
Curve-graph odometry: Orientation-free error parameterisations for
loop closure problems ∗

Daniel Gutiérrez-Gómez†and J.J. Guerrero†

October 7, 2015

Abstract – During incremental odometry estimation
in robotics and vision applications, the accumulation of
estimation error produces a drift in the trajectory. This
drift becomes observable when returning to previously
visited areas, where it is possible to correct it by
applying loop closing techniques. Ultimately a loop
closing process leads to an optimisation problem where
new constraints between poses obtained from loop
detection are applied to the initial incremental estimate
of the trajectory. Typically this optimisation is jointly
applied on the position and orientation of each pose
of the robot using the state-of-the-art pose graph
optimisation scheme on the manifold of the rigid body
motions. In this paper we propose to address the
loop closure problem using only the positions and thus
removing the orientations from the optimisation vector.
The novelty in our approach is that, instead of treating
trajectory as a set of poses, we look at it as a curve in its
pure mathematical meaning. We define an observation
function which computes the estimate of one constraint
in a local reference frame using only the robot positions.
Our proposed method is compared against state-of-
the-art pose graph optimisation algorithms in 2 and 3
dimensions. The benefit of eliminating orientations is
twofold. First, the objective function in the optimization
does not mix translation and rotation terms, which
may have different scales. Second, computational
performance can be improved due to the reduction in
the state dimension of the nodes of the graph.

1 Introduction

The probabilistic nature of Simultaneous Localisation
and Mapping (SLAM) techniques, and the incremental
estimation, lead to an unavoidable error build-up. The
accumulated error gives raise to a drift in the trajectory,

∗This work was supported by spanish project DPI2012-31781,
FEDER and FPU scholarship AP-2012-5507.
†Daniel Gutiérrez-Gómez and Josechu Guerrero are

with the Departamento de Informática e Ingenierı́a de
Sistemas (DIIS) y el Instituto de Investigación en Ingenierı́a
de Aragón (I3A), Universidad de Zaragoza, Spain.
{danielgg,josechu.guerrero}@unizar.es

which becomes evident when the sensor platform revisits a
previous location. It is expressly in these situations when
the so called loop closing techniques can be applied to
correct the drift.

The loop closure process can be divided into three steps:
loop detection, computation of the loop closing constraint
and trajectory correction with the new constraints. The
detection and the constraint computation techniques are
sensor dependent and are managed by the front-end.

The last step, trajectory correction, is the one which
this work is mainly focused on. Traditionally, the new
loop constraints are enforced by defining a non-linear least
squares optimisation problem where the final trajectory is
the one which minimises the combined cost of violating the
initial odometry constraints from the SLAM estimate and
the new loop closure constraints.

Following the state-of-the-art pose graph formulation
[15], the loop closure optimisation problem is presented as a
graph of nodes where each node represents one pose and the
arcs represent the odometry and loop closure constraints.
An odometric constraint encapsulates the incremental
motion estimate between two consecutive poses i− 1 and i
in a reference frame attached to i− 1, in such a way that an
arbitrary spatial transformation applied to both poses should
not modify the cost of violating this constraint. This applies
similarly to a loop closure constraint between two poses,
say, i and j, on the relative motion of pose j with respect to
a reference frame attached to i or vice versa.

In a pose graph formulation, each pose includes a
translation and a rotation and is represented as an element of
the special Euclidean group, a manifold which describes the
rigid body kinematics in 2 (SE(2)) or 3 (SE(3)) dimensions.
In the context of optimisation, variables lying on manifolds
different from the usual Euclidean space Rn are prone to
violate the manifold constraints if no special care is taken.
One typical approximation, thus subject to inaccuracies, is
to impose these constraints after optimisation. However, for
greater correctness and accuracy, smarter solutions impose
the manifold topology directly during optimisation [2].

Another problematic specific to Euclidean Groups and
pose-graph optimisation in SLAM is the inability to
define an unambiguous metric [22], which arises from the

different magnitudes in which rotation and translation are
measured. Since error functions in pose-graph SLAM
combine rotation and translation, the set up of the scaling
between rotation and translation can have a strong influence
in the final result of the optimisation. The information
matrix for a given constraint solves this ambiguity by
normalising both magnitudes. However it is not rare
the case where the exact information matrix for some
constraints of the graph is not available or easy to compute.

We propose to reformulate the loop closure optimisation
problem using a state representation which removes the
orientation of the poses. The novelty in our approach is
that, instead of treating trajectory as a set of poses, we look
at it as a curve in its pure mathematical meaning. A curve
is a mathematical entity defined in an Euclidean Space Rn
and has a set of local properties like speed, curvature and
torsion, which can be defined point wise and are invariant
to arbitrary rigid transformations. This leads to the idea
that proper odometry and loop closure constraints can be
computed using only the positions and that these constraints
are related with the local properties of a discrete curve.

Resulting from our proposal three main advantages arise:

• We avoid mixing translation and rotation magnitudes
in the same optimised vector, avoiding heuristic
scalings in the norm of the residuals when the
information matrix is not available.

• The number of degrees of freedom per pose is reduced
from 6 to 3 in the 3D case and from 3 to 2 in the
2D case. This leads to a dimensionality reduction of
the optimisation problem which can involve a potential
increase in computational performance.

• The optimisation could be performed directly in
a Euclidean space, with no need for defining an
error function and special operators for non-Euclidean
spaces.

Part of this work was presented as a conference paper
in [11]. The novelties in this paper with respect our
previous work are first the tackling of potential singularities
in the cost functions of our method by applying a prior
graph reduction to eliminate redundant and aligned poses,
secondly the evaluation of our method in an extended set
of datasets, specially in 3 dimensions, and finally a simple
method to project almost planar 3D pose-graphs to 2D.

The paper is divided as follows. Sec. 2 is dedicated
to comment the related work. In Sec.3 we describe the
standard pose-graph optimisation problem. In 4 we explain
our proposal for orientation-free graph optimisation, first in
2, and then in 3 dimensions. Finally in Sec. 5 we present
the experiments where we evaluate our new parametrisation
with state-of-the-art pose-graph approaches and in Sec. 6
we extract the conclusions.

2 Related Work

Several related works address efficiency and convergence
issues of the optimisation algorithms for pose graphs.
However the discussion on different representations of the
nodes of the graph is less prevalent and, to the best of our
knowledge, all of them assume that the optimisation must
be performed both in the orientation and the position of the
poses.

Concerning the optimisation algorithms the main
objective is to make it robust to local minima and lowering
the computational needs. Standard approaches to solve
non-linear least squares problems are based on the Gauss-
Newton method, which consists in iteratively linearising the
energy function around the current solution and solving a
linear system until convergence. However this involves a
large computational cost and, unless a good initial estimate
is provided, it is likely to stuck on a local minima.
Approaches based on this method like iSAM [14] and g2o
[15] tend to exploit the structure of the graph to reduce the
computational cost.

Another family of approaches introduce a relaxation of
the problem, i.e., at each iteration they compute an update
of only a subset of the nodes. Although these updates
are approximate, the robustness to local minima sticking is
generally increased. In this sense Duckett et al. proposed
the use of Gauss-Seidel relaxation [7] and based on this,
Frese et al. [8] introduced a multilevel relaxation (MLR).
Olson et al. [21] propose a relaxation based approach
using a Stochastic Gradient Descent algorithm (SGD) and
an incremental pose parametrisation. Their results showed
a dramatic reduction in computational cost compared with
other existing approaches at that time. In [10], Grisetti
et al. extend Olson’s method including a novel tree
parametrisation for the poses and extending to 3D poses.
Grimes et al. [9] propose to apply a stochastic relaxation
while solving the linearised system around current estimate.
In [23], Peasley and Birchfield proposed first performing
a SGD with relative pose parametrisation to get a quick
initial solution close to the minimum and the switching to
the Gauss-Seidel method to reach the minimum.

Martinez et al. [19] and Carlone et al. [3] proposed a
linear approximation to compute a first suboptimal solution
in 2D pose graphs without requiring an initial seed for the
state of the nodes. This suboptimal solution could then be
refined by non-linear optimisation approaches. Also for 2D
graphs, Carlone and Censi [4] proposed recently a method
for orientation estimation which is more robust to local
minima than state-of-the-art approaches. In [6], Dubbelman
et al. propose an efficient method which obtains a closed
form solution for loop closure in trajectories where there is
a single loop constraint. This work was further extended [5]
enabling it to close multiple loops on the same trajectory.

Recently Anderson et al. [1] proposed a continuous-

time SLAM approach, which addresses the pose-graph
optimisation by parametrising the motion of the platform
by continuous wavelet functions based on B-splines
instead of conventional parametrisation with discrete poses.
This is beneficial when using high-rate sensors, multiple
unsynchronized sensors, or scanning sensors, such as lidar
and rolling-shutter cameras, during motion.

Concerning different descriptions of the states of the
nodes, the proposal by Strasdat et al. [26] is specially
convenient for pose graph optimisation from loop closure
of visual odometry estimates obtained by some monocular
front-end. By describing the poses and the constraints
between them by similarity transforms instead of by rigid
body motions, it allows scale drift correction in the
optimisation back-end.

Another important issue in the scope of pose-graph
optimisation which have been addressed in the literature is
the robustness to false positives during the loop detection
step. In this sense authors of [15] propose several robust
cost functions in their implementation to decrease the effect
of outliers. More sophisticated methods for robust pose-
graph optimisation include the introduction of switchable
constraints [27] which act as weights for the loop closure
constraints, the RRR algorithm [17] based on consistency
checks of topologically similar loop constraints, or the
Max-Mixture Model [20] which accounts for the possibility
of false loop closures using a high variance Gaussian
distribution.

3 Standard Pose Graph Optimisation

Let x = (x1 · · · xN) be the optimisation state vector which
contains the configuration xi of each node in the graph. Let
ẑ = (ẑ1 · · · ẑM) be the vector containing all the constraints
between the nodes in the graph. These constraints can
not only represent edges joining pairs of nodes but also,
more generally, cliques relating an undetermined number
of nodes. Let also fk (x) be an observation function which
computes the estimate of the constraint ẑk given the current
state x of the graph.

3.1 Node Parametrisation and Constraints in
SE(n)

When defining a pose-graph optimisation problem in the
context of SLAM, nodes in the graph represent poses. One
pose consists of a location in the space and an orientation
and both can be jointly described in the manifold of rigid
body motions in 2D (SE(2)) or 3D (SE(3)) by using
transformation matrices. Then the configuration of a node
xi in the graph is parametrised as xi = WTi , i.e., the
spatial transformation from the world frameW to the frame
associated to pose i.

The observation function for a constraint between two
poses is defined as:

fij(x)
.
= fk(x) =

(
WTi

)−1
WTj . (1)

The odometry constraints for the optimisation problem
are computed by applying the observation function to the
initial state x̂ = {W T̂1, W T̂2, ..., W T̂N}, while the loop
closure constraints are provided by a module in charge of
both loop detection and computation of transforms TLC =

{i1T̂
j1
LC , ..., iLT̂jL

LC}. That is:

ẑk = iT̂
j =


(
W T̂i

)−1
W T̂j if (i, j) ∈ S

iT̂
j
LC if (i, j) ∈ R

, (2)

where S = {(1, 2), ..., (N − 1, N)} and R =

{(i1, j1), ..., (iL, jL)} are respectively the sets of pose
pairs sharing odometry and loop closure constraints.

3.2 Generalised Optimisation on Manifolds

The unambiguous description of elements lying on a
manifold usually require more parameters than dimensions
has the manifold. Such is the case of elements in SE(n),
usually described by transformation matrices. For each
additional parameter a constraint related with the manifold
topology is established. To comply with these constraints
during iterative optimisation, updates of the estimation must
be computed in the tangent space of the manifold using a
minimal parametrisation. For this purpose the operators �
and � are used. Roughly speaking, the operator � computes
the difference between two transformations with a minimal
parametrisation, while the operator � applies a minimally
parametrised perturbation to a rigid transformation (for a
more detailed and rigorous explanation we refer the reader
to [13]).

Then, the error ek resulting from violating the graph
constraint between poses i and j is:

ek(x) = fk(x) � ẑk. (3)

The uncertainty for a constraint ẑk is represented by
the information matrix Ωk . Assuming that all the
constraints are independent, the cost function for pose graph
optimisation is:

x∗ = arg min
x

∑
(i,j)∈S

eTk (x)Ωkek(x) +
∑

(i,j)∈R
eTk (x)Ωkek(x)

= arg min
x

eT(x)Ωe(x),

(4)

where e = (e1 · · · eM) and Ω = diag (Ω1, ...,ΩM) and M =

(N − 1) + L is the total number of constraints.
Given the initial guess x̆ = x̂ , (4) can be solved

iteratively until convergence by computing a first order
Taylor expansion of the error at each iteration :

e(x̆ � δ) = e(x̆) +
∂ (e (x̆ � δ))

∂δ

∣∣∣∣
δ=0

δ = ĕ + Jδ, (5)

where δ = (δ1 · · · δN) and abusing from notation x̆ � δ =

{x̆1 � δ1, ... , x̆N � δN} . The Jacobian can be computed
analytically (Chap. 2 in [25]).

Then, the resulting linear optimisation problem is solved
to obtain the state incremental update δ which is used to
compute the state for next iteration:

x̆← x̆ � δ. (6)

4 Our Approach: Graph Optimisation
on Rn

Instead of jointly estimating the position and orientation of
the poses by carrying on an optimisation in the manifold of
rigid body motions, we propose imposing the loop closure
constraints by taking only the position part of the poses. The
underlying idea behind this proposal is that a trajectory can
be considered a discrete curve in the Euclidean space where
new loop constraints between some points are imposed
modifying as less as possible the local properties of the
curve, which are encoded in the odometric constraints. This
is intuitively shown in the example of Fig. 1. Given a
trajectory where no information about the orientation is
shown, one can perceive however how the trajectory has to
be bended so that the point A is at the relative position w.r.t.
B given by the loop closure constraint (dashed line) and the
vector vB tangent to the trajectory at B.

Moreover, the removal of the orientations out of the
optimised variables seems reasonable, since the position
and orientation of a body which freely moves in the space
do not have to be coupled generally. In this sense, the
inclusion of the orientation in the optimisation may respond
primarily to the need of expressing the odometry and loop
constraints in a local reference frame, such that that the
error function is invariant to rigid body motions applied to
the whole trajectory.

Thus the main challenge is to define appropriate
constraints given only the set of positions composing the
trajectory. These constraints must keep the error invariant
to an arbitrary rigid motion applied to the curve.

4.1 Curves in 2D and 3D

Let us first introduce some notions about curves in 2 and
3 dimensions [24]. These notions though not applied

B

A

A
LC

B

A

(a) (b)

Figure 1: (a) Curve with an open loop where the point A
should be at the same position as ALC and keep a relative
orientation w.r.t. the vector tangent to the trajectory at B.
(b) Intuition of how this loop should be closed.

in the implementation of our approach help to provide a
mathematical insight of the implications of our approach,
showing in fact that our proposed optimisation problem is
equivalent to bending a curve so that it passes through new
points, while trying to keep its original shape.

Generally, a curve r can be defined as a mapping of a
scalar t in a given interval I = [a, b] onto the euclidean space
Rn, i.e., r : I → Rn.

A n-dimensional curve is characterised by n properties
defined locally at every point of the curve. For a 2D curve
these properties are the metric derivative or speed ||r′||, and
the curvature κ(t) which is defined as:

κ(t) =
r′

T
(t)Jr′′(t)
||r′(t)||3

, (7)

with

J =

(
0 1
−1 0

)
. (8)

For the 3D case we have to consider a new property of
the curve: the torsion τ(t). The torsion of a curve is given
by the variation of its osculating plane which can be defined
as the plane which locally contains the curve in the vicinity
of one of its points. Note that planar curves have no torsion
since they are contained in the same plane at every point.

Then, for a 3D curve the curvature and torsion are defined
by:

κ(t) =
||r′(t)× r′′(t)||
||r′(t)||3

, (9)

τ(t) =
r′′′

T
(t)(r′(t)× r′′(t))

||r′(t)× r′′(t)||2
. (10)

Note that these properties are invariant to rigid
transformations applied to the curve both in the 2D and 3D
cases.

4.2 Node Parametrisation and Constraints

Our approach parametrises each node in the graph as xi =

riW = WTi (1 :3, 4). Analogously to Sec. 3 we define an
observation function for the constraints:

fij(x)
.
= fk(x) = f(FRn(riW), rjW), (11)

where FRn(riW) is a function which extracts from the graph,
the minimum number of poses backwards from riW to define
a reference frame for a given number of spatial dimensions
n. Details on how this reference frame is defined for
different dimensions will be provided in next sections.

To apply our method we need the relative position
measurements ∆r̂iji between all the pairs of frames (i, j)

sharing one constraint. This is done in two steps. The first
step consists in computing the absolute pose measurement
of frame j as the result of concatenating the constraint
between i and j with the absolute pose of frame i, and
then taking the translation part of the pose. In the case
of the odometric constraint this step is straightforward,
since absolute positions correspond to the initial state of
the graph x̂ = {r̂1

W , ..., r̂NW } directly obtained from the
odometry front-end. In the case of a loop closure constraint,
the associated absolute pose W T̂jl

LC for a loop constraint
between frames il and jl is computed as:

W T̂jl
LC = W T̂il

ilT̂
jl
LC (12)

where transformation W T̂il is taken from the absolute poses
given by odometry front-end, and ilT̂

jl
LC is computed by

the loop detection front-end. The corresponding absolute
position is extracted from the resulting transform, as
r̂jlW,LC = W T̂jl

LC (1 :3, 4).
Note that this step is the only one where we use the

rotation part of the poses and that it is agnostic of whether
the platform is oriented in the direction of movement or not.
This means that our approach does not need to assume that
the orientation of the platform is aligned with the platform
speed vector.

The second step is the computation of the constraints for
our optimisation problem applying the observation function
to the measures of the absolute positions we have computed
in the first step:

ẑk = ∆r̂iji =


f
(
FRn(r̂iW), r̂jW

)
if (i, j) ∈ S

f
(
FRn(r̂iW), r̂jW,LC

)
if (i, j) ∈ R

.

(13)

Then the optimisation is performed analogously to Sec.
3. Since we are optimising in Rn, � and � operators are the
conventional operators for addition and subtraction.

Since the number of properties of the curve is not the
same in 2 and 3 dimensions, the definition of function
f(·) and the structure of the optimisation problem slightly
changes from one case to another. For sake of clearness we
treat the two cases separately starting with the easiest 2D
case and then stepping up to the 3D case. For each case
we proceed as follows: first we compute an observation
function f(·) and then show that it is related to the properties
of the curve. In next sections we abuse of notation and
merge the definition of both points in the curve, and
positions, i.e., ri

.
= riW .

4.3 Loop closure in R2

In the 2D case we need two positions to define a reference
frame, so we take FR2(riW) = {ri−1

W , riW } and define:

∆r0 = riW − ri−1
W , (14)

∆r1 = rjW − riW . (15)

The observation function f
(
ri−1
W , riW , r

j
W

)
establishes

ternary constraints and is computed as:

f
(
ri−1
W , riW , r

j
W

)
=

 eTx

eTy

∆r1 =
1

||∆r0||

 ∆r0
T

∆r0
TJ

∆r1,

(16)

and expresses the odometry vector ∆r1 in a reference frame
whose unit vector ex is aligned with ∆r0. Note that
an arbitrary rotation applied both to ∆r0and ∆r1does not
change the returned value of this function.

Now let us see how the observation function
f
(
ri−1
W , riW , r

j
W

)
, relates with the local properties of

the curve in the case of odometric constraints. In our
particular problem, the curve is discretised in a set of
points, being the scalar which parametrises the curve the
ith position index. So we need to apply finite differences to
compute the first and second order derivatives:

r′(i) = ri − ri−1 = ∆r0, (17)

r′′(i) = rj − 2ri + ri−1 = ∆r1 −∆r0. (18)

Note that for the first order derivative we have taken the
backwards difference convention. We hold this convention
through the rest of the paper for (2n+1)th order derivatives.

Applying the definitions of the derivative we can compute
the curvature κi at a curve point ri:

Figure 2: Detail of a discrete 3D curve and the variation of
its osculating plane

κi =
∆r0

TJ∆r1

||∆r0||3
, (19)

and putting it into (16) we get:

f
(
ri−1
W , riW , r

j
W

)
=


||∆r1||

√
1− ||∆r0||4

||∆r1||2
κ2
i

||∆r0||2 κ2
i

 , (20)

verifying that the odometry constraint encapsulates a
preservation of the local properties of the curve.

Note that when treating the odometry as a curve,
distances between adjacent points must not be zero.
Otherwise it is not possible to compute the division by
||∆r0|| and the optimisation is likely to fail. Special care
must be taken by eliminating redundant points from the
initial odometry estimate. It must be remarked that the
two poses which a loop is closed at, do not have to obey
this restriction since they are never used to compute ∆r0.
Intuitively speaking, a curve must be always “in movement”
but it can intersect itself.

4.4 Loop closure in R3

While in a plane we only need one vector to define the
reference frame, in the space we require a plane spanned
by two vectors to define it unambiguously. Since we need
an additional point to compute the second vector, we take
FR3(riW) = {ri−2

W , ri−1
W , riW } and define:

∆r−1 = ri−1
W − ri−2

W . (21)

Thus, the observation function f
(
ri−2
W , ri−1

W , riW , r
j
W

)
establishes quaternary constraints between positions. To
define the observation function we proceed analogously to
the 2D case and build a local coordinate frame such that

ex is aligned with ∆r0 and ez is the normal of the plane
defined by ∆r0 and ∆r−1 (see Fig.2). Notating [∆r0]×
as the antisymmetric matrix formed with vector ∆r0 , the
following observation function yields:

f
(
riW , r

i−1
W , ri−2

W , ri−3
W

)
=


eTx

eTy

eTz

∆r1 =


∆rT0
||∆r0||

− ∆rT−1[∆r0]2×

||[∆r0]2×∆r−1||

− ∆rT−1[∆r0]×
||[∆r0]×∆r−1||

∆r1.

(22)

However this observation function involves a division by
zero when ∆r−1 and ∆r0 are aligned. Unlike the case
where ||∆r0|| = 0 , this situation is likely to arise in a curve
(concretely in straight parts) and and it stems from the fact
that it is impossible to define a plane and consequently a
reference frame from 3 aligned points. In order to avoid this
risky situation the 3 graph must be preprocessed by joining
the odometry segments whose relative angle is near zero.
As in the 2-dimensional case note, that an arbitrary rotation
applied to ∆r−1, ∆r0and ∆r1does not change the returned
value of the observation function.

As in the 2-dimensional case now we show that in the
case of the odometric constraints the crafted observation
function encapsulate restrictions on local properties of the
curve (length, curvature κ and torsion τ).

Let us first discretise the third derivative,

r′′′(i) = ∆r−1 + ∆r1 − 2∆r0, (23)

and take (17) and (18) for the first and second order
derivatives to obtain the discretised expressions for
curvature and torsion:

κi =
||∆r0 ×∆r1||
||∆r0||3

, (24)

τi =
∆rT−1(∆r0 ×∆r1)

||∆r0 ×∆r1||2
. (25)

Recalling (24) and (25) and applying the definitions of
the cross and dot product and some trigonometric properties
we get

f
(
ri−2
W , ri−1

W , riW , r
j
W

)
=



||∆r1||
√

1− κ2
i
||∆r0||4
||∆r1||2

||∆r0||2 κi
√

1− τi
κ2
i ||∆r0||8

κ2
i−1||∆r−1||6

τiκ
2
i
||∆r0||5
||∆r−1||


,

(26)

proving that, as occurs in the 2D case, the crafted odometry
function for the 3D case encapsulates a preservation of the
local properties of the curve.

4.5 Graph Reduction

Latif and Neira [18] showed that graph sparsification
by joining poses in segments can greatly reduce the
computational cost of the initial pose-graph optimisation
problem. In our approach graph reduction is proposed
to avoid singularities in the observation functions. In the
2D case this is produced by redundant poses in the graph,
while in the 3D case singularities are produced not only
by redundant poses but also when poses are aligned, i.e.,
they form a segment. To avoid this, graphs in both 2D
and 3D must be potentially reduced such that all distances
between consecutive poses are greater than a threshold thd,
and in addition, for the 3D cases a further reduction must
be performed such that the angles between consecutive
odometric segments are greater than a threshold thθ.

4.6 Projection of pose-graph from 3D onto 2D
space

In some cases, as occurs for example with a visual
system on a platform which moves on a planar surface,
the odometry and the initial pose-graph are estimated in
3 dimensions though the motion of the platform occurs
mostly on a plane. In pose graph optimisation, 2D
problems are far more simple than 3D ones, and even some
approaches are only able to work in 2-dimensional graphs.
For this reason, if it is allowed by the nature of the motion, it
can be convenient to convert a 3D graph into a simplified 2D
version. In our approach the gain of doing this is two fold.
First, we not only reduce the dimension of the problem, but
also the number of nodes implied in the constraints. Second,
it eliminates the need of dealing with the singularities in
3D graphs which arise from the alignment of points in
the trajectory.To generate a 2D graph from a 3D one, we
propose the procedure described in Algorithm 1. This
essentially consists in aligning the z−axis of the reference
frame attached to each pose with the direction of plane
which fits better the point cloud formed by all the trajectory
point,s and then project the poses and the loop constraints
onto the new 2D given by the computed plane.

5 Experiments

In this section we provide experimental validation of
our approach using publicly available data-sets and a
comparison with state-of-the art pose graph optimisation
methods. The implementation and comparison of our
method has been performed within the g2o framework [15].

Algorithm 1 Projection of 3D pose-graph onto 2D space
Require: Initial state x̂ = {W T̂1, W T̂2, ..., W T̂N} and loop

closure constraints TLC = {i1T̂
j1
LC , ..., iLT̂jL

LC} in SE(3)
Ensure: Initial state x̂p = {W T̂1

p, W T̂2
p, ..., W T̂N

p } and loop
closure constraints TLC ,p = {i1T̂

j1
LC,p, ..., iLT̂jL

LC,p} in
SE(2)
∆riW := riW −mean({r̂1

W , ..., r̂NW })
[U, S, V] := svd

(∑
i ∆riW

(
∆riW

)T)
; vλmin

= V(:, 3);
Rpre :=R∈SO(3) : {vpre = Rvλmin

, vpre,z = ||vλmin
||∞}

Ral := R ∈ SO(3) : ez = Rvpre

:= exp
(

asin||vpre×ez||
||vpre×ez|| vpre × ez

)
for every T3D ∈ {x̂, TLC} do

if T3D ∈ TLC then
T3D ← W T̂ilT3D l = loop idx

end if
T3D,al =

(
Ral 0
0T 1

)(
Rpre 0
0T 1

)
T3D

(
RT
pre 0

0T 1

)(
RT
al 0

0T 1

)
;

θ = atan2 (R3D,al(2, 1), R3D,al(1, 1));

T2D =

 cos θ − sin θ r3Dal,x

sin θ cos θ r3Dal,y

0 0 1

;

if T3D ∈ x̂ then
x̂p ← {x̂p, T2D}

else
TLC ,p ← {TLC ,p,

(
W T̂il

p

)−1

T2D}
end if

end for

The experiments were performed in an Intel Core i5-2500
at 3.30 GHz.

For the 2D case we have compared three different
approaches: our optimisation on R2 with CSparse solver
and the Levenberg-Marquardt algorithm, optimisation on
SE(2) with the CSparse solver and the Levenberg-
Marquardt algorithm and a g2o implementation of the
linear approximation method for 2D pose graphs of
Carlone et al. [3]. The CSparse solver consists of an
efficient implementation of a sparse Cholesky factorisation
algorithm to solve linear systems and was selected among
other available solvers in g2o due to its accuracy and low
computation times in the tested data-sets.

The experiments on synthetic 2D datasets (Fig. 3) show
that in 2D our approach is comparable in accuracy to
the other methods. In terms of convergence speed, as
shown in Table 1, optimisation in SE(2) and our method
(optimisation in R2) yield a similar performance. However,
the linear approximation method outperforms both of them
since it only takes few iterations to converge in most of the
considered cases, but it is restricted to 2D graphs. Also,
we can observe that for increasing levels of noise in the
Manhattan3500 our proposal converges to qualitative better
solutions than optimising on SE(2).

In real datasets (Fig. 4 and Table 2) our method
with standard least squares suffers from low accuracy and

Table 1: Convergence speed comparison of different optimisation approaches in 2D datasets (time in seconds)
Dataset LM R2 LM SE(2) Linear 2D

Manhattan 3500 0.0708 (4 iters) 0.0845 (5 iters) 0.0611 (2 iters)
Manhattan 3500a 0.5144 (20 iters) 0.253 (11 iters) 0.056 (3 iters)
Manhattan 3500b 1.689 (75 iters) 0.6078 (20 iters) 0.049 (3 iters)
Manhattan 3500c 3.1317 (100 iters) 0.566 (30 iters) 0.3656 (30 iters)
Manhattan 10000 1.8314 (10 iters) 1.5707 (10 iters) 0.3648 (2 iters)

City 10000 4.9098 (24 iters) 1.7951 (10 iters) 0.3543 (4 iters)

Table 2: Convergence speed comparison of different optimisation approaches in 2D datasets (time in seconds)
Dataset LM R2 LM R2 + pseudoHuber LM SE(2) Linear 2D

MIT Killian Court 0.6364 (282 iters) 0.1158 (50 iters) 0.0453 (21 iters) 0.00675 (3 iters)
Intel 1.1041 (300 iters) 0.6357 (200 iters) 1.455 (363 iters) 0.01099 (3 iters)

Table 3: Convergence speed comparison of different
optimisation approaches in the 3D data-sets

Dataset CSparse LM R3 CSparse LM SE(3)

sphere2500 3.992 s (0.16 s/iter) 3.80634 s (0.30 s/iter)
torus10000 105.916 s (2.83 s/iter) 17.7078s (1.36 s/iter)

parking-garage 0.2652 s (0.039 s/iter) 0.4625 s (0.088 s/iter)

convergence speed. However, we have noted surprisingly
that, though the input graphs do not contain outliers in any
of the considered datasets, using a pseudo-Huber robust
cost function available in g2o significantly improves both
the accuracy and the convergence speed when using our
parametrisation. This beneficial effect has been also noted
when optimising the MIT Killian Court dataset in SE(2),
which when using a pseudo Huber cost function converges
to the same solution as the linear 2D method instead of
getting stuck in a local minima.

The 3D case has been tested with two synthetic datasets,
sphere2500 and torus10000, from [14] and one real dataset,
parking-garage, from [10]. We have used the CSparse
solver in the two compared approaches: optimisation in
R3 with Levenberg-Marquardt (ours) and optimisation on
SE(3) with Levenberg-Marquardt. In the tested datasets
(Fig. 5) we observe that both methods yield similar
accuracy. Concerning the convergence speed, the difference
of performance between both methods greatly varies
between datasets (Table 3). In the torus10000 dataset SE(3)
shows a better performance requiring less time per iteration,
while in the sphere2500 and the parking-garage datasets our
method requires less time per iteration.

Due to the elimination of the orientation from the nodes
parametrisation, our approach reduces the dimensions of
the optimisation problem by a factor of 2/3 for 2D
graphs, and by 1/2 for 3D graphs. Since the cost of the
Cholesky factorisation required to solve the linear system
at each iteration has order O(n3) in dense problems the
computational cost per iteration is around 3.5 and 8 times
lower for 2D and 3D respectively. However, in the case of
sparse problems, which can be efficiently optimised with

appropriate solvers, the performance is not only affected by
dimension of the problem, but also by the sparsity and also
the distribution of the non-zero elements in the Hessian.
In this sense the substitution in our approach of binary
constraints by ternary or quaternary constraints affect also
the computational performance.

In Fig. 6 we show the sparsity patterns both of the
Jacobians and the Hessians for the cases of the torus10000
graph and a sphere graph with an identical number of poses
and constraints. In torus10000 it can be observed that loop
constraints in the lower part of the jacobian show some
aleatority in the distribution of the constraints, while in
the case of the sphere graph the constraints show a better
arrangement. Note that this last configuration is more
realistic since in real world datasets it is a consequence
of the spatio temporal consistency, i.e., if there exists a
loop closure between poses i and j, it is quite likely that
it holds also for poses i + 1 and j + 1. Being the Hessian
of both graphs equally sparse, it has been verified that the
graph of the sphere yielded a time per iteration one order
of magnitude lower than for the torus10000 dataset, being
the gain in speed of our parametrisation with respect to
SE(3) similar to the obtained in the rest of the tested 3D
datasets. This lead us to conclude that the negative effect on
computational performance caused by constraints implying
several nodes tends to be aggravated if the Hessian is poorly
structured.

Since the dimension of the optimisation problems and
the used cost functions are different, the quantitative
comparison of χ2 scores across different methods is not
possible. Quantitative comparison is performed then only
on those synthetic datasets whose Ground Truth is available
(Table 4). The column for the SE(n) in the 2D datasets
encapsulates both LM + SE(2) and linear2d results since
they produced the same final graph in the tabulated datasets.
We have measured the translational RMSE by taking the
error in distance between the position of the corresponding
nodes of the ground truth and the evaluated graphs. It can
be noted that in the 2D case the accuracy of our proposal
is similar and competitive with respect to the state of the

Input LM R2 LM SE(2) Linear 2D

Figure 3: Comparison of different pose-graph optimisation methods on 2D synthetic datasets (from top to down) 4
versions of Manhattan3500 [21] dataset with increasing levels of noise [4], Manhattan10000 [10] and city10000 [14].

Input LM R2 LM R2 + pseudoHuber LM SE(2) Linear 2D

Figure 4: Comparison of different pose-graph optimisation methods on real 2D datasets (from top to down) Intel Research
Lab. and MIT Killian Court, both from [16]

Input R3 SE(3)

Figure 5: Comparison of different optimisation state
vector parametrisation 3D datasets. From top to down,
sphere2500, torus10000, parking-garage (plant view),
parking-garage (side view).

art, while in the sphere2500 dataset the loss in accuracy of
ours, though producing acceptable visual results Fig. 5, is
numerically noticeable.

In the last experiment we have evaluated the effect of
projecting a nearly planar 3D graph on a plane as described
in Sec. 4.6 in a dataset acquired in our university campus
while walking with a wearable omnidirectional camera
camera attached to the head over a total distance of 886
m (Fig. 7). The initial odometry estimate is computed
by a visual SLAM approach which includes including a
trajectory scaling algorithm [12] to eliminate the scale

0 5000 10000

0

0.5

1

1.5

2

x 10
4

nz = 44560

0 2000 4000 6000 8000 10000

0

2000

4000

6000

8000

10000

nz = 54560

0 5000 10000

0

0.5

1

1.5

2

x 10
4

nz = 44558

0 2000 4000 6000 8000 10000

0

2000

4000

6000

8000

10000

nz = 54558

(a) (b)

Figure 6: Jacobian and Hessian for (a) the torus10000 graph
and for (b) a sphere graph with identical number of nodes
and constraints. Note that the sparsity of both Hessians is
approximately the same, but the more aleatory distribution
of the non-zero elements over the Hessian matrix for the
torus10000 datasets yields a higher computational cost of
the optimisation.

Table 4: RMSE in translational units for synthetic datasets
with available ground truth

Dataset LM Rn LM SE(n)

Manhattan 3500 0.4892 0.7982

City 10000 0.2875689 0.047672

sphere2500 6.7286 0.2568

ambiguity typical of monocular systems. Fig. 8 shows both
the result after optimising the trajectory using our method
both in its original 3D space and also in its projection over
a 2D plane as explained in Sec. 4.6, taking advantage of the
fact that the trajectory is quasi planar. It can be observed
that the accuracy is improved by projecting the graph and
optimising on R2. Also the computational cost is noticeably
reduced from 1.292 s (10 iterations) in R3 to 0.2073 s (5
iterations) in R2.

Figure 7: Our helmet with catadioptric camera and example
of images taking during the sequence.

6 Conclusions

In this paper we have presented an alternative formulation
for the nodes and constraints in a graph for solving loop
closure optimisation problems. Instead of building a pose
graph in SE(n) including both translation and rotation we
build a graph where nodes consists of points over the
curve which represents the trajectory of the platform in the
Euclidean space Rn.

Our method has been evaluated in several public datasets
yielding successful results, though the observation function
used in our approach would seem initially prone to
singularities. Compared to state of the art methods
for pose graph optimisation yields similar accuracy and
computational performance in the 2D datasets. In the 3D
case however, our method suffers from a noticeable lack in
accuracy, while the computational performance is generally
improved but it seems to degrade severally in graphs with a
large amount of constraints per nodes.

Although the experiments do not show a clear superiority
of our graph parameterisation, we think that results are
promising and it could benefit from an improvement in
performance with an smarter choice or design of the cost
function or the underlying optimisation algorithm. Also,
it can find its utility in potential cases where the rotation
of the platform is not known or considered or when the
information matrix is not available for normalising the
translation and rotation residuals.

7 Acknowledgements

This work was supported by Ministerio de Economı́a y
Competitividad and European Union (project DPI2012-
31781) and Ministerio de Educación, Cultura y Deporte
(scholarship FPU12-05507)

References

[1] A hierarchical wavelet decomposition for continuous-
time SLAM, 2014.

[2] P.-A. Absil, R. Mahony, and R. Sepulchre.
Optimization Algorithms on Matrix Manifolds.
Princeton University Press, 2007.

Figure 8: Evaluation of our approach in a data-set acquired
with an omnidirectional camera, optimising on R2 after
projecting the initial 3D graph on the dominant plane, and
optimising on R3

[3] L. Carlone, R. Aragues, J. A. Castellanos, and
B. Bona. A linear approximation for graph-based
simultaneous localization and mapping. In Robotics:
Science and Systems (RSS), 2011.

[4] L. Carlone and A. Censi. From angular manifolds to
the integer lattice: Guaranteed orientation estimation
with application to pose graph optimization. IEEE
Trans. on Robotics (T-RO), 30(2):475–492, 2014.

[5] G. Dubbelman and B. Browning. Closed-form online
pose-chain slam. In IEEE Int. Conf. on Robotics and
Automation (ICRA), pages 5190–5197, 2013.

[6] G. Dubbelman, I. Esteban, and K. Schutte. Efficient
trajectory bending with applications to loop closure.
In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pages 4836–4842, 2010.

[7] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-
line learning of globally consistent maps. Autonomous
Robots (AURO), 12(3):287–300, 2002.

[8] U. Frese, P. Larsson, and T. Duckett. A multilevel
relaxation algorithm for simultaneous localization
and mapping. IEEE Trans. on Robotics (T-RO),
21(2):196–207, 2005.

[9] M. K. Grimes, D. Anguelov, and Y. LeCun. Hybrid
hessians for flexible optimization of pose graphs. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 2997–3004, 2010.

[10] G. Grisetti, C. Stachniss, and W. Burgard. Nonlinear
constraint network optimization for efficient map
learning. IEEE Trans. on Intelligent Transportation
Systems (T-ITS), 10(3):428–439, 2009.

[11] D. Gutiérrez-Gómez and J. J. Guerrero. Curve-graph
odometry: Removing the orientation in loop closure
optimisation problems. In Int. Conf. on Intelligent
Autonomous Systems (IAS), 2014.

[12] D. Gutiérrez-Gómez, L. Puig, and J. J. Guerrero. Full
scaled 3d visual odometry from a single wearable
omnidirectional camera. In IEEE/RSJ Int. Conf. on
Intelligent Robot Systems (IROS), pages 4276–4281,
2012.

[13] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder.
Integrating generic sensor fusion algorithms with
sound state representations through encapsulation of
manifolds. Information Fusion (INFFUS), 14(1):57–
77, 2013.

[14] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM:
Incremental smoothing and mapping. IEEE Trans. on
Robotics (T-RO), 24(6):1365–1378, 2008.

[15] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige,
and W. Burgard. g2o: A general framework for
graph optimization. In Int. Conf. on Robotics and
Automation (ICRA), pages 3607–3613, 2011.

[16] R. Kmmerle, B. Steder, C. Dornhege, M. Ruhnke,
G. Grisetti, C. Stachniss, and A. Kleiner. On
measuring the accuracy of slam algorithms.
Autonomous Robots, 27(4):387–407, 2009.

[17] Y. Latif, C. Cadena, and J. Neira. Robust loop closing
over time for pose-graph slam. Int. J. of Robotics
Research (IJRR), 2013.

[18] Y. Latif and J. Neira. Go straight, turn right: Pose
graph reduction through trajectory segmentation using
line segments. In European Conference on Mobile
Robots, 2013.

[19] J. L. Martı́nez, J. Morales, A. Mandow, and A. Garcı́a-
Cerezo. Incremental closed–form solution to globally
consistent 2d range scan mapping with two-step pose
estimation. In IEEE Int. Workshop on Advanced
Motion Control (AMC), pages 252–257, 2010.

[20] E. Olson and P. Agarwal. Inference on networks of
mixtures for robust robot mapping. Int. J. of Robotics
Research (IJRR), 32(7):826–840, 2013.

[21] E. Olson, J. J. Leonard, and S. J. Teller. Fast iterative
alignment of pose graphs with poor initial estimates.

In Int. Conf. on Robotics and Automation (ICRA),
pages 2262–2269, 2006.

[22] F. C. Park. Distance metrics on the rigid-body
motions with applications to mechanism design. J. of
Mechanical Design, 117(1):48–54, 1995.

[23] B. Peasley and S. Birchfield. Fast and accurate
poseslam by combining relative and global state
spacess. In Int. Conf. on Robotics and Automation
(ICRA), 2014.

[24] A. Pressley. Elementary Differential Geometry.
Springer, 2001.

[25] H. Strasdat. Local Accuracy and Global Consistency
for Efficient Visual SLAM. PhD thesis, Department of
Computing, Imperial College London, 2012.

[26] H. Strasdat, J. M. M. Montiel, and A. Davison. Scale
drift-aware large scale monocular slam. In Robotics:
Science and Systems (RSS), 2010.

[27] N. Sünderhauf and P. Protzel. Switchable constraints
for robust pose graph slam. In IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2012.

