as most works
do. In monocular vision, the ability of inverse depth
(if measured along the camera optical axis) or inverse
distance (if measured along the projected ray) to easily
deal with points at long distances [5] has been shown to
lead to an improvement in performance [40]. In depth
range systems, though there is no need to deal with points
at distances greater than the maximum camera range,
inverse depth has still the theoretical benefit of fitting
better to the depth error model of a RGB-D camera. This
potential benefit of using the inverse depth is experimentally
validated in the Technische Universität München (TUM)
benchmarking datasets [44] showing the better performance
of the geometric error based on inverse depth. As
additional contribution, though equivalent in essence, the
problem formulation is slightly varied with respect to
related works, first linearising the flow equations, obtaining
generic linear 3D flow equations and then applying the
assumption of small rigid scene motion between frames to
get the linear constraints just on camera motion parameters.
We also evaluate the performance under different robust
cost functions (Huber, Tukey biweight and Student’s t
distribution-based estimator) and two different methods in
the state-of-the-art to compute the uncertainty-based scaling
parameters of an error distribution: one with the Median
Absolute Deviation (MAD), and one with its Maximum
Likelihood (ML) estimator given the cost function used for
robust optimisation. We have implemented this method
within the scope of PCL (Point Cloud Library) [39] as a
branch of the code for large scale KinectFusion [3], where
the original ICP system for odometry estimation has been
completely substituted by our method, while algorithms for
dense volumetric mapping and volume shifting have been
kept unchanged. A fork of PCL including our modification
is available for download 1.

In addition to this, the novel contributions w.r.t. our
previous conference paper are:

• A method for statistically based selection of a reduced
1http://webdiis.unizar.es/˜danielgg/code.html

number of pixel samples for the computation of the
scaling parameters of the error distributions

• The use of a mutual visibility criteria for reference
frame switching, as an alternative to alignment of
consecutive frames

• A more exhaustive evaluation of our method
comparing against an extended set of state-of-the
art approaches for RGB-D localisation and mapping,
not only in terms Relative Pose Error (RPE), measured
as drift per time unit, but also in terms of the Absolute
Trajectory Error (ATE).

• Evaluation of our method in the synthetic datasets for
RGB-D benchmarking presented in [13]

• An evaluation of the Hessian ill-posedness in
structurally and texturally poor datasets

2 Related Work

We classify the related work in RGB-D visual odometry
into two categories: methods which rely at some point on
the extraction and matching of sparse RGB features and
those which are completely dense performing pixel-wise
minimisation of photometric and/or geometric constraints
from the intensity and depth maps.

2.1 Sparse feature-based methods

One of the first SLAM methods with RGB-D cameras was
presented by Henry et al. [14]. They perform the visual
odometry estimation between two frames in two steps.
In the first step SIFT features are matched and lifted to
3D points using the available depth information. Then
RANSAC-based 3D alignment between the features in both
frames is applied to find the initial estimate of the relative
rigid transformation. In the second step the motion estimate
is refined by joint minimisation of the euclidean 3D distance
between inlier correspondences from previous step and the
point to plane distance from the ICP alignment between
point clouds. Both error contributions have to be weighted
by a parameter α which is empirically estimated. This
method is further developed in [15], where main changes in
the visual odometry estimation process are the substitution
of SIFT features by FAST features, and the substitution
of the 3D euclidean error between features by the image
reprojection error.

In [9], Endres et al. propose a RGB-D SLAM system,
which similarly to [14] estimate the initial transformation
by RANSAC-based 3D alignment of sparse features.
However, in the refinement step they only minimise the
point cloud alignment error from the ICP algorithm. The
method is improved in [10], including an Environment



Measurement Model to prune wrong motion estimates
which passed undetected in the RANSAC and ICP steps.

Maybe one weakness of both methods is that both
seem to rely on the detection of loop closures to provide
accurate map and trajectories estimates. The accuracy of
the methods for visual odometry, i.e., computing the motion
estimate only between temporally close frames, can not be
assessed since quantitative evaluation is performed after the
loop closure step. Also they tend to directly extend the
algorithm from visual odometry estimation for loop closure,
rather than making first an appearance-based selection of
loop candidates. In [15] authors attempt to align each
new created keyframe with all the previous keyframes by
RANSAC, which would lead to prohibitive computational
costs for large datasets. In [10] in turn authors attempt to
close loops in a random sample from a set of keyframes and
each frame-to-frame motion calculation between candidates
for loop closure is parallelised, thus keeping bounded the
computational cost and close to the frame rate of the camera
(between 5 and 15 Hz). This has proven to be a successful
approach in the RGB-D TUM datasets, usually comprising
short datasets with frequent loop closures. However in the
case for large datasets with few loop closures, it could be
argued that as the pool of selectionable keyframes steadily
grew, the chances of randomly picking keyframes with
successful loop closures would be increasingly reduced.

In [8], Dong et al. propose the combination of 3D
RANSAC alignment and large scale KinectFusion for
RGB-D dense mapping.

2.2 Direct methods

In the last years, approaches which estimate the camera
motion directly from the images without a previous
extraction and matching of sparse features have become
more and more popular. The main characteristic of these
methods is that they compute the motion estimate between
frames from pixel-wise constraints instead of sparse feature
correspondences. Since direct methods make use of the
whole dense information contained in the image, they are
likely to offer better accuracy for camera tracking than
methods based on sparse features. The main restriction
of direct methods is that inter-frame motion must be
small, producing pixel disparities between frames of a
few pixels. Though this restriction can be relaxed up to
some degree with coarse-to-fine approaches applying image
downsampling; the main consequence is that while direct
methods can be used with video sequences, where the
temporal proximity between frames generally guarantees
small pixel disparities, for temporally unrelated pairs of
frames, as occurs in loop closure, sparse feature methods
perform better.

Maybe one of the first dense approaches with RGB-
D cameras is KinectFusion by Newcombe et al. [35].

KinectFusion is composed by two different modules, one
for camera tracking and one for dense volumetric mapping.
For each new frame first the motion is estimated by frame-
to-model ICP alignment of depth maps, i.e., current depth
map is aligned with the depth map raycasted from a
voxelized 3D model. Then, current depth map is integrated
in the 3D volume using a truncated signed distance
function. One drawback of the original KinectFusion is
its limitation to small workspaces, which was nevertheless
solved in latter works by using a cyclical buffer to shift the
volume as the camera explores the environment [3], [47].

Bylow et al. [4] proposed a method which, as
KinectFusion, uses only the depth fusion, but rather than
raycasting a depth map from the model for posterior ICP-
alignment, the camera is tracked by directly minimising the
signed distance function between the current warped depth
map and the model surface defined in the voxelised volume.
This results in a better accuracy and similar real-time
computational performance compared to KinectFusion.

In contrast to direct approaches using only geometric
information, Steinbrücke et al. [41] presented a method
for visual odometry estimation based on the pixel-wise
minimisation of the photometric error between consecutive
frames, showing that if interframe motion is small enough
their approach is more accurate and computationally
efficient than ICP alignment. Audras et al. [1] propose a
similar method, but instead of standard least squares they
propose the Huber robust cost function in order to gain
robustness to outliers, e.g., moving objects or occlusions.
An information selection scheme is used to prune pixels in
homogeneous regions and gain computational performance
and motion is estimated by aligning the current and a
reference frame, switching the reference frame when the
Median Absolute Deviation (MAD) of the error of the
aligned frames is above a given threshold.

In [22], Kerl et al. extend the method described [41]
by modelling the photometric error by a Student’s t-
distribution. This leads to a cost function which shows to
be robust to outliers and performs better than other widely
used estimators like Huber’s or Tukey’s.

Klose et al. [25] optimise the Tukey-robustified
photometric error by performing Efficient Second Order
Minimisation (ESM) between a reference and current
frame, using the accumulated camera motion, to decide
when to switch the reference frame. Also, to gain
robustness to ilumination changes they include parameters
modelling the variation in contrast and brightness in the
optimised variables.

Following the paradigm of working on 3D models [35],
Stuckler and Behnke propose in [42] and [43] converting
the RGB and depth images into multiresolution surfel
maps by using a voxel octree representation. Each
surfel maintains a shape-texture descriptor, which guide



data association between surfels in different maps during
camera pose estimation. To alleviate the odometry drift
they register the current frame with respect to the latest
keyframe. A new keyframe is inserted when camera motion
w.r.t. last keyframe is large enough. They also propose
a loop closure technique where loop closure candidates
are randomly sampled from a probability density function
which positively weights the selection of spatially closer
keyframes.

Direct motion estimation minimising both the geometric
and photometric residuals simultaneously was proposed
first by Tykkala et al. [46]. To solve the problematic of
mixing residuals in different magnitudes they propose the
heuristic of weighting the depth residuals by the quotient
of the medians of the intensity and depth maps. In [6],
Damen et al. propose an ESM approach to minimise both
residuals, weighting their contributions by an empirically
set parameter. In [49], Whelan et al. propose to compute
the visual odometry by mixing the costs functions from
[35] and [41], also weighting them by an empirically set
parameter. Based on this work Whelan et al. proposed
in [48] a RGBD-D SLAM system with volumetric fusion
performing appearance-based loop closing to improve the
systme accuracy. The use of heuristics to weight both
error contributions can be risky, since a tuning which
works well for some dataset could not do so in other
ones. For this reason it is advisable to reduce their
use as much as possible. In this sense Kerl et al. [21]
propose the computation of an automatic scaling matrix
based on the covariance of the photometric and geometric
pixel residuals, which produces a rigorous normalisation of
both residuals. In addition to this automatic scaling they
propose the estimation of the camera motion with respect
to keyframes, which are switched following an entropy-
based criteria, and the inclusion of a simple but effective
loop closure method based on keyframes spatial proximity
to further refine the final odometry estimation.

In all of the described approaches the use of a constant
scaling parameter, either heuristic or automatic, for all the
geometric residuals is prone to be a source of inaccuracies
in the estimation process due to the quadratic grow of
the depth uncertainty in RGB-D sensors [23]. Meilland
et al. [33] take this fact into account, weighting the
depth residuals by the inverse squared depth, but still use
additional heuristic parameters to weight photometric and
depth residuals. Also, under the frequent assumption of a
symmetric, generally Gaussian, distribution of the disparity
error; the depth which is inversely proportional to the image
disparity, is not symmetric (Fig. 1), and thus inaccurately
modeled by the robust cost functions frequently employed
in the literature.

Inverse depth, in turn, depends linearly on the disparity,
which means that it follows the same error distribution and

Figure 1: Assuming that the disparity (d) error follows a
Gaussian or, more generally, a symmetric distribution, the
depth (Z ∝ 1

d) error distribution is not Gaussian, not even
symmetric. The asymmetry is more pronounced for higher
Z.

thus its uncertainty is constant for any depth. In spite of
this, to the best of our knowledge, the use of inverse depth
for dense visual odometry with RGB-D cameras has been
only proposed in by Lui et al. [28], by extending the ICP
algorithm from KinectFusion. However its performance is
only tested on short sequences, lacking from a thorough
evaluation on larger RGB-D sequences and a comparison
against state-of-the-art methods for dense RGB-D odometry
estimation.

3 Linear Visual Odometry Constraints
from Optical Flow

In this section we derive the visual odometry pixel-wise
constraints through the flow equations obtained from the
photometric and geometric constraints between two camera
positions.

3.1 Optical flow equations

Let us denote two camera frames as A and B, at instants t
and t + ∆t respectively. Given the intensity images IA and
IB , and inverse depth maps WA and WB defined over the
image domain Ω ⊂ P2, for an image point p = (u v 1)T ∈ Ω

in frame A, the following constraints hold:

IB(p + ∆p) = IA(p) (1)

WB(p + ∆p) =
1

eTz XB
, (2)

where XB is the 3D point lifted from pixel p+∆p in frame
B, ∆p = (∆u ∆v 0)T is the displacement of one point from
frame A to B, and eTz = (0 0 1). The constraint in intensity
assumes constant illumination of one scene point. The
second constraint is the measurement model of the depth
sensor at frame B.

Assuming small pixel displacements between frames we
compute the flow equations from (1) and (2):



Figure 2: Schematic representation of optical and scene
flow between two frames A and B.

∇IA(p)∆p + IB(p) = IA(p) (3)

∇WA(p)∆p +WB(p) =
1

eTz XB
, (4)

where the gradient operators ∇I =
(
∂I
∂u

∂I
∂v 0

)
and ∇W =(

∂W
∂u

∂W
∂v 0

)
.

3.2 Projection model

A world point X is projected in the image point p by:

p = π (X) = K
X

eTz X
=

 fx 0 cx
0 fy cy
0 0 1

 X

eTz X
, (5)

where K is the conventional calibration matrix, including
the camera intrinsic parameters.

Inverse depth measurements W(p) = 1
eTz X

allow to lift
2D points from the image to 3D coordinates by the inverse
projection function:

X = π−1(p) =
1

W(p)
K
−1
p. (6)

3.3 3D flow equations

Flow constraints (3) and (4), can be manipulated to get
constraints on the 3D flow at one pixel, which is denoted
as ∆Xp

.
= XB −XA (see Fig. 2). Using this relation, first

we compute the first order Taylor expansion of the inverse
depth of one point at frame B:

1

eTz XB
=

1

eTz XA
− 1

(eTz XA)2
eTz ∆Xp +O

(∣∣∣∣eTz ∆Xp

∣∣∣∣2)
(7)

≈ WA(p)−W2
A(p)eTz ∆Xp. (8)

Using this relation and the camera projection model we
get also:

∆p = K
XB

eTz XB
−K

XA

eTz XA
(9)

(8)
= KXB

(
WA(p)−W2

A(p)eTz ∆Xp

)
−KXAWA(p)

(10)
(5)
= WA(p)

(
K− peTz

)
∆Xp −KW2

A(p)∆XpeTz ∆Xp

(11)

≈ WA(p)
(
K− peTz

)
∆Xp. (12)

And substituting in (3) and (4) we get:

WA(p)∇IA(p)
(
K− peTz

)
∆Xp + IB(p)− IA(p) = 0

(13)

WA(p)
(
∇WA(p)

(
K− peTz

)
+WA(p)eTz

)
∆Xp+

+WB(p)−WA(p) = 0.
(14)

3.4 Rigid motion

We have obtained general flow equations taking small pixel
displacement as the only assumption. Only (3) presents
a dense optical 2D flow estimation problem [18], while
(13) and (14) involve a dense scene 3D flow problem [16].
Both are ill posed problems which require regularisation
and variational methods to reach a solution.

We focus instead on RGB-D visual odometry estimation.
This implies the assumption of a rigid scene, i.e., the
displacements ∆Xp of each of the WimHim points
projected on the image frame are due only to the motion
of the camera, which has 6 DoF. Assuming a small motion
described by the rotation and translation pair ( RA

B , rAB) ∈
SE(3) we have:

∆Xp = RA
B XA + rAB −XA

=
(
I + [θAB ]×

)
XA + rAB −XA +O

(∣∣∣∣∣∣[θAB ]2×XA

∣∣∣∣∣∣)
≈ rAB − [π−1(p)]×θ

A
B = M(p)ξAB . (15)

where [·]× denotes the antisymmetric matrix from a vector
and θAB) is the logarithmic map of RA

B . Note that ξAB =

(rAB ; θAB) is not a twist, i.e., ξAB /∈ se(3), since rAB is yet
the translation part of the rigid motion. Eq. (15) leads to
a well-posed problem with 6 unknowns for nearly WimHim

constraints, excluding pixels without depth measurements,
with the following residuals:

rI(p, ξ) =WA(p)∇IA(p)(K−peTz )M(p)ξ+

+ IB(p)− IA(p) (16)

rW(p, ξ) =WA(p)
(
∇WA(p)(K−peTz )+WA(p)eTz

)
M(p)ξ+

+WB(p)−WA(p), (17)



which can be straightforwardly minimised by standard
Gauss-Newton least squares.

Note that in the monocular RGB case, no depth is
provided and only the constraint (16) would be used. Thus
WA(p) becomes an unknown yielding an ill-posed problem
with WimHim constraints for WimHim+6 unknowns, which
is solved using optical flow variational methods [36], or by
performing variable baseline stereo matching [11].

4 Visual Odometry Estimation by
Iterative Optimisation

With the proposed residuals, ξAB is computed as the solution
to the following optimisation problem:

ξAB = argmin
ξ

∑
p∈Ω

ρ

(
rI(p, ξ)

σrI

)
+ ρ

(
rW(p, ξ)

σrW

)
, (18)

where ρ(x) is a generic cost function which must be
symmetric, definite positive and ρ(0) = 0. σrI and
σrW are scaling parameters which capture the uncertainty
in intensity and inverse depth residuals, and allow for
normalisation of residuals in different magnitudes. The
choice ρ(x) = x2

2 results in standard least-squares linear
optimisation. Nevertheless to gain robustness against
outliers, e.g., pixels belonging to non-static elements,
robust M-estimators are usually employed. Optimisation
with robust cost functions is addressed by the Iteratively
Reweighted Least Squares algorithm (IRLS) [17], which
results in a linear least-squares problem to be solved at each
iteration:

ξAB = argmin
ξ

∑
p∈Ω

ω

(
r̆I(p)

σrI

)
r2
I(p, ξ)

σ2
rI

+ ω

(
r̆W(p)

σrW

)
r2
W(p, ξ)

σ2
rW

,

(19)

where r̆I(p) and r̆W(p) denote the initial residuals
computed after updating the camera motion at previous
iteration, and the weighting function ω(x) depends on the
used M-estimator. Cost and weight functions for different
M-estimators can be found in [50].

Rigid motion between frames is computed in a coarse-to-
fine manner using image pyramids, performing a number
of iterations at each pyramid level. Let us have the
intensity and inverse depth image pairs {Ik, Wk} and
{Ik+1, Wk+1}, between consecutive frames k and k + 1. At
the start and every time we step down to the next pyramid
level, we set {IA, WA} =

{
I(pyr)
k , W(pyr)

k

}
, and compute

{∇IA, ∇WA}. Initial camera motion, expressed by the
transform Tk

k+1
(0) is initialised assuming a constant velocity,

i.e., Tk
k+1
(0) = Tk−1

k.
After initialisation, the following steps are performed

at each iteration γ: image warping, scaling parameters
computation, optimisation and pose composition.

4.1 Image Warping

Image warping is performed at the start of every iteration in
order to reset the incremental motion estimate to ξ

A(γ)
B = 0,

instead of accumulating it. This is done to avoid unrealistic
intensity or inverse depth estimates in frame B beyond the
sensor measurement limits, as it can be verified if we take
a look back to the left members of (3) and (4). At each
iteration, {Ik+1, Wk+1} are warped towards frame k using
the current motion estimate Tk

k+1
(γ) , resulting in the warped

images {I (γ)
B , W(γ)

B }. This is done by reverse warping in
the following steps:

• Given a pixel p in the destination warped image,
the corresponding pixel p

(γ)
k+1 in the source image is

obtained as:

X
(γ)
k+1 = Rk+1

k
(γ)K

−1
p

1

Wk(p)
+ r

k(γ)
k+1 , (20)

p
(γ)
k+1 = p + ∆p(γ) = K

X
(γ)
k+1

eTz X
(γ)
k+1

, (21)

• By using (1) and (2) and resetting X
(γ)
k+1 =

Rk+1
k
(γ)K

−1
p 1

W(γ)
B (p)

+ r
k(γ)
k+1 , compute the warped

intensity and inverse depth maps, I(γ)
B andW(γ)

B as:

I(γ)
B (p) = Ik+1(p

(γ)
k+1) (22)

W(γ)
B (p) =

eTz Rk+1
k
(γ)K

−1
p

1− eTz r
k(γ)
k+1Wk+1(p

(γ)
k+1)

Wk+1(p
(γ)
k+1),

(23)

where Ik+1(p
(γ)
k+1) and Wk+1(p

(γ)
k+1) are obtained by

bilinear interpolation, which is efficiently computed
with CUDA capable NVIDIA GPUs using texture
memory.

Warping is performed at the level with highest
resolution. Once the warping is done, {I (γ)

B , W(γ)
B }

are downsampled to the pyramid level where current
optimisation step is taking place.

4.2 Scaling parameters

In a proper minimisation problem, specially when mixing
residuals in different magnitudes, the scaling parameters
related with the covariance of the residuals need to be
provided. In some cases these scaling parameters are known
or can be estimated before the optimisation and thus they
can be introduced as constants. However in other cases they
are difficult to know and they have to be computed prior to



every optimisation step from the current estimates of the
residuals. In principle we assume that these parameters are
not known and to obtain them we first compute the initial
residuals at ξA(γ)

B = 0 :

r̆{I,W}(p) = {I (γ)
B (p), W(γ)

B (p)} − {IA(p), WA(p)} .
(24)

Scaling parameters σrI and σrW can then be computed by
the Median Absolute Deviation (MAD):

σMAD
r{I,W}

= 1.4286 med
p
|r̆{I,W}(p)−med

p

(
r̆{I,W}(p)

)
|, (25)

or alternatively they can be computed by their Maximum
Likelihood (ML) estimator, noticing that for any cost
function ρ( r−µσ ) we can obtain the associated likelihood
function as:

fρ(r|µ, σ) =
Kρ

σ
exp

(
−ρ
(
r − µ
σ

))
, (26)

where Kρ is a scaling constant for
∫∞
−∞ fρ(r|µ, σ)dr = 1,

and µ and σ the location and the scaling parameter of the
residuals respectively. The scaling parameters would be
computed by iteratively solving:

[
µML
r{I,W}

, σML
r{I,W}

]
= argmin

µ, σ

∑
p∈Ω

log σ + ρ

(
r̆{I,W}(p)− µ

σ

)
,

(27)

taking ρ(x) = x2

2 in the first iteration to compute the
initial seed and then switching to our selected cost function.
Though not explicitly required, location parameters µML

r{I,W}

are also calculated since the scaling parameters depend on
their estimate.

Computing the scaling parameters using all the pixels
in the image can involve a high computational cost. As
an alternative, we propose computing the scale parameter
taking only a sample from all the pixel residuals. Following
a similar reasoning to the typically followed to compute
the minimum number of iterations in a RANSAC scheme,
we can determine statistically the minimum sample size
N to reach a relative precision ε in the scale parameter
estimation with a confidence 1−α. Assuming that the sum
of the weighted squared normalised residuals follows a chi
squared distribution, we have that:

(N − 1)σ̂2

σ2
∼ χ2

N−1, (28)

where σ is the true scaling parameter and σ̂ its estimate.
We can define then a confidence interval with the desired
relative precision in our estimate.

P
(
(1− ε)σ2 < σ̂2 < (1 + ε)σ2

)
=

= P

(
(1− ε)(N − 1) <

(N − 1)σ̂2

σ2
< (1 + ε)(N − 1)

)
= 1− α

(29)

Since N > 50, we can approximate the chi squared
distribution by a Gaussian distribution, χ2

N−1 ∼ N (N −
1, 2(N − 1)), and then we have:

P

(
− ε(N − 1)√

2(N − 1)
< z <

ε(N − 1)√
2(N − 1)

)
= 1− α, (30)

where z is a standard normally distributed random variable.
From the previous expression we obtain the minimum
required number of samples to obtain a desired precision
in the estimated scaling parameter with a given confidence
level.

N =
2z2

1−α2
ε2

+ 1. (31)

Taking a sample of N = 10000 pixels we obtain a
relative precision ε = 0.05 for the scaling parameter with
a confidence level greater than 99.9%.

4.3 Robust optimisation

We consider for comparison 3 different cost functions
frequently used in the related literature: Huber [20], Tukey
biweight [2] and a Student’s t-distribution-based estimator
[27], which will be denoted as Student in advance. The
constants for Huber and Tukey estimators are set up to
1.345 and 4.685 respectively, which yield an asymptotic
relative efficiency (ARE) of 95% in case the error followed
a Gaussian distribution. The number of degrees of freedom
of the Student estimator is set up to ν = 5 as in [22]. We
have verified numerically that the ARE of the Student’s
estimator with this setup is near to 94% for a normally
distributed error.

Given an M-estimator, once we have the initial residuals
and the scaling parameters the computation of the weights
for IRLS is straightforward. This is followed by the
computation of ξ

A(γ)
B by solving the linear optimisation in

(19).

4.4 Motion update

After each iteration the motion estimate between frames k
and k + 1 is updated by the current incremental estimate:

Tk
k+1
(γ+1) =

(
exp([θ

A(γ)
B ]×) rAB
0 1

)−1
Tk
k+1
(γ) . (32)



4.5 Keyframe selection by mutual covisibility
ratios

Taking a reference frame for estimation of the visual
odometry requires a switching strategy. Some works use
the rotational and translational distance between frames to
take a decision. However we find that this might be a poor
criteria since first, how the captured environment changes
when the camera translates depends also on the depth of the
elements in the scene, and secondly, camera motion does
not necessarily result in a variation of the captured scene
(consider for example the case of simultaneously translating
the camera along its horizontal axis and rotating it around
its vertical axis)

Other works use a statistically based criteria for reference
frame switching. In [32] authors use the MAD estimator
of the standard deviation of the final residuals which is
compared with a reference value to make the decision. In
[21] instead of the variance of the residuals, authors use
the covariance matrix of the computed motion. They take
as reference value the covariance of the motion estimate
between the last inserted keyframe and its consecutive
frame and take a keyframe switching decision based on the
ratio between the entropy of the reference covariance and
the current estimate’s.

Using sparse features a frequently used criteria for
keyframe insertion is the visibility of map features in
current frame [24], [19]. This criteria has also been used
for dense point clouds [31].

In this work we use a mutual covisibility criteria
described as follows. Given two frames A and B and the
camera motion estimate between them ( RA

B , rAB) ∈ SE(3),
we transfer pixels from A to B using (20) and (21). Then if
the following two conditions are met:

• pB ∈ Ω

•
∣∣∣WB(pB)− 1

ez
TXB

∣∣∣ < 3σw

a pixel is tagged as visible. First condition rejects points
out of the image domain, while the second condition rejects
occluded pixels and where σw is computed using (27) after
the last iteration of the visual odometry algorithm. After
this test we can compute the visibility ratio:

vis ratioA→B =
#visible pixelsA→B
#nohole pixelsA→B

. (33)

This procedure is repeated switching the role of A and B,
and then we select the minimum visibility ratio. If this
ratio es below a threshold, the reference frame is switched.
Different thresholds will be tested in the experiments
section.

Figure 3: Costs of the processes involved in the
computation of the RGB-D visual odometry.

Table 1: Translational drift relative root mean square error
(RMSE) in meters per second using different methods for
RGB-D visual odometry estimation

Estimator Geom. error σ fr1/desk fr1/desk2 fr1/room fr2/desk
Student depth ML 0.0278 0.0425 0.0504 0.0115
Student depth MAD 0.0271 0.0439 0.0490 0.0121
Student invDepth ML 0.0260 0.0387 0.0491 0.0121
Student invDepth MAD 0.0260 0.0396 0.0485 0.0122
Tukey depth ML 0.0292 0.0808 0.0502 0.0143
Tukey depth MAD 0.0271 0.0527 0.0483 0.0142
Tukey invDepth ML 0.0381 0.0720 0.0485 0.0135
Tukey invDepth MAD 0.0287 0.0422 0.0471 0.0131
Huber depth ML 0.0322 0.0495 0.0681 0.0193
Huber depth MAD 0.0322 0.0496 0.0662 0.0233
Huber invDepth ML 0.0289 0.0453 0.0640 0.0209
Huber invDepth MAD 0.0280 0.0435 0.0606 0.0219

4.6 Enhancement of the computational
performance

Optimisation is performed in a coarse-to-fine scheme at
3 pyramid levels (160x120, 320x240 and 640x480). The
naive approach offers the highest precision performing a
fixed number of 10 iterations at each level. This results in
cost per frame of about 50 ms, which is broke down into
the costs of the different processes in Fig. 3. Alternatively,
to improve the time performance we consider the following
optimisations:

• Skip optimisation on the highest resolution level.

• In Fig. 3 it can be observed that one important
fraction of the time is employed in estimating the
scale parameters σI and σW . This cost can be
completely eliminated if we fix the scaling parameters
for the optimisation. We propose taking σI = 5,
with I(p) ∈ (0, 255) and σW = 0.0025 m−1. The
choice for σI is justified by tests with static sequences
while σW stems from the precision of the disparity
measurements [26],[29].

• Instead of warping at the highest resolution and
then downsampling at each iteration, a coarser but
more efficient alternative would be downsampling
{Ik+1, Wk+1} before optimising and warping on the
current pyramid level.



5 Experiments

We first evaluate the accuracy of our approach with different
configurations comparing it to other works in the literature
using the RGB-D dataset from Technische Universität
München (TUM) [44] and a synthetic dataset with 2
different scenes [13]. Secondly we study with the same
datasets, how both the accuracy and the computation speed
are affected when applying the options for enhancement
of computational performance from section 4.6. Finally
we show a qualitative evaluation of our visual odometry
method showing the 3D reconstructions obtained in our own
sequences.

The experiments were performed on a desktop computer
with Ubuntu 12.04 32-bits and equipped with an Intel Core
i5-2500 CPU at 3.30 GHz, 8GB and a nVidia GeFroce
660GTX GPU with 2GB of memory. The implementation
was done as an extension of the large scale KinectFusion
large scale algorithm from the Point Cloud Library
(PCL) [39], where the original ICP system for odometry
estimation has been completely substituted by our method.
The algorithms for dense volumetric mapping and volume
shifting are kept unchanged. A fork of PCL including
our modified version is available for download in http:
//webdiis.unizar.es/˜danielgg/code.html.

5.1 Inverse depth vs depth residuals

We evaluated all the possible combinations of robust cost
functions (Huber, Tukey and Student), geometric error
parametrisation (depth, inverse depth) and residual scale
estimators (MAD, ML). Table 1 shows the different values
of the RMSE for the translational drift, measured in m/s,
using different approaches. Best results are obtained
with the Student estimator, with little difference between
using MAD or ML estimators for the scaling parameters.
Parametrisation of the geometric error with inverse depth
yields an improvement over the depth parametrisation in
all the datasets except in fr2/desk. It can be noted
also that the Huber estimator offers in general the lowest
accuracy and that the performance of the Tukey estimator is
slightly worse if we use the ML estimator for σ. However
its performance is comparable to Student’s if the MAD
estimator is used. For the rest of the experiments we use
the configuration with Student robust cost function, inverse
depth parameterisation for the geometric error and the ML
estimator for the scale parameters.

For a more detailed evaluation of how the combination of
both geometric and photometric errors affect the accuracy
of the estimate and better assess the gain of using inverse
depth instead of depth for the geometric error, we have
performed another set of tests with optimising on intensity
error only, geometric only and the combination of both
geometric and intensity error. For the cases where

Table 2: Translational drift relative root mean square error
(RMSE) in meters per second minimising different types
and combinations of errors

Geom. error Min. errors fr1/desk fr1/desk2 fr1/room fr2/desk
none phot 0.0312 0.0513 0.0503 0.0119

invDepth phot+geom 0.0260 0.0387 0.0491 0.0121
depth phot+geom 0.0278 0.0425 0.0504 0.0115

invDepth geom 0.0332 0.0454 0.0495 0.0356
depth geom 0.0377 0.0562 0.0555 0.0465

geometric error is used we have switched between inverse
depth and depth based errors 2. It can be observed that when
considering the geometric error only the superiority of using
inverse depth residuals is clearer.

5.2 Performance vs accuracy

We evaluated how the accuracy and computational
performance are affected after applying the modifications
proposed in Sec. 4.6 to decrease the computational cost
of our approach. Following the order in which they are
presented, we denote these as lvl followed by the level
index at which optimisation is stopped, sigmaFix and
pyrF irst. Results of using one or a combination of these
modifications are shown in Table 3. It can be observed
that either stopping optimisation at level 1 or using constant
scale we achieve a computation time in the limits of the
camera frame rate of 30 Hz with little lost in accuracy,
and even we can reach a reduction to 9ms applying all the
proposed optimisations.

5.3 State-of-the-art comparative

In this section we first compare our method to state-of-the-
art RGB-D visual odometry and SLAM approaches. For
the comparison we use 2 publicly available benchmarking
datasets: the TUM benchmarking dataset [44], consisting of
real image sequences, and a RGB-D benchmarking dataset
generated from 2 synthetic scenes, one office and one living
room [13]. For our approach we have considered different
thresholds for reference frame switching. The evaluation
in the TUM datasets has been carried out in the two error
metrics proposed by the authors of the TUM datasets:
the Relative Pose Error (RPE) in meters per second and
the Absolute Trajectory Error (ATE) in meters. For the
synthetic datasets we only evaluated the ATE since RPE is
not compared in the literature.

In the RPE evaluation (Table 4), we observe that there
does not exist a clear difference in accuracy between taking
consecutive frames or a reference frame for odometry
estimation. With respect to the state-of-the-art, our frame-
to-frame approach has the lowest error in the fr1/desk2
and fr2/desk datasets. In the fr1/desk dataset our
approach is not the best but the results are close to [31]



Table 3: Translational drift and average and maximum
computation time per frame for different options to enhance
the computational performance

Approach RMSE[m/s] time
fr1/desk fr1/desk2 fr1/room fr2/desk mean[ms] max[ms]

naı̈ve 0.0260 0.0387 0.0491 0.0121 47 50
lvl1 0.0268 0.0407 0.0492 0.0120 26 28

pyrFirst 0.0270 0.0401 0.0491 0.0127 40 42
pyrFirst+lvl1 0.0282 0.0416 0.0498 0.0138 18 20

σFix 0.0260 0.0389 0.0498 0.0112 34 35
σFix+lvl1 0.0271 0.0399 0.0500 0.0121 17 17

σFix+pyrFirst 0.0272 0.0397 0.0498 0.0118 26 27
σFix+pyrFirst+lvl1 0.0287 0.0409 0.0500 0.0143 9 10

and RGB-D+KF+Opt [21], even ours not using reference
frames. In fr1/room, the better accuracy of [31] is clear.

In terms of ATE (Table 5), we found that though our
approach is not the best in the tested real TUM datasets,
it shows competitive results considering that many of the
methods considered in the comparison include some kind
of loop closure method, which significantly helps into
reducing this error. As in the RPE comparative it can
be observed that taking a reference frame has a moderate
or almost unnoticeable effect on the accuracy except for
the fr2/desk and fr3/office datasets, where the ATE
metrics are twice larger when not taking reference frames.
Given that these datasets were acquired with a slow moving
camera, this greater error is likely to be caused by a motion
between consecutive frames producing in some parts an
optical flow beyond the limits of the pixel accuracy. Fixing
the visibility ratio threshold to a high value (0.8 or 0.9)
seems to be enough to prevent this problem from happening
in sequences with slow camera motion and has no negative
effects on sequences with faster motion. A visual qualitative
evaluation of the trajectory error is shown in Fig. 4.

In the synthetic datasets the comparison was performed
against the RGB-D odometry methods originally evaluated
by the authors of the benchmark. In Table 6 we show the
ATE for different values of the visibility ratio threshold
which have been compared against the lowest ATE of the
approaches evaluated in [13], which generally corresponds
to the one resulting from using a model-to-frame ICP
algorithm originally used in KinectFusion. Surprisingly,
though our approach computes the odometry in a frame-
to-frame fashion we obtain the best accuracy in most of the
sequences with simulated noise and some of the noiseless
ones. A qualitative evaluation of the trajectories for all
the sequences using different visibility ratio thresholds is
shown in Figs. 5 and 6. As occurs with the fr2/desk
dataset, quantitative and qualitative results show that using
a keyframe switching strategy provide a better accuracy.

5.4 Odometry covariance and image filtering

In the proposed approach we initially avoided to apply any
filtering to the intensity and inverse depth maps in order

Table 4: Translational drift relative root mean square error
(RMSE) in meters per second using different visibility ratio
thresholds for keyframe switching and comparison with
state-of-the-art approaches

Visibility ratio fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office
No KF 0.0260 0.0387 0.0491 0.0121 0.0168

vrth = 0.9 0.0255 0.0384 0.0473 0.0115 0.0118
vrth = 0.8 0.0253 0.0382 0.0472 0.0124 0.0120
vrth = 0.7 0.0246 0.0385 0.0441 0.0131 0.0121
vrth = 0.6 0.0264 0.0413 0.0423 0.0258 0.0812

FOVIS ([19], comp. in [47]) 0.0604 - 0.0642 0.0136 -
ICP+RGB-D [47] 0.0393 - 0.0622 0.0208 -

VP [33] 0.0259 - 0.0351 0.0147 -
ESM + Tukey + Aff. Il. [25] 0.0302 0.0526 0.0397 0.0147 -

RGB+D [21] 0.036 0.049 0.058 - -
RGB+D+KF [21] 0.030 0.055 0.048 - -

RGB+D+KF+Opt [21] 0.024 0.050 0.043 - -

to conserve the raw sensor measurements and we dealt
with the sensor noise by computing the scaling parameters
of photometric and geometric residuals. As shown in the
experiments on structurally and texturally rich scenes, the
effect of not filtering the noise showed not to be harmful,
obtaining accurate motion estimates.

However it must be noted that uncertainty in the
odometry estimate is modeled by its covariance matrix
which is computed as the inverse of the Hessian at the last
iteration of the minimisation problem. The Hessian depends
on the intensity and inverse depth gradients computed at
the reference frame. This means that if the captured
environment is poorly textured and highly planar, e.g., a
white wall, the Hessian must be nearly singular and thus
the problem is ill conditioned.

We noted nevertheless that in some tests with planar and
poorly textured scenes this hypothesis was not verified, due
to the noise making the Hessian well conditioned without
actually providing useful information. For this reason we
noticed that, though the motion estimate would be wrong as
well, applying a bilateral filter [45] only as a prior step to
the computation of the gradients of the intensity and depth
maps, would likely produce ill-posed Hessians when they
are meant to arise, and thus help to detect poor odometry
estimates.

To evaluate how the noise filtering affects the estimate
of the odometry covariance we propose to evaluate the
condition number of its inverse, the Hessian, for the case
of minimising only on the geometric error. Looking at (17)
it can be verified that when viewing a plane perpendicular to
the camera optical axis, ∇WA(p) = (0, 0, 0) for every pixel
and thus the Hessian of the resulting linear system when
minimising the residual becomes singular. This occurs
because the translation on the image axes and rotation
around the optical axis are unobservable, while the rotation
around camera axes and translation on the optical axis
are still observable. A similar reasoning can be applied
with respect to the movements on the axes parallel and



Table 6: Absolute trajectory error (RMSE) in meters in
the synthetic RGB-D dataset using different visibility ratio
thresholds and comparison with state-of-the-art approaches

Dataset Visibility ratio threshold Best
No KF 0.9 0.8 0.7 0.6 in [13]

office tr0 0.1081 0.0921 0.0253 0.0145 0.0193 0.0216
office tr1 0.0715 0.0384 0.0145 0.0114 0.0147 0.3778
office tr2 0.0956 0.0327 0.0080 0.0067 0.0086 0.0109
office tr3 0.0547 0.0550 0.0201 0.0108 0.0084 0.0838

livingRoom lt0 0.0982 0.0365 0.0102 0.0061 0.4846 0.0724
livingRoom lt1 0.0476 0.0229 0.0153 0.0162 0.0113 0.0054
livingRoom lt2 0.1798 0.1683 0.0780 0.0109 0.0108 0.0154
livingRoom lt3 0.1131 0.0950 0.0553 0.0365 0.0355 0.3554

office tr0 noNoise 0.0040 0.0040 0.0040 0.0040 0.0027 0.0029
office tr1 noNoise 0.0114 0.0114 0.0229 0.0096 0.0032 0.0385
office tr2 noNoise 0.0293 0.0296 0.0295 0.0309 0.0085 0.0016
office tr3 noNoise 0.0341 0.0341 0.0427 0.0222 0.0128 0.0021

livingRoom lt0 noNoise 0.0431 0.0419 0.0403 0.0099 0.0183 0.1138
livingRoom lt1 noNoise 0.0123 0.0123 0.0126 0.0071 0.0023 0.0023
livingRoom lt2 noNoise 0.0058 0.0058 0.0058 0.0042 0.0028 0.0015
livingRoom lt3 noNoise 0.0166 0.0136 0.0307 0.0319 0.0499 0.0200

perpendicular to a plane with arbitrary orientation viewed
by the camera.

The condition number of a Hessian H can be defined as
the quotient between its highest and lowest singular values:

κ(H) =
σmax(H)

σmin(H)
(34)

If H is singular then κ(H) → ∞. This means that a
higher κ(H) indicates a more ill-conditioned matrix and
thus less accurate estimates in some of the motion degrees
of freedom.

The evaluation of how bilateral filtering helps into a
better estimation of the conditioning of the Hessian was
performed on two sequences of the TUM RGB-D dataset:
one showing a rich structure, composed by several planes
and one showing a poor structure, with only one plane
(Fig. 7). It can be observed that the effect on the Hessian
conditioning of filtering the inverse depth map is almost
unnoticeable for the scenario with rich structure, but in the
case of a planar environment filtering makes more evident
the ill-posedness of the Hessian, which otherwise would
likely remain unnoticed.

5.5 3D reconstruction

Though for volumetric 3D mapping we use the original
functions in KinectFusion, a good quality of the
reconstructed dense 3D volume depends critically on the
drift introduced by the visual odometry algorithm. Thus, we
also present qualitative results of our approach showing the
reconstruction of some of the tested RGB-D datasets from
the TUM, and also two different datasets acquired by us in
one laboratory of approximately 90 m2 and the corridor of
our department with a length of more than 80 m.

Our acquisitions were carried out with an Asus Xtion
Pro RGB-D camera attached to a laptop by an arm-clamp
system. The camera was only calibrated with a linear
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(a) (b)

Figure 7: Hessian conditioning with and without filtering
of the inverse depth gradient map in visual odometry with
geometric error minimisation only in (left) structurally rich
sequence and (right) structurally poor sequence.

Figure 8: Dense 3D reconstruction of the fr1/desk dataset.

pinhole model without distortion parameters for the RGB
sensor. The depth sensor is not calibrated, taking the depth
values directly as provided by the sensor; and we use
the hard-coded stereo pair calibration for depth and RGB
registration. All the reconstructions are obtained just using
our modified version of KinectFusion without performing
loop closure.

Qualitative results for the datasets fr1/desk , fr1/room
and fr2/desk are shown in Figs. 8, 9 and 10. It can
be observed the great level of detail in fr1/desk, which
indicates a low drift in the reconstruction. In the fr1/room
there are some zones, like the table at right, where the
quality of the 3D reconstruction is poor. This occurs
generally when mapping the same area under large camera
motion and when revisiting a previously mapped place. In
these cases new depth maps integrated into the mapped
volume conflict with the stored map generating artefacts.
However for zones which are swept during less time, as
occurs in the rest of the sequence, the drift during mapping
is low and the map reconstruction is more accurate. In



Table 5: Absolute trajectory error (RMSE, median and max) in meters using different visibility ratio thresholds for
keyframe switching and comparison with state-of-the-art approaches

Visibility ratio fr1/desk fr1/desk2 fr1/room fr2/desk fr3/office
RMSE median max RMSE median max RMSE median max RMSE median max RMSE median max

No KF 0.032 0.027 0.078 0.070 0.047 0.189 0.087 0.077 0.218 0.170 0.144 0.299 0.186 0.135 0.515
vrth = 0.9 0.033 0.026 0.086 0.066 0.044 0.180 0.097 0.086 0.195 0.075 0.077 0.104 0.082 0.036 0.143
vrth = 0.8 0.033 0.027 0.087 0.081 0.052 0.230 0.088 0.085 0.162 0.077 0.076 0.111 0.064 0.021 0.112
vrth = 0.7 0.033 0.028 0.083 0.092 0.069 0.257 0.096 0.077 0.195 0.078 0.075 0.109 0.091 0.040 0.173
vrth = 0.6 0.043 0.038 0.097 0.073 0.053 0.199 0.158 0.123 0.305 0.102 0.098 0.232 0.279 0.193 0.950

VP [33] - 0.018 0.066 - - - - 0.144 0.339 - 0.093 0.116 - - -
ICP+RGB-D [47] - 0.069 0.234 - - - - 0.158 0.421 - 0.119 0.362 - - -

6D RGB-D odometry [8] - - - - - - 0.095 0.067 0.254 0.197 0.174 0.416 - - -
SDF tracking [4] 0.035 - - 0.062 - - 0.078 - - - - - 0.040 - -

RGB-D SLAM [10]∗ 0.023 - - 0.043 - - 0.084 - - 0.057 - - 0.032 -
MRSMap [42]∗ 0.043 - - 0.049 - - 0.069 - - 0.052 - - 0.042 -

RGB+D+KF+Opt [21]∗ 0.021 - - 0.046 - - 0.053 - - 0.017 - - 0.035 - -
RGb-D SLAM Vol. Fusion[48]∗ 0.037 0.031 0.078 0.071 - - 0.075 0.068 0.231 0.034 0.028 0.079 0.030 - -
∗ with loop closure and pose-graph optimisation

No KF

vrth = 0.9

vrth = 0.8

vrth = 0.7

vrth = 0.6

(a) fr1/desk (b) fr1/desk2 (c) fr1/room (d) fr2/desk (e) fr3/office

Figure 4: Trajectories on real TUM datasets. Estimated trajectory is shown in blue, ground truth is in black. Error between
visual estimate and ground truth is shown in red.



No KF

vrth = 0.9

vrth = 0.8

vrth = 0.7

vrth = 0.6

(a) tr0 (b) tr1 (c) tr2 (d) tr3 (e) lt0 (f) lt1 (g) lt2 (h) lt3

Figure 5: Trajectories on office (a)-(d) and living room (e)-(h) synthetic datasets with simulated noise. Estimated trajectory
is shown in blue, ground truth is in black. Error between visual estimate and ground truth is shown in red.

No KF

vrth = 0.9

vrth = 0.8

vrth = 0.7

vrth = 0.6

(a) tr0 (b) tr1 (c) tr2 (d) tr3 (e) lt0 (f) lt1 (g) lt2 (h) lt3

Figure 6: Trajectories on office (a)-(d) and living room (e)-(h) synthetic datasets without noise. Estimated trajectory is
shown in blue, ground truth is in black. Error between visual estimate and ground truth is shown in red.



Figure 9: Dense 3D reconstruction of the fr1/room
dataset. Note how the shape of the room is accurately
captured. Black part on the right top corner of the
fr1/room map corresponds to the ceiling reconstruction
viewed from outside the volume.

the fr2/desk the same zone is being constantly mapped
moving slowly the camera in a loop around the desk. The
final reconstruction shows a high precission without having
applied loop closures nor any type of map correction.

Results for our laboratory and the corridor sequences are
shown in the figure 11 and 12 respectively. The accuracy
of the reconstruction can be assessed from the comparison
to RGB images from similar points of view. Note also that
given that our method is frame-to-frame, the drift both in
the laboratory, reflected in the mismatch in the right wall,
and in the corridor, reflected in the slight curvature of its
side view, are relatively low.

6 Conclusions

In this paper we have presented a new visual odometry
system on GPU based on the alignment between
consecutive frames by minimisation both on the
photometric and geometric error. Our system is
implemented as an extension of the KinectFusion
implementation Kinfu Large Scale in PCL, where the
original ICP algorithm for frame alignment and visual
odometry computation has been completely substituted
by our method. The main contribution of our proposal is
using the inverse depth instead of the depth to parametrise
the geometric error, as well as allowing to switch between
different robust estimators, residuals’ scale estimators or
geometric error parametrisation for comparative purposes.
Our method shows its competitiveness with other state-
of-the-art methods outperforming them in the majority of
the tested datasets in terms of Relative Pose Error (RPE)
and showing low Absolute Trajectory Error (ATE) in spite
of not performing loop closure. With the introduction of
some changes to increase the computational performance
our system is able to reach a performance above 30 Hz

Figure 10: Dense 3D reconstruction of the fr2/desk
dataset. Note the high accuracy of the final reconstruction
without having performed loop closure.

Figure 11: (Top-left) RGB image of the laboratory, (Top-
right) KinectFusion 3D reconstruction using our method for
visual odometry and (bottom) plant view of the complete
3D mesh.

with the GPU device nVidia GeForce 660GTX used in the
experiments, without hindering the accuracy of the method.
Also we show that extensions on the method such us taking
reference frames for odometry estimation and performing
bilateral filtering on the gradients of the images can first
improve the accuracy when the camera moves slowly,
and secondly allow for a better detection of bad odometry
estimates.
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Figure 12: (Top-left) RGB image of the corridor, (Top-
right) KinectFusion 3D reconstruction with our visual
odometry method, (middle) side view and (bottom) plant
view of the complete 3D mesh. Note the challenging of the
sequence due to the poor texture of the corridor and light
reflexes.
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