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ABSTRACT
In this paper we present a full-scaled real-time monocular
SLAM using only a wearable camera. Assuming that the per-
son is walking, the perception of the head oscillatory motion
in the initial visual odometry estimate allows for the com-
putation of a dynamic scale factor for static windows of N
camera poses. Improving on this method we introduce a con-
sistency test to detect non-walking situations and propose a
sliding window approach to reduce the delay in the update of
the scaled trajectory. We evaluate our approach experimen-
tally on a unscaled visual odometry estimate obtained with a
wearable camera along a path of 886 m. The results show
a significant improvement respect to the initial unscaled esti-
mate with a mean relative error of 0.91% over the total trajec-
tory length.
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INTRODUCTION
The research on wearable cameras for personal aiding has
widespread since the pioonering works of Mann [12]. Con-
cerning odometric localisation, Mayol-Cuevas et al. [13],
presented a wearable active vision systems which are able
to change its orientation and use monocular SLAM (Simul-
taneous Localisation and Mapping) for self-localisation. In
[2] Badino and Kanade propose head-wearable stereo system
to estimate structure and motion. Alcantarilla et al. [1] pro-
pose a wearable stereo SLAM system which is able to detect
moving objects of the scene.

In monocular SLAM the true scale of the map and trajectory
estimates is not observable due to the unability to measure
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real distances in one image. This limitation also affects to
the initialisation and parameterisation of new observed land-
marks. In spite of this, under a proper parameterisation of the
bearing and depth of the landmarks [4], monocular SLAM
can be performed succesfully without requiring distance mea-
surements or information about the scale.

However as the the trajectory becomes longer, the scale is
likely to drift. Since this drift cannot be observed, it defor-
mates the final estimate beyond a simple scale ambiguity. The
scale drift can be reduced if the scale is estimated periodically
by some way. Alternatively, Strasdat et al. [16] show that, by
introducing a gauge degree of freedom on the camera poses,
in a loop closure the scale drift can be corrected without esti-
mating the scale.

In this paper we extend on our previous work [8] to produce
an scaled visual odometry from a monocular SLAM with a
wearable omnidirectional helmet-camera (Fig. 1). Our main
contribution is that, while in [8] the scale was estimated of-
fline and the user was assumed to be always walking, in this
paper we propose a method which operates in real-time to-
gether with the visual SLAM algorithm and also is able to
detect special situations like stairs or stops, which could make
the original method fail.

RELATED WORK
In the reviewed literature the problem of the scale estima-
tion for monocular SLAM is addressed either by using addi-
tional proprioceptive sensors, like IMUs (Intertial Measure-
ment Unit) and odometers, which provide metric information;
or by considering geometric priors or constraints.

Lupton and Sukkarieh [11] make the true scale observable by
integrating the visual data and the IMU data within an infor-
mation filter. Nützi et al. [14] propose the fusion of a initial
visual odometry estimate with IMU data in an EKF frame-
work to compute the scaled odometry. Engel et al. [7] esti-
mate the scale factor from a quadricopter onboard IMU and

(a) (b)
Figure 1. (a) Helmet-camera device. (b) Omnidirectional image cap-
tured with this device.



Figure 2. Scheme of the basic scaling method.

altimeter measurements by an optimization scheme. Cumani
et al. [5] suggest the combination the wheel odometry and the
visual information to obtain the scaled map.

Without using additional sensors, Lothe et al. [10] use
the prior knowledge of the distance from the camera to the
ground plane to compute the scale factor of the scene. Scara-
muzza et al. [15] exploit non-holonomic motion constraints
of wheeled vehicles and the knowledge of the horizontal dis-
tance between the camera and the rear axis of the vehicle to
resolve the scale. Botterill et al. [3] correct the scale drift
by identifying previously learnt object classes of the environ-
ment.

IMPROVED SCALING APPROACH
To solve the scale problem, we build on our method pro-
posed in [8] which is performed consecutively on sections of
the trajectory estimated by a state-of-the-art monocular EKF-
SLAM approach adapted to catadioptric cameras in [9]. This
method is divided in four steps (Fig. 2). Given a section
with N camera poses, first we estimate the step frequency
from the vertical oscillatory motion of the head. This is done
by computing the Discrete Fourier Transform (DFT) on the
z-component of the visual odometry (Fig. 3). Then the step
frequency is related to the real walking speed via an empirical
model. With the obtained walking speed, the scale factor is
estimated dynamically by using a particle filtering approach
and then it is applied to the current section. The final output
of this method is a full scaled estimate of the visual odometry.

The described scaling method implicitily asumes that the per-
son is always walking and thus may not be robust to frequent
situations when the person is not walking like stops, or going
up-downstairs. Also, the delay related to the need of taking
windows ofN frames to compute the DFT yield a low update
rate of the scaled estimate in real-time operation. These two
problems are addressed in this section.

Detection of non walking situations
To detect non-walking situations we check the spectral power
P̄
(
fst,k

)
of the computed step frequency to be consistent

with a range of feasible oscillation amplitudes during walking
bounded by a A+

z and A−
z . Applying the Parseval’s theorem,

which states that the energy of a signal is preserved in the
frequency domain, we can estimate the energy P̄ of the head
oscillation signal as:
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where fst,k is the estimated step frequency, Γd is the discre-
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Figure 3. (a) Trajectory estimate of Visual SLAM from a head-mounted
catadioptric camera including a partial zoom. (b) Power spectra of the
vertical component

tised spectrogram of the z-component of the camera poses,
Fs is the sampling frequency of the camera, N the camera
poses in the analysed section and ∆f the frequency interval
centered at fst,k along which the energy is spread along.

Note that, since the power spectral density is computed for the
unscaled z-component of the visual odometry, the computed
power must be scaled by multiplying it by the square of the
current scale factor estimate d̄k . Thus, assuming that the
head oscillation is sinusoidal, the condition for the spectral
power consistency of the step frequency yields:
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If this condition is not filled we should choose another strat-
egy. For example if d2

kP̄
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)
≤ 1

2
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z
2 we may assume that

the person is stopped and then avoid updating the scale fac-
tor. Or if d2

kP̄
(
fst,k

)
≥ 1

2
A+

z
2 we may state that the user is on

a stairs part and do Vwalk,k = Lfst,k taking as L an approxi-
mation of the distance between two stair steps.

Real time implementation and update delay reduction
The complete scaling algorithm is implemented in a new
thread within the real-time monoSLAM C++ application [6],
which works in parallel with the main SLAM thread. After
each EKF iteration, the main thread stores the last camera
poses in a shared buffer. When this buffer is fully updated
with N poses, the main thread triggers the scaling thread.
After executing the scaling algorithm, the scaled trajectory
is updated by adding the recently scaled camera poses.

In spite of the real-time operation the update of the scaled
odometry estimate is delayed due to the time it takes to fill the
buffer with theN states needed to perform the DFT. One way
to reduce this delay is to reduceN , at the expense of reducing
also both resolution and accuracy of the DFT to compute the
step frequency. Given a low N , padding the data sequence
with zeros can improve the resolution but cannot solve the
accuracy issues .

Alternatively we propose to use a sliding window, updating
only one fraction Nf of the buffer at a time. Thus the num-
ber of camera poses used for the spectral analysis remains N
by reusing poses from previous sections, while the amount of
scaled camera poses per section is reduced to Nf . The com-
plete scaling method is described in Algorithm 1.



Algorithm 1 Complete Visual Odometry Scaling algorithm
Require: Ck,1..N , Sk−1

Ensure: Ĉk,1..Nf
, Sk

//Notation
Ck,n = nth unscaled camera state of section k
Ĉk,n = nth scaled camera state of section k
N = # input camera states
Nf = # output/new camera states
Sk = Set of particles for the particle filter
//Algorithm
k = 0; [S0] = Initialize particles ()
while Not end of sequence do
k = k + 1
Wait for new Ck,1..N from monoSLAM[
zk,1..N , µV,k, σV,k

]
= Extract z-comp & mean speed

(
Ck,1..N

)[
zk,1..N

]
= High Pass Filter

(
zk,1..N

)[
fm, Γd,k

]
= Spectrogram

(
zk,1..N

)[
fst,k, Γd,k

(
fst,k

)]
= Estimate Step Frequency

(
fm, Γd,k

)
if Step freq power is consistent

(
dk−1, Γd,k

(
fst,k

))
then[

Vwalk,k

]
= Walking speed model

(
fst,k

)
[Sk] = Sample Proposal Distribution

(
Sk−1, µV,k, σV,k

)
[Sk] = Weighting and Resampling

(
Sk, Vwalk,k

)
[dk] = Compute mean scale factor (Sk)

else
dk = dk−1 ; Sk = Sk−1

end if
if k=1 then[

Ĉ1,1..N

]
= Scale Section

(
d1, C1,1..N

)
else[

Ĉk,1..Nf

]
= Scale Section

(
dk, Ck,(N−Nf+1)..N

)
end if

end while

EXPERIMENTS
We acquired an outdoor dataset with a catadioptric omnidi-
rectional camera attached to a helmet. The used camera is the
Sentech UltraSmall STC-MC83USB model. The sequence
was acquired at a frame rate of 15 fps along a path of 886
m and contains a variety of situations like changes of pace,
stops, stairs and walking along a narrow corridor. Transitions
between these situations have been ticked accordingly in the
frame when they take place. An example of the operation of
our scaling approach is provided in the supplementary video
file 1.

The Ground Truth has been obtained from the Google Maps
satellite view using the distance measurement tool. To com-
pare numerically the Ground Truth and the scaled estimates,
we parameterise both curves by a scalar α defined by the nor-
malised accumulated distance which spans from 0 (start) to 1
(end). Then, given the Ground Truth trajectory tGT , to com-
pute the error for a given pose t

(i)
V O of the visual odometry we

find the point t(j)
GT in the Ground Truth whose normalised arc

length is closest to the one of t
(i)
V O , that is:

t
(j)
GT = arg min

tGT

‖α(t
(i)
V O)− α(tGT )‖, (3)

err(i) = ‖t(i)
V O − t

(j)
GT ‖. (4)

1http://www.youtube.com/watch?v=fcQ72SgqeZM

Results
We have tested 3 different alternatives for the setup of the
algorithm. In two alternatives Nf is set to 50 and N is varied
to compare the performance of dynamic (N = 200) and static
(N = 50) windows. The third alternative is a static window
withN = 25. Lower values forN cannot be considered since
step frequency cannot be measured due to the lack of enough
camera poses to capture the head oscillations. To have the
same resolution in the DFT, the data sequence is zero padded
to Np = 256 in the three considered cases.

Fig. 4 (top) reveals how the step frequency computed from
the raw unscaled visual odometry varies accordingly with the
pace of the walker. Note how for lower values of N the step
frequency estimate along the trajectory is less accurate and
oscillates more, though the global tendence in the pace is still
captured. In Fig. 4 (bottom), during the long stop, the spectral
power shows a violation of the consistency condition which
leads to ignore the erratic estimation of the step frequency.
During the short stop, the violation of the consistency is not
observed with N = 200, due to the masking effect of the
poses corresponding to a walking state. In the case of going
upstairs the magnitude of the power peak is too low to estab-
lish a clear upper limit for the consistency condition.

In Fig. 5 (top) it can be observed how the scale factor is di-
namically estimated. The major amount of drift in the scale
occurs at two parts of the trajectory. The first one occurs mo-
ments before the long stop (around frame 5500) and consists
of a sharp variation due to a sudden loss of most of the tracked
features (maybe due to a image matching perturbation or a
lost frame). The second one occurs gradually along a narrow

Figure 4. Evolution of the step frequency estimate (top) and its cor-
responding spectral power (bottom). Consistency bounds are violated
when estimate does not corespond to a walking step frequency.

Figure 5. Evolution of (top) the scale factor, (middle) the non-
dimensional speed and (bottom) the real walking speed which results of
multiplying the scale factor by the non-dimensional speed. The compar-
ison with a cualitative Ground Truth showing the change in pace gives
an idea of the accuracy of the method.

http://www.youtube.com/watch?v=fcQ72SgqeZM


Figure 6. Scaled and unscaled trajectories compared with the Ground
Truth.

N Nf Mean Maximum Relative
error[m] error[m] mean error

200 50 14.75 26.80 1.66%
50 50 11.54 20.34 1.30%
25 25 8.05 15.44 0.91%

Uniform scale 69.97 146.45 7.90%

Table 1. Estimation error for combinations of N and Nf .

corridor between two buildings on frames from 7800 to 8600,
where the scale is lower compared to an wider environment.

Finally in Fig. 6 we show a comparison between the scaled
trajectories obtained for each considered setup and both the
unscaled and the uniformly scaled raw visual odometries.
Loops have been closed at the begining and in the middle
of the path, by manually introducing the constraints and per-
forming an optimisation. The great improvement of all the
considered cases respect to the uniformly scaled visual odom-
etry show the ability of our approach to remove the scale drift.
This drift removal, though not complete, allows to obtain a
close approximation to the Ground Truth.

Numerical comparison with the Ground Truth is detailed in
table 1. It is shown that taking N = 25 offers an slightly
better scaled estimate of the visual odometry with a mean
relative error of 0.91% over the trajectory length. Using a
sliding window approach taking a higher N we may expect a
better estimate since we use more data to compute the DFT
and thus, as shown in Fig. 4, we obtain a more accurate and
stable step frequency. However, it must be noted first, that it
is achieved at the expense of delaying the detection of transi-
tions in the walking pace and even not observing fast events
like the short stop; and secondly, that a sliding window ap-
proach computes a scale factor taking measurements obtained
from different data: while we take N camera poses to com-
pute Vwalk, we only take the last Nf to compute VSLAM .
This can be a source of inaccuracies when transitions occur.

CONCLUSIONS
In this paper we have presented a scaling algorithm for a
monocular SLAM with a wearable omnidirectional camera.
The main contributions of this paper are two: the detection of
non-walking situations; and a evaluation of a sliding window
to reduce the delay in the update of the scaled trajectory. Ex-
perimental results in a path of 886 m show that our approach

is able to accurately compute the scale with drift correction
along a path under a variety of situations needing no more
data than the visual odometry itself. Although the results us-
ing different setups are similar, the use of a sliding window is
discouraged in favour of narrower static windows, since they
reduce the update time and are able to capture short changes
in the walking pattern.
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