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Abstract— Petri nets is a well-know formalism for studying
discrete event systems. Applications include performanceeval-
uation in communication networks, production systems, supply
chains, and the implementation of sequence controllers. Timed
Continuous Petri Net (TCPN ) systems are continuous-state
models that can approximate the dynamical behavior ofdiscrete
Markovian Petri nets (MPN ). Based on this, an estimator-
based control structure is introduced here for applying a control
law designed for a TCPN into the original discrete system.
The result is a control policy for driving a MPN system in
such a way that the mean value of its marking will reach a
desired value, by applying additional delays to the controllable
transitions. A stock level control of a Kanban-based automotive
assembly line is synthesized as an application example.

I. I NTRODUCTION

Petri nets are a recognized paradigm useful for modeling
and analyzing discrete event systems (DES). Applications
include the analysis of communication protocols and man-
ufacturing systems, the implementation of sequence con-
trollers, validation in software development, and performance
evaluation in multiprocessor systems, communication net-
works, production systems, supply chains, etcetera [1].

Several works can be found in the literature providing
different control strategies for Petri nets. Many of them
have been inspired in the seminal work of the Supervisory-
Control Theory [2] introduced for automata. For instance, in
[3] a state-feedback control that meets safety specifications
in the form of mutual exclusions constraints is proposed
(GMEC). A survey of control results in Petri nets can be
found in [4]. Recalling from there, control policies can
be classified into two different classes: thestate feedback
control, which has been mainly studied by means of a
particular model called controlled Petri nets, and theevent
feedback controlthat has been mainly considered in a formal
language setting and the corresponding models are called
labeled Petri nets. Extensions to timed systems can also be
found in the literature. Most control strategies are definedfor
the same control objective: disabling transitions for avoiding
forbidden markings, in accordance with the Supervisory-
Control Theory. A problem commonly found in the synthesis
of controllers is the state explosion.
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Fluidification constitutes a relaxation technique for study-
ing discrete event systems through a continuous approxi-
mated model, thus avoiding the state explosion problem. In
Petri Nets, fluidification has been introduced from different
perspectives [5], [6]. In this work,timed continuousPetri net
(TCPN ) models under infinite server semantics are consid-
ered, since it has been found that such systems approximate
interesting classes of DES. An important advantage found
in fluid models is that more analytical techniques can be
used for the analysis of some interesting properties, like
controllability [7] and the synthesis of controllers, either
for the optimal steady-state control problem [8] or dynamic
control for reaching a desired marking in models in which
all transitions are controllable [9], [10] or with some uncon-
trollable transitions [11], [12].

Coming back to the discrete event systems, in [13] it has
been shown that aTCPN system, with white noise added
to the flow (leading to state perturbation), can approximate
the mean value and covariance matrix of the marking of the
corresponding Markovian Petri net (MPN , i.e., a Petri net
in which transitions are timed with exponentially distributed
random delays). For that, the probability that any transition
is enabled is close to one. Based on such result, the goal in
this work is to interpret an apply a control law designed
for a TCPN system into the correspondingMPN one.
Such control interpretation will result in a control policy
for driving a live MPN system in such a way that the
mean value of its marking will reach a desired value, just
applying additional delays to the controllable transitions.
This constitutes an important difference with the control laws
derived forDES in previous works, and represents the main
contribution of this one. This result will be illustrated by
means of a given application example: the stock level control
of a Kanban-based automotive assembly line [14].

This paper is organized as follows: in Section2 some basic
concepts onTCPN andMPN systems are provided, while
in Section3 controllability concepts and control laws for
TCPN are recalled from previous works. In Section4, the
interpretation of a control law designed for aTCPN system
into the correspondingMPN one is introduced. Finally,
a given application example is studied in Section5, and
conclusions are present in Section6.

II. BASIC CONCEPTS OFTCPN AND MPN

We assume that the reader is familiar with Petri nets (PNs)
(for notation we use the standard one, see for instance [15]).

The structureN = 〈P, T,Pre,Post〉 of continuous Petri
nets(CPN ) is the same as the structure of discrete PNs. That



is, P is a finite set of places,T is a finite set of transitions
with P ∩ T = ∅, Pre andPost are |P | × |T | sized, natural
valued,pre- and post- incidence matrices. We assume thatN
is connected and that every place has a successor, i.e.,|p•| ≥
1. The usual PN system,〈N ,M0〉 with M0 ∈ N

|P |, will be
said to bediscreteso as to distinguish it from acontinuous
PN system〈N ,m0〉, in which m0 ∈ R

|P |
≥0

. In the following,
the marking of aCPN will be denoted in lower casem,
while the marking of the correspondingdiscreteone will be
denoted in capital letterM. The main difference between
both formalisms is in the evolution rule, since incontinuous
PNs firing is not restricted to be done in integer amounts
([5], [6]). As a consequence the marking is not forced to
be integer. More precisely, a transitiont is enabledat m

iff for every p ∈• t, m(p) > 0, and itsenabling degreeis
enab(t,m) = minp∈•t{m(p)/Pre(p, t)}. The firing of t in
a certain amountα ≤ enab(t,m) leads to a new marking
m′ = m + α · C, whereC = Post − Pre is the token-
flow matrix. As in discrete systems, right and left integer
annullers of the token flow matrix are calledT- andP-flows,
respectively. When they are non-negative, they are calledT-
andP-semiflows. If there existsy > 0 such thaty · C = 0,
the net is said to beconservative, and if there existsx > 0

such thatC · x = 0 the net is said to beconsistent. Here,
we consider net systems whose initial marking marks allP-
semiflows.

A Markovian Stochastic Petri Netsystem (MPN) is a
discrete system in which the transitions fire at indepen-
dent exponentially distributed random time delays (for a
classical approach for the analysis ofMPN [16]). Then,
the firing time of each transition is characterized by its
firing rate. In this way, aMPN is a tuple 〈N ,M0, λ〉,
where λ ∈ R

|T |
>0 represents the transition rates. Transi-

tions (like stations in queueing networks) are the meet-
ing points of clients and servers. In this paper, we will
assume infinite-server semantics for all transitions. Then,
the time to fire a transitionti, at a given markingM,
is an exponentially distributed random variable with pa-
rameterλi · Enab(ti,M), where the integer enabling de-
gree is Enab(ti,M) = minp∈•ti

{⌊M(p)/Pre(p, ti)⌋}.
Enab(ti,M) also represents the number of active servers
of ti at markingM. We suppose that a unique steady-state
behavior exists, and we restrict our study to bounded in
average and reversible (therefore ergodic)MPN systems.

A Timed Continuous Petri Net (TCPN ) is a continuous
PN together with a vectorλ ∈ R

|T |
>0 . Different semantics have

been defined for timedcontinuoustransitions, the two most
important beinginfinite serveror variable speed, andfinite
serveror constant speed(see [5], [6]). Hereinfinite server
semanticswill be considered. Like in purely markovian
discretenet models, underinfinite server semantics, the flow
through a timed transitionti is the product of the rate,λi, and
enab(ti,m), the instantaneous enabling of the transition, i.e.,
fi(m) = λi · enab(ti,m) = λi · minp∈•ti

{mp/Pre(p, ti)}.
Observe thatEnab(ti,M) ∈ N while enab(ti,m) ∈ R≥0.
For the flow to be well defined, every transition must have at

least one input place, hence in the following we will assume
∀t ∈ T, |•t| ≥ 1. The ”min” in the definition leads to the
concept ofconfigurations(see [8]): a configuration assigns
to each transition one place that, for some markings, will
control its firing speed. An upper bound for the number of
configurations is

∏
t∈T |•t|. The reachability space is divided

into regionsaccording to theconfigurations. Theseregions
are polyhedrons (in bounded systems), and are disjoint,
except on the borders.

The flow through the transitions can be written in a
vectorial form asf(m) = ΛΠ(m)m, whereΛ is a diagonal
matrix whose elements are those ofλ, andΠ(m) is the con-
figuration operator matrix atm, which is defined such that
the i-th entry of the vectorΠ(m)m is equal to the enabling
degree of transitionti (see [8]). A similar representation
can also be obtained for the enabling degree of thediscrete
PN, i.e.,Enab(M) = ⌊Π(M)M⌋ ≃ Π(M)M (the equality
holds for ordinary PN’s, but for weighted arcs there exists a
relative error, decreasing with respect toM, for rounding to
the nearest lower integer).

The state equation of aTCPN system is
•
m = CΛΠ(m)m (1)

Inside eachregion the state equation is linear, because
Π(m) is constant.

III. C ONTROLLABILITY AND CONTROL IN TCPN

Control action inTCPN systems may only be a reduction
of the flow through the transitions. That is, transitions
(machines for example) cannot work faster than their nom-
inal speed. Transitions in which a control action can be
applied are calledcontrollable. The effective flow through
a transition which is being controlled can be represented
as: w(ti) = λi · enab(ti,m) − u(ti), where0 ≤ u(ti) ≤
λi · enab(ti,m). The control vectoru ∈ R

|T | is defined
such thatui represents the control action onti. If ti is not
controllable thenui = 0. The forced flow vector is expressed
as w(m,u) = ΛΠ(m)m − u. The set of all controllable
transitions is denoted byTc, and the set of uncontrollable
transitions isTnc = T − Tc.

The behavior of a TCPN forced system is described by
the state equation:

•
m = CΛΠ(m)m − Cu

0 ≤ u ≤ ΛΠ(m)m
(2)

A control action that fulfills the required constraints, i.e.,
0 ≤ u ≤ ΛΠ(m)m but ∀ti ∈ Tnc ui = 0 is called
suitable bounded(s.b). If an input is not s.b. then it cannot
be applied. A markingm for which ∃u s.b. at m such
that ṁ = C[ΛΠ(m)m − u] = 0 is called anequilibrium
marking.

A. Controllability

Regarding to control in TCPN systems, it is important
to keep in mind that these are not controllable in the
classical sense ([8]). Ify is a P-flow, then for any reachable
markingm, yT m = yT m0. So, whenever a TCPN system



hasP-flows, linear dependencies between marking variables
appear, introducing token conservation laws, a class of state
invariants. However, we are interested in the controllability
“over” this invariant, which is calledClass(m0). Notice that
every reachable marking belongs toClass(m0), however,
the reverse is not true for timed models.

Controllability has been studied in [7], where a local
controllability definition was introduced as follows:

Definition. TheTCPN system〈N , λ,m0〉 is controllable
with bounded input (BIC) over S ⊆ Class(m0) if for any
two markingsm1,m2 ∈ S there exists an inputu that
transfers the system fromm1 to m2 in finite or infinite time,
and it is suitable bounded along the marking trajectory.

It was proved that if all the transitions are controllable then
consistency(i.e., ∃x > 0 such thatCx = 0) is sufficient
and necessary for controllability overClass(m0). However,
for systems with uncontrollable transitions the problem is
more complicated. In that case, controllability was studied
over sets ofequilibrium markings, because they represent
“the stationary operating points” of the modeled system. The
set of all equilibrium markings inClass(m0) is denoted as
EqS = {m ∈ Class(m0)|∃u s.b., such thatC(ΛΠ(m)m−
u) = 0}.

This set is divided according toregions. Then, for each
particular configurationΠi there is its correspondingregion
ℜi = {m ∈ Class(m0)|Π(m) = Πi} and the correspond-
ing set of equilibrium markingsEi = {m|m ∈ EqS ∩ ℜi}.
The Class(m0), the regions and the equilibrium setsEi

are convex, and most of the cases, the union of setsEi are
connected. Inside eachregion the state equation (2) is linear
(Π(m) is constant), then the controllability was studied first
over eachEi and next, over their union [7].

B. Control Laws

The problem of synthesizing control laws for theTCPN
system is beyond the scope of this work. Nevertheless, in this
subsection some references related to the control synthesis
problem are provided.

Continuous Petri nets have three main characteristics,
which must be considered during the design of a control
law: 1) the model is piecewise linear (PWL), 2) the input
must be nonnegative and upper bounded by a function
of the state (constrained), and 3) models with some real
meaning are high-order systems (with tens or even hundreds
of state-variables). Different approaches and techniqueshave
been developed forPWL systems and systems with input
constrains.

By taking advantage of the particular structure ofTCPN
systems, control laws for these models have been proposed
by using different techniques. The optimal steady-state con-
trol problem has been addressed and solved in [8]. In [9] a
solution based on Model Predictive Control was proposed,
obtaining thus robust control laws. Nevertheless, this tech-
nique becomes prohibitive when the number of places is
large. In [10] a tracking control approach was introduced,
considering step and ramp references and low-and-high
gain controllers, local stability and input boundedness were

proved for a class of PNs. In those papers all transitions are
assumed to be controllable. Uncontrollable transitions were
considered in [11], where a gradient-based controller was
proposed for driving the output towards the desired value. In
[12], uncontrollable transitions were also considered. There,
a classical approach was introduced by adapting the well-
known linear feedback control structure (computing a gain
matrix for eachregion), avoiding computational complexity
problems and providing feasibility and effectiveness.

In any case, in order to interpret a control law into the
correspondingMPN , it is required the input to be s.b.
and robust “enough” (remember that the original system
is a stochastic one). In the sequel the control law will be
expressed in general form asu = f(m), wheref is a function
f : Class(m0) → R

|T | such that the input is s.b..

IV. I MPLEMENTATION OF CONTROL TOMPN VIA TCPN

In this section, the implementation of the control law
designed for aTCPN system to the correspondingMPN
is described. It requires an interpretation of such control
input in terms of theMPN , and of the marking of the
MPN in terms of theTCPN . The second one is based
on the approximation of the mean value of the marking of
the MPN by means of the corresponding of theTCPN
system, which is detailed in the following subsection.

A. Approximation of MPN via TCPN

The approximation of theMPN by means of theTCPN
was studied in [13]. There, theTCPN was analyzed in
discrete-time, obtaining the following difference equation:

mk+1 ≃ mk + CΛΠ(mk)mk∆τ − C∆τuk (3)

where∆τ is a small enough sampling period.
There, it was proved that givenm0 = M0, the marking of

a TCPN system〈N , λ,m0〉, whose evolution is described
by 3, but without the input, approximates the expected value
of the marking of theMPN 〈N , λ,M0〉 during the time
interval (τ0, τ0+n∆τ ) if the following conditions are fulfilled
at M(τ0 +k∆τ) for any time stepk in the interval (τ0, τ0 +
n∆τ ):
1) The probability that the transitions of theMPN are all
enabled is near one.
2) The probability that the marking is outside theregion of
M0 is near zero.

Even if the quality of the approximation decreases when
a change ofregionsoccurs (i.e., Condition 2 does not hold
during certain time) and/or the transitions are not enabled
during certain time period (Condition 1), the approximation
could be good enough for the analysis and control purposes.

In order to improve the approximation when condition 2
does not hold, a noise column vectorvk is added to the flow
of theTCPN model, leading to aMarkovian continousPetri
net (MCPN ). The noise has as elements independent nor-
mally distributed random variables with mean and covariance
matrix:

E{vk} = 0

Σvk
= diag[ΛΠ(mk)mk∆τ ]

(4)



Fig. 1. Block Diagram of the closed-loop system

The MCPN model is defined as:

mk+1 = mk + CΛΠ(mk)mk∆τ + Cvk (5)

By analyzing the moments of this system and theMPN
one, and using the Central Limit Theorem, it was shown
that the first two moments (mean value and covariance) of
the marking of theMCPN systemapproximatethose of the
marking of the correspondingMPN during a time interval
(τ0, τ0 +n∆τ), if the initial conditions of both coincide and
Condition 1 is fulfilled. Then, in this work only livePN
systems will be considered (it is required for Condition 1).

B. Control Architecture

The application of the control law designed for the TCPN
to the MPN is described in the Block Diagram of fig. 1.
It represents a typical structure of a closed-loop system with
an estimation-based control being applied.

Blocks in the upper dashed box (Plant) represent the
original system (modeled by aMPN ). There are different
ways for simulating aMPN , but that is beyond the scope of
this work. However, in this case it is only necessary to keep
in mind that the future marking of theMPN depends on
the current marking and some information about the times
to fire each transition, commonly calledclocks. In the Block
diagram it is considered a linear output function, i.e., the
information that we have about the current state of theMPN
is given by:

Yk = H ·Mk (6)

It is assumed that the output has enough information
to determine the current configuration and reconstruct the
marking. The lower dashed box (TCPN+Control) represents
the TCPN system, i.e., the system given by (3). The same
output function is also applied, so, the output of theTCPN
is given by:

ŷk = H · m̂k (7)

Notice that, if blocksC2D andEKF were eliminated, only
the MPN and theTCPN blocks would be present (i.e.,
blocks in dashed boxesPlant andTCPN+Control). In such
case, two independent systems would be obtained, whose
outputs would be linear functions on particular realizations
(or marking trajectories) of both systems, but no interaction
between them would occur. Then, blocksC2D andEKF play
the role of an interface between both systems.C2D transfers
the information from theTCPN system to theMPN one,
while EKF do the same in the opposite direction.

C. Interface blocks, C2D and EKF

First, let us consider the Block Diagram in fig. 1 without
the blockEKF. As it was pointed out in subsection IV-A,
the expected value of the marking of theMPN can be
approximated by the marking of correspondingTCPN if
Conditions 1 and 2 are fulfilled. So, let us suppose at this
moment that both conditions are fulfilled.

Now, assume that a s.b. control law is being applied
to the TCPN system. Consider the state equation of the
continuous model as in (2). Given a controllable transition
tj , the controlled flow is equal tow(tj) = λj ·enab(tj ,m)−
u(tj). However, since the input is s.b., there exists a function
α(u(tj),m) that takes values in the interval[0, 1] such
that u(tj) = α(u(tj),m)λj · enab(tj,m), then w(tj) =
[1 − α(u(tj),m)]λj · enab(tj,m). This last equality means
that each active server oftj fires with a mean time delay of
([1 − α(u(tj),m)]λj)

−1 in the controlledTCPN system,
instead of the mean time delay ofλ−1

j that it would have
without control. Then, the control lawimposesto each active
server oftj an additional delay of:

delay(tj) =
1

[1 − α(u(tj),m)]λj

−
1

λj

(8)

If additional delays are defined for all the controllable
transitions in the same way, and they are added to the
corresponding mean time delays of theMPN system, then
the mean value of its marking will still be approximated
by the marking of theTCPN in the closed-loop. Block
C2D computes such additional delays, so, according to the
previous equation and substitutingα, the output ofC2D is
defined as:

delayk(tj) =
enab(tj,mk)

λj · enab(tj ,mk) − uk(tj)
−

1

λj

(9)

Notice that it is only necessary to compute the addi-
tional delays for the controllable transitionsTc. In order
to exemplify the application of these additional delays into
the MPN system, suppose that at some time stepk the
controllable transitiontj in the MPN is newly enabled,
then the time to firetj in the open-loop system would be
given by a random variable having an exponential p.d.f. with
parameter(1/λj) · (1/Enab(tj ,Mk)), but, in order to apply
the control law the parameter of the exponential p.d.f. is
considered as(1/λj + delayk(tj)) · (1/Enab(tj,Mk)). In
this way, tj will fire with the required mean time delay, in
agreement with the input applied to theTCPN system. This



control interpretation is a particular one of many that can be
defined, however, this is used for simplicity and because it
has shown positive results.

Block C2D may be enough for applying the control law
into the MPN if Conditions 1 and 2 are always fulfilled.
However, notice that theMPN does not receive any feed-
back in this way (remember that at this point, blockEKF
is not considered), so, in order to improve the accuracy,
an Extended Kalman Filter(EKF) is added in the Block
Diagram of fig. 1 (for a detailed introduction to Kalman
Filter see, for instance, [17]). This new block also allows to
consider several markingregions.

In order to analyze blockEKF, suppose first that no control
law is being applied to both systems. Now, as it was pointed
out in subsection IV-A, theMPN can be approximated by
the correspondingMCPN , i.e., E{mk} ≃ E{Mk} and∑

mk
≃

∑
Mk

. In this way, defining the approximation error
εk = Mk − mk, the evolution of the output of theMPN
can be represent as :

mk+1 = [I + CΛΠ(mk)∆τ ] mk + Cvk

Yk+1 = H · Mk+1 = H · mk+1 + H · εk+1

(10)

Notice thatE{εk} ≃ 0 by definition. Previous system is
actually the correspondingTCPN system plus zero-mean
at the state (Cvk, which is also uncorrelated in time) and
the output (Hεk+1), then, it seems obvious to use and EKF,
in order to obtain a noise-free estimation of the underlying
TCPN model. In this way, an estimator is defined as:

m̂k+1 = [I + CΛΠ(m̂k)∆τ ] m̂k + Kkek

ŷk+1 = H · m̂k+1

(11)

whereKk is Kalman gain matrix andek = Yk − ŷk is the
output error. In order to ensure convergence, it is assumed
that the outputYk has enough information to determine
the current configuration, and that the pair(H,CΛΠi) is
observable for all the visited configurationsΠi.

The gain introduced by the Kalman Filter (Kkek) is
computed in the blockEKF as:

P′
k+1 = [I + CΛΠ(m̂k)∆τ ] · Pk · [I + CΛΠ(m̂k)∆τ ]

T

+Qk

Kk = P′
k+1

· HT ·
[
H · P′

k+1
· HT + Rk

]−1

Pk+1 = [I− Kk · H]P′
k+1

Kkek = Kk · (Yk − ŷk)
(12)

Matrix Qk represents the covariance of the state per-
turbation, which according to theMCPN approxima-
tion and the definition ofvk, it should be close toC ·
diag[ΛΠ(m̂k)m̂k∆τ ] · CT . Matrix Rk represents the co-
variance of the output perturbation, i.e., the covariance of
εk. A reasonable estimation for such covariance is given by
Rk = 0.5 · I (assuming that the discrete marking follows a
normal-multivariate distribution, such value forR means that
the error between markings is less that1.5 with probability
close to 0.95). Since the covariance matrix of the error
(Pk+1) is used for the next time step, a feedback-loop with
the unit delayz−1 is added in the Block Diagram.

Fig. 2. Petri net model of one part assembly [14].

Then, blockEKF computes the gainKkek, with which the
estimation for the next time step̂mk+1 can be obtained by
using (11). In this way, with the output of theMPN system
and blockEKF it is possible to obtain an estimation for the
state as if it were aTCPN system, i.e., it is obtained̂m that
evolves like theTCPN system but approximates the mean
value of theMPN one in agreement to its output valuesY.

Finally, since the evolution of the system is linear by
regions and time invariant, according to theSeparation
principle, it is reasonable to integrate theEKF and the control
law, obtaining thus the closed-loop system shown in fig. 1.

V. A PPLICATION EXAMPLE

In this section, the control scheme considered through this
paper is applied to a given application example: the stock
level control of a Kanban-based automotive assembly line,
which was introduced in [14].

Authors in that paper proposed an stochastic Petri net
model for an existing assembly line that produces cars. The
production is based on Kanban process. The assembly line
is a self-moving transporter, which carries the car bodies
through a number of quite similar production cells. The time
that the car body spends in every production cell is equal
for all productions cells and is given by the line rhythm,
which is constant. Each production cell has some small stores
(racks) where palettes with all parts, specific to the particular
production cell, are to be found. In every cell there is a space
to accommodate at maximum two palettes of each part type
used there. One palette contains only the same kind of parts.

Fig. 2 shows the Petri net model proposed for describing
the assembly of one part. Tokens inp1 represents the
Kanban-tickets in the local store. Tokens inp2 represents
the Ktickets in the space close to the production cell. Such
number is limited by a conservative law imposed byp3

(M(p2) + M(p3) = 2). Placep4 represents the number of
parts available in the palette that is being used for production.
The number of parts in one palette is60 (arc (t3, p4)), while



the number of parts of the same kind required for one car
production is2 (arc (p4, t4)). Transition t5 represents the
assembly operation. Its delay is equal to the time interval
between the production of two consecutive cars (i.e., the pro-
duction speed or line rhythm). Placep5 enablest3 when the
marking inp4 is null, i.e., when no more parts are available
in the palette that is being used. The container withdraw
is described by the subnet defined by{p9, p10, p11}, which
works in the following way: transitiont8 models the waiting
time before an order (orders are done just at some hours),
after its firingp10 enablest6 andt7. A Kanban inp8 means
that an order must be done, in such caset6 fires (its delay is
considerably lower than that oft7) and a token is transferred
from p8 to p12, meaning that a supply order is ready to
be sent. On the other hand, if there is a token inp10 but
not in p8 then t7 fires, meaning that the Kanban container
is withdrawn. Transitiont11 represents the time from the
moment of ordering to the moment of delivery, while a token
in p14 represents the truck arrival. Transitiont10 does not
appear in the original model in [14]. In this work it is added
for control purposes: its delay will be controlled meaning
that orders (i.e., tokens inp12) must be delayed before being
sent.

Only some of the mean time delays are reported in [14]
(for one part). However, it is important to remark that only
three transitions exhibit significant, and almost constant,
delays:t5, t8 and t11. Furthermore,t6 must fire faster than
t7 whenever both are enabled. For our purpose, mean time
delays are defined as in fig. 2, transitionst5, t8 and t11
fire with Erlang-3 p.d.f. (for reducing their coefficients of
variation), transitiont6 andt7 fire with constant delays, while
the other transitions fire with exponential p.d.f. and infinite
server semantics.

Fig. 3 shows the proposedTCPN model, in which some
modifications w.r.t theoriginal PN are introduced for ob-
taining a better approximation. In this model, the component
representing the parts in the palette that is being used is
substituted by the component of places{p1

5, ..., p
4
5}, a token

in p4
5 means that the palette in use is empty. The container

withdraw is modeled in a similar way, the difference is that,
in order to reduce the coefficient of variation,t8 of fig.
2 is now splitted in three transitions{t18, t

2
8, t

3
8} (classical

simulation of an Erlang-3 by 3 exponentials). In a similar
way, t11 of fig. 2 is splitted into{t111, t

2
11, t

3
11}. Notice that

places{p1, p2, p3, p8, p10, p12, p14} keep the same meaning,
in the same way that their corresponding output transitions
do. All transitions fire with exponential p.d.f. and infinite
server semantics. Mean time delays are defined as in fig. 3.
Notice that the delays of{t15, t

2
5, t

3
5} are defined in order to

sum the total time required for emptying the palette that is
being used, i.e., the sum of the delays oft4 and t5 of the
original model (fig. 2) multiplied by30. In the same way,
the sum of delays of{t18, t

2
8, t

3
8} and {t111, t

2
11, t

3
11} of the

TCPN are equal to the delays oft8 andt11 of the original
model, respectively.

The goal in [14] is to propose a methodology for optimiz-
ing the stock reserves of each part, i.e., to control the sum of

Fig. 3. Timed continuous Petri net model

TABLE I

OUTPUT FUNCTIONS

Ouputs y1 y2 y3 y4 y5 y6 y7

Original (fig. 2) p8 p12 p14 p1 p2 p10 p5/30
Estimator (fig. 3) p8 p12 p14 p1 p2 p10 p5

4

(M(p1)+M(p2)) in fig. 2. Having a large number of Kanbans
in the store (i.e.,M(p1)) implies unnecessary costs, however,
missing Kanbans might stop the whole production. Such
Kanbans missing can occur for unexpected delays in truck
arrivals or lost orders. In that paper, the optimum number
of K-Tickets (i.e., the optimum value forM(p1)+M(p2)) is
computed based on simulation data. However, no solution
for making the system to keep the optimum number of
K-Tickets is described in [14]. Then, in this example, the
control scheme introduced in the previous section is used
for that purpose.

PN of fig. 2 represents theoriginal model or thePlant,
i.e., the upper dashed boxMPN in the block diagram of fig.
1, while fig. 3 represents the model for theTCPN system
(the lower dashed boxTCPN+Controlin the block diagram),
for which the control law is designed. Table I summarizes
the output functions defined for both systems. Notice that
the output functions are equal for both exceptingy7, which
is required for knowing which arc is constrainingt3. Now,
following [14] let us suppose that the optimum number for
the sumM(p1)+M(p2) is computed as10, then, our control
law must impose additional delays int10 such that the mean
value of the sum in theoriginal system be10.

By using the techniques introduced in [12], a control
law was designed for theTCPN system (fig. 3), and then
interpreted and applied to theoriginal one, according to the
control scheme described in the previous section (fig. 1).
The results are shown in fig. 4(a) and 4(b). Control law is
applied after2000 min. Dashed line in fig. 4(a) corresponds
to the estimator (m̂k), while the other one represents the



(a)

(b)

Fig. 4. (a) Number of Kanban-Tickets in the local store and racks
(M(p1) + M(p2)) in the closed-loop systems. The control law is applied
after time 2000 min. (b) Firing signals of the controllable transitiont10. A
unit impulse means thatt10 is fired.

discrete original system. As it can be seen, the control
law successfully drives the discrete system for obtaining
the desired mean value of the marking at the local store
and racks. Fig. 4(b) shows the firing signals for the unique
controllable transitiont10 in the closed-loop system. A unit
impulse means thatt10 is fired, i.e., that an order is released
and sent to the parts supplier.

It is important to remark that it was necessary to adjust the
values for the covariance matricesQk andRk of the Kalman
Filter, in order to obtain a good closed-loop performance.
If the values provided in the previous section are used, the
estimated markinĝmk will be close to the state of theMPN
(Mk). Therefore the control inputuk will be computed using
the noisy signalm̂k, but the control law was designed for
the TCPN without noise, so, such input signal may result
in a bad performance. On the other hand, decreasingQk

will make that the trajectory ofm̂k be soft enough, so
applying the computed input to theTCPN system will
lead to the expected results. Nevertheless, the behavior of
the continuous system could be different from that of the
MPN , because with a low value forQk the EKF will not
ensure the approximation. The best performance is obtained
by decreasingQk from its theoretical value (obtaining thus
a soft estimated trajectory), but decreasing the entries ofRk

corresponding to the outputs whose approximation must be
improved.

Finally, in order to compare the control scheme intro-
duced here, let us show the results obtained by using a
different control approach for theMPN : control feedback
with Generalized Mutual Exclusion Constraints (GMEC),
introduced in [3]. Such control approach is defined for
safety specifications, according to which a weighted sum of
markings must be limited. In our case, the specification could
be defined with the following GMECM(p1)+M(p2) ≤ 10.
The controller that force the GMEC consists in the addition

Fig. 5. Number of Kanban-Tickets in the local store and racks(M(p1)+
M(p2)) with the GMEC control.

of a new place, called Monitor, having as input transitiont3
and output transitiont1, however,t1 is not controllable, then
the Monitor must havet10 as output transition, in this way
the GMEC is fulfilled. For the initial marking,p1 should
have8 tokens (i.e.,10 − M0(p2)) and the new place, the
Monitor, must have5 tokens (i.e., total K-Tickets15, minus
M0(p1)+M0(p2)), while the other places remain marked as
in fig. 2. The results are shown in fig. 5. As it can be seen,
the GMEC control approach guarantees that the combined
marking (M(p1) + M(p2)) is not larger than10. Notice
that the sum is not always close to the desired mean value,
because theGMEC is defined for imposing upper bounds
to the marking but not for enforcing a desired mean value.

In this example the GMEC control approach still provides
a good mean value forM(p1)+M(p2) (an average value of
9.46 was obtained), but it is not always the case. For instance,
consider the same system (fig. 2) but withM(p1) = 4
at the initial marking. Suppose that a mean value of4 is
desired for the sum ofM(p1) + M(p2). After simulating
30, 000 minutes, using a GMECM(p1) + M(p2) ≤ 5 an
average value (for the sum) of4.59 was obtained, while a
value of 3.60 resulted with GMECM(p1) + M(p2) ≤ 4.
They represent14.75 and9.9 percent error, respectively. On
the other hand, by using the control strategy introduced in
this paper, a mean value of4.02 was obtained for the sum.
Therefore, it can be concluded that if a good accuracy for
the average value is required, the method proposed in this
paper is more suitable. On the other hand, if just safety
specifications must be fulfilled, the GMEC control approach
is a better choice. In any case, both methods can be combined
obtaining the best properties of each one, for instance, if we
would like that M(p1) + M(p2) ≤ 5 but having a mean
value of4.

VI. CONCLUSIONS

In this work, a scheme has been provided for the interpre-
tation of a control law designed for aTCPN system into the
correspondingMPN one. The resulting scheme constitutes
a tool for controlling the mean value of aMPN system
by means of applying additional delays to the controllable
transitions, i.e., for controlling a performance index of the
original stochastic Petri net.

This control strategy has been applied to an application
example: the stock level control of a Kanban-based automo-
tive assembly line. The results obtained are positive, showing



the feasibility of the control scheme proposed. However, itis
required that the control law designed for theTCPN system
be robust enough, since theMPN system is interpreted as
a TCPN with state and output perturbations. Furthermore,
the covariance matrices of theEKF need to be suitably
adjusted in order to obtain a good closed-loop performance.
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