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Abstract— In the last years monocular SLAM has been
widely used to obtain highly accurate maps and trajectory
estimations of a moving camera. However, one of the issues of
this approach is that, due to the impossibility of the depth being
measured in a single image, global scale is not observable and
scene and camera motion can only be recovered up to scale.
This problem gets aggravated as we deal with larger scenes
since it is more likely that scale drift arises between different
map portions and their corresponding motion estimates. To
compute the absolute scale we need to know some kind of
dimension of the scene (e.g., actual size of an element of the
scene, velocity of the camera or baseline between two frames)
and somehow integrate it in the SLAM estimation. In this paper,
we present a method to recover the scale of the scene using
an omnidirectional camera mounted on a helmet. The high
precision of visual SLAM allows the head vertical oscillation
during walking to be perceived in the trajectory estimation.
By performing a spectral analysis on the camera vertical
displacement, we can measure the step frequency. We relate
the step frequency to the speed of the camera by an empirical
formula based on biomedical experiments on human walking.
This speed measurement is integrated in a particle filter to
estimate the current scale factor and the 3D motion estimation
with its true scale. We evaluated our approach using image
sequences acquired while a person walks. Our experiments
show that the proposed approach is able to cope with scale
drift.

I. INTRODUCTION

Visual SLAM has become one of the most trending
research fields in the last years and has been addressed both
by using stereo and monocular systems. The main feature of
stereo systems is that, knowing the baseline of the cameras,
detected landmarks of the scene can be triangulated and the
visual odometry and landmark postions can be completely
estimated. SLAM approaches using stereo systems have been
presented in [15], [17], [19].

On the other hand, due to the impossibility to extract the
depth of a landmark just from one single image, monocular
systems only allow the camera motion and scene to be
estimated up to an unknown scale. With this in mind, stereo
systems may seem more appropriate than monocular ones to
perform visual SLAM. However the use of single cameras
for visual SLAM is still appealing since they are cheaper,
more compact and easier to calibrate than stereo systems.

*This work has been supported by the spanish project DPI2009-14664-
C02-01 and FEDER. Thanks also to the I3A Fellowship Program.

One of the most important and succesful works on monoc-
ular SLAM is the one developed by Davison et al. [4]. This
approach uses a pattern of known size to initialise some
feature locations allowing the SLAM to start. Thus the scale
of the map is fixed by the size of this initial pattern. Later, the
inverse depth parametrization for the map points [1] allowed
the SLAM to start automatically without the need of using an
initialisation pattern. In this case the scale is arbitrarily fixed
by a depth prior for the map features and the acceleration
noise setup parameter.

Altough the scale can be initialised, e.g., by a pattern of
known size or some kind of prior, it is likely that scale drift
arises between different portions of the scene as the size of
the map gets larger. This drift acts as a source of incremental
error in the SLAM estimation, which leads to a deformation
of the final map even after applying loop closing techniques.
In [23], Strasdat et al. propose a loop closing method which
corrects the map deformation due to scale drift.

Visual SLAM using omnidirectional cameras has been
proposed in [3], [14], [20], [24]. Due to the 360o field of view
(FoV) of omnidirectional cameras, features last longer on the
image than in the case of conventional cameras, specially
during big camera rotations. The increased lifespan of the
features on the image translates in a better estimation of the
position of the features on the map, a lower need to initialise
new features and an increased robustness .

In this work we extend the SLAM approach for catadiop-
tric cameras by Gutierrez et al. [9] which derives from state
of the art EKF monocular SLAM for conventional cameras
[2]. This approach is used to compute the visual odometry
from sequences of images acquired with a catadioptric cam-
era mounted on a helmet (Fig. 1).

(a) (b)
Fig. 1: (a) Hemlet-camera device used in our experiments. (b)
Omnidirectional image captured with our device.



An induced effect of human walking is a head vertical os-
cillation whose frequency matches up with the step frequency
[10]. Our work is based on the premise that if the 6 d.o.f.
visual SLAM is accurate enough , this vertical oscillatory
motion of the head should be visible. Fig. 2a depicts an
example of this behaviour, where the camera trajectory was
obtained by performing a visual SLAM algorithm. Hence the
step frequency of the camera carrier could be measured by
estimating the power spectra of the vertical component of
the camera trajectory (Fig. 2b).

Walking speed is strictly calculated as the product of step
frequency and stride length. However, there exist biomedical
studies like the one lead by Grieve [8], which show an
empirical relation between step frequency and the walking
speed with no dependence on the stride length. Further
studies explain this relation as the result of a human tendence
to choose a step frequency that minimizes metabolic cost of
locomotion at a given walking speed [25], [11].

Based on this, we propose an approach to calculate the
scale of the visual odometry from a single omnidirectional
camera carried on the head of a person. This is done by
first performing spectral analysis on short sections of the
trajectory to extract the step frequency. Then we compute
the estimated walking speed using the relation between step
frequency and walking speed, and finally this estimation is
integrated into a particle filter which recursively computes
the scale factor.incrementally for each section.

The paper is structured as follows. Related work on scale
estimation with monocular vision systems is described in
Sec. II. In Sec. III we explain in detail our approach to
compute the scale factor. Sec. IV present the experimental
results and finally in Sec. V we extract the conclusions.

II. RELATED WORK

The literature on scale estimation in monocular SLAM
shows two ways to address this problem.

In some works additional sensors are used to compute the
real scale of the SLAM trajectory and map. In [2], Civera
et al. use GPS information to align and scale the SLAM
estimation by a rigid transformation which minimizes the
distance between corresponding trajectory points. However
this approach was designed for a benchmarking purpose and
has little practical utility. Lupton et al. [13] and Nützi et al.
[18] use an IMU to resolve the scale. The former makes the
true map scale observable by integrating the visual data and
the IMU data within an information filter. This allows the
computation of the true map and trajectory estimations with
no bias due to acceleration noise and feature depth priors.
The latter fuses the SLAM estimation and IMU data in an
EKF framework to compute the scale factor. In [5], Eudes et
al. integrate the odometry and visual information to obtain
the scaled map. In [22] Scaramuzza et al. use the vehicle
speed measurement to compute the distance between the last
two frames and recover the 3D structure by triangulation of
the common image points.

In other works the scale of the scene is estimated without
additional sensors. As mentioned before, it is possible to fix
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Fig. 2: (a) Trajectory estimation of Visual SLAM from a head-
mounted catadioptric camera. (b) Power spectra of the vertical
component

the scale with the size of the pattern used to initialise the
landmarks needed to start the SLAM. However it does not
avoid scale drift in large maps. Loethe et al. [12] use the
prior knowledge of the distance of the camera to the ground
plane to compute the scale factor of the scene, which is well
suited for camera mounted on vehicles. Scaramuzza et al.
[21] exploit non-holonomic motion constraints of wheeled
vehicles to resolve the absolute scale, although this is only
posible when the vehicle turns.

The approach presented in this paper fits in the second
category, since no additional sensors are used. It takes
advantage of the vertical oscillatory motion of a head-
mounted camera to extract the step frequency. The prior
information in this case is an empirical formula which allows
us to compute the walking speed from the extracted step
frequency. The computed walking speed is integrated in a
particle filter framework used to smoothly estimate the scale
factor rejecting possible spurious estimations of the walking
speed.

III. PROBLEM FORMULATION

The V-SLAM approach used in this work is based on the
Extended Kalman Filter (EKF) which is divided in two parts.
In the first part, Prediction, the new state of the system
is estimated from the previous time step state through the
motion model. The second part of the algorithm, Update,
uses the measurements of the environment to improve the
new state prediction. The full state vector, composed of
both the map and last camera location, is modelled as a
multidimensional Gaussian distribution coded by its mean
vector and covariance matrix.

The state of the system is given by the state vector x
x = (r, q, V, ω︸ ︷︷ ︸

Camera state

, xi, yi, zi, θi, φi, ρi, ...︸ ︷︷ ︸
3D points (IDP)

) (1)

where r(3×1) is the camera pose, q(4×1) is the quaternion
of its orientation and V(3×1) and ω(3×1) are its linear and
angular velocities, respectively.

The 3D points are parameterised in inverse depth
parametrisation (IDP) [1]. As the depth of the landmarks



cannot be measured from one single image they are ini-
tialised with an arbitrary inverse depth prior ρ0i with large
uncertainty. This prior is gradually refined in succesive
observations. The inability to measure the initial depth of
the features involves the unobservability of the absolute scale
of the scene. Thus, the scale of the SLAM reconstruction is
biased due to the difference between the arbitrary depth prior
and the true depth of the first measured landmarks. Moreover,
scale is liable to drift due to the lost of old landmarks and
the initialisation of new ones.

In this work we perform SLAM with an omnidirectional
camera on a helmet carried by a human operator [9]. Since
the head moves vertically with the step frequency during
walking, SLAM visual odometry can be used to estimate the
step frequency by spectral analysis.

To address the problem of determining the real scale
dynamically, we propose a method which is performed
iteratively on trajectory sections and can be subdivided in
four steps:
• Spectral analysis on the SLAM visual odometry for step

frequency estimation.
• Empirical estimation of walking speed from step fre-

quency.
• Integration of walking speed in a particle filter for

recursive scale factor estimation.
• Scaling of the final visual odometry.

A. Spectral analysis on SLAM visual odometry

In the case of our omnidirectonal camera, the camera
frame is oriented with its z-axis pointing approximately to
the direction of the normal to the ground plane, so the head
vertical oscillation is given by the z-component of the camera
position vector. To estimate the step frequency we apply
spectral analysis to the z-component of the trajectory. The
trajectory is divided in sections of N camera poses and for
each section the data sequence (z1, z2, ..., zN ) is considered,
where zn is the z-component of the n-th trajectory point of
the current analysed section.

Prior to computing the power spectra, the data sequence is
filtered to eliminate the low frequency harmonics introduced
by the change of the ground height along the path.

The power spectra Γ is calculated by applying the Discrete
Fourier Transform (DFT) to the filtered data sequence as
follows:

Γ(fm) =
1

FsN
‖
N∑
n=1

znexp

(
−j 2πfm(n− 1)

Fs

)
‖2 (2)

fm =
mFs
N

m = 0, 1, ...,
N

2
(3)

where Fs is the sampling frequency, which in our case is the
number of frames per second (fps) of the camera and fm are
the frequencies for which the spectrogram is sampled.

We extract from the power spectra the maximum peak
in the interval of feasible human step frequencies, which
are assumed to be in the range between 1 and 3 Hz. This
frequency is taken as the estimated step frequency fstep.

B. Walking speed estimation

To estimate the walking speed we consider the biomedical
work by Grieve [8] where a relation between the step
frequency (fstep) and the walking speed (Vwalk ) normalized
with height (H) is presented:

Vwalk = αfβstepH (4)

where Vwalk is in m/s, fstep in Hz, H in m, and α and β are
characteristic parameters which differ from one individual to
another.

For higher accuracy, we have computed our own α and β
parameters for the camera operator. We measured the time
ti it took the operator to walk a distance s = 100 m at the
times per step ∆Ti given by a metronome ranging from 0.45
to 0.80 seconds in intervals of 0.05 seconds (see Table I).
The height of the operator is H = 1.88 m.

Normalized walking speeds Vi′ and step frequencies fi
were computed from the raw experimental data. Then a
power fitting was applied to obtain the values of α = 0.329
and β = 1.534 (Fig. 3).

C. Particle Filter for scale factor tracking

Having the walking speed estimate, the scale factor for
each section k could be easily computed by dk =

Vwalk,k

VSLAM,k
,

where VSLAM,k would be the mean of the speed at the N
camera poses used in the computation of the power spectra.
However, given the empirical method for the walking speed
estimation and the possible high variability of the SLAM
velocity along N frames, we decided to use a probabilistic
filter for the computation of the scale factor. This allows
us to introduce an uncertainty to the scale factor and at
the same time the rejection of spurious estimations of the
walking speed.

Thus, we consider a dynamic system whose state xk is
composed by the magnitude of the SLAM velocity VSLAM,k

and the logarithm of the scale factor λk = log10(dk). We

TABLE I: Experimental data used to compute the empirical Step
frequency-Walking speed relationship for the camera operator.

∆Ti [s] ti [s] fi = 1
Ti

[Hz] Vi
′ = s

tiH

[
1
s

]
0.45 48.18 2.22 2.08
0.50 55.60 2 1.80
0.55 61.63 1.82 1.62
0.60 74.54 1.67 1.34
0.65 84.42 1.54 1.19
0.70 94.63 1.43 1.06
0.75 104.42 1.33 0.96
0.80 116.06 1.25 0.86
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Fig. 3: Power fitting of the experimental data to compute the
relation between walking speed and step frequency (µerr = 0.018,
maxerr = 0.04).



take the logarithm instead of directly the scale factor to avoid
negative scale values.

x
(L)
k =

[
V

(L)
SLAM,k

λ
(L)
k

]
(5)

To track the scale factor, a particle filter with Sampling
Importance Resampling is designed [7]. We use a particle
filter rather than an extended Kalman filter (EKF) so that
it can deal with high uncertainty priors of the scale factor
which would involve a large linearization error in an EKF
approach.

Hence the state of the system in each section k is approx-
imated by a set of particles:

Sk =
{

(x
(L)
k , w

(L)
k ) | L = 1, 2, ..., P

}
(6)

where P is the number of particles and x
(L)
k and w

(L)
k are

respectively the state vector and the resampling weight of
particle L.

The particles are initialised such that the initial values of
λ
(L)
0 are drawn from a Gaussian distribution λ0 ∼ N (0, σ0),

where σ0 is a parameter related to the orders of magnitude
being scoped out.

In the first step of the particle filter, particles are sampled
down by a proposal distribution p(xk|xk−1):

x
(L)
k ∼ p(xk|x(L)

k−1) (7)

In our system the sampling of the proposal distribution
includes both the update of the SLAM velocity, which is
taken as a control input coming from the visual odometry,
and the possible drift in the scale. This is encoded in the
following equations:

V
(L)
SLAM,k = µV,k + ν(L) (8)

λ
(L)
k = λ

(L)
k−1 + α(L) (9)

with ν(L) ∼ N (0, σV,k) and α(L) ∼ N (0, σdrift), and where
µV,k and σV,k are the averaged speed and the corresponding
standard deviation of the last set of N SLAM camera poses
used for spectral analysis, and σdrift is the standard deviation
prior of the scale drift between two consecutive sections,
which is modelled as Gaussian noise.

Once the prediction has been computed, the samples are
weighted by integrating the estimation of the walking speed
Vwalk,k from spectral analysis as follows:

w
(L)
k = p(Vwalk,k|x(L)

k ) (10)

where p(Vwalk,k|x(L)
k ) is the probability density function

defined by the measurement model h(xk) and the statistics
of the sensor noise. By assuming that the speed estimation
is affected by Gaussian noise of zero mean and standard
deviation σV walk to be set up empirically, weights are
computed as:

ω
(L)
k = p(Vwalk,k| x(L)

k ) = φ

(
Vwalk,k − h(x

(L)
k )

σV walk

)
(11)

where φ(z) is the probability density function of the standard
normal distribution and the measurement function h(x

(L)
k ) is

given by:

h(x
(L)
k ) = V

(L)
SLAM,k10λ

(L)
k (12)

Finally, the weights are normalized for each particle and
the next set of particles Sk+1 is resampled by drawing P
particles from the current set with probability equal to the
corresponding weights.

D. Scaling of the trajectory
To track the scale factor, the original SLAM trajectory has

been splitted in sections of N camera poses, being each of
these sections denoted by their corresponding time-step k.
The scale factor to be applied to each section k is obtained
by averaging the logarithmic scale values of the particle set
Sk and undoing the logarithmic change as follows:

λ̄k =

P∑
i=1

λ
(i)
k

P
(13)

d̄k = 10λ̄k (14)

This scale factor must be applied to the position and
velocity of the N camera states of section k. To simplify,
these state variables are encapsulated in a vector:

Xk(n) = (rnx , r
n
y , r

n
z , v

n
x , v

n
y , v

n
z ) n = 1, 2, ..., N (15)

Finally, to ensure the continuity in position and velocity,
each vector Xk(n) is scaled recursively as follows:

X̂k(n) = X̂k−1(N)+d̄k[Xk(n)−Xk−1(N)] k = 2, 3, ... (16)

X̂1(n) = d̄1X1(n) (17)

where X̂k(n) is the vector which includes the scaled position
and velocity of the camera poses contained in section k.

IV. EXPERIMENTS
We use a catadioptric omnidirectional camera with a

resolution of 1024x768 and a frame rate of 15 fps. This
camera is mounted on a helmet carried by a human operator.
We performed two experiments. For the first experiment
we acquired three image sequences walking along the same
path of 230 meters with three different step frequencies.
The ground truth was obtained with a metronome with 0.01
seconds of resolution. It was set up to 0.70, 0.60 and 0.50
seconds per beat for each sequence, which translates in step
frequencies of 1.43 Hz, 1.67 Hz and 2 Hz, respectively.
The experiment is divided in two parts. Firstly, we test the
accuracy of spectral analysis for step frequency estimation
with different setups. Secondly, we evaluate our approach to
scale the trajectories provided by the SLAM algorithm.

For the second experiment we acquired a sequence in
an indoor environment without metronome to evaluate the
scaling of the trajectory under a normal gait condition.

The initial unescaled trajectory and map corresponding
to each image sequence are constructed with the SLAM
approach presented in [9].



A. Spectral analysis for step frequency estimation

First, we evaluate the feasability of using spectral analysis
to measure the step frequency. As stated in III-A, visual
odometry is divided in sections of N camera poses and the
DFT is carried out on each section.

To compute the DFT we use the FFTW (Fast Fourier
Transform West) C library [6]. We compare different section
dimensions of N = 100 and N = 200. As the routines of this
library perform faster when the length of the data sequence
is a power of 2, data sequences are padded with zeros to
a length of Np to fill this condition. A greater padding
involves an increased resolution of the spectrogram. Thus,
we compare two zero-padding instances ZP1 and ZP2. ZP1
corresponds to a padding being Np the power of 2 closest
to N . ZP2 corresponds to a padding with Np = 1024.

In Fig. 4 we show the results of the measured step
frequency of the three trajectories with different DFT setups.

It can be observed that taking N = 200 provides more
accurate estimations and less outliers. This is done at the
expense of increasing the interval between two consecutive
estimations. It is also shown that a greater zero-padding does
not provide any improvement in accuracy. Thus we select a
setup of N = 200 data points and the ZP1 padding instance
to compute the DFT for spectral analysis.

B. Scaling of trajectories

In this part we scale the visual odometry from each
sequence of images using the approach described in Sec.
III. The number of particles used in the particle filter is
P = 5000. Standard deviations of the gaussians used to
model probability distributions have been adjusted.

0 500 1000 1500 2000 2500 3000 3500
1.25

1.3

1.35

1.4

1.45

1.5

1.55

Frame

St
ep

 fr
eq

ue
nc

y 
(H

z)

 

 

N=100, ZP1

N=100, ZP2

N=200, ZP1

N=200, ZP2

Ground Truth

0 500 1000 1500 2000 2500 3000
1.6

1.65

1.7

1.75

1.8

1.85

Frame

St
ep

 fr
eq

ue
nc

y 
(H

z)

 

 

N=100, ZP1

N=100, ZP2

N=200, ZP1

N=200, ZP2

Ground Truth

0 200 400 600 800 1000 1200 1400 1600 1800
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

Frame

St
ep

 fr
eq

ue
nc

y 
(H

z)

 

 

N=100, ZP1

N=100, ZP2

N=200, ZP1

N=200, ZP2

Ground Truth

Fig. 4: Spectral analysis along the same path at the three step
frequencies of 1.43 (top), 1.67 (center) and 2 Hz (bottom) with
different setups for the computation of the DFT.

The standard deviation of the distribution modelling the
initial logarithmic scale factor is set to σ0 = 1. This setup
allows us to consider an initial uncertainty interval for the
scale factor between 10−2 and 102 with a 95% of confidence.
The standard deviation of the gaussian noise modeling scale
drift was fixed to σdrift = 0.05. The standard deviation of
the walking measurement estimation was set up to a high
value of 0.2 m/s to avoid a particle depletion of the particle
filter due to a low sensor noise.

After adjusting the priors we tested our approach on the
three SLAM trajectories walked at different step frequen-
cies. Fig. 5 shows the final reconstruction of the trajectory
compared to the Ground Truth over a satellite view from
Google Maps. It can be observed the great improvement
respect to the raw visual odometry estimation from the
SLAM algorithm. Notice also that our approach provides
a better estimation than applying a uniform scale factor. The
reason is that the dynamic estimation of the scale factor every
N frames (Fig. 6) corrects the scale drift of the raw visual
odometry.

(a)

(b) (c)
Fig. 5: Visual odometry estimations using different approaches on
the three trajectories walked at different step frequencies of about
1.43 Hz (a), 1.67 Hz (b) and 2 Hz (c).
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Fig. 6: Scale factor estimation corresponding to the trajectory
taken at a step frequency of 1.43 Hz. Vertical lines represent the
uncertainty with a confidence of 95%. Variation of the scale along
the trajectory implies that scale drift is observed.



Fig. 7: Visual odometry estimation in an indoor environment with
normal gait. Solid line indicates first floor. Dashed line, second
floor.

Fig. 8: Computation time used to perform our approach for the
different sections.

In the last experiment we test our approach in an indoor
environment, with normal gait not set by a metronome [16].
Fig. 7, shows that although turns are not quite well estimated
by the SLAM algorithm, posterior scaling with our approach
provides a good estimation of the scale of the Ground Truth
trajectory, being able to cope with a considerable scale drift
present in the raw visual odometry estimation.

The implementation of our approach has been done in
MATLAB and it has been performed offline on the estimates
provided by a real time monoSLAM application. In Fig.
8 we show the computation time to perform the spectral
analysis and the scaling of each section of the trajectory. It
can be observed that, after an initial computation time of 0.3
seconds for the first section, it converges to a time of 0.015
seconds. Thus, our approach is able to be used in a real time
application as a parallel process, running within the time that
takes to fill the data sequence vector with the N elements
for the next spectral analysis. As a consequence, there exists
a delay in the update of the scaled visual odometry.

V. CONCLUSIONS

In this paper we have presented a new approach to estimate
the absolute scale of a visual odometry system using a head-
mounted omnidirectional camera. The visual odometry is
provided by a monocular SLAM application. The experi-
mental results show an accurate dynamic estimation of the
absolute scale which is robust to scale drift. It is shown also
the feasability of our method to be implemented in a real
time SLAM framework. In future work we will consider
the real time implementation as well as the design of active
estrategies to cope with sudden variations of the walking
speed.
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