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Resumen
Las redes de Petri constituyen un paradigma bien conocido y útil para modelar sistemas de eventos dis-

cretos. En algunos casos, es necesario adoptar un enfoque de enumeración de estados para veri�car algunas
propiedades de las redes de Petri. Desafortunadamente, para sistemas altamente marcados, el grafo de al-
canzabilidad puede ser tan grande que muchas propiedades son muy complicadas de analizar. Este problema
es conocido como el problema de explosión de estados. Sistemas que normalmente aparecen en la práctica,
por ejemplo: procesos de manufactura reales, sistemas de telecomunicaciones, sistemas de trá�co, sistemas
logísticos; dejan modelos de redes de Petri muy grandes. Por esto, se ha propuesto una técnica alternativa,
llamada �uidi�cación, para poder analizar tales sistemas.

La �uidi�cación constituye una técnica para estudiar sistemas a través de un modelo continuo similar. Uti-
lizando modelos continuos, se pueden utilizar más técnicas analíticas para el análisis de algunas propiedades
de interés. En esta disertación, se consideran redes de Petri continuas temporizadas bajo semántica de servi-
dores in�nitos. La teoría de modelos completamente �uidi�cados se encuentra todavía en desarrollo, dado
que es un área relativamente nueva. Por lo que es necesario enfocar más esfuerzos en la solución general
de problemas importantes. Esta disertación provee el conocimiento teórico básico necesario para, eventual-
mente, obtener leyes de control efectivas para los sistemas de redes de Petri continuas temporizadas (TCPN ).

En esta disertación, se estudian tipos generales de sistemas TCPN con el �n de obtener condiciones nece-
sarias de su�ciencia y necesidad de alcanzabilidad y controlabilidad, y posteriormente se proponen algunas
estructuras de leyes de control efectivas. Para esto, se introduce un concepto de controlabilidad que es una
adaptación del concepto clásico de controlabilidad para sistemas lineales. Los sistemas TCPN controlables
son caracterizados y se resuelve el problema de alcanzabilidad para el caso en que todas las transiciones son
controlables. Para el caso con transiciones incontrolables, se dan condiciones de su�ciencia de controlabil-
idad sobre un conjunto de puntos de equilibrio y condiciones de necesidad de alcanzabilidad. También, se
presentan dos estructuras de leyes de control para los casos: sin transiciones incontrolables, y con solo una
transición controlable.
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Summary
Petri Nets constitute a well-known paradigm useful to model discrete event systems. In some cases, an

enumeration approach (state enumeration) has to be used in order to verify some properties of Petri nets.
Unfortunately, for high marked systems, the reachability graph can be so large that many properties are very
complex to analyze. This problem is known as the state explosion problem. Systems that appear normally in
practice, for instance realistic manufacturing processes, telecommunications systems, traf�c systems, logistic
systems, leads to large Petri net models. So, in order to be able to analyze such systems, an alternative
technique, named �uidi�cation, has been proposed.

The �uidi�cation constitutes a technique to study discrete systems through a similar but continuous model.
Using �uid models more analytical techniques can be used for the analysis of some interesting properties.
In this dissertation, timed continuous Petri net models with in�nite server semantics are considered. The
theory of fully �uidi�ed models is still under development, since this area is relatively new. So, more ef-
forts are needed for general solutions of important problems. This dissertation provides the basic theoretical
knowledge needed to eventually obtain effective control laws for the timed continuous Petri net (TCPN )
systems.

In this dissertation, general kinds of TCPN systems are studied, in order to obtain suf�cient and necessary
conditions of reachability and controllability, and then some structures for effective control laws are proposed.
For this, a concept of controllability is introduced as an appropriate adaptation of the linear system classical
controllability concept, in this way, controllability is an structural property of the system. The controllable
TCPN systems are characterized and the reachability problem is solved for the case in which all transitions
are controllable. For the case with uncontrolled transitions, suf�cient conditions of controllability over a set
of equilibrium points and necessary conditions of reachability are given. Also, two effective control laws are
provided for both cases: without uncontrolled transitions, and with only one uncontrolled transition.
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Chapter

Introduction

Petri Nets constitute a well-known paradigm useful to model discrete event systems. Although many
researchers are investigating Petri nets properties from a standard point of view, in some cases, an enumeration
approach (state enumeration) has to be used, in that case, the veri�cation of some properties of Petri nets is
performed from the knowledge of the Petri net reachability graph. Unfortunately, for high marked systems,
the reachability graph can be so large that many properties are very complex to analyze. This problem
is known as the state explosion problem. Systems that appear normally in practice, for instance realistic
manufacturing processes, telecommunications systems, traf�c systems, logistic systems, leads to large Petri
net models. So, in order to be able to analyze such systems, an alternative technique, named �uidi�cation,
has been proposed.

The �uidi�cation constitutes a technique to study discrete systems through a similar but continuous model.
Using �uid models more analytical techniques can be used for the analysis of some interesting properties.
However some modelling or analysis capabilities are missed during �uidi�cation. In this way, the continuous
model is considered as an approximation of the discrete one, and not properly as a model of the physical
system. This technique has been applied to different paradigms. A comparison of those models can be seen
in [5].

In Petri Nets, �uidi�cation has been introduced from different perspectives. We will consider the approach
studied by M. Silva, L. Recalde and coworkers [5], [9]. In this report, timed continuous Petri net models with
in�nite server semantics are considered. Based on this model, the �ring count vector and the marking are
�uidi�cated, in order to obtain the continuous model. The obtained continuous model is piecewise linear.

Figure 1.1 Example of a Petri net system.

In order to clarify the concept of �uidi�cation, see the Petri net of �gure 1.1. As a discrete Petri net, the
marking can be changed in integer amounts. For example, say that t2 is �red once, so the reached marking
is [1; 3]T . As a continuous Petri net, transitions can be �red in any enabled positive amount. Suppose that
transition t2 is �red in an amount of 0:2, then the reached marking is [0:2; 3:8]T . Finally, as a timed continuous
Petri net, the transitions are not �red in certain amount, they are �red with certain speed. Considering in�nite
server semantics, say that transitions t1 and t2 are �red with an speed of 1 enabling degree by second, then
the trajectory of the marking (the marking as a function of time) is that shown in �gure 1.2.
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Figure 1.2 Marking evolution of the system of �gure 1.1, considering it as a timed continuous Petri net.

There exist some interpretations of the marking in the continuous models. One of them, for timed continu-
ous Petri nets, is that the normalized throughput of the transitions in the steady state of the continuous model
approximate the average value of the normalized throughput of the transitions in the steady state of the origi-
nal discrete system. The continuous system can be a good approximation of the discrete one when the tokens
represent a large number of indistinguishable individuals/parts. For further details of this interpretation see
[2].

The reader has to keep in mind that the theory of fully �uidi�ed models (continuous models) is still under
development, since this area is relatively new. So, more efforts are needed for general solutions of important
problems. Now, we present some questions, which are mentioned in [9], that represent the most interesting
problems to be solved for continuous Petri nets.

� Given a discrete Petri net system, the continuous model obtained from it is a good enough approximation?
� Which is the best �ring semantic for a particular case?
� Given a timing semantic, when does a steady state exist?
� Once a good dynamic control is obtained for the continuous relaxation, how to come back to a �reason-
able� design or control (scheduling) in the original setting?

Besides the problems involved in these questions, marking reachability, observation and control of contin-
uous models deserve more efforts. Reachability in autonomous continuous Petri nets (non timed) has been
studied by Julvez, Recalde and Silva in [6]. In that paper, reachability is introduced as the property of a
marking to be reached from the initial marking, this marking can be reached in three different ways: with a
�nite �ring sequence, with an in�nite �ring sequence, or just getting as close as desired to the marking with
a �nite �ring sequence. The controllability for timed continuous Petri nets has been studied by Jiménez,
Júlvez, Recalde and Silva [8]. They introduced a controllability de�nition as a property of markings, i.e., a
marking is said to be controllable iff it is reachable and it is an equilibrium point (with a suitable bounded
input). They characterized the set of �controllable markings� for join free Petri nets.

The main goal of this dissertation is to provide the basic theoretical knowledge needed to eventually obtain
effective control laws for the timed continuous Petri net (TCPN ) systems. The objectives are: to propose
a structural controllability de�nition for TCPN systems, to analyze and to provide necessary and suf�cient
conditions for controllability and reachability for general kinds of TCPN systems, and �nally to present
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control law structures that transfer the state from the initial state to the required state.

Although controllability and reachability have been studied by Jiménez, Júlvez, Recalde and Silva, the
results obtained by them are not suf�cient to compute effective control laws for general cases of timed
continuous Petri net (TCPN ) systems (they solved this problem for the case of join free Petri nets). So,
in this dissertation, we study general kinds of TCPN systems, in order to obtain suf�cient and necessary
conditions of reachability and controllability, and then we propose some structures for effective control laws.

The main contributions of this dissertation are:
� The characterization of the so called �state space�.
� The introduction of the minimum order state equation.
� A de�nition of controllability for TCPN systems as an adaptation of that for the linear continuous-time
systems.

� The introduction of necessary and suf�cient conditions of controllability and reachability for any kind of
TCPN systems, where all transitions are controllable.

� The introduction of suf�cient conditions of controllability for any kind of TCPN systems, where there
are uncontrolled transitions.

� The introduction of necessary conditions of reachability for any kind of TCPN systems, where there are
uncontrolled transitions.

� An effective control law structure that transfers the marking from the initial marking to the required
marking for any kind of TCPN , where all transitions are controllable.

� An effective control law structure that transfers the marking from the initial marking inES to the required
marking in ES for any kind of TCPN , where there is only one uncontrolled transition.

This report is organized as follows: In chapter 2, we introduce some basic concepts related to classic
Petri nets, continuous Petri nets and timed continuous Petri nets under in�nite server semantic. In the last
section of this chapter we rewrite the state equation into a more useful form. In chapter 3, we present a brief
discussion of the concept of state variable. Also, in this chapter, we present a characterization of the �state
space�, and �nally we introduce the minimum order state equation. In chapter 4, a de�nition of controllability
is introduced as an adaptation of the linear continuous-time classical controllability de�nition, in this way,
controllability is a structural property of the system. For the case where all transitions are controllable, the
controllable TCPN systems are characterized, and the marking reachability problem is solved. For the case
where there exist uncontrolled transitions, suf�cient conditions of controllability over a set of equilibrium
points are given. In chapter 5, two effective control law structures are proposed, one for the case where
all transitions are controllable, and the other for the case where only one transition is uncontrolled. The
conclusions and the future work are presented in chapter 6.
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Chapter

Basic concepts on Petri nets, continuous
Petri nets and timed continuous Petri nets

In the �rst three sections of this chapter basic de�nitions of classic Petri nets, continuous Petri nets and
timed continuous Petri nets are presented. Also, the notation that will be used along this dissertation is
introduced. These contents are mainly taken from references [4] and [7].

In the last section, a useful form of the state equation for TCPN systems under in�nite server semantics
is proposed.

2.1 Petri Nets

In this section basic concepts on Petri nets are introduced. For further details see [4].

De�nition 2.1 Nets, pre-sets, post-sets, subnets

A netN is a 3-tuple (P; T; F ), where P and T are two �nite and disjoint sets, and F is a relation on P [T
such that F \ (P � P ) = F \ (T � T ) = ?.

The elements of P are called places, and are graphically depicted by circles. The elements of T are called
transitions, represented by boxes. F is called the �ow relation of the net, represented by arrows from places
to transitions or from transitions to places. Often, the elements of P [ T are generically called nodes of N
or elements of N . The elements of F are called arcs.

Given a node x of N , the set �x = fyj(y; x) 2 Fg is the pre-set of x and the set x� = fyj(x; y) 2 Fg is
the post-set of x. The elements in the pre-set (post-set) of a place are its input (output) transitions. Similarly,
the elements in the pre-set (post-set) of a transition are its input (output) places.

Given a set X of nodes of N , de�ne �X = [x2X �x and X� = [x2Xx�.

A triple (P 0; T 0; F 0) is a subnet of N if P 0 � P , T 0 � T and F 0 = F \ ((P 0 � T 0) [ (T 0 � P 0)).

If X is a set of elements of N , then the triple (P \X;T \X;F \ (X �X)) is a subnet of N , called the
subnet of N generated by X .

Figure 2.1 shows a Petri net model of some device, where:

P = fp1; p2; p3; p4; p5g is the set of places,

T = ft1; t2; t3; t4; t5g is the set of transitions, and

F ={(p1; t2), (p2; t1), (p3; t3), (p4; t4), (p4; t5), (p5; t2), (t1; p1), (t2; p2), (t2; p3), (t3; p4), (t4; p5),
(t5; p3)} is the �ow relation.

Examples of pre- and post-sets are t�2 = fp2; p3g and �fp2; p3g = ft2; t5g.
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Figure 2.1 Example of a PN system.

De�nition 2.2 Paths, circuits

A path in a net (P; T; F ) is a nonempty sequence x1:::xk of nodes which satis�es (x1, x2) ,..., (xk�1,
xk) 2 F . A path x1...xk is said to lead from x1 to xk.

A path leading from a node x to a node y is a circuit if no element occurs more than once in it and
(y; x) 2 F . Observe that a sequence containing one element is a path but not a circuit, because for every
node x, (x; x) =2 F .

A net (P; T; F ) is called weakly connected (or just connected) if every two nodes x, y satisfy (x; y) 2
(F [ F�1)�. Where for any set A, A� is the re�exive and transitive closure of A.

(P; T; F ) is strongly connected if 8x; y 2 P [ T , (x; y) 2 F �, i.e., for every two nodes x, y there is a
path leading from x to y.

In the example of �gure 2.1, t2p2t1p1t2p3 is a path and p3t3p4t5 is a circuit. The net is strongly connected.

Next de�nitions introduce markings and the occurrence rule (�ring rule), which transform a net into a
dynamic system.

De�nition 2.3 Markings

A marking of a net (P; T; F ) is a mapping m : P ! fN [ 0g. A marking is represented by the vector
[m(p1):::m(pn)]

T ), where p1; p2; :::; pn is an arbitrary �xed numeration of P .

A place p is marked at a marking m if m(p) > 0. A set of places R is marked if some place of R is
marked.

The total number of tokens (marks) on a set R is denoted bym(R), i.e., m(R) is the sum of allm(p) for
p 2 R.

The null marking is the marking which maps every place to 0.

De�nition 2.4 Arc weight

The arc weight is a function w : F ! N, which associates a natural number to each arc.

When all arcs have weight equal to 1, the net is called ordinary.

In the graph, the weight of each arc is written near of it. When no weight is written at some arc, the weight



Petri Nets 7

of that arc is taken to be equal to 1.

De�nition 2.5 Occurrence rule

A marking m enables a transition t if for every place p 2 �t, m(p) � w(p; t). If t is enabled at m, then
it can occur, and its occurrence leads to the successor marking m0 (written m t! m0) which is de�ned for
every place p by

m0(p) =

8>><>>:
m(p) if p =2� t and p =2 t�
m(p)� w(p; t) if p 2� t and p =2 t�
m(p) + w(t; p) if p =2� t and p 2 t�
m(p)� w(p; t) + w(t; p) if p 2� t and p 2 t�

(w(pin; t) tokens are removed from the place pin in the pre-set of t and w(t; pout) tokens are added to the
place pout in the post-set of t).

A markingm is called dead if it enables no transition in the net.

Graphically, a marking m is represented by m(p) tokens (black dots) or the number m(p) in the place
p. The marking of the net of �gure 2.1 maps p1 to 4, p3 to 1 and all other place to 0. Its vector representa-
tion is

�
4 0 1 0 0

�T . The transition t3 is enabled, and the marking reached after its occurrence is�
4 0 0 1 0

�T .
De�nition 2.6 Occurrence sequences, reachable markings

Let m be a marking of N . If m t1! m1
t2! :::

tn! mn are transition occurrences then � = t1t2:::tn is an
occurrence sequence leading from m to mn and it is written as m

�! mn. This notion includes the empty
sequence 2, i.e. m 2! m for every markingm.

It is writtenm �! m0, whenm0 is reachable fromm, i.e. m �! m0 for some occurrence sequence �. The
set of all markings reachable fromm is denoted by RS(N;m).

If m t1! m1
t2! m2

t3! ::: for an in�nite sequence of transitions � = t1t2t3::: then � is an in�nite
occurrence sequence and it is written asm �!.

A sequence of transition � is enabled at a marking m if m �! m0 for some marking m0 (if � is �nite) or
m

�! (if � is in�nite).

De�nition 2.7 Pre, Post and Incidence matrices

Let N be the net (P; T; F ). The Pre matrix of order jP j � jT j is de�ned by

Pre(p; t) =

�
0 if (p; t) =2 F

w(p; t) if (p; t) 2 F

The Post matrix of order jP j � jT j is de�ned by

Post(p; t) =

�
0 if (t; p) =2 F

w(t; p) if (t; p) 2 F

The incidence matrix denoted by C is de�ned as:

C = Pre� Post
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Similarly to the vector representations of simple mappings, the matrix representation of the incidence
matrix depends on enumerations of places and transitions.

The column vector T of C associated to a transition t is denoted by t. Similarly, the row vector P
associated to a place p is denoted by p.

The entry C(p; t) corresponds to the change of the marking of the place p caused by the occurrence of the
transition t. Hence, if t is enabled at a marking m and m t! m0 then m0 = m + t. For a generalization of
this equation to sequences of transitions the following de�nition is needed.

De�nition 2.8 Parikh vectors of transition sequences

Let (P; T; F ) be a net and let � be a �nite sequence of transitions. The Parikh vector �!� : T ! N of �
maps every transition t of T to the number of occurrences of t in �.

The Parikh vector of the sequence t3t5t3t4t2 is
�
0 1 2 1 1

�T , while the Parikh vector of the
sequence t1 is

�
1 0 0 0 0

�T .
Now, observe that for every transition t, t = C�!t . Therefore, ifm t! m0, thenm0 = m+ Ct (wherem

andm0 are taken as column vectors). For an arbitrary �nite occurrences sequencem �! m0,m0 = m+C�!� ,
as shown in the following Lemma:

Lemma 2.1 Marking equation Lemma

For every �nite sequencem �! m0 of a net N the following Marking Equation holds:

m0 = m+ C�!�

The proof of this result is presented in [4].

A net is static - a special kind of graph- while a Petri net is dynamic and has a behavior.

De�nition 2.9 Net systems, initial and reachable markings

A net system (or just a system) is a pair (N;m0) where N is a connected net having at least one place
and one transition, andm0 is a marking of N called the initial marking. A marking is called reachable in a
system if it is reachable from the initial marking.

Now formal de�nitions of some of the properties of Petri net systems are presented.

De�nition 2.10 Liveness and related properties

A system is live if, for every reachable marking m and every transition t, there exists a marking m0 2
RS(N;m) which enables t. If (N;m0) is a live system, then it is said thatm0 is a live marking of N .

A system is place-live if, for every reachable marking m and every place p, there exists a marking m0 2
RS(N;m) which marks p.

A system is deadlock-free if every reachable marking enables at least one transition; in other words, if no
dead marking can be reached from the initial marking.

Loosely speaking, a system is live if every transition can always occur again.

Next, boundedness of systems is de�ned.
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De�nition 2.11 Bounded systems, bound of a place

A system is bounded if for every place p there is a natural number b such that m(p) � b for every
reachable markingm. If (N;m0) is a bounded system, it is said thatm0 is a bounded marking of N .

The bound of a place p in a bounded system (N;m0) is de�ned as:

maxfm(p)jm 2 RS(N;m0)g

A system is called b-bounded if no place has a bound greater than b.

De�nition 2.12 P-invariants (P-semi�ows)

A P-invariant of a net N is a rational-valued solution of the equation Y T � C = 0.

Proposition 2.1 Fundamental property of P-invariants

Let (N;m0) be a system, and let I be a P-invariant of N . Ifm0
�! m0, then I �m = I �m0.

The proof of this result is presented in [4].

De�nition 2.13 T-invariants (T-semi�ows)

A T-invariant of a net N is a rational-valued solution of the equation C �X = 0.

Proposition 2.2 Fundamental property of T-invariants

Let � be a �nite sequence of transitions of a net N which is enabled at a marking m. Then the Parikh
vector �!� is a T-invariant iffm �! m (i.e., iff the occurrence of � reproduces the markingm).

P-systems are systems whose transitions have exactly one input place and one output place.

De�nition 2.14 P-nets, P-systems

A net is a P-net if j�tj = 1 = jt�j for every transition t.

A system (N;m0) is a P-system if N is a P-net.

The fundamental property of P-systems is that all reachable markings contain exactly the same number
of tokens. In other words, the total number of tokens of the system remains invariant under the occurrence
of transitions.

In T-systems places have exactly one input and one output transition.
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De�nition 2.15 T-nets, T-systems

A net is a T-net if j�pj = 1 = jp�j for every place p.

A system (N;m0) is a T-system if N is a T-net.

The fundamental property of T-systems is that the token counts of circuits remain invariant under the
occurrence of transitions.

Another kind of net and systems well studied is that of free-choice.

De�nition 2.16 Free-choice nets, free-choice systems

A netN = (P; T; F ) is free-choice if (p; t) 2 F implies �t�p� � F for every place p and every transition
t.

A system (N;m0) is free-choice if its underlying net N is free-choice.

The fundamental property of a free-choice net is that if a marking enables some transition of p�, where p
is a place of the net, then it enables every transition of p�.

De�nition 2.17 Siphons, proper siphons

A set R of places of a net is a siphon if �R � R�. A siphon is called proper if it is not an empty set.

Two important facts known about siphons are that: unmarked siphons remain unmarked, and live systems
have no unmarked proper siphons.

De�nition 2.18 Traps, proper traps

A set R of places of a net is a trap if R� �� R. A trap is called proper if it is not the empty set.

Finally, a useful lemma, taken from [4], is presented. The proof in presented in the same reference.

Lemma 2.2 Every live and bounded system (N;m0) has a reachable marking m and an occurrence se-
quencem �! m such that all transitions of N occur in �.

2.2 Continuous Petri Nets

Loosely speaking, the �uidi�cation or continuization is a procedure in which a continuous dynamic sys-
tem is obtained from a discrete event one.

As it was mentioned in the introduction, the �uidi�cation is one of the classical relaxations of DES
models. This relaxation can be applied to Petri Nets in order to deal with the so called state explosion
problem. The computational gain is usually increased if dealing with highly populated systems, because in
those cases the state explosion problem may become much more acute.

The �ring logic of PNs is of the type consumption/serves. Thus, continuization should be introduced
through transitions, and extended to its neighborhood (input and output places). When not all transitions are
continuized, the obtained model is said to be hybrid. If all the transitions are continuized the net is said to be
continuous (contPN ). This dissertation will focus only in continuous nets.



Continuous Petri Nets 11

Figure 2.2 ContPN system. Only transition t2 is enabled to �re.

Unlike discrete PN , the amount in which a transition can be �red in contPNs is not restricted to a
natural number, actually, a transition t is enabled atm iff 8p 2� t,m[p] > 0. Let us see the de�nition of the
enabling degree of transitions.

De�nition 2.19 Enabling degree

The enabling degree of t is

enab(t;m) = minp2 �t
m[p]

Pre[p; t]

The transition t can �re in a certain amount � 2 R, 0 � � � enab(t;m) leading to a new marking
m0 = m+ �C[P; t], where C is the incidence matrix.

Ifm is reachable fromm0 through a sequence �, a fundamental equation can be written: m = m0+C�,
where � 2 (R+ [ f0g)jT j is the �ring count vector.

Consider the next example.

Example 2.1 See the contPN system of �gure 2.2. The enabling degree of transition t2 is enab(t2;m0) =
2, and the enabling degree of t1 is enab(t1;m0) = 0, so t1 cannot be �red. Suppose that transition t2 is �red
in an amount of 1:5, so, after the �ring the marking reached ism =

�
1:5 1

�T .
Next de�nitions are equivalents to those for discrete PN systems.

De�nition 2.20 Boundedness, liveness and lim-liveness on contPNs.

A contPN is bounded when every place is bounded (8p 2 P , 9bp 2 R withm[p] � bp at every reachable
marking m). It is live when every transition is live (it can ultimately occur from every reachable marking).
Liveness may be extended to lim-live assuming that in�nitely long sequence can be �red. A transition t is
non lim-live iff a sequence of successively reachable markings exists which converge to a marking such that
none of its successors enables a transition t.

De�nition 2.21 Structural boundedness and structural liveness.

A net is structurally bounded when (N;m0) is bounded for every initial marking m0 and is structurally
live when am0 exists such that (N;m0) is live.
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De�nition 2.22 P-semi�ows and T-semi�ows.

As in discrete PNs, left and right annulers of the incidence matrix C are called P- and T- semi�ows,
respectively. The net N is conservative iff 9y > 0, y � C = 0 and it is consistent iff 9x > 0, C � x = 0.

If a contPN is consistent and all transitions are �reable, then the (lim) reachable markings are solutions
of the fundamental equation (m = m0 +C�,m � 0, � � 0). Because of consistency, � � 0 can be relaxed
to � 2 RjT j, that is equivalent to BT � m = BT � m0, m � 0 with BT a basis of P-semi�ows. The set
of all reachable markings at the limit is denoted by lim � RS. Like in discrete case, nets can be classi�ed
according to their structure.

2.3 Timed Continuous Petri Nets

Like in the discrete case, time can be associated to places, to transitions or to arcs in continuous PNs.
A simple way to introduce time in discrete PNs is to assume that all the transitions are timed with expo-
nential probability distribution function (pdf). For the timing interpretation of continuous PNs a �rst order
(deterministic) approximation of the discrete case should be used (see [9]), assuming that the delays asso-
ciated to the �ring of transitions can be approximated by their mean values. For congested systems, this
approximation is valid for any pdf, applying the central limit theorem.

There are some interesting properties of the timed continuous PN systems that differ from that of others
continuous models. In discrete PN , the places are essentially state variables, but redundancies may exist
due to token conservation laws, this redundancies also appear in the timed continuous PN . The evolution
of the timed continuous PN , as that of the discrete PN , takes place according to the information that
each transition receives from its input places. The timed continuous PN have only a �ow of material that
carries the information implicitly, and evolve according to information that, in standard uses, is local to each
transition.

Now, basic de�nitions of timed continuous Petri nets are introduced.

De�nition 2.23 TCPN

A timed contPN or TCPN = (N;�) is the untimed contPN , N , together with a function � : T !
(R+)jT j, where �(ti) = �i is the �ring rate of transition ti.

De�nition 2.24 TCPN system

A TCPN system is a tuple � = (N;�;m0), where (N;�) is a TCPN and m0 is the initial marking of
the net.

Now, the fundamental equation depends on time � : m(�) = m0 + C � �(�). Deriving this equation with
respect to time, the equation obtained is: �m(�) = C � ��(�). Using the notation f(�) = �

�(�) to represent the
�ow of the transition with respect of time, the fundamental equation becomes: �m(�) = C � f(�), which can
be written in the short form:

�
m = C � f

but the dependence on time is considered.
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Figure 2.3 Example of a TCPN system.

Depending on the �ow de�nition, there are many �ring semantics. Finite server (or constant speed) and
in�nite server (or variable speed) are the more frequently used. This dissertation is focused on in�nite server
semantics (ISS), with the �ow of each transition de�ned by:

fi = f [ti] = �[ti] min
pj2�ti

�
m[pj ]

Pre[pj ; ti]

�

Observe that the �ow of transition t is proportional to its enabling degree by means of the �ring rate
�(ti) = �i.

Remark 2.1 A TCPN under in�nite server semantics is a piecewise linear system due to the minimum
operator that appears in the �ow de�nition.

Example 2.2 Consider the net of �gure 2.3. The �ows of the transitions are given by:

8>><>>:
f1 = �[t1] �m[p1]
f2 = �[t2] �min(m[p2];m[p3])
f3 = �[t3] �min(m[p4];m[p5])
f4 = �[t4] �m[p6]

If � =
�
1 1 1 1

�T , for example, then:
8>>>>>>>><>>>>>>>>:

�
m[p1] = f2 � f1 = m[p2]�m[p1]
�
m[p2] = f1 � f2 = m[p1]�min(m[p2];m[p3])
�
m[p3] = f3 � f2 = min(m[p4];m[p5])�min(m[p2];m[p3])
�
m[p4] = f2 � f3 = min(m[p2];m[p3])�min(m[p4];m[p5])
�
m[p5] = f4 � f3 = m[p6]�min(m[p4];m[p5])
�
m[p6] = f3 � f4 = min(m[p4];m[p5])�m[p6]

Thus, nonlinearity appears due to synchronization (j�tj > 1). One linear system is de�ned by the set of
arcs in Pre limiting the �ring of the transitions.
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De�nition 2.25 Constraint on the dynamics of a transition

Let� = (N;�;m0) be a TCPN andm a reachable marking. It will be said that the arc (p; t) constraints
the dynamic of t atm iff:

f [t] = �[ti]

�
m[p]

Pre[p; t]

�

De�nition 2.26 Con�guration

A con�guration of � atm is a set of (p; t) arcs describing the effective �ow of all the transitions.

So, a con�guration is a cover of T by its inputs arcs. One possible representation of a given con�guration
is a matrix form, a 2 f0; 1gjP j�jT j:

a[pi; tj ] =
�
1 if pj is limiting the �ow of ti
0 otherwise

Obviously, a � Pre, even if the net is ordinary (i.e. all arcs have weight one). Each con�guration de�nes
an associated linear system.

Example 2.3 Let us consider the net of �gure 2.3 with � =
�
1 1 1 1

�T . As it was seen in previ-
ous example, this is a piecewise linear system. For the con�guration {(p1; t1), (p2; t2), (p5; t3), (p6; t6)},
m[p2] � m[p3] andm[p5] � m[p4]. Then the active linear system is:

8>>>>>>>><>>>>>>>>:

�
m[p1] = m[p2]�m[p1]
�
m[p2] = m[p1]�m[p2]
�
m[p3] = m[p5]�m[p2]
�
m[p4] = m[p2]�m[p5]
�
m[p5] = m[p6]�m[p5]
�
m[p6] = m[p5]�m[p6]

or in matrix form:

�
m =

26666664
�1 1 0 0 0 0
1 �1 0 0 0 0
0 �1 0 0 1 0
0 1 0 0 �1 0
0 0 0 0 �1 1
0 0 0 0 1 �1

37777775 �m (2.1)

Now, let us consider the con�guration {(p1; t1), (p2; t2), (p4; t3), (p6; t6)}. Then m[p5] � m[p4]

andm[p2] � m[p3] and the linear system associated is:
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8>>>>>>>><>>>>>>>>:

�
m[p1] = m[p2]�m[p1]
�
m[p2] = m[p1]�m[p2]
�
m[p3] = m[p4]�m[p2]
�
m[p4] = m[p2]�m[p4]
�
m[p5] = m[p6]�m[p4]
�
m[p6] = m[p4]�m[p6]

or in matrix form:

�
m =

26666664
�1 1 0 0 0 0
1 �1 0 0 0 0
0 �1 0 1 0 0
0 1 0 �1 0 0
0 0 0 �1 0 1
0 0 0 1 0 �1

37777775 �m (2.2)

Observe that, depending on the marking of the places, the evolution of the system will be given by one or
other linear system. Equation (2.1) and (2.2) describe two of these different linear systems.

Any (reachable) marking de�nes a con�guration. When the marking of several places are limiting the
�ring of the same transition, any of the associated linear systems can be used.

The number of minimal con�gurations (i.e. only one constraining arc per transition is taken) is bound by
the net structure (i.e. it does not depend on the marking) and is equal to

Y
ti2T

jtij.

De�nition 2.27 Matrix H

H = [hi;j ] is jT j � jP j matrix, where

hi;j =

� 1
Pre[i;j] if Pre[j; i] > 0
0 otherwise

Observe that matrix H is just the transposed of the matrix Pre where the non null elements are not
Pre[p; t] but their inverses.

De�nition 2.28 Matrix operator �

Let R, W and E be three matrices with identical dimensions. The matrix operator � is de�ned as:
R =W � E, where ri;j = wi;j � ei;j .

De�nition 2.29 Con�guration operator

The con�guration operator is the function � : RS(N;m0)! RjT j�jP j such that:

�(m) = a(m)�H

where a(m) is the matrix representing the con�guration associated tom.

The con�guration operator associated to every marking m a matrix jT j � jP j, such that each row i =
1:: jT j has only one non null element in the position j that corresponds to the place pj that restricts the �ow
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of transition ti. The product �(m) �m(�) is the enabling degree of each transition at time � , enab(�).

De�nition 2.30 Maximum �ring rate matrix

The maximum �ring rate matrix is denoted by: � = diag(�1; :::; �jT j).

Remark 2.2 According to this notation, the �ow vector and the fundamental equation are:

f = � ��(m) �m
�
m = C � � ��(m) �m

The only action that can be applied to a TCPN system is to slow down their �ring �ow.

De�nition 2.31 Controllable transition and uncontrolled transition

If the �ow of a transition t can be reduced or even stopped, it will be said that t is a controllable transition,
otherwise t is an uncontrolled transition.

The forced �ow of a controllable transition ti becomes fi�ui, where fi is the �ow of the unforced system
(i.e. without control) and u is the control action, with 0 � ui � fi. The controlled �ow vector is:

f = � ��(m) �m� u

where ui = 0 if ti is not a controllable transition. Thus the state equation of a controlled TCPN system
becomes:

� �
m = C � (� ��(m) �m� u)
0 � u � � ��(m) �m (2.3)

2.4 Rewriting the state equation

In order to obtain a simpli�ed version of the state equation, the input vector u is rewritten as:

u = Iu��(m)m (2.4)

where Iu = diag(Iu1 ; Iu2 ; :::; Iup) and Iui 2 [0; :::; 1].

The meaning of Iui is the normalized breaking factor of transition ti, in this case 0 � Iui � 1. Substitut-
ing (2.4) into (2.3) results:

�
m = C(I � Iu)��(m)m

where I is the unit matrix.

De�ning the matrix Ic = I � Iu, (notice that Ici 2 [0; :::; 1]); the TCPN state equation is rewritten as:
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�
m = CIc��(m)m (2.5)

The matrix Ic is the new input and represents the actual percentage of transition �rings. Notice that Ic is
a diagonal matrix and 0 � Ici � 1.
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Chapter

State variables and state space

The main topic in this dissertation is the study of controllability on TCPN systems. As it was presented
in section 2.2, a TCPN is built through a procedure from a discrete PN .

Before starting the study of controllability, the concept of controllability for TCPN systems must be
clearly de�ned. Since TCPN systems are continuous, the concept proposed in this dissertation is similar to
that of continuous systems.

In continuous systems the de�nition of controllability is based on the concept of state, actually, the concept
of state is basic in the theory of continuous systems, but, unfortunately, it differs from the concept of state for
discrete event systems.

This is the main reason to review the de�nitions of state, state variable and state space of both continuous
and discrete event systems, and to try to �nd the common underlaying idea of those de�nitions.

In the �rst section of this chapter, a brief discussion of the concepts of state and state variables is presented.
In the second section, some results on reachability obtained from [6] are presented. In the last two sections,
the admissible states set is de�ned and characterized, also a minimum order state equation, which is valid in
this set, is obtained.

3.1 State and state variables

In this section, classic de�nitions of state, state variable and state space of linear continuous-time systems
and discrete event systems are compared. These de�nitions are mainly taken from [16], [3] and [15].

Figure 3.1 Water tank with an input �ow and an output �ow.

For discrete event systems, the states and state variables are usually de�ned directly from the physical
system during the modelization, and once the states and the state variables are de�ned, the state space appears
naturally. In other way, there is a formal de�nition of state through the Nerode equivalence relation.
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Figure 3.2 PN system that models the physical system of �gure 3.1.

In order to illustrate this, see the next example.

Example 3.1 Consider the physical system of �gure 3.1.

In this system, the water level in the tank is the variable of interest. Three different levels or �states�,
named: high, medium and low, can be distinguished. The initial state is high. So, the state variable is the
water level, and the state space is {high, medium, low}. The level can change from high to medium by the
�ow of the second valve, when this happen it is said that event d1 occurs. Similarly, event d2 occurs when
level change from medium to low, event u1 when level raise from medium to high, and event u2 when level
raise from low to medium.

At this point, we are able to model this physical system into a PN system, as shown in �gure 3.2, but here
we are interested in a formal de�nition of state and state variable, so, we will use a linguistic interpretation
of the system.

The language of the system (the sequences of events that may happen in the system), denoted by L,
includes words like: {", d1u1, d1, d1u1d1, d1d2, d1u1d1d2, d1d2u2d2, ...}. This language de�nes the states
of the system through the Nerode relation.

Figure 3.3 Partition of �� under Nerode equivalence relation.
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Figure 3.4 PN system formally obtained.

De�nition 3.1 Nerode equivalence relation

Let L � �� be an arbitrary language, where � is its alphabet. The Nerode equivalence relation on ��
with respect to L is de�ned as follows.

For s; t 2 ��, s �L t iff 8u 2 ��, su 2 L iff tu 2 L.

In other words s �L t iff s and t can be continued in exactly the same way to form a string of L.

Since this is an equivalence relation, it makes a partition of �� (see �gure 3.3). Now a formal de�nition
of state can be introduced.

De�nition 3.2 State in discrete event systems.

An state of a discrete event system is an equivalence class or cluster of �� under the Nerode equivalence
relation.

Loosely speaking, the state variable is a function that takes values on the set of all the states (range of
the state variable). Finally, considering only the states in which the words belong to the language, and the
events, which makes a state change, as transitions, the model of �gure 3.4 can be built .

Notice that this PN system is equal to that of �gure 3.2, but now the state and the state space (the range
of the state variable for this example) are formally de�ned.

Loosely speaking, a state in a discrete event system is a set of the physical states (physical situations or
conditions) for which the observer variables (output variables ) evolve in the same way.

Now, the state de�nition for continuous systems will be reviewed. The state of a continuous system at
time instant t should describe its behavior at that instant in some measurable way. In system theory, the term
state has a much more precise meaning and constitutes the cornerstone of the modeling process and many
analytical techniques.

See the next example.
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Figure 3.5 Example of a continuous system.

Example 3.2 Consider the system of �gure 3.5. Suppose that at time t = 0 the mass is displaced from
its rest position by an amount u(0) = u0 > 0 and released it. Let the displacement at any time t > 0
be denoted by y(t). It is known, from simple mechanics, that the motion of the mass de�nes an harmonic
oscillation described by the second-order differential equation:

m
��
y = �ky (3.1)

Now, suppose that the output y(t) is observed at some time t = t1 � t0. Mathematically, from the
equation (3.1), it is clear that it cannot be solved for y(t1+ � ) with only one initial condition, i.e. y(t1); also
information about the �rst derivative �y(t1) is needed .

Observe that together y(t1) and
�
y(t1) provide the information required which, along with full knowledge

of the input function, allows to obtain a unique solution and hence the value of y(t1 + �). This leads to the
well-known state de�nition for continuous time systems.

De�nition 3.3 State and state variables in continuous time systems.

The state of a system at time t0 is the information required at t0 such that the output y(t), for all t � t0,
is uniquely determined from this information and from u(t), t � t0.

Like the input u(t) and the output y(t), the state is also generally a vector, commonly denoted by x(t).
The components of this vector are called state variables.

Notice that, according to previous de�nition, the state and the state variables are conceptually equivalents.

Now, let us introduce the term �state space�.

De�nition 3.4 The state space in continuous time systems.

The state space of a system, usually denoted byX , is the set of all possible values that the state may take.

In example 3.2, the state variables have a physical meaning, those are the position and the velocity of
the mass. However, for a general case, sometimes the state variables have not a physical meaning. In
fact, in some identi�cation techniques only the number of state variables is proposed and the identi�cation
process determines the relation between those and the input and output variables, so the state variables are
not physical variables. However, they are related to some physical variables so they are needed to model the
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dynamics of the physical system. The state variables act like dynamic memory elements in the dynamics of
the physical system.

At this point, we can notice that the state de�nition of both continuous and discrete event systems are
clearly different. So, now we propose the following de�nition of state variable, which can cover both previ-
ous de�nitions.

De�nition 3.5 Concept of state variable.

An state variable is a function that captures a dimensional property, not necessary measurable, of the
physical system as a value of a set named range of the state variable. The set of all the state variables must
be suf�cient to build a dynamic model of the physical system.

It is easy to see that this concept agrees with the de�nition of state variable in continuous systems. In
those, the dimensional properties can be physical variables such as position, velocity, temperature, pressure,
etc., or physically meaningless variables, but even in this case there must exist something in the physical
system related to the value assigned to this variable which is necessary for the dynamic behavior. The range
of those variables is the set of real numbers.

So, in the continuous system, the �state� is the function named state variable.

For the example 3.1, which is modeled as a discrete event system, the dimensional property is the water
level, and the range of it is the set {high, medium, low}. In discrete event systems, the state is a value that
the state variable can take.

Now, we will focus in the transformation that the state variable suffers when aDES model is �uidi�cated.

Notice that in PN systems, the states, as de�ned in the DES de�nition, are codi�ed as given marking
distributions, and the state variable is codi�ed as the marking (as a function).

For the example of the water tank, the range of the state variable (or the states, according toDES de�ni-
tions) is equivalent to the set:

8<:
24 1
0
0

35 ;
24 0
1
0

35 ;
24 0
0
1

359=;
which correspond to high, medium and low, respectively.

After �uidi�cation, a continuous system is obtained in which a marking such that m =[0:1, 0:8, 0:1]T

may exist. The distribution of markings that can be generated by this continuous Petri net is shown in �gure
3.6, where the places p1, p2 and p3 correspond to those labeled as high, medium and low, respectively, in
�gure 3.2.

Now, the range of the state variable is isomorphic to R2, not to a �nite set of markings like in DES
systems. Besides, in continuous systems the range of a state variable is R. Notice that after the �uidi�cation,
the marking does not have a direct meaning of the physical situation of the plant, so it cannot be said that
a set of state variables is codi�ed into the marking of the TCPN system because there does not exist a
function that maps from the physical system to the marking in the TCPN system. Therefore, it cannot be
said that the marking of a set of places in the TCPN system is a state variable.

Since the TCPN is a continuous model, we will use the continuous linear systems theory concepts to
study the controllability in this, therefore, we need that the state variables (as de�ned in continuous systems)
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Figure 3.6 The shadowed triangle constitutes the set of markings that can be generated by the contPN .

be isomorphic to R. So, for TCPN systems, we will consider the marking of a place, which is isomorphic
to R, as a state variable, but we have to keep in mind that it is not, formally speaking, a state variable of the
system.

3.2 Reachability in continuous Petri nets

In this section, some results on reachability obtained by Júlvez, Recalde and Silva [6] are presented . First,
consider the case of untimed continuous Petri net.

The set of all reachable markings for a given system (N;m0) is denoted by RS(N;m0).

De�nition 3.6 The set of all reachable markings

RS(N;m0) ={mj a �nite �reable sequence � = �1t�1 ::�kt�k exists such that m0

�1t�1! m1

�2t�2! m2

...
�kt�k! mk = m where t�i 2 T and �i 2 R+}

An interesting property of RS(N;m0) is that it is a convex set (see [10]). That is, if two markings m1

andm2 are reachable, then for any � 2 [0; 1], �m1 + (1� �)m2 is also a reachable marking.

Figure 3.7 Autonomous continuous system and its lim-reachability space.
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Consider the system in �gure 3.7 with initial marking m0 =
�
0:5 0:5 0 0:5

�T . At this marking
either transition t1 or transition t3 can be �red. The �ring of t3 in an amount of 0:5 makes the system evolve
to marking

�
0:5 0:5 0:5 0

�T from which t2 can be �red in an amount of 0:25 leading to marking�
0:5 0:5 0 0:25

�T . Now, the markings of places p1, p2 and p3 are the same that those of the system
atm0, but the marking of p4 is half of its marking atm0. The continuous �ring of transition t2 and t3 by its
maximum enabling degree causes the elimination of half of the marking of p4. Assume that it goes on �ring
transitions t2 and t3. Then, as the number of �rings increases the marking of p4 approaches 0, value that
will be reached only in the limit. The marking reached in the limit is

�
0:5 0:5 0 0

�T . Now, the set of
such markings will be de�ned, i.e. the markings that are reachable with a �nite/in�nite �ring sequence:

De�nition 3.7 The set of lim-reachable markings

Let (N;m0) be a continuous system. A marking m 2 (R+ [ f0g)jP j is lim-reachable, iff a sequence of
reachable markings fmigi�1 exists such that

m0
�1! m1

�2! m2:::mi�1
�i! mi:::

and limi!1mi = m. The lim-reachable space is the set of lim-reachable markings, and it will be
denoted lim�RS(N;m0).

Consider again the system of �gure 3.7. It is not necessary to represent the marking of place p1 since
m1 = 1 �m2. The set of lim-reachable markings is composed of the points inside the prism, the points in
the non shadowed sides, the points in the thick edges and the points in the non circled vertices.

The set of reachable markings, RS(N;m0) is a subset of the set of lim-reachable markings, lim �
RS(N;m0), and for some systems both sets are identical.

Figure 3.8 Autonomous continuous system and its reachability and lim-reachability spaces.

BothRS(N;m0) and lim�RS(N;m0) are not in general closed sets. Consider the system of �gure 3.8.
In this �gure, the points on the segment going from (0; 0) to (0; 1) do neither belong to RS(N;m0) nor to
lim�RS(N;m0). Nevertheless, any point on the right of this segment belong to both sets.

De�nition 3.8 Closure of a set

For a given set A, the closure of A is equal to the points in A plus those points which are in�nitely close
to points in A, but are not contained in A.
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The set �-reachable markings will be written as ��RS(N;m0) and accounts for those markings to which
the system can get as closed as desired �ring a �nite sequence. Formally:
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De�nition 3.9 The set of �-reachable markings

� � RS(N;m0) is the closure of RS(N;m0) : � � RS(N;m0) = fmj for every " > 0 a marking
m0 2 RS(N;m0) exists such jm0 �mj < "g.

Since the closure ofRS(N;m0) is equal to the closure of lim�RS(N;m0), ��RS(N;m0) is also equal
to the set of markings to which the system can get as close as desired �ring an in�nite sequence. RS(N;m0)

and lim�RS(N;m0) are, therefore, subsets of � �RS(N;m0).

Therefore, until now three different kinds of reachability concepts have been de�ned:

- Markings that are reachable with a �nite �ring sequence, RS(N;m0).

- Markings to which the system converges, eventually, with an in�nitely long sequence, lim�RS(N;m0).

- Markings to which the system can get as close as desired with a �nite sequence, � �RS(N;m0).

These reachability spaces can be fully characterized using, among other elements, the state equation.
Moreover, it is decidable whether a marking is reachable according to each concept. Furthermore, there is an
inclusion relationship among the sets of markings : RS(N;m0) � lim � RS(N;m0) � � � RS(N;m0).
The only difference among these sets are in the border points of the spaces (i.e., the convex hull).

Full characterization of each reachability space can be seen in [6].

For TCPN systems, consider the following de�nition of reachability.

De�nition 3.10 Reachability for TCPN systems.

Given a TCPN system hN;m0i, the set of all reachable markings (RSt) is de�ned as RSt(N;m0) =

fmf j9u(�) suitable bounded such thatm0
u! mf in �nite timeg.

A marking that belongs to RSt(N;m0) is said to be reachable. Like in the untimed case, the sets lim �
RSt and � �RSt are de�ned.

When all transitions are controllable, there is an important result about reachability introduced in [7].

Proposition 3.1 Equivalence of lim-reachable sets of timed and untimed contPNs

Given a TCPN system, if all transitions are controllable, then all the reachable markings of the untimed
contPN can be reached in the timed model, maybe at the limit. (lim�RSt = lim�RS).

In the general case in which there exist uncontrolled transitions the reachability spaces presented in this
section are not characterized. Even deciding whether a given marking m is reachable or not is a dif�cult
task.

In the next chapters, the notation RS(N;m0) will be used for the reachable set of the timed continuous
systems.

3.3 Admissible states set and reachable states set

As it was presented in previous section, the characterization of the reachability space is a dif�cult task
because it strongly depends on the initial marking. So, the reachability and controllability problems will be
studied with a different approach in this dissertation.
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In this way, we will propose a set of markings to study if that set is reachable from the initial marking,
and if the system is controllable on it.

As it was presented in section 3.1 we consider the marking of each place as a state variable. Then the
range of a state variable is a subset of R. Considering that the state space of a continuous system is the
cartesian product of the ranges of the state variables, and that the markings of every place are de�ned as
positives, we introduce next de�nition:

De�nition 3.11 Structural admissible states set

Let N be a TCPN . The structural admissible states set is de�ned as SASS(N) = fR+ [ f0ggjP j

Given a general TCPN system (N;m0), not always all markings in SASS(N) belong to the state
space of that system, as it can be seen in the system of �gure 3.9. However, all reachable markings belong
to SASS(N). (i.e., lim � RS(N;m0) � SASS(N)). Actually, when N is conservative, i.e. it has
P-semi�ows, there exists a static relation between markings of the places which belong to the same P-
semi�ow. It causes that the lim�RS(N;m0) be an invariant subset of SASS(N). In order to characterize
this invariant set, we introduce next de�nitions.

De�nition 3.12 Relation �

Let N be a TCPN . Let B be the base of the left annuller of the incidence matrix C. The relation
� : SASS(N)! SASS(N), is de�ned as:

m1�m2 iff BTm1 = B
Tm2, 8m1;m2 2 SASS(N)

Figure 3.9 A TCPN system, its SASS(N) and its Class(m0).

Notice that � is an equivalence relation so it makes a partition of SASS(N).

De�nition 3.13 System admissible states set

Let hN;m0i be a TCPN system. The system admissible states set is the equivalent class of the initial
marking Class(m0) under �.

TheClass(m0) set is not equivalent to the sets of all reachable markingsRS(N;m0), lim�RS(N;m0),
or � �RS(N;m0) de�ned by Júlvez, Recalde and Silva [6].
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In order to illustrate previous de�nitions see the �gure 3.9, in this example, SASS(N) = fR+ [ f0gg3;
the shadowed surface corresponds to Class(m0). Notice thatmd belongs to Class(m0) but is not reachable
fromm0 in �nite or in�nite time, i.e. md =2 lim�RS(N;m0).

Since every reachable marking of the TCPN system (N;m0) must ful�ll that BTm = BTm0 (because
the P-semi�ows) and Class(m0) is the greatest set of nonnegative markings that ful�lls this condition, then
lim�RS(N;m0) � Class(m0).

So, we have de�ned the set Class(m0)which includes the set lim�RS(N;m0). Notice that Class(m0)

is easier to characterize than lim�RS(N;m0). In next chapter, we will study when either Class(m0) or a
subset of Class(m0) (which will be subsequently de�ned) is reachable and the system is controllable on it.

3.4 The minimum order state equation

Consider a conservative TCPN system. Let fmi
1;m

i
2; :::;m

i
qg be the set of the markings that belong to

the i� th P � semiflow, therefore:

mi
1 +m

i
2 + :::+m

i
q = K,K 2 N (3.2)

Deriving previous equation, the following equation is obtained:

�
m
i

1 +
�
m
i

2 + :::+
�
m
i

q = 0

Thus, the marking dynamics can be computed using q � 1 places and the conservative marking law
imposed by the i� th P � semiflow:

In order to obtain a TCPN minimum state equation, it is needed to eliminate the linearly dependent rows
of the incidence matrix C, such that the rank of C is preserved. Letmm be the state of the TCPN minimum
state equation, thenmm(�) is a projection ofm(�), i.e.:

mm = Pm (3.3)

where P is a projection matrix; P is, in general, not invertible. In order to obtain m(�) from mm(�) the
following equation is used: �

P
BT

��1 �
mm(�)
BTm0

�
= m(�) (3.4)

So, there is a bijection betweenm(�) andmm(�). Notice thatBTm0 is constant and contains the information
of the P-semi�ows. Now, let de�ne the function G such that:

G(mm(�)) = �(m)m(�) (3.5)

Finally, the TCPN minimum state equation is written as:
�
mm = CmIc�G(mm) (3.6)

wheremm(�) is the minimum state vector. This equation does not represent a minimum model of the net
because the P � Semiflows are also needed to compute the whole TCPN marking.

Matrices Ic and � are the previously de�ned ones, while Cm = PC.
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De�nition 3.14 Minimum order Class of equivalence.

Let hN;m0i be a TCPN system. The minimum order Class of equivalence ofm0 is de�ned asClassm(m0) =
fmmjmm = Pm;m 2 Class(m0)g.

Proposition 3.2 Characterization of the interior of Classm(m0).

Let m = [m1;m2; :::;mjP j]
T 2 Class(m0) be a marking. 8i mi 6= 0 iff mm is an interior point of

Classm(m0).

Proposition 3.3 Equivalence of solutions of the state equation and the minimum state equation.

An input u transfers the statem fromm0 2 Class(m0) tom1 2 Class(m0) at time t1 iff u transfers the
statemm frommm0

tomm1
at time t1. Wheremm0

= P m0 andmm1
= Pm1 .

Proof Let hN;m0i be a TCPN system. Consider the state equation of the system as the equation (2.5),
and its minimum order state equation as the equation (3.6). Letmm0 be the minimum initial marking. Now,
suppose that the input Ic is applied to both the state equation and the minimum order state equation, then the
marking reached by the state equation at time t1 ful�lls with

m1(t1) = m0 + C�

Z t1

0

Ic�(m)mdt (3.7)

and the marking reached by the minimum order state equation at the same time ful�lls with

mm1(t1) = mm0
+ Cm�

Z t1

0

IcG(mm)dt: (3.8)

For the necessity, premultiplying the equation (3.7) by the projection matrix P , and according to equations
((3.3)) and ((3.5)), the next equation is obtained.

Pm1 = mm0
+ Cm�

Z t1

t0

IcG(mm)dt

Comparing to equation (3.8), thenmm1 = Pm1.

For the suf�ciency, follow the same reasoning and the fact that m0 and m1 can be obtained from mm0

andmm1 with the equation (3.4).
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Chapter

Controllability

For classical linear systems controllability has been thoroughly studied. Although TCPN systems are
continuous systems, the classical linear systems de�nition of controllability cannot be applied to TCPN
systems because the required hypothesis are not ful�lled, i.e. the input should be unbounded and the state
space should be RjP j.

However, an interpretation of the controllability of TCPN systems under that de�nition is �rst presented
in this chapter, before introducing a new controllability de�nition. This interpretation is taken from [7].

The linear system controllability classical de�nition is the following.

De�nition 4.1 Controllability for linear continuous-time systems.

An state equation is fully controllable if there exists an input such that for any two states x1 and x2 of the
state space, it is possible to transfer the state from x1 to x2 in �nite time. Otherwise the state equation is
uncontrollable.

Notice that the reachable markings of a TCPN system does not form a state space (vector space) and the
input of TCPN systems must be positive and bounded. Contrary to linear continuous-time systems in which
the state space is a vector space and it does not exist any constraint imposed to the input.

In system theory, a very well-known controllability criterion exists which allows to verify whether a con-
tinuous linear system is controllable or not, for this, let us introduce the controllability matrix:

De�nition 4.2 Controllability matrix.

Given a linear system �
x(�) = A � x(�) +B � u(�), the controllability matrix is de�ned as:

C = [B; :::; AkB; :::; An�1B]

Then, next proposition gives suf�cient and necessary conditions to controllability in linear continuous
systems:

Proposition 4.1 Controllability of a linear continuous-time system.

A linear continuous-time system �
x(�) = A�x(�)+B �u(�) is completely controllable iff the controllability

matrix C has full rank. If C is not a full rank matrix then the system has only rank(C) controllable state
variables.

For TCPN systems, every �(m) leads to a linear and time-invariant dynamic system with controllability
matrix C(m). Considering the state equation as in (2.3), the controllability matrix is:

C(m) = [C; :::; (C � � ��(m))n�1 � C]
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Proposition 4.2 Equivalence of spaces generated for C(m) and C.

If all transitions are controllable, 8m, the space generated by the columns of C(m) and C are equal.
Thus rank(C(m)) = rank(C) = jP j � dim(B).

Proof Observe that (C � � ��(m))n�1 � C = C � (C � � ��(m))n�1. Thus, rank(C) = rank(C).

Notice that C(m) depends on �(m), but the space generated by its columns is always the same, just that
one de�ned by that of matrix C. Thus is something that can be easily expected because all transitions have
been assumed to be controllable.

Nets with at least one P-semi�ow are non controllable in the classical sense of dynamic system for any
�ring rate � and any initial marking m0. P-semi�ows based token conservation laws make jP j � rank(C)
places linearly-redundant. As it was presented in section 3.3, this token conservation laws causes that the
reachable space be an invariant subset of SASS(N) of dimension rank(C). The difference between the
dimension of the space generated by C and the number of the states variables jP j corresponds to the jP j �
rank(C) zero valued poles of the TCPN system, described in [7]. This zero valued poles, which also are
uncontrollable, are eliminated in the minimum order state equation.

In the next section we propose a de�nition of controllability for TCPN systems as an adaptation of the
classical linear continuous-time systems controllability de�nition. In the second section of this chapter we
study the controllability in TCPN systems where all transitions are controllable. Finally, in the last section
we study the controllability for the case with uncontrolled transitions.

4.1 De�nitions

Now, we propose a de�nition of controllability which is an adaptation of that for linear continuous sys-
tems.

De�nition 4.3 Fully controllability with bounded input BIFC.

Let hN;m0i be a TCPN system. hN;m0i is fully controllable with bounded input (BIFC) if there is an
input such that for any two markings m1;m2 2 Class(m0), it is possible to transfer the marking from m1

tom2 and the input ful�lls that 0 � ui � [��(m)m]i along the trajectory.

This controllability de�nition can be restricted to a set of states.

De�nition 4.4 Controllability with bounded input BIC.

Let hN;m0i be a TCPN system. The TCPN system is controllable with bounded input (BIC) over
S � Class(m0) if there is an input such that for any two states m1;m2 2 S it is possible to transfer the
state fromm1 tom2 and the input ful�lls that 0 � ui � [��(m)m]i along the trajectory.

As we demonstrated in section 3.4, there exists an equivalence between the solutions of both the state
equation and the minimum state equation. Now, next proposition shows the equivalence of controllability
for both equations.
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Proposition 4.3 Equivalence of controllability for the state equation and the minimum state equation.

Let hN;m0i be a TCPN system. Consider the state equation of the system as equation (2.5), and its
minimum state equation as (3.6) with initial condition mm0

= Pm0. The system hN;m0i is BIFC iff its
minimum state equation is fully controllable over Classm(m0) and Ici 2 [0; 1] along the trajectory.

Proof (Suf�ciency). Letm1 andm2 be any two markings that belong to Class(m0). Letmm1 andmm2

be two markings that belong to Classm(m0) such thatmm1
= Pm1 andmm2

= Pm2. By hypothesis, the
minimum state equation is fully controllable over Classm(m0) so there is an input u that transfersm1 tom2

and 0 � u � �G(mm), i.e. 0 � u � ��(m)m. According to proposition 3.3, the same input u transfers
the state fromm0 tom1, therefore the system is BIFC. The necessity follows from a similar reasoning.

Next de�nition introduces an important concept for the study of continuous systems, which will be very
useful for the study of controllability in case of existing uncontrolled transitions.

De�nition 4.5 Equilibrium points.

Let (N;m0) be a TCPN system. Letmd 2 RS(N;m0) and 0 � ud � � � �(md) �md. Then (md; ud)

is an equilibrium point if �
md(ud) = 0.

An equilibrium point represents a state in which the system can be maintained using the de�ned control
action. Given an initial markingm0 and a required markingmd, one control problem is to reach and maintain
md. From de�nition, a markingmd is an equilibrium marking if C � (� ��(md) �md � ud) = 0. Therefore,
the �ow of a controlled TCPN in the equilibrium markingmd, with ud as input, is a T-semi�ow.

A broad study of equilibrium points in TCPN systems can be found in [7].

4.2 The case of all transitions as controllable

In this section we will study the controllability of TCPN systems, according to the de�nitions of the
previous section, for the case in which all transitions are controllable.

Next theorem gives suf�cient and necessary conditions to verify whether a TCPN system is BIC over
the interior of Class(m0) or not.

Theorem 4.1 Controllability over the interior of Class(m0).

Let hN;m0i be a TCPN system. Consider the minimum state equation of the net as in equation (3.6),
and let n be the order of the minimum state equation. Let S be the set of all interior points of Classm(m0).
The system hN;m0i is BIC over S iff 8d 2 Rn 9v 2 fR+ [ f0ggjT j such that Cmv = d:
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Proof According to proposition 3.2, 8mm 2 S its elements are non zero. (Suf�ciency) Let d be any
vector in Rn, by hypothesis 9v 2 fR+ [ f0ggjT j such that Cmv = d. The vector G(mm) can be written
as:

G(mm) = �(m)m =

2664
�1
�2
:
:
�jT j

3775 (4.1)

By hypothesis 8i; mi 6= 0, then �i 6= 0. From de�nition � = diag(�1; �2; :::; �jT j) and Ic =
diag(Ic1 ; Ic2 ; :::; IcjT j), so the column vector [Ic�G(mm)] can be written as:

Ic�G(mm) =

2664
Ic1�1�1
Ic2�2�2

:
:

IcjT j�jT j�jT j

3775 (4.2)

Notice that it is always possible to independently change all the elements of the vector [Ic�G(mm)]

through Ic, so there exists a factor � 2 R+ � f0g and an input Ic with Ici 2 [0; 1] such that:

�v = Ic�G(mm)

Applying to the minimum state equation:
�
mm = Cm�v

and by suf�ciency hypothesis:
�
mm = �d

Therefore it is always possible to direct the �eld vector in allmm 2 Classm(m0) to any desired direction
d, and then to follow any trajectory in Classm(m0), and due the convexity of Classm(m0), there is a
trajectory frommm0

to anymmd
2 Classm(m0). Finally, the minimum state equation is fully controllable,

besides Ic 2 [0; 1], then the system hN;m0i is BIFC.

(Necessity). For the following reasoning, refer to the �gure 4.1.

By hypothesis, 9d 2 Rn such that 8v 2 fR+ [ f0ggjT j; Cmv 6= d (i.e. the vector d is not a positive
linear combination of the columns of Cm ).

Suppose that d is such that all the elements of CTmd are not positive, (if it is not the case, a new vector d0,
such that all the elements of CTmd0 are non positive, can be found from d eliminating its positive components
in the directions of the columns of Cm).

Let q be an interior point of Classm(m0), let s be the perpendicular plane to the direction of d that passes
through q, then s divides Classm(m0) in two regions, named 
+ and 
�, where (d+ q) 2 
+. Then:

8p 2 
+; fT � d > 0 where f = p� q

It means that there is a positive component of f in the direction of d, then f is not a positive linear
combination of the columns of Cm, so:

8v 2 R+jT j; Cmv 6= f
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Figure 4.1 A TCPN system and its Class(m0) set.

Since Ic�G(mm) 2 R+jT j, then:

CmIc�G(mm) =
�
mm 6= �f where � 2 R+ � f0g, Ici 2 [0; 1]

Therefore it is not possible to direct the �eld vector �mmin s to any point p 2 
+ (i.e. it is not possible to
cross s to 
+) then 
+ is not reachable from q, and the system hN;m0i is not BIFC.

Next theorem provides a condition of controllability easier to test than the condition which is required in
the theorem 4.1.

Theorem 4.2 Equivalent condition of controllability.

8d 2 Rn, 9v 2 fR+ [ f0ggjT j such that Cmv = d iff 9k 2 kerd(Cm); k 2 R+jT j, where kerd(Cm) is
the right annuller of Cm.

Proof (Suf�ciency). By hypothesis 9k 2 kerd(Cm); k 2 R+jT j: Let CmI be a matrix built with the �rst
n linearly independents columns of Cm, then CmI is not singular, therefore:

8d 2 Rn 9v 2 Rn such that CmIv = d

Now, let w be a column vector of order jT j, such that wi = vi if the i column of Cm is in CmI , and wi = 0
otherwise. Then Cmw = d. Let wmin be the minimum element of w. In case of wmin < 0, there is a scalar
� 2 R+ such that all the elements of the vector x = w � �wmink are nonnegative, and Cmx = d; in other
case wmin � 0, then w 2 fR+ [ f0ggjT j.

(Necessity). Suppose that 8k 2 kerd(Cm); k =2 R+jT j: Let be v 2 R�jT j , i.e. all the elements of v are
negative.

Let d = Cmv. Since 8w 2 RjT j such that Cmw = d it happens that w = v + k; k 2 kerd(Cm), but
k =2 R+jT j and v 2 R�jT j, then w =2 R+jT j. Therefore, there is d such that, 8v that ful�lls Cmv = d, it
happens that v =2 fR+ [ f0ggjT j.

An useful consequence from the proof of the theorem 4.1 is introduced in the next theorem which provides
necessary and suf�cient conditions for reachability.
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Theorem 4.3 Reachability.

Let hN;m0i be a TCPN system. Consider the minimum state equation of the net as in equation (3.6), and
let n be the order of the minimum state equation. Let S � Classm(m0) be a convex set such that 8mm 2 S
its elements are nonzero. The marking mmd 2 S is reachable from mm0 2 S iff 9v 2 fR+ [ f0ggjT j such
that Cmv = (mmd �mm0).

Proof (Suf�ciency) Let v 2 fR+[f0ggjT j such that Cmv = (mmd�mm0
). Consider the column vector

[Ic�G(mm)] as in equation (4.2), then it is always possible to independently change all the elements of the
vector [Ic�G(mm)] through Ic, so there is a factor � 2 R+ � f0g and an input Ic with Ici 2 [0; 1] such
that:

�v = Ic�G(mm)

Applying to the minimum state equation:
�
mm = Cm�v

and by hypothesis:
�
mm = �(mmd �mm0

)

Therefore it is always possible to direct the �eld vector in allmm 2 S (including L = fmmjmm = 
mm0
+

(1� 
)mmd; 
 2 [0; 1]g) to the direction (mmd�mm0
), and due the convexity of S, to reachmmd through

L. (Necessity). Follow the same reasoning as the proof of the theorem 4.1, with d = (mmd �mm0
).

Notice that the previous theorem provides conditions of reachability whenever the system is BIFC or
not.

Figure 4.2 A TCPN system and its Classm(m0). The markingm1 is reachable fromm0, but the marking
m2 is not.

The controllability and reachability can be understood from a graphical point of view. Consider the system
of the �gure 4.2. The columns of the matrix Cm are Cm1 and Cm2. Notice that the vector (m1 �m0) is a
positive linear combination of Cm1 and Cm2.and since the vector �eld is a positive linear combination of the
columns of Cm, then m1 is reachable from m0, and therefore all the points in the shadowed area compose
the set of all reachable markings. The vector (m2 �m0) is not a positive linear combination of the columns
of Cm, thenm2 is not reachable fromm0.

Now, consider the system of �gure 4.3. The net of this system is similar to that of �gure 4.2 but it has
another transition. In this system, the vector (m2 �m0) is a positive linear combination of the columns of
Cm, actually all vectors in R2 can be considered as a positive linear combination of the columns of Cm, so,
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this is a BIFC system.

Figure 4.3 A TCPNsystem. The columns of the matrix Cm cover all Classm(m0), and then this system
is BIFC.

Next theorem study the possibility of transferring the marking from a border point to an interior point of
Classm(m0).

Theorem 4.4 Controllability at border points.

Let hN;m0i be a TCPN system, such that it is live and bounded as discrete. Letm0 be a marking with
null elements. An input, such that Ic is invertible, transfers the state fromm0 to somemf ,wheremf has not
null elements.

Proof Consider a place pi without tokens at time � , so pi cannot lose tokens. When an input such that Ic is
invertible is applied, then for any transition tj , [�Ic�(m)m(�)]j = 0 iff there is an input place to transition
tj without tokens. In the same way pi cannot win tokens iff there exist unmarked input places to all the input
transitions to pi, i.e.:

8m(�)i = 0;
�

m(�)i = 0 iff 8t�k = pi;9pr =� tk such thatm(�)r = 0:

If a place pi has not tokens at time � and remains without tokens for future time, then there exists an input
place to pi which remains without tokens for all time. Now, for this new place it should comply the same
rule. Therefore, pi belongs to an initially unmarked siphon, but since the system is live as discrete there is
not such siphon.

Therefore, a control law such that Ic is invertible should give tokens to the unmarked places, so the state
will be transferred to somemf which has not null elements.

Although liveness of the discrete system does not imply liveness of the continuous system, previous
theorem is sustained by the liveness of the discrete system. Notice that for the proof, liveness of the TCPN
system is not required, only the property that it does not exist initially unmarked siphon in the system is
required, which follows from the liveness of the discrete system.

Theorems 4.1, 4.2 and 3.2 establish that a TCPN system is BIC over the set of all the interior points of
Classm(m0) iff 9k 2 kerd(Cm) such that k 2 R+jT j. Even when Classm(m0) is not open, it is possible to
asymptotically transfer the state to anmd not interior, following an interior points trajectory. By theorem4.4,
if the system is live as discrete, then it is always possible to transfer the marking from a border point to an
interior point of Class(m0). So, we conclude that a TCPN system, which is live as discrete, is BIFC iff
9k 2 kerd(Cm) such that k 2 R+jT j.
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Notice that the theorem 4.1 gives a structural test of controllability. This structural sense is explored in
the next proposition.

Proposition 4.4 The controllability is an structural property for live systems.

Let N be a TCPN . Then the system hN;m0i, which is live as discrete, is BIFC over Class(m0) iff
the system hN;m1i, which is live as discrete, is BIFC over Class(m1); where m0;m1 2 SASS(N) and
Class(m0) 6= Class(m1).

Proof Let the system hN;m0i be BIFC, then, according to the theorem 4.1, 8d 2 Rn 9v 2 fR+ [
f0ggjT j such that Cmv = d, so the system hN;m1i ful�lls the conditions of the theorem 4.1. Therefore it is
BIC over the interior of Class(m1). Finally, since the system hN;m1i is live as discrete, according to the
theorem4.4, for any marking in the frontier of Class(m1) there exists an input that transfers the state to the
interior, therefore, the system hN;m1i is BIFC.

Finally next theorem is presented.

Theorem 4.5 Controllability in live and bounded Petri nets.

Let (N;m0) be a live and bounded discrete Petri net system. Then the respective TCPN is BIFC.

Proof From lemma 2.2 it is known that there exists an occurrence sequence � for the discrete Petri net
such that � contains all transitions of N , and that m �! m for some reachable marking m. Consider the
Parikh vector of � as�!� , then all elements of�!� are positives. Now, considering the marking equation, then:

m = m+ C�!�

So, �!� is in the right kernel of the incidence matrix, and according to theorems 4.2 and 4.1 the continuous
system isBIC over Class(m0). Now, since the system is live and bounded as discrete, then theorem4.4 can
be applied, so the continuous system is BIFC.

4.3 The case of uncontrolled transitions

In this section the controllability of TCPN systems is studied for the case with uncontrolled transitions.
The controllability in this case has been explored by Jiménez, Júlvez, Recalde and Silva [8]. They introduced
a controllability de�nition as a property of markings, i.e., a marking is said controllable iff it is reachable
and it is an equilibrium point (with a suitable bounded input). They characterized the set of �controllable
markings� for join free Petri nets.

In this dissertation, the controllability is studied according to the de�nitions previously presented in this
chapter. In this section, a de�nition of the equilibrium points set is introduced and next, the controllability is
studied on this set for a general kind of net. Since this set is de�ned from the structure, then the controllability
proposed in this dissertation is an structural property of the system, not a property of markings.

Along this section, both approaches are compared. Remember that, according to de�nitions of section
2.3, for any uncontrolled transition ti, the input u is such that u(ti) = 0 and so Ic(ti) = 1.

An important de�nition, which was introduced in [8] by Jiménez, Júlvez, Recalde and Silva, is that of the
controllability space, which is shown next:
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Figure 4.4 A TCPN system. Consider transition t4 as the only uncontrolled transition.

De�nition 4.6 Controllability Space CS.

Given an initial marking m0 and a set of controlled transitions Tc � T , the Controllability Space (CS)
is de�ned as the set of all the controllable markings, i.e., CS = fmf j9u(�) such that m0

u! mf and
�
mf (u) = 0g.

An inconvenience with this de�nition is that CS is de�ned as a function of m0, not from the structure.
The CS constitutes the set of markings that can be equilibrium markings given Tc and that can be reached
fromm0. In order to de�ne this concept independently of the initial marking, the next de�nition is proposed.

De�nition 4.7 Equilibrium set ES.

Let hN;m0i be a TCPN system. Given the set of controlled transitions Tc � T , the Equilibrium Set is
de�ned as ES = fm 2 Class(m0)j9u bounded with ui = 0;8ti =2 Tc and

�
m(u) = 0g.

For the cases studied in [8], the equilibrium set and the controllability space are the same, but for a general
case they are not equivalent.

In order to illustrate the difference between ES and CS, consider the net of the �gure 4.4 with t4 as the
only controllable transition, and letm0 = [0:5; 0:5; 4; 2; 0:5; 0:5]

T be the initial marking. The Classm(m0)

is shown in �gure 4.5. The bold line inside corresponds to ES. Since t4 is the only controllable transition,
the marking md = [0:5; 0:5; 3; 3; 0:5; 0:5]

T is not reachable from m0 even when both belong to ES, so md

doesn't belong to CS. In this case, only the markings in the segment [m0;mq] belong to CS.

Next de�nition introduce different subsets of ES.

De�nition 4.8 The sets Si, Sinti and S+i .

Let hN;m0i be a TCPN system. Let Tc be the set of controlled transitions. The set of all equilibrium
markings with the same con�guration �i is de�ned as Si = fm 2 ESj�(m) = �ig. The interior of Si is
given by Sinti = fm 2 Sij(m; Iqc ) is an equilibrium point and I

q
ci 2 (0; 1);8ti 2 Tcg. In the same way,

the subset of Si, in which all equilibrium inputs are positives, is de�ned as S+i = fm 2 Sij(m; Iqc ) is an
equilibrium point and Iqci 2 (0; 1];8ti 2 Tcg. Notice that Sinti � S+i � Si.

Another important result obtained by Jiménez, Júlvez, Recalde and Silva [8] is the convexity of CS for
join free nets. The generalization of this result is introduced in the next proposition.

Proposition 4.5 Convexity of the sets Si, Sinti and S+i .

Let hN;m0i be a TCPN system, and Tc be the set of controlled transitions. If for a given con�guration
�i, Sinti is not null, then Si, S+i and Sinti are convex sets.
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Figure 4.5 The Classm(m0) of the system of the �gure 5.2. The bold line at the center of the cube is the
ES, where t4 is the only controlled transition.

The proof follows directly from the linearity of the �ow and it is the same presented by Jiménez, Júlvez,
Recalde and Silva in [8].

The projection of these sets over Classm(m0) are de�ned in the next de�nition.

De�nition 4.9 The sets Smi, S+mi and Sintmi .

The projection of the set Si over Classm(m0) is de�ned as Smi = fmmjmm = Pm;m 2 Sig. In the
same way, the projection of the set S+i over Classm(m0) is S+mi = fmmjmm = Pm;m 2 S+i g and the
projection of Sinti is Sintmi = fmmjmm = Pm;m 2 Sinti g.

Since the projection is a linear operator, the sets Smi, S+mi and Sintmi are convex too.

Next de�nitions are useful to explore the controllability.

De�nition 4.10 The input transfer matrix Cmc.

Let hN;m0i be a TCPN system. Let Tc = ftc1 ; tc2 ; :::; tcjTcjg be the set of controllable transitions, and
de�ne the controllable projection matrix as Oc =

�
ec1 ec2 ::: ecjTcj

�
, where ej is the j � th column

vector of the unity matrix of order jT j. Then, the input transfer matrix Cmc is de�ned as Cmc = CmOc.

De�nition 4.11 The local constant �ow vector Ai and the local �ow matrix Ji.

Consider a con�guration �(m) = �i, where m 2 Class(m0). The local constant �ow vector Ai and
the local �ow matrix Ji related to �i are de�ned such that 8m 2 fm 2 Class(m0)j�(m) = �ig, it ful�lls
that �(m)m = �im = Ai + Jimm, wheremm = Pm.

Now, we introduce the next theorem, which gives suf�cient conditions to controllability in S+i .
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Theorem 4.6 Local controllability with bounded input.

Let hN;m0i be a TCPN system, where the minimum initial markingmm0
belongs to some S+mi. De�ne

Inc as a diagonal matrix where Inci = 1;8ti =2 Tc, and Inci = 0;8ti 2 Tc The system is BIC over S+i if

9k 2 R+jTcj(z+1) such that k 2 kerd([Cmc, (CmInc�Ji)Cmc, :::, (CmInc�Ji)zCmc]) for some z 2 N

Proof Consider the minimum state equation as in equation (3.6). De�ne Icon such that Ic = Inc + Icon.
Let I 0con and I 00con be two matrices such that Icon = I 0con + I 00con, then

Ic = Inc + I
0
con + I

00
con (4.3)

Considering previous de�nitions, the state equation can be rewritten as:
�
mm = CmInc�Ai + CmInc�Jimm + CmI

0
con�G(mm) + CmI

00
con�G(mm)

Which is valid in S+mi. Now, consider the equilibrium point (mmq; I
q
c ), where mmq 2 S+mi, and de�ne

Iqcon such that

Iqc = Inc + I
q
con (4.4)

Let I 0con be calculated such that

I 0con�G(mm) = I
q
con�G(mmq) (4.5)

Then, the state equation is rewritten as:
�
mm = CmInc�Ai+CmInc�Ji(mm�mmq) +CmInc�Jimmq +CmI

q
con�G(mmq) +CmI

00
con�G(mm)

Notice that

CmInc�Ai + CmInc�Jimmq + CmI
q
con�G(mmq) = CmI

q
c�G(mmq) = 0

and that CmI 00con�G(mm) = Cmcu2, where the new input u2 is de�ned as:

u2 = O
T
c I

00
con�G(mm) (4.6)

and

OcO
T
c I

00
con = I

00
con

So, substituting in the previous equation:
�
mm = CmInc�Ji(mm �mmq) + Cmcu2
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De�ne a new variable � = mm �mmq, then
�
� =

�
mm, that is:

�
� = CmInc�Ji�+ Cmcu2

The solution of this state equation is given by:

�(�) = eCmInc�Ji��(0) +

Z �

0

eCmInc�Ji�Cmcu2(� � �)d�

But, consideringmm(0) = mmq, then �(0) = 0. Developing previous equation, then:

�(�) = eCmInc�Ji��(0) +

Z �

0

eCmInc�Ji�Cmcu2(� � �)d�

mm(�)�mmq =

Z �

0

eCmInc�Ji�Cmcu2(� � �)d�

=

Z �

0

�
I + (CmInc�Ji)� + (CmInc�Ji)

2 �
2

2!
+ :::

�
Cmcu2(� � �)d�

Finally, taking out the constant elements from the integral and arranging the equation, the next equation
is obtained:

mm(�)�mmq =
�
Cmc (CmInc�Ji)Cmc (CmInc�Ji)

2Cmc :::
�
266666664

Z �

0

u2(� � �)d�Z �

0

�u2(� � �)d�Z �

0

�2

2! u2(� � �)d�
:

377777775
(4.7)

Notice that if the input were unbounded and the matrix [Cmc, (CmInc�Ji)Cmc, (CmInc�Ji)2Cmc, ...]
were a full rank matrix, any marking of Classm(m0) would be reachable from mmq, but in this case the
input is already bounded. So, in order to investigate the reachability frommmq it is necessary to analyze the
boundedness in the input.

Now, consider any controllable transition ti 2 Tc. According to equation (4.4), Iqci = Iqconi, due to the
fact that Inci = 0. From equation (4.5), I1coniGi(mm) = I

q
coniGi(mmq).

So, according to these equations:

I1coni = I
q
ci

Gi(mmq)

Gi(mm)

Substituting in (4.3):

I2coni = Ici � I
q
ci

Gi(mmq)

Gi(mm)

Since Ici 2 [0; 1] then:

I2coni 2
�
�Iqci

Gi(mmq)

Gi(mm)
; 1� Iqci

Gi(mmq)

Gi(mm)

�
(4.8)

Notice that for allmmq 2 S+mi the corresponding equilibrium input Iqc is such that 8ti 2 Tc, I
q
ci 2 (0; 1].

Consider the case in which Iqci 2 (0; 1). Since G(�) is a linear function, there exists a small enough
neighborhood of mmq named V (mmq) such that for all mm 2 V (mmq), Iqci

Gi(mmq)
Gi(mm)

< 1. Then, I2coni can
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be done either positive or negative.

In case that Iqci = 1, then, according to equation (4.8), I2coni can be settled as a negative value, and as
small in magnitude as desired, just considering a small enough neighborhood.

Therefore, 8mmq 2 S+i there exists a neighborhood V (mmq) of mmq where I2coni can be settled as
a negative value, and as smaller in magnitude as desired. Now, since u2 = OTc I

00
con�G(mm), then the

elements of u2 can be settled also as a negative value, and independently as small in magnitude as desired.
Notice that the negative bound of the input u2 is determined by the equilibrium marking, not by the current
marking.

Finally, since the elements of the right side vector of equation (4.7) are linearly independent functions
of u2, then the elements of this vector can be settled as a negative value, and independently as small in
magnitude as desired.

Now, by hypothesis and the theorem 4.2, 8mmd 2 Classm(m0) there exists v 2 R+jTcj(z+1) such that

�(mmd �mmq) = [Cmc; (CmInc�Ji)Cmc; (CmInc�Ji)
2Cmc; :::; (CmInc�Ji)

zCmc]v, where z > n.

And according to the Calley-Hamilton's theorem, there is a vector w, where all its elements are negative,
such that

(mmd �mmq) = [Cmc; (CmInc�Ji)Cmc; (CmInc�Ji)
2Cmc; :::]w (4.9)

Notice that it is always possible to �nd a positive scalar � and an input I 00con, bounded by (4.8), such that

w = �

� Z �

0

u2(� � �)d�
Z �

0

�u2(� � �)d�
Z �

0

�2

2! u2(� � �)d� :::

�T
Then, substituting w in (4.9) we have:

� (mmd �mmq) =
�
Cmc (CmInc�Ji)Cmc (CmInc�Ji)

2Cmc :::
�
266666664

Z �

0

u2(� � �)d�Z �

0

�u2(� � �)d�Z �

0

�2

2! u2(� � �)d�
:

377777775
Comparing this equation with the equation (4.7), we conclude that the markingmmq + � (mmd �mmq)

is reachable from mmq, and since it is valid for any mmd 2 Classm(m0), then there exists a reachable
neighborhood ofmmq.

This result is also easy to see from equation (4.7), just consider that the hypothesis and the Calley-
Hamilton's theorem implicate that all directions in Classm(m0) can be covered with an input such that
all its elements are negative, and by the equation (4.8) an input, such that all its elements are negative, can
be always applied, at least for a small neighborhood ofmmq.

Finally, since S+mi is a convex set, and 8mmq 2 S+mi there exists a reachable neighborhood from mmq,
which includes another markings of S+mi, then the system is BIC over S

+
i .

Next theorem provides a relaxed suf�cient condition to controllability in Sinti .
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Theorem 4.7 Controllability over Sinti .

Let hN;m0i be a TCPN system, where the minimum initial marking mm0
belongs to Sintmi . The system

is BIC over Sinti if the controllability matrix Cont(CmInc�Ji; Cmc) de�ned as

Cont(CmInc�Ji; Cmc) = [Cmc; (CmInc�Ji)Cmc; (CmInc�Ji)
2Cmc; :::; (CmInc�Ji)

n�1Cmc]

has full rank.

Proof Consider the proof of the theorem 4.6. Notice that for allmmq 2 Sintmi the corresponding equilibrium
input Iqc is such that 8ti 2 Tc, I

q
ci 2 (0; 1). In this case, since G(�) is a linear function, there exists an

enough small neighborhood of mmq named V (mmq) such that for all mm 2 V (mmq), Iqci
Gi(mmq)
Gi(mm)

< 1.
Then, according to the equation (4.8) I2coni can be settled as either a positive or a negative value. Since
u2 = O

T
c I

00
con�G(mm) and the elements of the right side vector of equation (4.7) are linearly independent,

then the elements of this vector can be settled independently as either a positive or a negative value.

According to the hypothesis and the Calley-Hamilton's theorem, 8mmd 2 Classm(m0) there is a vector
w, such that

(mmd �mmq) = [Cmc; (CmInc�Ji)Cmc; (CmInc�Ji)
2Cmc; :::]w (4.10)

Notice that it is always possible to �nd a positive scalar � and an input I 00con, bounded by (4.8), such that

w = �

� Z �

0

u2(� � �)d�
Z �

0

�u2(� � �)d�
Z �

0

�2

2! u2(� � �)d� :::

�T
Then, substituting w in (4.10) we have:

� (mmd �mmq) =
�
Cmc (CmInc�Ji)Cmc (CmInc�Ji)

2Cmc :::
�
266666664

Z �

0

u2(� � �)d�Z �

0

�u2(� � �)d�Z �

0

�2

2! u2(� � �)d�
:

377777775
Comparing this equation with the equation (4.7), then we conclude that the markingmmq+� (mmd �mmq)

is reachable from mmq, and since it is valid for any mmd 2 Classm(m0), then there exists a reachable
neighborhood ofmmq.

Finally, since Sintmi is a convex set, and 8mmq 2 Sintmi there exists a reachable neighborhood from mmq,
which includes other markings of Sintmi , then the system is BIC over Sinti .

Next theorem provides a necessary condition to reachability from the initial marking to another marking,
where both belong to the same con�guration.

Theorem 4.8 Reachability.

Let hN;m0i be a TCPN system, where the minimum initial marking mm0 belongs to Smi. De�ne the
set of all markings with the con�guration �i as S�i = fm 2 Class(m0)j�(m) = �ig. Consider a marking
md 2 S�i , and letmmd = Pmd.

Ifmd is reachable fromm0 through a trajectory in S�i , then the vector (mmd �mm0) is in the range of
the controllability matrix.
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Proof The proof follows by contradiction. Suppose that the vector [mmd �mm0
] is not in the image

of the controllability matrix, then, due to the Calley-Hamilton's theorem, the vector is not in the image of
the matrix

�
Cmc (CmInc�Ji)Cmc (CmInc�Ji)

2Cmc :::
�
. Finally, according to the equation (4.7),

there does not exists an input u2, bounded or not, such thatmmd be reachable frommm0 .

The next example illustrate the use of previous theorems.

Example 4.1 Consider the system of the �gure 4.6, where the minimum marking ismm =
�
m1 m3

�T .
In this example, the transition t3 is the only uncontrolled transition, and the structure of the system is given
by the following matrices:

Cm =

�
�1 1 0
0 �1 1

�
� =

24 1 0 0
0 1 0
0 0 1

35 �(m) = �1 =
241 0 0 0
0 1 0 0
0 0 0 1

358m 2 Class(m0)jm2 < m3

The upper shadowed triangle in the �gure 4.6 correspond to ES. The matrices de�ned in the previous
theorems are:

A1 =

24 0
�1
�3

35 J1 =
24 1 0
�1 0
0 �1

35 Inc =
24 0 0 0
0 0 0
0 0 1

35 Cmc = � �1 1
0 �1

�

CmInc�J1 =

�
0 0
0 �1

�
Cont(CmInc�J1; Cmc) =

�
�1 1 0 0
0 �1 0 1

�

According to the theorem 4.7, the system is BIC over the set Sinti if the controllability matrix has full
rank. For this example, considering �i = �1, the shadowed area in the interior of the triangle in �gure 4.6
is equivalent to Sintmi . Since for this example the matrix Cont(CmInc�Ji; Cmc) has full rank, the system is
BIC over the shadowed area.

Now, the set S+mi, where �i = �1, includes the shadowed area in the interior of the triangle and the edges
e1 and e2 in �gure 4.6.

The controllability S+i can be checked using the theorem 4.6. The matrix to be checked with z = 1 is:

[Cmc; (CmInc�Ji)Cmc] =

�
�1 1 0 0
0 �1 0 1

�

Since k =
�
1 1 1 1

�T 2 kerd([Cmc; (CmInc�Ji)Cmc]) \R+4, the system is BIC over S+i .
Next theorem establishes a suf�cient condition of controllability in a subset of ES, valid when there is

only one uncontrolled transition. Although previous theorems can be applied for this case, the proof of next
theorem will be subsequently useful when the structure of a control law is de�ned.

Theorem 4.9 Controllability in case of jT � Tcj = 1.

Let hN;m0i be a TCPN system, such that it is live and bounded as discrete. Suppose that 9k 2
kerd(Cm) such that k 2 R+jT j. Let Tc be the set of controllable transitions such that jT � Tcj = 1.
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Figure 4.6 A TCPN system and its Classm(m0) set. The transtition t3 is uncontrolled, and the transitions
t1 and t2 are controllable. The shadowed area is the corresponding ES.

Let S be a connected subset of ES such that all markings in S have the same con�guration, then the system
is BIC over S.

Proof Let m1 be an interior marking of S, and mm1 = Pm1. Since m1 2 S there is an input I0c
such that CmI0c�G(mm1) = 0, with I0ci = 1, where ftig =2 Tc. Since m1 is an interior point of S then
I0cj 2 (0; 1);8tj 2 Tc.

Let m2 be a marking such that m2 2 Class(m1) and mm2 = Pm2. Since m1 2 S, there is a vector
k 2 kerd(Cm), k 2 fR+ [ f0ggjT j such that I0c�G(mm1) = �2k.

Now, let v0 2 RjT j be a particular solution of Cmv = (mm2 � mm1), such that v0i = 0 where ti =2
Tc, (notice that it is always possible to �nd such v0 because Cm has a right kernel), then v = �1v0 +

�2k; �1; �2 2 R+; is a solution of Cmv = �(mm2 �mm1); � 2 R+.

As I0c is such that I0cj 2 (0; 1);8tj 2 Tc, then it is always possible to �nd �1 2 R+, such that 0 � vi �
[�G(mm1)]i, and therefore I1c such that CmI1c�G(mm1) = �(mm2 �mm1) where � 2 R+, I1ci 2 [0; 1],
and I1cj = 1 8tj =2 Tc.

So, it is always possible to point the �eld vector in all the interior markings of S to anym 2 Class(m0).
Because S is a connected set, there exists a trajectory that connects anym1 andm2 in S. Thus the system is
BIC over S.
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Chapter

Control laws

The main goal of this chapter is to provide effective control laws for TCPN systems, i.e. suitable bounded
control laws that transfer the marking from the initial marking to the required equilibrium marking.

In the �rst section of this chapter, the behavior of the controlled TCPN system, when a classical feedback
state control law is applied, is studied.

After that, in the following two sections, we will introduce two effective control laws: one for the case
in which all transitions are controllable, and the other for the case in which there is only one uncontrolled
transition.

Finally, in the last section, we will propose a control law scheme for the case in which there are several
uncontrolled transitions.

Along this chapter some stability concepts will be used. For a proper introduction to those concepts see
[11].

5.1 Classical feedback state control law

As it is well known, the classical feedback state control law for a linear continuous-time system �
x =

A � x+B � u, is a linear state function as:

u = k � x

where the constant matrix k is chosen such that the matrix (A�B � k) has all its eigenvalues as negative.

Now consider a TCPN system (N;m0) in which all transitions are controllable. Let md be a desired
equilibrium marking.

Consider a feedback state control law as:

ufb = K1(m) �m+K2(m) �md (5.1)

According to equation (2.3), this control law must ful�ll that:

0 � K1(m) �m+K2(m) �md � � ��(m) �m (5.2)

FunctionsK1(�) andK2(�) can be de�ned as constants by con�gurations, i.e.:
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K1(m1) = K1(m2) iff �(m1) = �(m2)

K2(m1) = K2(m2) iff �(m1) = �(m2)

So, if this control law is applied to the state equation (2.3), the following equation of the closed-loop
system is obtained.

�
m = C(� ��(m) �m�K1(m) �m�K2(m) �md) (5.3)

Then for any con�guration �i a closed-loop system equation can be written as:

�
m = C(� ��i �K1i) �m�K2i �md

Now, consider the error vector as:

e = md �m

So, the dynamic behavior of the error in the con�guration �i is characterized by the equation:

�
e = �C(� ��i �K1i) �m+K2i �md

This equation is equivalent to:

�
e = C(� ��i �K1i) � e+ C(K2i � � ��i +K1i) �md

Finally, choosing K1(�) such that the matrix C(� � �i � K1i) has all its eigenvalues as negative, and
K2(�) such thatK2i = � ��i �K1i, the markingmd is the unique asymptotically stable equilibrium point
in the closed-loop system.

This control law has two important problems. The �rst one is that the input of a TCPN is bounded, so,
we cannot be sure that the control law proposed ful�lls the bound of equation (5.2) for all markings along
the trajectory.

The second problem is that the �state space� of a TCPN system is bounded (at least it is positive). So,
the solution of (5.3) may try to transfer the marking outside of Class(m0), which is not possible.

In order to illustrate this second problem, consider the �gure .5.1. In this �gure the �state space� of
a TCPN controlled system, in which the feedback state control law previously described is applied, is
shown.

The circle in �gure 5.1 corresponds to the Lyapunov surface that passes through m0. So, the points
inside the circle constitutes the region of attraction of the closed-loop system. Even when the trajectory tr is
inside the region of attraction, it includes the pointmf which does not belong to Class(m0). Therefore, the
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Figure 5.1 Region of attraction of a closed-loop system with a feedback state control law.

closed-loop system cannot generate such trajectory.

Actually, the feedback state control law can block the system in a border point of Class(m0).

Finally we conclude that this control approach is not always effective.

5.2 The case of all transitions as controllable

Through this section, only TCPN systems such that all transitions are controllable will be considered.

Let hN;m0i be a live, bounded and BIFC TCPN system. Let mmd
2 Classm(m0) be a desired

minimum marking, and letmm0 = Pm0 be the minimum initial marking such thatmm0 is an interior point
of Classm(m0).

The error vector is de�ned as:

em = (mmd �mm)

Since hN;m0i is BIFC, there is a vector v 2 R+jT j such that Cmv = em. Let mm be an interior
point of Classm(m0), then there is always a function � : R+jT j � R+jT j �! R+ and an input Ic (with
Ici 2 [0; 1]), such that �(v;�G(mm))v = Ic�G(mm).

Substituting previous equality into the minimum state equation leads:

�
mm = �(v;�G(mm))v

Considering that �(v;�G(mm)) is a scalar function and substituting the error vector equality, then:

�
mm = �(v;�G(mm))em

So, the �eld vector has the error vector direction.

Consider the next function as a Lyapunov candidate function

V = eTmem (5.4)
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Derivating the Lyapunov function:
�
V = 2

�
e
T

mem = �2
�
m
T

mem = �2�(v;�G(mm))e
T
mem = �2�(v;�G(mm))V (5.5)

Since �(v;�G(mm)) 2 R+, then
�
V is negative de�ned. Therefore em is asymptotically stable. This

control law transfers the marking frommm0 tommd following a linear trajectory.

Now, let em0
be the error vector inmm0

, and let v0 be such that:

Cmv0 = em0
, v0 2 R+jT j:

By controllability hypothesis, there are solutions for � and Ic in the equation

�(v0;�G(mm))v0 = Ic�G(mm): (5.6)

Consider the elements of �G(mm) and v as:

�G(mm) =

2664
�1�1
�2�2
:
:

�jT j�jT j

3775 ; v =

2664
v1
v2
:
:
vjT j

3775
If mmd

is an interior point of Classm(m0), then 9� 2 R+ such that 8i; �i�i > �, and if Ic is such
that Icj = 1 (this is always possible) then Icj�j�j > �, and, according to the equality of equation (5.6),
�(v0;�G(mm)) > �=v0j where �=v0j 2 R+.

Then:

k �
mm k= �(v0;�G(mm)) k em0 k> (�=v0j) k em0 k

Consider the Lyapunov candidate function as in equation (5.4), then its derivative is:
�
V < �(2�=v0j) k em0 k 2

p
V (5.7)

The above inequality implies that the statemmd is reached in �nite time.

In order to calculate Ic it is necessary to solve the equation (5.6). Suppose that � is de�ned as:

�(v;�G(mm)) =
1

max(v1=(�1�1); v2=(�2�2); :::; vjT j=(�jT j�jT j))
(5.8)

wheremax(�) is the greater element of the argument. Then Ic is equal to:

Ic =
1

max(v1=(�1�1); v2=(�2�2); :::; vjT j=(�jT j�jT j))
diag(v1=(�1�1); v2=(�2�2); :::; vjT j=(�jT j�jT j))

(5.9)

Notice that Ici 2 [0; 1] 8i 2 f1; 2; :::; jT jg,andmax(Ic1;Ic2;:::; IcjT j) = 1 whenever v 6= 0.

Finally the original input u can be calculated as:
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Figure 5.2 The TCPN system for the example 5.1.

u = Iu��(m)m = (I � Ic)��(m)m (5.10)

Example 5.1 Let N be the net of the �gure 5.2, which structure is represented by the next matrices:

C =

26666664
�1 1 0 0
1 �1 0 0
0 �1 1 0
0 1 �1 0
0 0 �1 1
0 0 1 �1

37777775 , � = diag(1; 1; 1; 1)

The con�guration matrix is given by the next rules:

�(m) = �1, if m2 < m3 and m4 < m5

�(m) = �2, if m3 < m2 and m4 < m5

�(m) = �3, if m2 < m3 and m5 < m4

�(m) = �4, if m3 < m2 and m5 < m4

where:

�1 =

2664
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

3775 , �2 =
2664
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

3775

�3 =

2664
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3775 , �4 =
2664
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3775
Notice that N is live and bounded, and has 3 P � semiflows, therefore, the order of the minimum state
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equation is 3. Consider the minimum state vector asmm = [m1;m3;m5]
T , then:

Cm =

24 �1 1 0 0
0 �1 1 0
0 0 �1 1

35
The right annuller of Cm is kerd(Cm) = 
[1; 1; 1; 1]T , and since k = [1; 1; 1; 1]T 2 R+jT j \ kerd(Cm),

then the system hN;m0i is BIFC.

The initial marking ism0 = [1; 0; 6; 0; 1; 0]
T and letmd = [1; 0; 3; 3; 0; 1]

T be the required marking. The
corresponding minimum order markings are: mm0 = [1; 6; 1]

T and = [1; 3; 0]T . Notice that both markings
are not interior points of Classm(m0).

In this example, three steps control law is applied. In the �rst step, a control law such that Ic is invertible
is applied, so the marking is transferred from mm0 to an interior point of Classm(m0). In second step,
the control law obtained with the equation (5.9) is applied, but the central marking mmc

= [0:5; 3; 0:5]T

of Classm(m0) is considered as the required marking instead mmd
, thus the central marking is reached in

�nite time (because it is an interior point). In the third step, the same control law is applied in order to reach
the original required markingmmd

.

Figure 5.3 The marking evolution of the net of the example 5.1. The central marking is reached at 38s, after
that, the marking asymptotically goes to the desired marking.

Even when the second step is not necessary, it is very useful because the �ow through the transitions

Figure 5.4 The trajectory of the marking in the Classm(m0) for the example 5.1. The �gure at left is a
projection of Classm(m0) in the mm1 and the mm3 axes. The �gure at rigth is the projection in the mm1

and themm5 axes.



The case of only one uncontrolled transition 53

decreases considerably in the markings near to the border of Classm(m0) causing a very slow movement of
the state. The simulation results are shown in �gures 5.4 and 5.3.

The linear trajectories of the steps 2 and 3 of the control law can be observed in the �gure 5.4. Notice that
the �ow through the transitions (proportional to the derivative of the markings observed in the �gure 5.3) is
larger in the central marking than in the markings near to the border. The central marking is reached in �nite
time (38 seconds) and after that, the state asymptotically goes to the required marking.

This control law is not ef�cient, i.e. the trajectory followed is not the fastest, but it is effective. This
example was simulated in Simulink of MatLab. The m-�les are shown in the appendix.

5.3 The case of only one uncontrolled transition

Consider a BIFC TCPN system described by (N;m0). Let ti 2 T be the only uncontrolled transition,
then Tc = T � ftig, and ES the equilibrium set as de�ned in section 4.3.

Let S be a set de�ned as S = fmm 2 Classm(m0)jmm = Pm where m 2 ES and �(m) = �ig.
Consider the minimum initial markingmm0 such thatmm0 is an interior point of S, and letmmd 2 S be the
minimum required marking.

De�ne the error vector as:

em = (mmd �mm)

Since hN;m0i isBIFC, for allmm interior point of S there should exist an input I0c such thatCmI0c�G(mm) =

0, with I0ci = 1, and I0cj 2 (0; 1);8tj 2 Tc.

Let CmI be a matrix built with any n linearly independents columns of Cm except Cmi, then CmI is not
singular, therefore:

8d 2 Rn 9v 2 Rn such that CmIv = d

Letmm be an interior point of S. De�ne vp0 such that:

CmIv
p
0 = (mmd �mm)

Now, let v0 be a column vector of order jT j such that:

v0j =

�
vp0j if the j � th column of Cm is in CmI
0 otherwise

For allmm 2 S there is a column vector k 2 kerd(Cm)\fR+ [f0ggjT j and a scalar �2 2 R+ such that
Ic�G(mm) = �2k. Let �2 be such that [�G(mm)]i = �2ki.

Then, the vector v de�ned as v = �1v0 + �2k, where �1 2 R+, is such that:

Cmv = �1(mmd �mm)
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and

vi = [�G(mm)]i:

Now, it is necessary to �nd �1 2 R+ such that 0 � vj � [�G(mm)]j (it is always possible to �nd �1,
because I0cj 2 (0; 1);8tj 2 Tc). Then, de�ne the following vector:

minv0 = min

�
v01
k1
;
v02
k2
; :::;

v0jT j

kjT j

�

Ifminv0 < 0 then a valid value for �1 is ��2
minv0

, otherwise calculate the fmax vector as:

fmaxj =

(
[�G(mm)]j��2kj

v0j
for v0j > 0

1 other case

and let �1be equal tomin(fmax). Finally, the matrix Ic can be calculated as:

Icj =
vj

[�G(mm)]j

The original input u can be calculated using the equation (5.10).
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Figure 5.5 The TCPN system for the example 5.2. If all transitions were controllable, the net would be
BIFC.

Example 5.2 Let hN;m0i be the TCPN system of the �gure 5.5.

The structure of the net is given by the next matrices:

C =

2664
�1 1 0
1 �1 0
0 �1 1
0 1 �1

3775 , � = diag(1; 1; 1; 1)
The con�guration matrix is given by next rules:

�(m) = �1, if m2 < m3

�(m) = �2, if m3 < m2

where

�1 =

241 0 0 0
0 1 0 0
0 0 0 1

35 , �2 =
241 0 0 0
0 0 1 0
0 0 0 1

35
Notice that the net is live and bounded, and has 2 P � semiflows , therefore, the order of the minimum

state equation is 2. Consider the minimum state vector asmm = [m1;m3]
T , then:

Cm =

�
�1 1 0
0 �1 1

�

The right annuller of Cm is kerd(Cm) = 
[1; 1; 1]T , and since k = [1; 1; 1]T 2 R+jT j \ kerd(Cm), then
the system hN;m0i is BIFC in the interior points of Classm(m0).

Let t3 be the only uncontrollable transition. In this case the equilibrium set ES is represented by the
upper triangle in �gure 5.6.

Letm0 = [0:6; 0:4; 2:6; 0:4]
T be the initial marking andmd = [0:3; 0:7; 2:8; 0:2]

T the required marking,
then the corresponding minimum order markings are: mm0 = [0:6; 2:6]T and mmd

= [0:3; 2:8]T . Notice
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Figure 5.6 The trajectory of the marking in the set Classm(m0), for the example 5.2. The ES is composed
of all points inside the upper triangle.

Figure 5.7 Evolution of the marking of example 5.2.

that both markings belongs to ES. Applying the control law described above the results are shown in �gures
5.6 and 5.7.

Notice that the trajectory draws a line, and the required marking is reached in �nite time.

Even when this control law is not ef�cient, it is effective, i.e. the trajectory followed is not the fastest
but the required marking is reached in �nite time. This example was simulated in Simulink of MatLab. The
m-�les are shown in the appendix.
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5.4 The case of several uncontrolled transitions

In this section we will loosely propose an scheme of a control law for a TCPN system in which there
are several uncontrolled transitions.

Consider a TCPN system (N;m0) where the set of uncontrolled transitions is not null, i.e. jT j� jTcj 6=
0. Suppose thatm0 is an equilibrium marking and de�ne �i as its con�guration, i.e. �i = �(m0). Consider
the equilibrium set ES and the set Sinti as de�ned in section 4.3. Let md be a desired equilibrium marking
such thatmd 2 Sinti .

Finally, suppose that the system ful�lls the conditions of controllability over Sinti established in theorem
4.7,. so the matrix:

Cont(CmInc�Ji; Cmc) = [Cmc; (CmInc�Ji)Cmc; (CmInc�Ji)
2Cmc; :::; (CmInc�Ji)

n�1Cmc]

has full rank.

Now, consider a control law as de�ned in equation (4.3), i.e.Ic = Inc + I 0con + I 00con, where I 0con can be
easily calculated to ful�ll with equation (4.5). Also, consider the new input u2 as in equation (4.6), which is
a function of I 00con.

De�ning a new variable � = mm �mmq, the state equation can be transformed to:
�
� = CmInc�Ji�+ Cmcu2

So, according to the condition of controllability, there exist a matrixK such that

u2 = K�

where the closed-loop transfer matrix (CmInc�Ji�CmcK) has all its eigenvalues as negative. Therefore
the desired pointmd is the unique asymptotically stable equilibrium point in Sinti in the closed-loop system.

It can be noticed that this is a feedback state control law as that described in section 5.1. So, it has the
same problems described in that section, but, under the conditions required to the system in this section,
these problems can be avoided.

For this, consider a set of q markings {mf1,mf2, :::,mfq} that belong to Sinti as in �gure 5.8.

In this example a four state feedback state control law is considered.

In the �rst step the marking mf1 is considered as the required marking, since mf1 2 Sinti the control-
lability condition remains, so, a control law as it is described in this section can be applied to the system.
Notice that the region of attraction of mf1, named Rf1, is included in Sinti , so the second problem of the
feedback state control laws is avoided. Now, according to the controllability hypothesis, there exists a neigh-
borhood of m0 in which our control law makes mf1be the unique asymptotically stable equilibrium point,
so, mf1 is de�ned closed enough to m0 in order to Rf1 be in that neighborhood. In this way, the marking
mf1 can be reached through this control law.

Once the marking is closed enough to mf1 the second step of this control law is applied, for this the
required marking is mf2. In this way, in the third step the required marking is mf3, and it is applied when
the marking is closed enough tomf2.
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Figure 5.8 State space of a closed-loop system with a four steps feedback state control law.

Finally, in the four step the required marking ismd, and is applied when the marking is closed enough to
mf3.

So, with this control law scheme the marking can reach any required markingmd, whenever the conditions
of this section are ful�lled.

However, this control law scheme has two major dif�culties. The �rst one is to de�ne the set of markings
{mf1, mf2, :::, mfq} such that the regions of attraction are included in Sinti . The second one is to choose
the eigenvalues for the closed-loop transfer matrix and also the markings {mf1,mf2, :::,mfq} such that the
respective input is properly bounded.

Due to those dif�culties, this control law scheme is not applied to an example in this dissertation. So, the
control law for the case with several uncontrolled transitions is still an open problem.
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Chapter

Conclusions

This dissertation deals with a new technique in the theory of Petri nets. For this reason, many unsolved
problems and many open questions were found. The answers for some of this questions result essential for a
basic understanding of the studied model. In this report, we tried to unify the previously known results with
our results. So, with this dissertation, the reader is able to introduce himself in the study of TCPN systems.

The main advantage of the results obtained by us with respect to that previously known is that our results
can be applied to different kinds of Petri nets. The contributions of this dissertation are following presented.

� A brief discussion of the concept of state variable was presented. In this, the TCPN systems are �nally
considered as a parallel model of the original Petri net system, and not as a proper model of the physical
system.

� The so called �state space� was characterized.
� A de�nition of controllability for TCPN systems was introduced as an adaptation of that de�ned for
linear continuous-time systems. The reason for that, is that TCPN systems are more alike linear systems
than discrete event systems.

� For the case where all transitions are controllable, suf�cient and necessary conditions of controllability
and reachability, which are easy to test, were given. The hypothesis for those theorems does not im-
pose heavy constraints for its application. Therefore, for this case, the problems of controllability and
reachability have been solved.

� For the case where there are uncontrolled transitions, the problem of controllability is more complex.
Even that, suf�cient conditions of controllability over the set of equilibrium points were found.

� In reachability, for the case with uncontrolled transitions and where the initial marking has the same
con�guration that the required marking, a necessary condition was found. However, the problem of
�nding necessary and suf�cient conditions of reachability for a general case is still open.

� A control law structure for the case where all transitions are controllable was proposed. The effectiveness
of this control law structure was demonstrated through a Lyapunov function (it makes the system reach
the required marking). Although it is not an optimal control law, it can be easily modi�ed, in order to
make the marking follow a desired optimal trajectory.

� A second control law structure was proposed for the case in which there exists only one uncontrolled
transition. This control law structure is also effective but limited because the initial marking must be in
the same equilibrium set and con�guration that the required marking. So, the problem of �nding control
law structures for the case with several uncontrolled transitions is still open.

6.1 Future work

In order to apply and to extend the results obtained in this dissertation for general TCPN systems, the
following problems need to be solved in the future:
� It is necessary to obtain a reachability theorem which gives necessary and suf�cient conditions for the
case with uncontrolled transitions. Such theorem must consider the case where the initial marking and the
required marking does not belong to the equilibrium set, and have different con�gurations. This problem
is very dif�cult to solve, due to the hybrid nature of the timed �uidi�ed model.

� In order to apply the theorems 4.6 and 4.7, an easy characterization of the equilibrium set is required.
� In order to easily apply the results of section 4.2, an algorithm to test if a given incidence matrix ful�lls
the condition of theorem 4.2 and an algorithm to test if a given TCPN system with a required marking
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ful�ll the condition of theorem 4.3 are needed. This second algorithm could be obtained analyzing the
projections of the error vector to the columns of the incidence matrix.

� Considering that all transitions are controllable, it is necessary to �nd the optimal trajectory in the state
space, from the initial marking to the required marking, as a function of the marking.

� Considering the case where there are uncontrolled transitions, it is also necessary to synthesize a general
control law which could be applied even when the initial marking does not belong to the equilibrium set
and has a different con�guration of that of the initial marking. This problem is very dif�cult to solve,
because it implies a wide study of stability of TCPN systems, which does not exist yet.

As it was mentioned in the introduction, this theory is still new, so, there are another many unsolved
problems. At this moment, we consider that the main problems, not only for the controllability study but
also for the general understanding of the TCPN theory, are those enunciated next:

� How should the steady states of the TCPN system be interpreted in the original PN system?
� Given an effective control law for the TCPN system, how can a �ring policy, which could be applied to
the original PN system with the expecting results, be obtained?

These two questions have to be solved in order to apply the whole TCPN theory. Therefore, we consider
that all efforts in future works should be focused to �nd the answer of these two questions.
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Appendix

Computation of Ai and Ji

The following procedure allows to calculate the local constant �ow vector Ai and the local �ow matrix Ji,
described in section 4.3.

Consider the vector [�im] as in equation (4.1).

Then 8j 2 f1; 2; :::; jT jg do the next procedure:

De�ne k and � such that [�im]j = �kmk.

Consider the projection matrix P .

If 9l such that P[l;k] 6= 0 then de�ne Ji[j;l] = �k and Ai[j] = 0.

If @l such that P[l;k] 6= 0 then there exists a conservative marking law such thatmk +mp1 +mp2 +

:::+mpr = Ck, where Ck is a constant value, so �kmk = �kCk��kmp1��kmp2� :::��kmpr

and 8pi 2 fp1; p2; :::; prg 9li such that P[li;pi] 6= 0. Then de�ne Ji[j;li] = ��k and Ai[j] = �kCk.

Other elements in Ji and Ai are de�ned as zero.
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Appendix

Simulation of the control law for the case
of all transitions as controllable

Here the model and the m-�les of MatLab-Simulink for the simulated example of section 5.2 are presented.

Figure B.1 Model of simulation.

Previous �gure shows the model for the simulation, with its respective block groups. The apparent com-
plexity of the computation of input u blocks group is due to the three steps control law. The clock is needed
only to set the �rst step at zero time.

Now, the �Comp. of der m� m-�le is presented. This block corresponds to the computation of:

derx = C��(m)m

function derx=RPF(u)

if u(2)<=u(3) & u(4)<=u(5)

dx1=-u(1)+u(2);

dx2=u(1)-u(2);

dx3=-u(2)+u(4);

dx4=u(2)-u(4);
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dx5=-u(4)+u(6);

dx6=u(4)-u(6);

elseif u(3)<u(2) & u(4)<=u(5)

dx1=-u(1)+u(3);

dx2=u(1)-u(3);

dx3=-u(3)+u(4);

dx4=u(3)-u(4);

dx5=-u(4)+u(6);

dx6=u(4)-u(6);

elseif u(2)<=u(3) & u(5)<u(4)

dx1=-u(1)+u(2);

dx2=u(1)-u(2);

dx3=-u(2)+u(5);

dx4=u(2)-u(5);

dx5=-u(5)+u(6);

dx6=u(5)-u(6);

elseif u(3)<u(2) & u(5)<u(4)

dx1=-u(1)+u(3);

dx2=u(1)-u(3);

dx3=-u(3)+u(5);

dx4=u(3)-u(5);

dx5=-u(5)+u(6);

dx6=u(5)-u(6);

end;

derx=[dx1;dx2;dx3;dx4;dx5;dx6];

The block �Computation of u� has the next m-�le.

function SalU=RetroF(u)

%cm is the minimum incidence matrix.

cm=[-1 1 0;0 -1 1;0 0 -1];

%ker is the right kernel of matrix cm.

ker=[1;1;1;1];
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m=[u(7);u(8);u(9);u(10);u(11);u(12)];

md=[u(1);u(2);u(3);u(4);u(5);u(6)];

%etapa is a discrete variable. 2 means that the control will take the

%marking to the center of the state space, after that, etapa changes its

%value to 3, then the control will take the marking to md.

%Tiempo is the simulation real time, is used only to reset the value of

%etapa as 2. Notice that for etapa 1 we only need to generate an input

%such that Ic be invertible, but, for this example, etapa 2 generates such

%input, that's why we don't set etapa as 1.

etapa=u(13);

tiempo=u(14);

%mr is the minimum marking. mdr is the desired minimum marking.

mr=[u(7);u(9);u(11)];

mdr=[u(1);u(3);u(5)];

%Now, we calculate the vector lp=��(m).

if m(2)<=m(3) & m(4)<=m(5)

lp1=[1 0 0 0 0 0];

lp2=[0 1 0 0 0 0];

lp3=[0 0 0 1 0 0];

lp4=[0 0 0 0 0 1];

elseif m(2)>m(3) & m(4)<=m(5)

lp1=[1 0 0 0 0 0];

lp2=[0 0 1 0 0 0];

lp3=[0 0 0 1 0 0];

lp4=[0 0 0 0 0 1];

elseif m(2)<=m(3) & m(4)>m(5)

lp1=[1 0 0 0 0 0];

lp2=[0 1 0 0 0 0];

lp3=[0 0 0 0 1 0];

lp4=[0 0 0 0 0 1];

elseif m(2)>m(3) & m(4)>m(5)

lp1=[1 0 0 0 0 0];

lp2=[0 0 1 0 0 0];

lp3=[0 0 0 0 1 0];



66 Appendix B Simulation of the control law for the case of all transitions as controllable

lp4=[0 0 0 0 0 1];

end;

lp=[lp1;lp2;lp3;lp4];

lpm=lp*m;

vic=[0;0;0;0];

%ep is a value which indicates how close will be the marking of the center

%to change the step from 2 to 3.

ep=0.002;

%Now, we calculate the error vector, and a solution v for the

%equation (Cr*v=e), such that all elements in v be positives.

%In step 2, the required marking is the center of the state space

%[0.5,0.5,3,3,0.5,0.5], in step 3 the required marking is md.

if tiempo==0

etapa=2;

end;

if ((mr(1)<(.5+ep))&(mr(1)>(0.5-ep)))&((mr(2)<(3+3*ep))&(mr(2)>(3-3*ep)))&((mr(3)<(.5+ep))&(mr(3)>(0.5-
ep)))

etapa=3;

end;

if etapa==2

e=[0.5;3;0.5]-mr;

elseif etapa==3

e=mdr-mr;

end;

v=inv(cm)*e;

v=[v;0];

vmin=min(v);

if vmin<0

v=v-2*vmin*ker;

end;

%Now, we calculate the corresponding values of Ic, named ic's, as a column

%vector vic, where 0<ici<1, v=ic*lp*m.

for i=1:4

if lpm(i)>0
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vic(i)=v(i)/(lpm(i));

elseif lpm(i)==0

vic(i)=1;

end;

end;

%At this point, vic has the desired direction. Now we multiply it by a

%factor such that the maximum element of vic be 1.

icmax=max(vic);

if icmax>0

vic=(1/icmax)*vic;

end;

%Now, we transform the column vector vic into the matricial form Ic.

ic1=[1 0 0 0]*vic(1);

ic2=[0 1 0 0]*vic(2);

ic3=[0 0 1 0]*vic(3);

ic4=[0 0 0 1]*vic(4);

ic=[ic1;ic2;ic3;ic4];

%Finally, we calculate the input u.

SalU=[(eye(4)-ic)*lpm;etapa];
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Appendix

Simulation of the control law for the case
of one uncontrolled transition

The model and the m-�les of MatLab-Simulink for the simulated example of section 5.3 are presented.

Figure C.1 Model of simulation.

Previous �gure shows the model for the simulation, with its respective block groups.

The �Comp. of der m� m-�le is following presented. This block corresponds to the computation of:

derx = C��(m)m

function derx=RPFal(u)

if u(2)<=u(3)

dx1=-u(1)+u(2);

dx2=u(1)-u(2);

dx3=-u(2)+u(4);

dx4=u(2)-u(4);

elseif u(3)<u(2)

dx1=-u(1)+u(3);

dx2=u(1)-u(3);

dx3=-u(3)+u(4);
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dx4=u(3)-u(4);

end;

derx=[dx1;dx2;dx3;dx4];

The block �Computation of u� has the next m-�le.

function SalU=RetroF2(u)

%cm is the minimum incidence matrix.

cm=[-1 1;0 -1];

%ker is the right kernel of cm.

ker=[1;1;1];

m=[u(5);u(6);u(7);u(8)];

md=[u(1);u(2);u(3);u(4)];

%mr is the minimum marking. mdr is the minimum required marking.

mr=[u(5);u(7)];

mdr=[u(1);u(3)];

%Calculate the vector lp=��(m).

if m(2)<=m(3)

lp1=[1 0 0 0];

lp2=[0 1 0 0];

lp3=[0 0 0 1];

elseif m(2)>m(3)

lp1=[1 0 0 0];

lp2=[0 0 1 0];

lp3=[0 0 0 1];

end;

lp=[lp1;lp2;lp3];

lpm=lp*m;

vic=[0;0;0];

% We calculate the error vector and an initial solution vo such that

% cm*co=e.

e=mdr-mr;

vo=inv(cm)*e;
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vo=[vo;0];

%Now, we calculate the kernel factor f, and the initial solution factor fp.

f=lpm(3);

vomin=min(vo);

if vomin<0

fp=-f/vomin;

else

for i=1:3

if vo(i)==0

pmax(i)=10000;

elseif vo(i)>0

pmax(i)=(lpm(i)-f)/vo(i);

end;

end;

fp=min(pmax);

if fp>1

fp=1;

end;

end;

%Now, we �nd the particular solution v.

v=fp*vo+f*ker;

%Now, we calculate the elements of Ic, named ic's, as a vector vic.

for i=1:3

if lpm(i)>0

vic(i)=v(i)/(lpm(i));

elseif lpm(i)==0

vic(i)=1;

end;

end;

%We consider the uncontrolled transitions and the bound.

for i=1:3

if vic(i)<0

vic(i)=0;

elseif vic(i)>1
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vic(i)=1;

end;

end;

vic(3)=1;

%We transform the input from the vector vic to its matricial form Ic.

ic1=[1 0 0]*vic(1);

ic2=[0 1 0]*vic(2);

ic3=[0 0 1]*vic(3);

ic=[ic1;ic2;ic3];

%Finally, we calculate the input u.

SalU=[(eye(3)-ic)*lpm];
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