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"What is essential is invisible to the eye"
(A. de Saint-Exupéry in
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Abstract

Nowadays, the importance of the research in mobile robotics is still increasing, motivated
by the introduction of mobile robots in service tasks, where wheeled mobile robots (WMR) are
particularly appreciated. In order to achieve autonomous robot navigation on the basis of closed
loop control, a vision system is a promising robotic sensor, given the important advantage of
the noncontact measurement. Moreover, this sensory modality is low price and it provides rich
information from the environment, however, the optimal use of this information is still chal-
lenging. In this context, the problem of visual control consists in computing suitable velocities
to drive the robot to a desired location.

In this thesis, we aim to unify formal aspects of the control theory with concepts of computer
vision to achieve a good performance in navigation tasks for WMR. Therefore, we propose and
evaluate solutions to the problem of visual control using exclusively the information provided by
an onboard monocular imaging system. A general contribution of the thesis is that the proposed
schemes are valid for vision systems obeying a central projection model, i.e., conventional
cameras, catadioptric systems and some fisheye cameras, in such a way that visibility constraint
problems can be avoided with the adequate sensor. The versatility of the proposed schemes is
achieved by taking advantage of the geometric constraints imposed between image features. We
focus on exploiting the epipolar geometry and the trifocal tensor given that they can deal with
general scenes, not only planar as in the case of the homography model.

An additional contribution of the use of a geometric constraint is that it allows to gather the
information of many visual features in few measurements, so that we select some of them in
order to design square control systems where stability can be demonstrated, in contrast to the
classical approach based on the pseudoinverse of an interaction matrix. Furthermore, by ex-
ploiting the sliding mode control technique, the proposed schemes cope with singularities that
appear when the velocities are computed using an input-output transformation of the system
in the pose-regulation problem. The properties of the sliding mode control provide the advan-
tage of good robustness against camera calibration errors and image noise in the visual control
schemes.

The most used approach along the thesis relies on the direct feedback of some terms of
a geometric constraint. This approach depends less on the image features than the classical
image-based approach because the image information is filtered. However, in order to improve
robustness by minimizing this dependence, we propose a dynamic estimation scheme that pro-
vides the robot pose, so that the control task is performed in the Cartesian space. Although
in the literature there are few results on nonlinear observability, we introduce a comprehen-
sive observability analysis of the dynamic estimation problem using measurements taken from
a geometric constraint as well as a stability analysis of the closed loop with feedback of the
estimated pose.

As an extension of the visual control task for pose-regulation, we exploit the visual memory-
based approach using feedback from a geometric constraint in order to perform autonomous
navigation for large displacement. In this framework, we have contributed with two main ad-
vantages of the proposed control schemes: explicit decomposition of the geometric constraint
is not required and the computed velocities are smooth or eventually piece-wise constant dur-
ing the navigation. All the proposed control schemes are evaluated through simulations and
real-world experiments using different platforms and vision systems.
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Chapter 1

Introduction

1.1 Motivation and context

Mobile robots are the focus of much of the current research in the field of robotics. The im-
portance of the research in mobile robots is still increasing, motivated by the introduction of
this type of robots as service robots, where wheeled mobile robots (WMR) are particularly ap-
preciated. Current applications of WMR are broad, and many of them are service oriented.
Among these applications we can include domestic and public cleaning, inspections and se-
curity patrols, transport of goods in hospitals, museum tour guides, entertainment with human
interaction, and assistance to disable or elder people. Other typical applications of mobile robots
are planetary exploration, exploration of inhospitable terrains, defusing explosives, mining and
transportation in factories, ports and warehouses. Recently, there exist efforts in the develop-
ment of autonomous personal transportation vehicles for places like airport terminals, attraction
resorts and university campus.

Although the autonomous navigation of robots is a mature field of research, it is still an open
problem. In order to perform autonomous navigation, a robot must interact with its environment
by using sensors. During a navigation task, a robot must answer three questions: Where am I?,
What the world looks like? and How to reach a desired place? The first two questions are related
to the perception and the last one is treated by the control system. Machine vision is a promising
robotic sensor since the important advantage that provides the noncontact measurement of the
environment. Moreover, this sensory modality is low price and it provides rich information
from the environment, however, the optimal use of this information is still an appealing task.

Thus, visual navigation of mobile robots is a very interesting field of research from a scien-
tific and even social point of view. Nowadays, the research efforts are focused on applications
with monocular vision. On one hand, this presents special challenges as the lack of depth infor-
mation because of a monocular imaging system is not a 3D sensor by itself. Additionally, the
image processing for data interpretation is time consuming. However, given the great advances
in computing power, the current impact of this aspect is less than in the past and will be eventu-
ally negligible in the close future. On the other hand, a monocular imaging system as a single
sensor provides large range visibility as well as good precision in bearing measurements.

It is clear the importance of a control system in the context of robot navigation in order to
answer the question How to reach a desired place? The control system must provide the suitable
input velocities to drive the robot to the desired location. Additional to the challenges in the
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use of monocular vision as perception system, there exist some peculiarities in the control of
WMR. Kinematically, a WMR is a nonlinear time-variant multivariable driftless system, which
has nonholonomic motion constraints that results in an underactuated system. This causes a
degree of freedom in the robot dynamics that requires a particular control strategy to be driven
to a desired value.

In general, when vision and control are joined in the so-called visual servoing (VS) ap-
proach, two main issues must be ensured, stability and robustness of the closed loop. Because
of the nonlinearity of the problem, singularities frequently appear when the velocities are com-
puted using an input-output transformation of the system. The control system must cope with
these singularities in order to ensure the stability of the closed loop. There are many VS schemes
in the literature based on a pseudoinverse approach for nonsquare systems, which present po-
tential problems of stability. Regarding to robustness, there exist parametric uncertainties due
to calibration errors and measurement noise added to the feedback signals whose effects must
be minimized.

There exist an important difference in how the desired value of the state of the system is
given in a control loop using visual feedback in comparison with other type of feedback. Due to
the lack of an absolute reference in the image space, the desired value of a visual control loop is
set by giving a reference or target image. This implies that the target must be previously known
and the measurements are relative values between the locations associated to the target image
and the current one. It emphasizes the need of a learning phase in a visual control loop where
the target must be memorized.

In order to extract feedback information from the current and target images, both views
require to share information, which means to have a common set of visual features in both im-
ages. In many cases, and especially when the initial camera position is far away from its desired
value, the features belonging to the target may leave the camera field of view during servoing,
which leads to failure because feedback error cannot be computed anymore. Therefore, partic-
ular schemes must be developed to cope with this problem. A good alternative is the dynamic
estimation of the robot pose, which could be useful to reduce the dependence of the servoing
task on visual information. Moreover, the dynamic state estimation has been always a comple-
mentary aspect in the application of control theory. Although monocular vision is a 2D sensor
by nature, it could become a 3D sensor by adding an estimation strategy. Additionally, mea-
surements provided by a vision system are usually noisy and a temporal filtering can improve
robustness of the control system.

The visual servoing approach focuses on achieving simultaneously a desired position and
orientation of the camera-robot system, which can be seen as a local approach because of the
necessity to share visual features between the current and the target images. However, some
tasks of WMR require a large displacement and a global solution must be used to solve the
vision-based navigation problem. In this sense, the visual servoing approach can be linked
to the visual navigation problem by applying the former as a sequence of tasks in a global
framework. This framework provides the extension from visual servoing to visual navigation
and it makes feasible applications of vision-based mobile robots control even in the cases where
the image at the target location does not share information with the current view.
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1.2 Objectives
The main objective of this thesis is to unify formal aspects of the control theory with con-
cepts of computer vision to achieve good performance in autonomous navigation of WMR. In
this context, we propose and evaluate different visual control schemes that use exclusively the
information provided by an onboard monocular imaging system. The proposed schemes are
developed in order to achieve the following objectives:

Generic schemes

Recently, omnidirectional vision has attracted the attention of the robotics research community
because of the benefits provided by a wide field of view in servoing tasks. This is motivated
by the better understanding and good modeling of those imaging systems that capture all the
scene around a single view point, i.e., central imaging systems. In this sense, visual control
schemes that are valid for conventional and omnidirectional cameras increase significatively
their applicability.

Robust schemes

The visual servoing problem can be seen as a particular application of control systems. Thus,
solutions to this problem can take advantage of the extensive possibilities offered by the theory
of robust control. On one hand, the design procedure should lead to obtain square control
systems where stability and robustness can be demonstrated, in contrast to approaches based on
pseudoinversion of the input-output relationship. On the other hand, the control system must
provide robustness against uncertainty of camera calibration and image noise. Additionally,
given that the visual measurements are the entries of the control system, they should behave
adequately in order to contribute to the overall robustness.

Exploit the properties of geometric constraints for direct visual feedback

A geometric constraint relates corresponding image features and encapsulates their geometry
in a multiview framework. In these constraints, the information of many visual features is
gathered in some few terms, which can be selected as adequate in order to obtain a square
control system. Moreover, the geometric constraints provide a kind of filtering to the visual
features taken from the images. We focus on exploiting the epipolar geometry and the trifocal
tensor because they can be used for generic scenes, not constrained to planar scenes like in the
case of the homography model.

Extend the visual servoing task to a large displacement

Visual servoing can be seen as a local task in the sense that it is constrained to short displace-
ment. This is imposed by the need of sharing visual information between the current view and
the target one. We aim to extend the typical teach-by-showing monocular visual servoing task
to a large displacement, where the target image is totally different and far away of the initial
view. In this context, visual control schemes must be designed to achieve the required mobility
for navigation more than accuracy in the regulation of the final pose.

Unifying vision and control for mobile robots



1.3 Original contributions

The general contribution of the thesis is the formal treatment of the aspects from control theory
applied in the particular problem of vision-based navigation of WMR, in such a way that vision
and control are unified in the best way to achieve stability of the closed loop, a large region of
convergence (without local minima) and good robustness against parametric uncertainty. We
propose and evaluate experimentally different control schemes that rely on a monocular vision
system as unique sensor. The proposed schemes are valid for vision systems obeying a central
projection model, i.e., conventional cameras, catadioptric systems and some fisheye cameras,
so that visibility constraint problems are avoided with the adequate sensor. In all the proposed
schemes, a minimum set of visual measurements are taken from a geometric constraint imposed
between image features. We focus on exploiting the epipolar geometry and the trifocal tensor.
In this general context, several particular contributions can be summarized.

The epipolar geometry has been exploited in the literature for visual control of mobile robots
in a typical framework of two views. Our main contribution in the context of epipolar-based
control is a robust control law that takes advantage of the information provided by three images
through their pairwise epipolar geometries. The sliding mode control technique is proposed
to provide robustness against parametric uncertainty and to avoid singularity problems as well.
The work related to this contribution has been published in [19], [18] and [17].

Although the trifocal tensor is a geometric constraint that intrinsically integrates the rich
information of three views, it has been exploited little for visual control. Given that the ten-
sor is an oversized measurement with respect to the robot state, we have contributed in the
framework of trifocal tensor-based control with the design of a robust scheme from a suitable
two-dimensional error function. In this scheme, we exploit the 1D version of the trifocal tensor
estimated from bearing information of the visual features. The proposed sliding mode control
law with direct feedback of this tensor results in a visual control scheme that does not require
specific calibration. This work led to the publications [20] and [16].

In order to reduce the dependence of a visual control scheme on the information in the im-
age space, we have dealt with the problem of pose-estimation and feedback of the estimated
pose. In the literature, this has been tackled through static approaches by decomposition of the
homography model or the epipolar geometry. In this context, our contribution is a novel nonlin-
ear observability study that demonstrates that the epipolar geometry and the trifocal tensor can
be used for dynamic pose-estimation. Additionally, we demonstrate the stability of the closed
loop with feedback of the estimated pose. This contribution led to the publications [21], [22]
and [23].

The robot navigation based on a visual memory is a good way to extend the visual servo-
ing approach to large displacement. In the literature, the memory-based navigation has been
tackled through classical schemes that use the pseudoinversion of an interaction matrix or the
decomposition of a geometric constraint. We have contributed in the framework of memory-
based navigation by using direct feedback of a geometric constraint with two main advantages:
explicit pose parameters decomposition is not required and the computed velocities are smooth
or eventually piece-wise constant during the navigation. This work has been presented in [15].



1. Introduction 19

1.4 Structure of the thesis

In the next section of this chapter, we have included the state of the art of the visual control,
first from a general point of view, and then, in the context of mobile robots. The outline of the
subsequent chapters is the following.

• Chapter 2. This chapter introduces the theoretical background that is needed in the rest
of the thesis. The content is related to four main aspects: the robot modeling, computer
vision topics, nonlinear control theory and state estimation.

• Chapter 3. In this chapter, a visual servoing scheme that exploits the epipolar geometries
of three views is presented. Through this scheme, we introduce the benefits of using
three views for visual servoing. The scheme takes advantage of the properties of the
sliding mode control as a robust control technique in order to achieve good performance in
the presence of singularities and uncertainty in camera calibration parameters and image
noise.

• Chapter 4. A generic visual control scheme based on the direct feedback of the trifocal
tensor is developed in this chapter. Although this scheme is also valid for conventional im-
ages, it particularly exploits the properties of omnidirectional images to preserve bearing
information by using a simplified trifocal tensor. This scheme is also robust to uncer-
tainty in parameters and the behavior of the tensor as measurement provides good general
performance in the visual servoing task.

• Chapter 5. This chapter shows the benefits of the epipolar geometry and the trifocal tensor
in pose-estimation for visual servoing purposes. We demonstrate through a nonlinear
observability study that one measurement of any of those geometric constraints provides
enough information in order to estimate the robot pose dynamically. This result allows the
control of the robot in the Cartesian space with benefits such as reducing the dependence
of the servoing on the visual information and facilitating the planning of complex tasks.

• Chapter 6. In this chapter, we propose two control schemes for driving wheeled mobile
robots along visual paths exploiting the visual memory approach. These generic schemes
are based on the feedback information provided by a geometric constraint, namely, the
epipolar geometry and the trifocal tensor. The proposed control laws do not need explicit
pose parameters decomposition, only require visual data extracted directly from the image
features and provide good performance in terms of the smoothness and continuity of the
computed velocities.

• Chapter 7. This chapter remarks the general conclusions of the thesis.

The chapters 3, 4, 5, and 6, where the main contributions of the thesis are developed, can
be mainly divided in four common sections: 1) introduction, 2) theoretical development of the
proposal, 3) experimental evaluation and 4) conclusions.

Unifying vision and control for mobile robots



1.5 State of the art

1.5.1 Visual control in Robotics

Visual control is understood as the use of visual information as feedback in a closed loop con-
trol. This type of control approach represents a very good option for the control of robots, given
the rich information that machine vision provides at a low cost. Additionally, the use of ma-
chine vision allows to be a small step closer to the goal of mimicking the human control system
by an artificial robotic system. The generic term visual control has been typically referred as
visual servoing (VS). Since the introduction of the VS term in 1979 [76], an extensive work in
the field has been developed. VS is currently a mature topic for robot control, although the use
of visual information is still an appealing task and many aspects merit to be studied to make
this approach more general and robust for conventional situations. It is generally accepted that
VS is defined as the use of visual information to control the pose of the robot’s end-effector
relative to a target object in the case of manipulators or the vehicle’s pose with respect to some
landmarks in the case of mobile robots [79].

The visual information needed for VS may be acquired from a camera mounted on a robot
manipulator or on a mobile robot (eye-in-hand configuration), in which case the robot motion
induces camera motion. Also, the camera can be fixed in the workspace, so that, it can observe
the robot motion from a stationary configuration (eye-to-hand configuration). Other configura-
tions are possible, for instance, several cameras mounted on pan-tilt heads observing the robot
motion. The mathematical development of all these cases is similar [34], and we focus on
surveying the state of the art for the eye-in-hand case. This configuration increases the applica-
bility of the VS approach for the control of mobile robots given that it facilitates the carrying
out of a large displacement task, which would be difficult using a fixed-camera configuration.
The typical way in which a "setpoint" is given in visual control is through a reference or target
image, which is referred as the teach-by-showing strategy. Thus, the goal of the VS is to take
the current view of the camera-robot to be the same as the target image by minimizing an error
function e(t), which can be defined as

e(t) = s(m(t), c)− sd

where s is a vector of visual features depending on a set m(t) of visual measurements (e.g., the
image coordinates of interest points or the image coordinates of the centroid of an object) and
on a set c of metric parameters (e.g., camera calibration parameters or 3D information). The
vector sd contains the desired values of the features, which is constant in a static framework,
i.e., fixed desired pose and motionless target. Moreover, sd is time-varying if it is desired to
drive the vector of visual features to a final value by tracking a particular trajectory.

The error function is often referred as a task function [140], [58], which must be zeroed
e(t) = 0. This can be seen as a problem of output regulation from a control theory viewpoint
[80]. According to the nature of the error function, the VS schemes are typically classified in
three groups:

1. Image-based visual servoing (IBVS). The error is computed from a set of visual features
s that are directly available in the image space.
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2. Position-based visual servoing (PBVS). The error is computed in the Cartesian task space
from a set of 3D parameters s, which must be estimated from visual measurements.

3. Hybrid visual servoing. The error function is a combination of Cartesian and image
measurements.

Some interesting overviews introducing the different types of VS schemes are [79] and the
two-part survey [34], [35]. In Part I, classical VS schemes are described and the performance
of PBVS and IBVS are analyzed. The Part II is dedicated to advance schemes, including parti-
tioned, hybrid and numerical methods.

1.5.2 Classical visual servoing schemes

Image-based (IB) schemes

This approach, also called 2D visual servoing, is known to be robust against camera intrinsic
parameters and many of the efforts of the research in VS has been dedicated to this type of ap-
proach. However, classical IB schemes present problems of local minima and the convergence
is constrained to a region around the desired pose. There exist a lot of examples of IB schemes
in the literature. In one of the pioneer works [160], a hierarchical sensor-based control structure
with the control level given by a adaptive IBVS scheme is introduced. An application of VS for
positioning a robot with respect to a moving object by tracking it and estimating its velocity is
presented in [36]. A control theoretic formulation (linear time-invariant LTI) and a controller
design method (linear quadratic LQ) for the IBVS with redundant features is proposed in [71].
In [51], motion in the image is used as input to the control system. This motion can be estimated
without any a priori knowledge of the observed scene and thus, it does not need visual marks
on the observed scene to retrieve geometric features. Some efforts have been developed to deal
with the dependence on depth of the features in the classical IB schemes. On this issue, an ex-
tended 2D VS that augments the task function with an estimated depth distribution of the target
points and an estimated camera model to avoid local minima is developed in [142]. Another
approach dealing with the estimation of feature depth for IBVS using a nonlinear observer is
presented in [102]. The IBVS approaches are sensitive to noise and often, they require to apply
some filtering technique for smoothing the visual measurements. Lines and moments have been
proposed to achieve robustness to image noise. Additionally, lines facilitate detection [7], and
image moments remove potential problems with redundant points [33]. The IB schemes have
achieved good decoupling and linearizing properties for 6 DOF using image moments [148].

The IB approach has concerned about some important issues in order to overcome the draw-
backs of the approach, for instance, to keep the features in the field of view or to avoid local
minima [43]. In [145], the ability of a computer vision system to perceive the motion of an
object in its field of view is addressed. A quantitative measure of motion is derived and called
perceptibility, which relates the magnitude of the rate of change in an object’s position to the
magnitude of the rate of change in the image of that object. This has derived to path planning
strategies for IBVS. In [111], the robot redundancy for dynamic sensor planning is used for VS
through the minimization of a secondary cost function. A partitioned approach for IBVS that
overcomes the problem that the robot executes desired trajectories in the image, but which can
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be indirect and seemingly contorted in Cartesian space is introduced in [47]. A potential func-
tion that repels feature points from the boundary of the image plane is incorporated to guarantee
that all features remain in the image. In [124], planning in image space and IBVS are coupled
to solve the difficulties when the initial and desired robot positions are distant. The proposed
method is based on the potential field approach. The work in [44] deals with the problem of
realizing VS for robot manipulators taking into account constraints such as visibility, workspace
and joint constraints, while minimizing a cost function such as spanned image area, trajectory
length and curvature.

Position-based (PB) schemes

The PB approach is also called 3D visual servoing because the control inputs are computed
in the three dimensional Cartesian space. The pose of the target with respect to the camera is
estimated from image features. To do that, a perfect geometric model of the target model and
a calibrated camera are required. Results in computer vision about 3D reconstruction from two
views have been applied successfully, making the knowledge of the object model unnecessary,
however the calibration requirements cannot be avoided. The PB visual control approach has
been applied mainly for robot manipulators. Usually, a pose-estimation technique is used to re-
cover the Cartesian required information. In [161], an EKF-based estimation is used to design a
control law in terms of relative positions between the end-effector and the target object. In [91],
adaptive Kalman filtering techniques are explored to improve the precision of the estimation
in PBVS for manipulators [144]. Two papers introduce VS based on an observer-scheme for
applications with manipulators [72], [74]. A visual tracking scheme that includes a kinematic
model for the object to be tracked is used. To perform the VS task, the authors of [117] use
a nonlinear state feedback. They propose an exact model for parametrization of the pose that
allows the control of the translation and rotation of the camera separately. This work attempts
the common concern of visual control approaches to design decoupled schemes. Another con-
cern of visual control is to keep the image features belonging to the target in the current view
along the navigation. In [153], a PB approach that consists in tracking an iteratively computed
trajectory is designed to guarantee that the target object remains in the field of view.

Currently, the research on visual control focuses on applications on monocular vision and
the use of stereo vision has received less attention. An approach that strictly speaking is a PB
scheme takes advantage of the 3D features provided by a stereo vision system [31]. 3D coor-
dinates of any point observed in both images can be easily estimated by a simple triangulation
process. Binocular vision has proved the benefit of robustness to calibration errors exploiting
optical flow [68]. Alternative feature vectors combining 2D and 3D information from a stereo
system have been proposed in [30]. That work shows that point depth and object pose produce
an improved behavior in the control of the camera.

Classical VS schemes are based on the stacking of image Jacobians to eventually have a
rectangular interaction matrix. These approaches use a nonexact inversion of this matrix, they
exhibit potential problems of stability [32], and only local stability can be theoretically demon-
strated. In general, a VS scheme relies on locating consistently a desired feature in each image
of an input sequence, i.e., a spatio-temporal tracking process of visual cues. Relevant references
on feature tracking algorithms for VS purposes are [107] and [110].
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1.5.3 Visual servoing through a geometric constraint

The classical visual control schemes use a batch of features directly extracted from the images
to compute the error function. Another option to extract useful information in order to control
a robot from monocular images is by means of geometric constraints that relate two or three
views. Geometric constraints are imposed in the images when there are correspondences be-
tween features [70]. At present, three constraints are well known in computer vision and have
been used for control purposes: the homography model, the epipolar geometry and the trifocal
tensor. The use of geometric constraints has given origin to hybrid schemes that improve the
performance of classical IB schemes. In [54], the homography and the epipolar constraint are
used to generate the optimal trajectory of the robot motion to reach the goal straightforwardly
with decoupled translation and rotation. The 2-1/2D visual servoing which is based on the
estimation of the partial camera displacement from the current to the desired camera poses at
each iteration of the control law is proposed in [109]. This scheme does not need any geomet-
ric 3D model of the object as required in PBVS, and it ensures the convergence of the control
law in the whole task space, unlike IBVS. An outstanding work in the hybrid visual control
approach concerns about the stability analysis of a class of model-free VS methods that can be
hybrid or PB [108]. In any of both cases, these methods do not need a 3D model of the target
object. Additionally, the VS is decoupled by controlling the rotation of the camera separately
from the rest of the system. In [37], a homography-based adaptive visual servo controller is
developed to enable a robot end-effector to track a desired Euclidean trajectory as determined
by a sequence of images. The error systems are constructed as a hybrid of pixels information
and reconstructed Euclidean variables obtained by comparing the images and decomposing a
homographic relationship.

A homography-based approach for IB visual tracking and servoing is proposed in [25]. The
visual tracking algorithm is based on an efficient second-order minimization method and its
output is a homography linking the current and the reference image of a planar target. Using the
homography, a task function isomorphic to the camera pose is designed, and thus, an IB control
law is proposed. In [38], an image-space path planner is proposed to generate a desired image
trajectory based on a measurable image Jacobian-like matrix and an image-space navigation
function. An adaptive homography-based visual servo tracking controller is then developed to
navigate to a goal pose along the desired image-space trajectory while ensuring that the target
points remain visible.

In order to avoid the largely over-constrained control commands resulting in monocular
approaches, in [86], the authors propose to exploit explicitly the epipolar constraint of two stereo
images. A hybrid switched-system visual servo method that utilizes both IB and PB control laws
is presented in [62]. The switching strategy achieves stability in both the pose space and image
space simultaneously. With this strategy is possible to specify neighborhoods for the image error
and pose error that the state can never leave. In [14], the epipolar constraint is introduced for
visual homing of robot manipulators. By using the epipolar geometry, most of the parameters
(except depth) which specify the differences in position and orientation of the camera between
the current and target images are recovered. The method is memoryless, in the sense that at
every step the path to the target position is determined independently of the previous path.
In [135], a VS based on epipolar geometry for manipulators is reported. It discusses how
the real value of the translation to be reached is unpredictable and proposes a control scheme
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which decouples the control of the rotation and the translation using the projective properties
of the fundamental matrix. Additionally, The epipolar visual control has become in a powerful
approach for mobile robots as will be described later.

The first work that proposes a robotic application of a trilinear constraint is [55]. The trifo-
cal tensor has proved its effectiveness to recover the robot location in [69]. The onedimensional
version of the trifocal tensor has been also proposed for hierarchical localization with omni-
directional images in [127]. Recently, the trifocal tensor has been introduced for VS of robot
manipulators in [143]. Schemes using higher order tensors with more than three views have
been explored for visual odometry [45].

1.5.4 Robust visual servoing
Another important issue in VS concerns for uncalibrated methods. Some good results toward
the development of robust visual techniques used to guide robots in several real-word tasks are
presented in [85]. The scheme attempts to keep the object in the field of view, or even cen-
tered, while the end-effector is approaching to it. A VS scheme which is invariant to changes
in camera-intrinsic parameters is presented in [106]. With this method, it is possible the camera
positioning with respect to a nonplanar object given a reference image taken with a completely
different camera. A dynamic quasi-Newton method for uncalibrated VS that estimates the com-
posite Jacobian at each step is used in [132]. An adaptive controller for IB dynamic control
using a fixed camera whose intrinsic and extrinsic parameters are unknown is presented in [92].
It proposes a depth-independent interaction matrix and estimates on-line the values of the un-
known parameters. The results in [159] present an adaptive scheme that avoids the dependence
of the scheme on depth information. It exploits the dynamics of manipulators to prove asymp-
totic convergence of the image errors. However, this approach needs additional feedback of
the robot state (position and velocity). Additionally, the camera calibration parameters are esti-
mated on-line using a bundle adjustment strategy that is sensitive to initial values.

Few efforts have been done to take some robust control techniques for vision-based feed-
back. One of this techniques that is well know for its property of robustness is the sliding
mode control (SMC). This control technique provides the possibility to deal with parametric
uncertainty due to weak camera calibration. On one hand, SMC has been used for 3D tra-
jectory tracking with a PBVS scheme through a pose reconstruction algorithm [163]. On the
other hand, SMC has been proposed for 6 DOF IBVS in [83] and recently combined with a
preestimate of the robot state [89].

1.5.5 Omnidirectional visual servoing
One effective way to enhance the field of view of conventional cameras is to use mirrors in
conjunction with lenses, i.e., catadioptric image formation systems. The authors of [13] propose
to use catadioptric cameras to observe the whole robot’s articulated mechanism so that its joints
can be tracked and controlled simultaneously. It has been shown that some results of stability
and robustness obtained for conventional cameras are extendable to the entire class of central
catadioptric systems [125]. For instance, some of these extensions are the 2-1/2D scheme of [2]
and the path planning strategy proposed in [4].
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The problem of controlling a robot from the projection of 3D straight lines in the image
plane of central catadioptric systems is addressed in [5]. A generic interaction matrix for the
projection of 3D straight lines is derived using the unifying imaging model [65]. A new decou-
pled IB control scheme allowing the control of translational motion independently of rotation is
proposed from the projection onto a unitary sphere in [149]. The scheme is based on moments
that are invariant to 3D rotational motion. The homography model has been also exploited
for omnidirectional VS of 6 DOF. The authors of [24] propose an IB control law that mini-
mizes a task function isomorphic to the camera pose. They provide the theoretical proofs of
the existence of the isomorphism and the local stability of the control law. Other geometric
constraints have been exploited while using omnidirectional vision for VS, particularly focused
on the control of mobile robots, as detailed in the next section.

1.5.6 Visual control of mobile robots
From the last decade, some Jacobian-based VS schemes for mobile robots have been proposed
as an extension of those schemes for 6 DOF, for instance [118], [154]. These works propose
to add some DOF to the mobile platform by acting the camera to overcome the control issues
related to the nonholonomic constraint of wheeled robots. This is avoided in [73], where two
visual cues attached on the environment are controlled through an IB scheme that linearizes the
dynamics of the nonlonomic cart transformed into the image plane. These IBVS approaches are
sensitive to noise and wrong corresponding point features, and often, it is required to apply some
robust filtering technique for smoothing and matching visual measurements [46]. Redundancy
resolution methods have been employed for IBVS of nonholonomic mobile manipulators [101].
An strategy for visual motion planning in the image space is presented in [165].

Most of the VS schemes have the drawback that the target may leave the camera field of
view during the servoing, which leads to failure because the feedback error cannot be computed
anymore. Some PB schemes have been proposed to avoid this problem. For instance, the
switching controller of [61] uses an Euclidean homography-based reconstruction to estimate the
robot pose. The parking problem with limited field of view is tackled in [128] with a switching
control law, whose stability is analyzed through the theory of hybrid systems and the robot pose
is estimated in closed form from the motion of the image features.

The PB approach has allowed to treat other problems, like robot cooperation [81], wall
following, leader following and position regulation [52], or VS for large displacement [60].
These schemes introduce a Kalman filtering approach to estimate features position of a known
pattern scene, or to match a set of landmarks to a priori map and to estimate the robot pose from
these visual observations.

A robust way to relate corresponding features from two views is by means of a geometric
constraint [70]. Three constraints have been mainly employed in the context of VS: the homog-
raphy model, the epipolar geometry and the trifocal tensor. The homography model has been
used on VS for mobile robots in the form of a hybrid scheme [59]. This strategy uses the rotation
and the scaled translation between the current and the target views, which implies to decompose
the homography matrix and requires perfect knowledge of the camera calibration parameters.
Similarly, the homography is decomposed to estimate the relative position and orientation of a
car with respect to a leading vehicle for car platooning applications in [26]. The idea of using
the elements of the homography matrix directly as feedback information is introduced in [137]
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for visual correction in homing tasks. Also, the homography decomposition has been partially
avoided in [97]. However, the rotation is still required and it is obtained from the parallax of the
image planes. This scheme has been extended to deal with field of view constraints while the
robot is driven through optimal paths to the target in [93].

Regarding to the use of the epipolar geometry for VS of wheeled mobile robots, the authors
of [131] introduce a strategy based on the autoepipolar condition, a special configuration for the
epipoles which occurs when the desired and current views undergo a pure translation. Although
the epipolar geometry is a more general constraint than the homography model, its application
for VS results challenging due to its ill-conditioning for planar scenes, the degeneracy with
short baseline and singularity problems for system control. The first issue has been solved
by using a generic scene and the second has been tackled by commuting to a feature-based
strategy [112] or homography-based control [95]. The singularity problems in epipolar-based
control appear when the interaction matrix between the robot velocities and the rate of change
of the epipoles becomes singular for some state of the robot. The approach in [112] takes into
account the nonholonomic nature of a wheeled robot by driving one dimension of the epipoles
to zero in a smooth way. However, in order to avoid the singularity, the motion strategy steers
the robot away from the target while the lateral error is corrected, and after that, the robot
moves backward to the target position. A more intuitive way to drive the robot directly toward
the target has been addressed in [99], but the singularity is not treated. A recent work presents
a visual control for mobile robots based on the elements of a 2D trifocal tensor constrained to
planar motion [96]. The interaction matrix of this scheme is a rectangular Jacobian that may
induce problems of stability or local minima.

Omnidirectional vision has been exploited for visual control of mobile robots. The method
in [155] proposes a switching control law with feedback of the bearing angle of features and
range discrepancies between the current and target views through the so-called Improved Aver-
age Landmark Vector. The generic approach for central catadioptric imaging systems presented
in [5] is also valid for mobile robots control. The control objective is formulated in the catadiop-
tric image space and the control law is designed from a robot state vector expressed in the same
space in order to follow 3D straight lines. The auto-epipolar condition has also been exploited
in VS with central catadioptric cameras in [113], where together with the pixel distances be-
tween the current and target image features, an IB control law is designed for holonomic mobile
robots. Recently, an approach for nonholonomic robots proposes to exploit multiple homogra-
phies from virtual planes covering a large range of the omnidirectional view in order to extract
most of the relevant information [94].

From the 80s to nowadays, there have been many contributions in the field of visual nav-
igation for mobile robots. It can be seen in the survey [56], how including machine vision as
a sensor can improve the navigation capabilities of wheeled mobile robots. From our point of
view, visual navigation is understood as the capability of a robot to perform autonomous motion
along a path by providing velocities that are computed from visual feedback. In this sense, it is
clear the important component of control theory that is involved in such task. Thus, the most
relevant works concerned for control issues in visual navigation are the following.

One of the first efforts for visually guided navigation of wheeled mobile robots is presented
in [84]. The robot employs VS techniques at the lowest level of interaction with the known
environment. The environment is represented in terms of a place graph and the global naviga-
tion is expressed as a sequence of relative positioning tasks. The task of tracking an arbitrarily
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shaped continuous ground curve is considered in [105] by controlling the shape of the curve in
the image plane. An Extended Kalman Filter is proposed to dynamically estimate the image
quantities needed for feedback. A non-metrical model of a visual route called View-Sequenced
Route Representation is proposed in [120]. This representation contains a sequence of im-
ages along a route memorized in a recording run. In an autonomous run, the current view
image and the memorized view sequence are matched using a correlation technique. An ap-
proach for navigating in corridors is proposed in [157] by combining VS with vanishing points
and appearance-based methods. A calibration free entirely quantitative method using the same
teach-replay approach is presented in [40]. As any heuristic method, this approach lacks of
stability proof. In [164], the current image is compared with reference images using image
cross-correlation performed in the Fourier domain to recover the difference in relative orienta-
tion. This approach presents good results for large navigation. A comparison of IB controllers
for nonholonomic navigation from a visual memory is presented in [42]. The evaluated schemes
are classical Jacobian based controllers using conventional cameras. A recurrent issue in nav-
igation from a visual memory is the discontinuous rotational velocity that is obtained. This is
tackled in [41] through a time-independent varying reference and using a vector field derived
from consecutive target images.

The view-sequence route representation has been extended to omnidirectional cameras [119]
and used later in [150]. The problems of topological navigation and visual path following are
tackled in [63]. The former problem refers to the global task and the second to local actions. In
any case, the motion control obtains feedback information extracted from omnidirectional im-
ages converted to bird’s eye views and panoramic images (unwrapped omnidirectional views).
An approach for direct control of a mobile robot to keep it on a pre-taught path based solely
on the perception from a monocular camera is presented in [29]. A conventional camera and
a pan-tilt head or an omnidirectional camera are proposed to avoid field of view problems.
Additionally, there are different approaches for omnidirectional vision-based robot navigation
that exploit particular properties of omnidirectional images, for instance in [122], the Fourier
components of the images and in [8], the angular information extracted from panoramic views.

Geometric constraints have also been exploited in the field of visual navigation. In [39], a
visual servo tracking controller is developed as a hybrid visual control, where the information
obtained by decomposing the homography is used in a kinematic controller. Based on the reg-
ulation of successive homographies, the control in [49] guides a nonholonomic mobile robot
along a reference visual route without explicitly planning any trajectory. This framework is
developed for the entire class of central catadioptric cameras. In [136], a real-time localization
system for a mobile robot, which uses a single camera and natural landmarks is presented. A
structure from motion algorithm generates a 3D map of the scene from the learned sequence
of images. Then, the map is used for autonomous navigation following the learned path or a
slightly different path if desired. Topological maps are employed for omnidirectional visual
navigation in [66], where a homing vector is computed using the epipolar geometry for central
catadioptric cameras. Similarly, the decomposition of the essential matrix is exploited in [50]
for autonomous navigation of vehicles. The scheme is valid for the entire class of central cam-
eras and has also shown its validity for fish eye cameras.
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Chapter 2

Theoretical background

Visual control refers to the use of computer vision data to control the motion of a robot. It relies
on techniques from different fields, mainly computer vision and control theory. This chapter
introduces important aspects of these fields, which will be used along the thesis or in specific
sections. They are given in order to provide the necessary tools for a better understanding of the
proposed visual control schemes described in subsequent chapters. Given that the thesis focuses
on the development of visual control techniques to be applied in mobile robot navigation, this
chapter, first, Section 2.1 introduces the model of the mobile robots to be treated. About the
field of computer vision, in Section 2.2 we summarize the central camera model since all of our
proposed schemes are valid for cameras obeying such a model. The same section also presents
the multi-view geometric constraints that are exploited. Section 2.3 provides a background of
some tools from the control theory, which are used in the design of the proposed nonlinear con-
trollers. Basically, this theory introduces two control techniques: the input-output linearization
and the sliding mode control. Finally, the theory required to analyze the observability properties
of visual measurements is provided in Section 2.4 and some aspects about nonlinear dynamic
estimation are detailed in Section 2.5.

2.1 The camera-robot model
Many wheeled robotic platforms can be characterized by having a differential-drive motion
capability. In the context of the thesis, this type of robots are driven using visual feedback
under the framework that is depicted in Fig. 2.1. A camera is fixed to the robot and eventually
it is translated a known distance ℓ along the longitudinal axis y⃗R. On one hand, the kinematic
behavior of the robot {R} with respect to a world frame {W} can be expressed using the
unicycle model  ẋ

ẏ

ϕ̇

 =

 − sinϕ 0
cosϕ 0
0 1

[ v
ω

]
. (2.1)

On the other hand, the kinematic behavior of the on-board camera as induced by the robot
motion, i.e., the kinematics of the point cR =

[
0 ℓ

]T can be found using a general trans-
formation between frames. Thus, the on-board camera motion is modeled by the following
continuous time system
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Figure 2.1: Robotic test beds and robot model. (a) Nonholonomic mobile robot Pioneer P3-
DX with a conventional camera onboard. (b) Nonholonomic mobile robot Pioneer 3-AT with
a central catadioptric imaging system onboard. (c) Kinematic configuration of a mobile robot
with an on-board central camera.

 ẋ
ẏ

ϕ̇

 =

 − sinϕ −ℓ cosϕ
cosϕ −ℓ sinϕ
0 1

[ υ
ω

]
. (2.2)

This is a driftless affine system that can be written through the state vector x =
[
x y ϕ

]T ,
input vector u =

[
υ ω

]T , two input vector fields g1(x) =
[
− sinϕ cosϕ 0

]T and
g2(x) =

[
−ℓ cosϕ −ℓ sinϕ 1

]T , and output measurement y given by an adequate non-
linear function h(x)

ẋ =
[
g1(x) g2(x)

]
u,

y = h(x). (2.3)

The driftless property of this system is because the state vector field is null, and hence, no
motion takes place under zero input, or in control theory concepts, any state is an equilibrium
point under zero input. Furthermore, the corresponding linear approximation in any point x(t)
is uncontrollable. However, it fulfills the Lie Algebra rank condition [80], in such a way that
controllability can be demonstrated [103].

Additionally, the nonholonomic system (2.2) fails to satisfy a condition for stabilization via
smooth time-invariant feedback (Brockett’s theorem [27]). This theorem states that a necessary
condition for smooth stabilization of a driftless regular system is that the number of inputs equal
the number of states. Since this is not the case, such condition is violated. Thus, in order to
drive the robot to a desired position and orientation (pose regulation problem), time-varying
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feedback control laws have been proposed in the literature [139], [133]. Also, this control
problem has been tackled by maneuvering in a sequence of steps generating discontinuous
control inputs [53], [6]. In all these control schemes, the full state of the robot is considered to
be available for feedback. Particularly in the control of mobile robots using visual feedback, the
authors of [59] and [154] propose time-varying controllers, but the maneuvering strategy has
been mostly used [73], [46], [112], [99], [128], [93]. This strategy has been exploited for the
design of control schemes considering the constrained field of view of conventional cameras,
like in the last two referred works.

By applying an Euler approximation (forward difference) for the continuous derivatives in
(2.2), the discrete version of the system is obtained

xk+1 = xk − Ts (ωkℓ cosϕk + υk sinϕk) ,

yk+1 = yk − Ts (ωkℓ sinϕk − υk cosϕk) ,

ϕk+1 = ϕk + Tsωk, (2.4)

where Ts is the sampling time. Eventually, it can be assumed that the robot state and the
measurements are affected by Gaussian noises mk and nk, respectively. These noises ac-
complish mk ∼ N (0,Mk), nk ∼ N (0,Nk) and E

[
mk,inTk,j

]
= 0, with Mk the state noise

covariance and Nk the measurement noise covariance. By writing the state vector as xk =[
xk yk ϕk

]T , the input vector as uk =
[
υk ωk

]T , the discrete version of the system can
be expressed as follows:

xk+1 = f (xk,uk) +mk,

yk = h (xk) + nk, (2.5)

where the nonlinear function f is the vector field formed by the terms on the right side of (2.4).

2.2 Background from Computer Vision
Computer vision is one of the fields in which the visual control techniques rely on. This section
introduces some important concepts that are used along the thesis, namely, the central camera
model that represents a generic projection model, and some multi-view geometric constraints,
whose properties are exploited in the proposed control schemes.

2.2.1 Central camera model
One of the key point of this thesis is the development of visual control schemes valid for any
type of camera obeying the model described in this section. This increases significatively the
applicability of the proposed schemes. The constrained field of view of conventional cameras
(Fig. 2.2(a)) can be enhanced using wide field of view imaging systems such as full view
omnidirectional cameras. This can be achieved using some optic arrangements that combine
mirrors and lens, i.e., catadioptric imaging systems as the one in Fig. 2.2(b). These systems
use hyperboloidal, paraboloidal or ellipsoidal mirrors and have been well studied in the field
of computer vision [10]. According to this theory, all of them can satisfy the fixed view point
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Figure 2.2: Examples of central cameras. (a) Conventional perspective camera. (b) Catadioptric
imaging system formed by a hyperbolic mirror and a perspective camera. (c) Example of an
image captured by a hypercatadioptric system.

constraint. In practice, with a careful construction of the system, it is realistic to assume a central
configuration and many robotic applications have proven its effectiveness [123], [3], [113], [69].
Fig. 2.2(c) shows an example of the images captured by a hypercatadioptric system.

It is known that the imaging process performed by conventional and catadioptric cameras
can be modeled by a unique representation [65]. Such unified projection model works properly
for imaging systems having a single center of projection. Although fisheye cameras do not ac-
complish such property, some recent experimental results have shown that the unified projection
model is able to represent their image formation process with the required accuracy for robotic
applications [48].

The unified projection model describes the image formation as a composition of two central
projections [65]. The first is a central projection of a 3D point onto a virtual unitary sphere
and the second is a perspective projection onto the image plane. According to [12], this generic
model can be parameterized by (ξ,η) which are parameters describing the type of imaging sys-
tem and by the matrix containing the intrinsic parameters. The parameter ξ encodes the nonlin-
earities of the image formation in the range ξ ≤ 1 for catadioptric vision systems and ξ > 1 for
fisheye cameras. The parameter η can be seen as a zooming factor and it is already included in
the estimated value of the focal length. Thus, the parameter ξ and the generalized camera pro-
jection matrix K can be obtained through a calibration process using an algorithm for central
catadioptric cameras like the one in [121]. This matrix is given as

K =

 αxη αxηs x0
0 αyη y0
0 0 1

 , (2.6)

where αx and αy represent the focal length of the camera in terms of pixel dimensions in the
x and y direction respectively, s is the skew parameter and (x0, y0) are the coordinates of the
principal point.
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Figure 2.3: The central image formation process. (a) Catadioptric imaging system. (b) Generic
representation of central cameras.

Regarding to Fig. 2.3, the mapping of a point X in the 3D world with coordinates X =[
X Y Z

]T in the camera frame Fc resulting in the image point xic with homogeneous
coordinates xhic can be divided into three steps:

1. The world point is projected onto the unit sphere on a point Xc with coordinates Xc in Fc,
which are computed as Xc = X/ ∥X∥.

2. The point coordinates Xc are then changed to a new reference frame Oc centered in O =[
0 0 −ξ

]T and perspectively projected onto the normalized image plane Z = 1− ξ:

xh =
[
xT 1

]T
=
[
x y 1

]T
= f(X)

=
[

X
Z+ξ∥X∥

Y
Z+ξ∥X∥ 1

]T
.

3. The image coordinates expressed in pixels are obtained after a collineation K of the 2D
projected point xhic = Kxh.

Notice that, setting ξ = 0, the general projection model becomes the well known perspec-
tive projection model. Images also depends on the extrinsic parameters C =(x, y, ϕ), i.e. the
camera pose in the plane relative to a global reference frame. Then an image is denoted by
I (K,C).

It is possible to compute the coordinates of the point on the unitary sphere Xc from point
coordinates on the normalized image plane x if the calibration parameters of the imaging system
are know. As deduce in [49], the following holds:

Xc =
(
η−1 + ξ

)
x̄, (2.7)

where x̄ =
[
xT , 1

1+ξη

]T
and η =

−γ−ξ(x2+y2)
ξ2(x2+y2)−1

, γ =
√

1 + (1− ξ2) (x2 + y2).
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2.2.2 Multi-view geometric constraints
A multi-view geometric constraint is a mathematical entity that relates the geometry between
two or more views. Three geometric constraints are mainly referred in the context of computer
vision: the homography model, the epipolar geometry and the trifocal tensor. The last two
constraints provide more general representations of the geometry between different images,
since the former is valid only for planar views. For this reason, next, we describe the epipolar
geometry (EG) and the trifocal tensor (TT) as the geometric constraints that have been exploited
in the proposed control approaches. For further details about this topic refer to [70].
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Figure 2.4: Epipolar geometry between generic central cameras.

The Epipolar Geometry (EG)

The epipolar geometry (EG) describes the intrinsic geometry between two views. It only de-
pends on the relative location between cameras and their internal parameters. The fundamental
matrix F is the algebraic representation of this geometry. This is a 3×3 matrix of rank 2. The
fundamental matrix satisfies the epipolar constraint

pT2Fp1 = 0,

where p1 and p2 is a pair of corresponding image points expressed in homogeneous coordinates.
Using this constraint, the fundamental matrix can be computed from corresponding points in
conventional images without knowledge of the internal camera parameters or the relative camera
positions by solving a linear system of equations using the 8-point algorithm [70]. The epipoles
e1 and e2 are the intersections of the line joining the optical centers of the cameras with the
image planes. They can be computed from the fundamental matrix using the expressions Fe1 =
0 and FTe2 = 0.

The fundamental epipolar constraint is analogue for conventional cameras that for central
catadioptric ones if it is formulated in terms of rays emanating from the effective viewpoint
[147]. Regarding to Fig. 2.4, let X be a 3D point and let Xc and Xt be the coordinates of that
point projected onto the unit sphere of the current Fc and target frame Ft. These coordinates
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can be computed from the corresponding points in the images using (2.7). The epipolar plane
contains the effective viewpoints of the imaging systems Cc and Ct, the 3D point X and the
points Xc and Xt. The coplanarity of these points leads to the epipolar constraint for normalized
cameras

XT
c E Xt = 0,

with E being the essential matrix. Normalized means that the effect of the known calibration
matrix has been removed and then, central cameras can be virtually represented as conventional
ones. As typical, from this constraint it is possible to compute the epipoles as the points lying
on the baseline and intersecting the corresponding virtual image plane. This can be done by
finding the right null space of the essential matrix. It is known that the estimation of the epipolar
geometry degenerates with short baseline and becomes ill-conditioned for planar scenes [70].

Now, consider we have two images, a current Ic (K,Cc) and a target one It (K,Ct). As-
suming a planar framework, these views have associated locations Cc = (xc, yc, ϕc) and Ct =
(xt, yt, ϕt), respectively. Fig. 2.5(a) shows the epipoles in 3D of a configuration of the pair of
virtual perspective cameras. Fig. 2.5(b) presents an upper view of this configuration, where the
framework of the EG constrained to planar motion is defined under a common reference frame.
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Figure 2.5: Framework of the EG. (a) 3D visualization of the EG. (b) Epipoles from two views
in the plane (ecx, etx) and absolute positions with respect to a fixed reference frame. (c) Polar
representation with relative parameters between cameras (dct, ψct).

Fig. 2.5(c) depicts the locations in terms of their polar coordinates. In this general frame-
work, the x-coordinate of the epipoles ecx and etx can be expressed in terms of the camera
locations and one calibration parameter as follows:

ecx = αx
(xc − xt) cosϕc + (yc − yt) sinϕc
(yc − yt) cosϕc − (xc − xt) sinϕc

, (2.8)

etx = αx
(xc − xt) cosϕt + (yc − yt) sinϕt
(yc − yt) cosϕt − (xc − xt) sinϕt

.
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The Trifocal Tensor (TT)

The trifocal tensor (TT) plays a role in the analysis of scenes from three views analogous to
the role played by the fundamental matrix in the two-view case. Like the fundamental matrix,
the TT depends nonlinearly on the motion parameters among the views, it encapsulates all
the projective geometric relations between three views that are independent of the structure of
the scene. The TT arose historically as a relationship between corresponding lines in three
views, however, it may be used to transfer points from a correspondence in two views to the
corresponding point in a third view. The tensor can be computed from image correspondences
alone without requiring knowledge of the motion or calibration.
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Figure 2.6: 3-point correspondences between points p, p′ and p′′ define the incidence corre-
spondence through the trifocal tensor.

The TT consists of three 3×3 matrices (T1, T2, T3), and thus has 27 elements. There are
therefore 26 independent ratios apart from the common overall scaling of the matrices. In this
work we focus on the use of points as image features. Consider the corresponding points p,
p′ and p′′ shown in Fig. 2.6 expressed in homogeneous coordinates. The incidence relation
between those points is given as

[p′]×

(∑
i

piTi

)
[p′′]× = 03×3,

where [p]× is the common skew symmetric matrix. This expression provides a set of nine
equations, however, only four of them are linearly independent. It can be found that the four
different choices of i, l = 1, 2 give four different equations in terms of the observed image
coordinates from the expression

pk
(
p′ip′′lT 33

k − p′′lT i3k − p′iT 3l
k + T ilk

)
= 0

for k = 1, 2, 3. Thus, seven triplets of point correspondences are needed to compute the ele-
ments of the tensor. The set of equations are of the form, At = 0, where A is the equation
matrix and t is a vector containing the elements of T jki to be found. The solution to this prob-
lem constrained to ∥t∥ = 1 in order to discard the solution t = 0, can be found as the unit
eigenvector corresponding to the least eigenvalue of ATA. A good way to find this eigenvector
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is by using the singular value decomposition (SVD). The same as with the epipolar geometry,
the estimation of the trifocal tensor becomes degenerated with short baseline, i.e., when the
three camera locations are closer or are the same. However, the estimation of the tensor is well
conditioned when the positions of the three cameras are collinear.
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Figure 2.7: Geometry between three camera locations in the plane. (a) Absolute locations with
respect to a reference frame in C3. (b) Relative locations.

In the case in which the three cameras are located in the same plane, for instance, with
the same vertical position from the ground, several elements of the tensor are zero and only
12 elements are in general non-null. Fig. 2.7 depicts the upper view of three cameras with
global reference frame in the third view, in such a way that the corresponding locations are
C1 = (x1, y1, ϕ1), C2 = (x2, y2, ϕ2) and C3 = (0, 0, 0). Analytically, the TT can be deduced
for this framework as done in [96], resulting in that the non-null elements are given as

Tm111 = −tx1 cosϕ2 + tx2 cosϕ1, (2.9)
Tm113 = tx1 sinϕ2 + ty2 cosϕ1,

Tm131 = −ty1 cosϕ2 − tx2 sinϕ1,

Tm133 = ty1 sinϕ2 − ty2 sinϕ1,

Tm212 = −tx1 ,
Tm221 = tx2 ,

Tm223 = ty2 ,

Tm232 = −ty1 ,
Tm311 = −tx1 sinϕ2 + tx2 sinϕ1,

Tm313 = −tx1 cosϕ2 + ty2 sinϕ1,

Tm331 = −ty1 sinϕ2 + tx2 cosϕ1,

Tm333 = −ty1 cosϕ2 + ty2 cosϕ1,
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where txi = −xi cosϕi − yi sinϕi, tyi = xi sinϕi − yi cosϕi for i = 1, 2 and the superscript m
states that they are the tensor elements given by metric information. In practice, the estimated
tensor has an unknown scale factor and this factor changes as the robot moves. We can fix a
common scale during the navigation by normalizing each element of the tensor as follows:

Tijk =
Te
ijk

TN
, (2.10)

where Te
ijk are the estimated TT elements obtained from point matches, Tijk are the normalized

elements and TN is a suitable normalizing factor, which must be different than zero. We can see
from (2.9) that T212 and T232 are constant and non-null, assuming that the camera location C1

is different to C3. Therefore, these elements are good option as normalizing factors.

2.3 Basics of nonlinear control techniques
Control theory is a strong and rigorous field of knowledge by itself and its application is well
appreciated in many other fields including Robotics. In some cases, visual control has not taken
the maximum advantage of this theory. Along the thesis, we make an effort to treat all the
problems from a control theory point of view. In this section, we describe briefly two important
control techniques that are used in the proposed visual servoing schemes. For more details about
the introduced concepts refer to [141], [80], [146], [82]. We suggest do not spend to much time
in a first reading of this section as well as the subsequent in this chapter, given that the reader
can study these topics in depth when they are referred in the next chapters.

2.3.1 Input-Output Linearization
This control technique is also known as exact feedback linearization and is based on the pos-
sibility of nonlinearities cancellation. There are structural properties of the systems that allow
us to perform such cancellation as described in this section. This control technique is the basis
of all the proposed control laws and has been used in each chapter. Consider the single-input-
single-output (SISO) control system

ẋ = f(x) + g(x)u,
y = h(x),

where the state vector x ∈ Rn, the control vector u ∈ R, the output vector y ∈ R, and the vector
fields f(x) ∈ Rn and g(x) ∈ Rn×1. The condition for a system to be input-output linearizable
consists in finding a function T1(x) for every output that satisfies

∂Ti
∂x

g(x) = 0, i = 1, 2, ..., n− 1;
∂Tn
∂x

g(x) ̸= 0, (2.11)

with

Ti+1(x) =
∂Ti
∂x

f(x), i = 1, 2, ..., n− 1.
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This condition can be interpreted as a restriction on the way the derivatives of y depend on
u, which is defined by the structure of the system. To see this point, set ψ1(x) = h(x). The
derivative ẏ is given by

ẏ =
∂ψ1

∂x
[f(x) + g(x)u] .

If [∂ψ1/∂x] g(x) = 0, then

ẏ =
∂ψ1

∂x
f(x) = ψ2(x).

If we continue to calculate the second derivative of y, denoted by y(2), we obtain

y(2) =
∂ψ2

∂x
[f(x) + g(x)u] .

Once again, if [∂ψ2/∂x] g(x) = 0, then

y(2) =
∂ψ2

∂x
f(x) = ψ3(x).

Repeating this process, we see that if h(x) = ψ1(x) satisfies (2.11); that is,

∂ψi
∂x

g(x) = 0, i = 1, 2, ..., n− 1;
∂ψn
∂x

g(x) ̸= 0,

where

ψi+1(x) =
∂ψi
∂x

f(x), i = 1, 2, ..., n− 1.

Then the control input u does not appear in the equations of the first n − 1 derivatives
y, ẏ, ..., y(n−1) and appears in the equation of y(n) with a nonzero coefficient

y(n) =
∂ψn
∂x

f(x) +
∂ψn
∂x

g(x)u.

This equation shows clearly that the system is input-output linearizable since the state feed-
back control with auxiliary input υ

u =
1

∂ψn

∂x
g(x)

[
−∂ψn
∂x

f(x) + υ

]
, (2.12)

reduces the input-output map to y(n) = υ, which is a chain of n integrators, i.e., a linear system
whose new dynamics can be assigned by the auxiliary input.

There exist cases where the control input u appears in the equation of one of the derivatives
y, ẏ, ..., y(n−1). If the coefficient of u (when it happens) is nonzero, then we can again linearize
the input-output map. In particular, if h = ψ1(x) satisfies

∂ψi
∂x

g(x) = 0, i = 1, 2, ..., r − 1;
∂ψr
∂x

g(x) ̸= 0

for some 1 ≤ r < n, then the equation of y(r) is given by
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y(r) =
∂ψr
∂x

f(x) +
∂ψr
∂x

g(x)u.

Therefore, the state feedback control with auxiliary input υ

u =
1

∂ψr

∂x
g(x)

[
−∂ψr
∂x

f(x) + υ

]
, (2.13)

linearizes the input-output map to the chain of r integrators y(r) = υ. In this case, the integer r
is called the relative degree of the system. This allows to enunciate the following definition that
can be found in [141].

Definition 2.3.1 The internal unobservable dynamics that results in the system when r < n is
called Zero Dynamics. This dynamics is described by a subset of the state space which makes
the output to be identically zero. Keeping the output identically zero implies that the solution of
the state equation must be confined to the set

Z∗ = {x ∈ Rn | ψ1(x) = ψ2(x) = ... = ψr(x) = 0} . (2.14)

This control technique is directly extendable to multi-input-multi-output (MIMO) square
systems. The previous process that has been shown must be repeated for each one of the m
outputs for a MIMO system. The process verifies the appearance of any of the control inputs
in the equation of one of the output derivatives. Thus, the linearized dynamics of the system
results in m blocks of r1, ..., rm integrators. The vector relative degree {r1, ..., rm} establishes
the occurrence of a zero dynamics if r1 + r2 + ...+ rm < n.

Notice that the cancellation of nonlinearities depends on the exact knowledge of the model
of the system. This is the reason because the input-output linearization is not a robust control
technique. It is common to have uncertainty in some parameters of the systems, which may
degenerate the controller performance and the property of stability of the closed loop.

2.3.2 A robust control technique: Sliding Mode Control
Sliding Mode Control (SMC) is gaining importance as a universal design methodology for the
robust control of linear and nonlinear systems. It offers several interesting features from a
control theory point of view [156], namely, an inherent order reduction, direct incorporation
of robustness against system uncertainties and disturbances, and an implicit stability proof. In
spite of these kind benefits, SMC has been little exploited in visual servoing, however, its good
performance can be verified in the control schemes of chapter 3 and chapter 4.

Basically, SMC makes use of a high-speed switching control law to drive the nonlinear state
trajectory of the system onto a specified and user-chosen surface in the state space (called the
sliding or switching surface) in a finite time, and to keep the state trajectory on this surface for
all subsequent time. The plant dynamics constrained to this surface represent the controlled
system’s behavior, which is independent of matched uncertainties and disturbances. Matched
uncertainties are those that belong to the range space of the input vector. This is the so-called
matching condition. By proper design of the sliding surface, SMC achieves the conventional
goals of control such as stabilization, tracking, regulation, etc.
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Figure 2.8: Phase portrait of sliding modes control showing the two phases of the control.

Sliding modes are well studied in a class of systems having a state model nonlinear in the
state vector x and linear in the control vector u (affine systems) of the form ẋ = f(t,x,u) =
f(t,x)+g(t,x)u, which is accomplished by the camera-robot model (2.2) with the particularity
that f(t,x) = 0.

The switching surface is so called because if the state trajectory of the system is “above”
the surface, then the control input has one gain, and a different gain is applied if the trajectory
drops “below” the surface. Thus, each entry ui(t) of the switched control u(t) ∈ Rm has the
form

ui (t,x) =

{
u+i (t,x) if si(x) > 0
u−i (t,x) if si(x) < 0

}
, i = 1, ...,m, (2.15)

where si = 0 is the i-th switching surface associated with the (n −m)-dimensional switching
surface

s (x) =
[
s1 (x) · · · sm (x)

]T
= 0.

SMC design breaks down into two stages as shown in Fig. 2.8. Stage one implies con-
structing switching surfaces so that the system restricted to these surfaces produces a desired
behavior. Stage two involves constructing switched feedback gains which drive the state tra-
jectory to the sliding surface maintaining it there. Then, the action of a SMC law is performed
in two phases, a reaching phase, during which, trajectories starting off the surface s = 0 move
toward it and reach it in a finite time, followed by a sliding phase, during which, the motion
is confined to the surface s = 0 and the dynamics of the system are represented by a reduced
order model.

An undesirable phenomenon presented in SMC systems is the chattering. This is an oscilla-
tion within a neighborhood of the switching surface such that s = 0 is not satisfied for all time
after the switching surface is reached. If the frequency of the switching is very high compared
with the dynamic response of the system the chattering problem is often although not always
negligible.
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2.4 Theory of state observability
An important concept that is related to the implementation of feedback control laws is the
observability, which allows to verify whether the state variables can be uniquely determined
from a given set of constraints (output measurements). Observability is a structural property
that may affect the convergence of an estimation scheme. This property specifies if two states
are distinguishable by measuring the output, i.e.,

x1 ̸= x2 =⇒ h (x1) ̸= h (x2) .

Intuitively, this means that if two measurements from the sensors are different, then the
states are also different [75]. There are few works concerned about the state observability for
mobile robots. On one hand, some of them take advantage of linearized models using the theory
of linear systems to analyze the observability of the SLAM problem [158], [28]. On the other
hand, there also exist some contributions where a nonlinear observability analysis is carried
out for localization [116] or for SLAM applications [88], [78]. In the rest of the section, we
introduce the theory to analyze the observability with emphasis on nonlinear systems as merit
the treatment of our visual servoing problem, especially in chapter 5.

2.4.1 Nonlinear continuous systems
In the scope of this thesis, we deal with a nonlinear estimation problem and the observability
analysis of this case requires different tools unlike the linear case. The theory for the observ-
ability analysis of continuous systems has been introduced in [75]. According to this theory,
the following observability rank condition can be enunciated for a general affine system.

Definition 2.4.1 The continuous-time nonlinear system ẋ =
[
g1(x) g2(x) · · · gm(x)

]
u

with a measurement vector h(x) ∈ Rp is locally weakly observable if the observability matrix
with rows

O ,
[
∇Lqgigjhk(x) p i, j = 1, 2, ...,m, k = 1, 2, ..., p, q ∈ N

]T
(2.16)

is of full rank n.

The expression Lqgihk(x) denotes the qth order Lie derivative of the scalar function hk along
the vector field gi. Thus, the matrix (2.16) is formed by the gradient vectors ∇Lqgigjhk(x)
that span a space containing all the possible Lie derivatives. From the previous definition, we
can see that the observability property of the camera-robot system depends completely on the
excitations, given that it is a driftless system.

Considering that the vector fields gi and the measurement functions hk are infinitely smooth,
the matrix (2.16) could have infinite number of rows. However, it suffices to find a set of
rows linearly independent in order to fulfill the rank condition. Locally weak observability is a
concept stronger than observability, which states that one can instantaneously distinguish each
point of the state space from its neighbors, without necessity to travel a considerable distance,
as admitted by the observability concept.
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2.4.2 Nonlinear discrete systems
Actually, the implementation of any estimation and control algorithm must be performed in
discrete time. Consequently, it is necessary to analyze the properties of the camera-robot system
in its discrete representation. To do that, the following observability rank condition for discrete
nonlinear systems is used [129].

Definition 2.4.2 The generic discrete-time nonlinear system given by (2.5) is said to be observ-
able if the nonlinear observability matrix

Od =


Hk

Hk+1Fk
...

Hk+n−1Fk+n−2 · · ·Fk

 =



∂h

∂x
(xk)

∂h

∂x
(xk+1)

∂f

∂x
(xk)

...
∂h

∂x
(xk+n−1)

∂f

∂x
(xk+n−2) · · ·

∂f

∂x
(xk)


(2.17)

is of full rank n.

This matrix resembles the observability matrix for linear time invariant systems in appear-
ance, but is different in that the matrices of the linear approximation are not constant. This
observability rank condition allows to conclude if the estimator collects enough information
along n− 1 instant times in order to make the system observable

2.4.3 Discrete Piece-Wise Constant Systems (PWCS)
A nonlinear system can be approximated by a piece-wise constant system (PWCS) using the
linearization Fk = ∂f/∂xk, Hk = ∂h/∂xk for each instant time k. According to the theory
in [67], the observability of PWCS can be studied using the so-called stripped observability
matrix (SOM) for a number r ∈ N of instant times. We can summarize this theory in the
following definition.

Definition 2.4.3 Let the SOM be defined from the local observability matrices (LOM) Ok as
follows

OSOM,p =


Ok

Ok+1
...

Ok+p

 with Ok =


Hk

HkFk
...

HkF
n−1
k

 . (2.18)

Whether it is satisfied that Fkxk = xk ∀ xk ∈ NULL (Ok), then the discrete PWCS is
completely observable iff OSOM,p is of rank n.

This claims that observability can be gained in some steps r even if local observability is
not ensured.
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2.5 Dynamic pose estimation

In the framework of this thesis, in order to propose a pose-estimation scheme where the esti-
mated pose could be used for feedback control, a good option is to tackle this problem as a
nonlinear dynamic estimation problem. In the literature, the pose-estimation problem for vi-
sual servoing purposes has also been treated through static approaches [26], [59], [136], [50].
These approaches are based on the homography or the essential matrix decomposition at each
instant time, which results computationally costly. In contrast, the dynamic approach can be
solved through an efficient algorithm as the Extended Kalman Filter (EKF). This filter gives an
approximation of the optimal estimate. The nonlinearities of the systems’s dynamics are ap-
proximated by a linearized version of the nonlinear system model around the last state estimate.

The EKF is an scheme widely used to estimate the state of nonlinear observable systems.
Particularly, it has been applied previously in the visual servoing problem [161], [52], [144].
This approach is a solution to the estimation problem that provides generality to a visual ser-
voing scheme in comparison to nonlinear observers that are designed for a particular system.
Moreover, the EKF offers advantages over other estimation methods, e.g., temporal filtering,
recursive implementation or ability to change the set of measurements during the operation if
required, etc. Also, the pose prediction computed by the filter may be used to set up a dynamic
windowing technique for the search of image features. Moreover, the basic form of the EKF
provides a good compromise between accuracy in the estimation and computational cost.

Consider the discrete-time dynamic system (2.5) that describes the robot-camera kinematics
and models unpredictable disturbances through additive Gaussian noises. In this framework, the
prediction equations to compute the estimated state are

x̂−
k = f

(
x̂+
k−1,uk−1

)
, (2.19)

P−
k = FkP

+
k−1F

T
k +GkMk−1G

T
k ,

where the linear approximation x̂k+1 = Fkx̂k +Gkuk, ŷk = Hkx̂k of the nonlinear system is
used. The update equations to correct the estimates are

Qk = HkP
−
kH

T
k +Nk, (2.20)

Kk = P−
kH

T
k (Qk)

−1 ,
x̂+
k = x̂−

k +Kkνk,
P+
k = [I−KkHk]P

−
k .

In these equations, x̂−
k , P−

k represent an a priori estimate of the state and its covariance,
and x̂+

k , P+
k provide an a posteriori estimated state for step k. It means that the a posteriori

information utilizes feedback error in order to improve the state estimation. The measurement
innovation νk = yk − h

(
x̂−
k

)
and its covariance matrix Qk are also used to verify the consis-

tency property of the estimation in real situation. A typical statistical test of a Kalman estimator
is the consistency test. It determines if the computed covariances will match the actual esti-
mation errors [11]. A consistency index can be defined as CI = D2/χ2

n,1−α, where D2 is the
Normalized Estimate Error Square (NEES) or the Normalized Innovation Squared (NIS), n is
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the dimension of the vector state or the dimension of the measurement and (1 − α) is the con-
fidence level (95% typically) in the chi-square distribution. The NEES is computed from the
estimation error as

NEESk = x̃Tk
(
P+
k

)−1
x̃k, (2.21)

where x̃k= xk − x̂k.The NIS is computed from the measurement innovation νk as follows

NISk = νTk (Qk)
−1 νk. (2.22)

In any case, when CI < 1, the estimation is consistent, otherwise it is optimistic or incon-
sistent and the estimation may diverge. It can happen if the consecutive linearization is not a
good approximation of the nonlinear model in all the associated uncertainty domain. Next, we
present the required Jacobian matrices in the linear approximation of the discrete system (2.4)

Fk =

∣∣∣∣ ∂f∂xk
∣∣∣∣
xk=x̂+

k ,mk=0

=

 1 0 ∆y,k

0 1 −∆x,k

0 0 1


ϕk=ϕ̂

+
k

, (2.23)

Gk =

∣∣∣∣ ∂f∂uk
∣∣∣∣
xk=x̂+

k

=

 − sinϕk −ℓ cosϕk
cosϕk −ℓ sinϕk
0 1


ϕk=ϕ̂

+
k

,

Hk =

∣∣∣∣ ∂h∂xk
∣∣∣∣
xk=x̂−

k ,nk=0

,

where ∆x,k = Ts (ωkℓ cosϕk + υk sinϕk), ∆y,k = Ts (ωkℓ sinϕk − υk cosϕk). Since Hk de-
pends on the measurement model, it will be defined as needed for the estimation from different
visual data.
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Chapter 3

Robust visual control based on the
epipolar geometry

One of the challenges of the visual servoing (VS) field of research is how to use the visual
information provided by the sensor into the control loop. In this chapter, we present a new
control scheme that exploits the epipolar geometry (EG) but, unlike previous approaches based
on two views, it is extended to three views, gaining robustness in perception. Additionally,
robustness is also improved by using a control law based on sliding mode theory in order to
drive mobile robots to a desired location, which is specified by a reference image previously
acquired (problem of pose regulation). The contribution of the chapter is a novel control law
that achieves total correction of the robot pose with no auxiliary images and no 3D scene infor-
mation, without need of commuting to any visual constraint other than the EG and applicable
with any central camera. Additionally, the use of sliding mode control (SMC) avoids the need
of a precise camera calibration in the case of conventional cameras and the control law deals
with singularities induced by the epipolar geometry. The effectiveness of our approach is tested
via simulations, with kinematic and dynamic models of the robot, and real-world experiments.

3.1 Introduction

This chapter presents an approach to drive a wheeled mobile robot to a desired location using
the teach-by-showing strategy, where the desired location is specified by a target image previ-
ously acquired. We focus on exploiting the EG in a robust IBVS scheme. The EG describes
the intrinsic geometry between two views and only depends on the relative location between
cameras and their internal parameters [70], [130]. The EG was introduced for control of robot
manipulators in [14] and [135] around one decade ago.

This geometric constraint has shown some drawbacks, namely, the ill-conditioning for pla-
nar scenes, the degeneracy with short baseline and singularity problems for system’s control. In
related works about visual servoing of mobile robots, the first issue has been solved by using a
generic scene and the second has been tackled by commuting to a feature-based strategy [112]
or homography-based control [95]. The singularity problems in epipolar-based control appear
when the interaction matrix between the robot velocities and the rate of change of the epipoles
becomes singular for some state of the robot. Indeed, unbounded velocities eventually appear
because the singularity is always reached when the robot moves directly toward the target. The
approach in [112] takes into account the nonholonomic nature of a wheeled robot by driving
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one dimension of the epipoles to zero in a smooth way. However, in order to avoid the singular-
ity, the motion strategy steers the robot away from the target while the lateral error is corrected,
and after that, the robot moves backward to the target position. A more intuitive way to drive
the robot directly toward the target has been addressed in [99] but the singularity is not treated.
Another work that exploits the EG, particularly the auto epipolar condition has been developed
for holonomic mobile robots using central catadioptric cameras [113].

The method that we present in this chapter turns out in a control law based on sliding mode
theory and feedback from the EG in order to servo differential-drive mobile robots. The notion
of this approach has been introduced in the conference paper [19], in which we propose a robust
two view-based control law that is able to correct orientation and lateral error but not longitu-
dinal error using conventional cameras. This scheme has been extended for central catadioptric
cameras in the book chapter [18]. Later, we have exploited the EG of three views to correct also
longitudinal error only from the epipolar constraint in the journal paper [17].

As detailed in this chapter, the proposed control strategy is performed in two steps, which
achieves position and orientation correction, i.e., the pose regulation problem is solved. We
propose to correct also longitudinal error by exploiting the EG that relates a third image with
a reference image. This is done on the basis of a square control system, where global stability
can be ensured. Additionally, our approach does not rely on any particular condition and takes
into account the nonholonomic nature of a mobile platform. Our scheme does not need any
geometric decomposition or additional parameter estimation to achieve pose regulation. The
use of a third image allows to unify the control scheme in only one type of IB controller for the
whole task.

The important benefits of the scheme of this chapter with respect to previous epipolar-based
approaches are that the proposed control law corrects position and orientation by keeping full
control during the whole task using only epipolar feedback. The control law copes with sin-
gularities induced by the epipolar geometry also improving the robot behavior by performing a
direct motion toward the target. Besides, the use of the SMC technique allows robust global sta-
bilization of the task function (including image noise) when dealing with the weak calibration
problem, i.e., no specific calibration is needed.

The rest of the chapter is organized as follows. Section 3.2 describes the pairwise epipolar
geometry of three views. Section 3.3 details the design procedure of the SMC law. Section
3.4 presents the stability and robustness analysis. Section 3.5 shows the performance of the
closed-loop control system via simulations and real-world experiments, and finally, Section 3.6
summarizes the conclusions.

3.2 Pairwise epipolar geometry of three views

Although the EG relates two views of an scene, the epipolar geometries of three views provides
rich information that we propose to exploit it in a visual servoing task. According to Fig. 3.1(a)
and using the general framework for a pair of views described in section 2.2.2, the three pairings
of epipolar relationships among three views can be found. Let us define a global reference
frame with origin in the location of a third camera. Then, the camera locations with respect
to that global reference are C1 = (x1, y1, ϕ1), C2 = (x2, y2, ϕ2) and C3 = (x3, y3, ϕ3) =
(0, 0, 0). Consider that such images have been taken by a camera mounted on a wheeled mobile
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Figure 3.1: Framework of the EG for three views. (a) Epipoles from three views. (b) Polar
coordinates.

robot where the camera reference frame coincides with the robot frame. In this camera-robot
configuration, the x-coordinate of the epipoles can be written as a function of the robot state
and the parameter αx. The double subscript refers to the related images, for instance, e13 is the
epipole in image one, as computed with respect to image three.

e13 = αx
x1 cosϕ1 + y1 sinϕ1

y1 cosϕ1 − x1 sinϕ1

, (3.1)

e31 = αx
x1
y1
,

e23 = αx
x2 cosϕ2 + y2 sinϕ2

y2 cosϕ2 − x2 sinϕ2

, (3.2)

e32 = αx
x2
y2
,

e12 = αx
(x1 − x2) cosϕ1 + (y1 − y2) sinϕ1

(y1 − y2) cosϕ1 − (x1 − x2) sinϕ1

, (3.3)

e21 = αx
(x1 − x2) cosϕ2 + (y1 − y2) sinϕ2

(y1 − y2) cosϕ2 − (x1 − x2) sinϕ2

.

The Cartesian coordinates for the camera location C2 can be expressed as a function of the
polar coordinates d23 and ψ2 (Fig. 3.1(b)) using

x2 = −d23 sinψ2, y2 = d23 cosψ2, (3.4)

with ψ2 = − arctan(e32/αx), ϕ2 − ψ2 = arctan(e23/αx) and d223 = x22 + y22 .
The relative Cartesian coordinates between C1 and C2 can be expressed as a function of the
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polar coordinates d12 and ψ12 as follows:

(x1 − x2) = −d12 sinψ12, (y1 − y2) = d12 cosψ12, (3.5)

with ψ12 = ϕ2 − arctan (e21/αx) = ϕ1 − arctan (e12/αx) and d212 = (x1 − x2)
2 + (y1 − y2)

2.
Recall that all of these previous expressions are also valid for normalized cameras, i.e.,

computing the epipoles from the corresponding points on the unitary sphere as described in
section 2.2.2. In such a case, the focal length parameter in the x-direction is αx = 1.

3.3 Epipolar control law from three views

Henceforth, let C1 be the initial camera location, C2 the current camera location and C3 the
target camera location. The proposed control strategy is performed in two steps as follows:

• First step - Alignment with the target: orientation and lateral error are corrected. This is
achieved by zeroing the epipoles relating the current image I2(K,C2(t)) and the target
one I3(K,0). It can be seen as a two-view approach because only requires the epipoles
e23 and e32. Initially, we have two images (Fig. 3.2(a)) and at the end of this step, the
robot is as in Fig. 3.2(b).

• Second step - Depth correction: pure translation along the y−axis. Provided that the
orientation and the lateral error are maintained in zero by the control loop, the objective
of this step is to achieve e12 = e13 or e21 = e31. This step requires the three images to
compute the constant epipoles e13, e31 from I1(K,C1), I3(K,0) and the varying epipoles
e12, e21 from I1(K,C1), I2(K,C2(t)).
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Figure 3.2: Control strategy from three views. (a) Initial configuration. (b) Intermediate con-
figuration. (c) Final configuration.
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Finally, after the first step has corrected lateral error, the epipolar geometry in the three-view
configuration is e12 = e13, e21 = e31, which implies I2(K,C2) = I3(K,0), and consequently
C2 = C3 as desired (Fig. 3.2(c)).

We assume that the robot is initially in a general configuration, not aligned with the target
pose. Otherwise, this particular configuration can be trivially detected from the epipoles and,
in that case, a simple initial motion controlling the epipoles can drive the robot to a general
configuration.

3.3.1 First step - Alignment with the target
The control objective of this step is zeroing the epipoles relating the current and target images.
It means a simultaneous correction of orientation and lateral error. There exist two main draw-
backs with the EG in two views: uncertainty in parameters and singularity problems. This
section describes the synthesis of a control law from two images, which copes with these both
issues. The objective of this step is to perform the navigation toward the target by using the
feedback information provided by the x-coordinate of the epipoles that relate the current im-
age I2(K,C2(t)) and the target one I3(K,0). We propose to perform a smooth direct motion
toward the target position applying adequate velocities during the whole task using the same
robust control scheme even in singular situations.

Let us define the outputs of the system using the x-coordinates of the epipoles for the current
and target images. Then, the two-dimensional output of the camera-robot system is

y = h (x) =
[
e23 e32

]T
. (3.6)

In addition to the drawbacks of controlling a robot from two views, longitudinal error cor-
rection cannot be reached with only such information. According to the theory in section 2.3.1,
the camera-robot system has relative degree-2 because the control inputs appear in the first
time-derivative of the epipoles and the system is input-output linearizable with first order zero
dynamics. This unobservable dynamics is derived by making the epipoles defined as outputs
equal to zero and then finding out the robot state. In the particular case of the camera-robot
system (2.2) with ℓ = 0 and output vector (3.6), this set, denoted by Z∗, is

Z∗ = {x | e23 ≡ 0, e32 ≡ 0} =
{[

0 y2 0
]T
, y2 ∈ R

}
. (3.7)

The zero dynamics in this control system means that, when epipoles relating the moving
view and the target one are zero, the x-coordinate of the robot position and the orientation
are corrected, but the longitudinal error may be different to zero. As mentioned previously,
this is corrected in a second step. Let us define tracking error functions as ξc = e23 − ed23 and
ξt = e32−ed32, where ed23 and ed32 are suitable time-varying references. From the time-derivatives
of these errors and using the polar coordinates (3.4), we obtain the error system[

ξ̇c
ξ̇t

]
=

[
−αx sin(ϕ2−ψ2)
d23 cos2(ϕ2−ψ2)

αx

cos2(ϕ2−ψ2)
−αx sin(ϕ2−ψ2)
d23 cos2(ψ2)

0

][
υ
ω

]
−
[
ėd23
ėd32

]
. (3.8)

The system (3.8) has the form ξ̇ = M · u − ėd, where M corresponds to the decoupling
matrix. We use the term decoupling matrix, coined in [146], instead of features Jacobian or
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interaction matrix in order to better describe the action of this matrix in the frame of control
theory. The inverse of the matrix M is

M−1 =
1

αx

[
0 −d23 cos2(ψ2)

sin(ϕ2−ψ2)

cos2 (ϕ2 − ψ2) − cos2 (ψ2)

]
, (3.9)

and ėd represents a feedforward control term. In order to invert the system (3.8) applying the
input-output linearization technique, it is important to notice that M loses rank if ϕ2− ψ2 = nπ
with n ∈ Z . This makes the element of the first row of (3.9) grow unbounded and, consequently,
the translational velocity as well. As can be seen in the analytical expression of the inverse
matrix (3.9), the computation of input velocities is bounded for any other situation. From the
definition of the angles below (3.4), it can be seen that the singular condition corresponds to
e23 = 0. This is a problem because it is indeed a control objective.

We faced the tracking problem as the stabilization of the error system (3.8), which has uncer-
tain parameters αx and d23, i.e., focal length and distance between cameras. These parameters
are estimated as the constants αxe and d23e , and introduced to the estimated decoupling matrix
Me(ϕ2, ψ2).

We propose a robust control law based on SMC [156] (refer to section 2.3.2 for an intro-
duction of this control technique). This control technique is chosen to tackle two issues: 1) the
sensitivity to uncertainty in parameters of a control system based on input-output linearization,
which degenerates the performance of the tracking, see for example [99] and 2) the need to
maintain control during the entire navigation even when the singularity occurs.

Decoupling-based control law

Firstly, let us define the following sliding surfaces

s =

[
sc
st

]
=

[
ξc
ξt

]
=

[
e23 − ed23
e32 − ed32

]
= 0. (3.10)

Thus, the tracking problem is solved if there exist switched feedback gains according to an
stability analysis that make the state to evolve on s = 0. The following SMC law, consisting
of a so-called equivalent control (feedforward term) and a two-dimensional vector of switched
feedback gains, ensures global stabilization of the system (3.8):

usm = M−1
e (ϕ2, ψ2)

(
ėd23 − κcsign(sc)
ėd32 − κtsign(st)

)
, (3.11)

with κc > 0 and κt > 0 being control gains. The action of switched feedback gains in the error
dynamics is to keep the state trajectory on the sliding surface (3.10). These gains add or subtract
accordingly, in order to force the state trajectory to head always toward the surface [156], [77].
When the state trajectory crosses the surface because noise or drift, the control switches from
addition to subtraction or viceversa in such a way that the trajectory reverses its direction and
heads again toward the surface.

Although (3.11) can achieve global stabilization of (3.8), it may need high gains that could
cause a non-smooth behavior in the robot state, which is not valid in real situations. Therefore,
we add a pole placement term in the control law to alleviate this problem
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upp = M−1
e (ϕ2, ψ2)

[
−λc 0
0 −λt

] [
sc
st

]
,

where λc > 0 and λt > 0 are control gains. Finally, the complete SMC law (u = udb) that
achieves robust global stabilization of the system (3.8) is

udb =

[
υdb
ωdb

]
= usm + upp. (3.12)

Bounded control law

The control law (3.12) utilizes the decoupling matrix that presents a singularity problem when
the camera axis of the robot is aligned with the baseline, which generates unbounded transla-
tional velocity. In order to pass through the singularity we commute to a direct sliding mode
controller when |ϕ2 − ψ2| is below a threshold Th. This kind of controller has been studied
for output tracking through singularities [77]. We propose the following direct sliding mode
controller:

ub =

[
υb
ωb

]
=

[
−kυsign(st b (ϕ2, ψ2))

−kωsign(sc)

]
, (3.13)

where kυ and kω are suitable gains and b (ϕ2, ψ2) is a function that describes the change in sign
of the translational velocity when the state trajectory crosses the singularity. This function can
be deduced from the first row of M−1 (3.9) as

b (ϕ2, ψ2) = − sin(ϕ2 − ψ2). (3.14)

The control law (3.13) with b (ϕ2, ψ2) (3.14) locally stabilizes the system (3.8) and is always
bounded.

Desired trajectories for the epipoles

As main requirement, the desired trajectories must provide a smooth zeroing of the epipoles
from their initial values. Fig. 3.3(a) shows two configurations of robot locations for cases in
which sign(e23) ̸= sign(e32). From these conditions, the epipoles are naturally reduced to zero
as the robot moves directly toward the target. In order to carry out this kind of motion, the
locations starting sign(e23) = sign(e32) need to be controlled to the situation of sign(e23) ̸=
sign(e32). In such a case, the control law forces the robot to rotate initially to reach an adequate
orientation (Fig. 3.3(b)). It is worth emphasizing that this initial rotation is autonomously car-
ried out through the control inputs given by the described controllers. The following trajectories
provide the described behavior:

Unifying vision and control for mobile robots
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Figure 3.3: Different cases for control initialization through the desired trajectories. (a)
sign(e32) ̸= sign(e23)- direct motion toward the target. (b) sign(e32) = sign(e23) - rotation
to reach the same condition as in (a).

ed23 (t) = σ
e23(0)

2

(
1 + cos

(π
τ
t
))

, 0 ≤ t ≤ τ, (3.15)

ed23 (t) = 0, τ < t <∞,

ed32 (t) =
e32(0)

2

(
1 + cos

(π
τ
t
))

, 0 ≤ t ≤ τ,

ed32 (t) = 0, τ < t <∞,

where σ = −sign(e23(0)e32(0)) and τ is the time to perform the first step of the control strategy.
In our approach, as in any image-based scheme, the desired trajectories in the image space play
an important role in the resultant Cartesian path. By changing the reference trajectory of the
target epipole (related to the translational velocity) is possible to run our approach for car-like
robots.

Both previous controllers, i.e., (3.12) and (3.13), can be seen as a commuted control law
and their stability is shown later. The control law is able to track the previous references using
bounded velocities and its termination condition is set with the time τ .

3.3.2 Second step - Depth correction with drift compensation
The commuted controller of the first step is only able to correct orientation and lateral error due
to the zero dynamics (3.7). We have described that a third image allows to define an appropriate
control goal to correct the remaining depth. This third image is the initial one and it does
not introduce an expensive computational load, given that the corresponding image points are
already known and only the 8-point algorithm has to be run. This second step is treated as a
regulation problem with integral action to give steady state robustness to the control loop [82],
since we have constant desired values (e13, e31).

Let us define error functions ξ12 = e12−e13 and ξ21 = e21− e31. We can see from (3.3) that
ξ12 does not depend on the rotation and, to avoid coupling problems between inputs, we have
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chosen its dynamics to work out the translational velocity. Let us define an augmented error
system for ξ12, whose dynamics is obtained using (3.5)

ξ̇012 = e12 − e13 = ξ12, (3.16)

ξ̇12 =
αx sin (ϕ2 − ψ12)

d12 cos2 (ϕ1 − ψ12)
υ,

where the new state ξ012 corresponds to the integral of the error. A common way to define a
sliding surface is a linear combination of the state as follows:

s = k0ξ
0
12 + ξ12 = 0, (3.17)

in such a way that when s = 0 we have ξ12 = −k0ξ012. By substituting this expression in (3.16),
the reduced order system ξ̇012 = −k0ξ012 is obtained. It is clear that for any k0 > 0 the reduced
dynamic ξ012 is exponentially stable, and similarly ξ12. We make ṡ = 0 to find the equivalent
control, and then, a switching feedback gain is added to yield

υdc =
d12e cos

2 (ϕ1 − ψ12)

αxe sin (ϕ2 − ψ12)
(−k0ξ12 − k1sign (s)) , (3.18)

where k1 > 0 is a control gain. Notice that sin (ϕ2 − ψ12) is never zero for the situation dis-
played in Fig. 3.2(b). This control law achieves robust global stabilization of the system (3.16)
and its termination condition can be given by verifying that e12 − e13 ≈ 0.

Although only a straight motion is needed during this second step, orientation control is
maintained in order to compensate for the noise or drift that is always present in real situations.
We propose to keep the bounded rotational velocity (3.13) during the second step. However, this
velocity depends on e23, which has the problem of short baseline when the target is reached.
In order to alleviate this issue, we use a similar approach to the one presented in [99]. An
intermediate image is used instead of the target one when the epipolar geometry degenerates. In
our case, the last current image of the first step is stored, which corresponds to an image acquired
from a location aligned to the target. This intermediate image is denoted by I2ar(K,C2ar),
where the subscript ar stands for “aligned robot”. So, the computation of the rotational velocity
as the complement of the translational velocity υdc (3.18) during the second step is carried out
from the adequate images as follows:

I2(K,C2), I3(K,0) =⇒ ωb = −kωsign(e23), (3.19)
I2ar(K,C2ar), I2(K,C2) =⇒ ωb = −kωsign(e22ar).

The second equation is applied when the robot is reaching the target avoiding the problem
of short baseline. The condition to switch from the first to the second equation is given by
thresholding the value of the epipole e23.

Keeping the control strategy in the same epipolar context has the advantage of providing full
control of the position and orientation during the whole task. In previous epipolar approaches,
a depth correction stage is carried out by commuting to a feature-based correlation approach
with null rotational velocity [112], or by commuting to homography-based control [95]. So,

Unifying vision and control for mobile robots



two different approaches are used to solve the visual servoing task in the referred works. In
comparison to pure homography-based approaches [59], [97], which depend on the observed
plane, our approach is able to correct longitudinal error without an explicit position estimation.
Additionally, our control scheme solves the singularity problem by using bounded input veloci-
ties while a direct motion to the target is carried out. This problem has been tackled in [112] by
avoiding to reach the singularity using a particular motion strategy. The strategy prevents the
singularity occurrence, but has the drawback that the robot goes away of the target and then, it
performs a backward motion in a second step without orientation control. In [99], one of the
control inputs is not computed when crossing the singularity. These aspects show the benefits
of the proposed control scheme over previous related approaches.

3.4 Stability analysis
First, it is worth noting that the servoing task must be accomplished by carrying out the two
described steps. In the following, the stability of the tracking control law is analyzed in each step
separately. Notice that both steps are independent in the sense that they are applied sequentially.
In this analysis, we consider that enough number of image features of the target scene are visible
in the camera’s field of view during the navigation and that the robot starts in a general location.

Proposition 3.4.1 The control law that combines the decoupling-based control (3.12) by com-
muting to the bounded control (3.13) whenever |ϕ2 − ψ2| < nπ + Th, where Th is a suitable
threshold and n ∈ Z, achieves global stabilization of the system (3.8). Moreover, global stabi-
lization is achieved even with uncertainty in parameters.

Proof: Firstly, stabilization of system (3.8) by using controller (3.12) is proved by showing
that the sliding surfaces (3.10) can be reached in a finite time (existence conditions of sliding
modes). Let us consider the natural Lyapunov function for a sliding mode controller

Vst1 = V1 + V2, V1 =
1

2
s2c , V2 =

1

2
s2t , (3.20)

which accomplishes Vst1(sc = 0, st = 0) = 0 and Vst1 > 0 for all sc ̸= 0, st ̸= 0. We analyze
each term of the time-derivative

V̇st1 = V̇1 + V̇2 = scṡc + stṡt (3.21)

for the decoupling-based controller (3.12). Using (3.8) for the time-derivatives of the sliding
surfaces and the estimated parameters αxe and d23e in the controller, we have

V̇1 = sc

(
− αx
αxe

(κcsign (sc) + λcsc) + A

)
= −

(
αx
αxe

(
κc |sc|+ λcs

2
c

)
− scA

)
,

V̇2 = st

(
−αxd23e
αxed23

(κtsign(st) + λtξt) +B

)
= −

(
αxd23e
αxed23

(
κt |st|+ λts

2
t

)
− stB

)
,

where A = αx

αxe

(
d23e
d23

− 1
) (
ėd32 − κtsign(st)− λtst

)
cos2(ψ2)

cos2(ϕ2−ψ2)
+
(
αx

αxe
− 1
)
ėd23 and B =(

αxd23e
αxed23

− 1
)
ėdtx are obtained from M ·M−1

e . After some simplifications, we can see that
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V̇1 ≤ −
(
αx
αxe

(κc + λc |sc|)− |A|
)
|sc| ,

V̇2 ≤ −
(
αxd23e
αxed23

(κt + λt |st|)− |B|
)
|st| .

Thus, V̇1 and V̇2 are negative definite if and only if the following inequalities are guaranteed
for all sc ̸= 0, st ̸= 0:

κc + λc |sc| >
αxe
αx

|A| , (3.22)

κt + λt |st| >
αxed23
αxd23e

|B| .

Therefore, V̇st1 < 0 if and only if both inequalities (3.22) are fulfilled. On one hand, it is
clear that for ideal conditions d23e = d23, αxe = αx, the right side of both inequalities is zero and
therefore, any control gains κc > 0 , κt > 0, λc > 0, λt > 0, accomplish the inequalities. On
the other hand, when the estimated controller parameters are different to the real ones, the right
side of inequalities become proportional to

∣∣ėdcx∣∣, ∣∣ėdtx∣∣. By using slow references and increasing
slightly the gains, global convergence to the sliding surfaces can be achieved regardless of
uncertainty in parameters.

Now, let us show the stabilization of system (3.8) by reaching the surfaces (3.10) using the
controller (3.13). The same Lyapunov function (3.20) is used, and for each term of (3.21) we
have

V̇1 = −kω
αx

cos2 (ϕ2 − ψ2)
|sc| − scė

d
cx − scC,

V̇2 = −kυ
αx |b (ϕ2, ψ2)|
d23 cos2 (ψ2)

|st| − stė
d
tx,

where C = kυ
αx|b(ϕ2,ψ2)|

d23 cos2(ϕ2−ψ2)
sign(st) and b (ϕ2, ψ2) is given in (3.14). So, we obtain

V̇1 ≤ −
(
kω

αx
cos2 (ϕ2 − ψ2)

−
∣∣ėd23∣∣− |C|

)
|sc| ,

V̇2 ≤ −
(
kυ
αx |b (ϕ2, ψ2)|
d23 cos2 (ψ2)

−
∣∣ėd32∣∣) |st| .

It can be verified that V̇1 and V̇2 are negative definite if and only if the following inequalities
are assured for all sc ̸= 0, st ̸= 0:

kω >
cos2 (ϕ2 − ψ2)

αx

(
|C|+

∣∣ėd23∣∣) , (3.23)

kυ >
d23 cos

2 (ψ2)

αx |b (ϕ2, ψ2)|
∣∣ėd32∣∣ .
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It is worth noting that the denominator of the right hand side of the last inequality does not
become null because of the real behavior of sliding mode control that drives the system inside
a tight band around the sliding surface, without the possibility of maintaining the system on
the surface, which could only happens in ideal conditions [156]. Moreover, as mention above
the inequalities 3.23, the proof of asymptotic stability with finite convergence time excludes the
occurrence of b = 0 given that sc ̸= 0. Therefore, V̇st1 < 0 if and only if both inequalities (3.23)
are fulfilled. Once again, these inequalities are accomplished by using slow desired trajectories
for the epipoles with appropriate gains. Note that these inequalities do not depend on the con-
troller parameters αxe , d23e because the bounded controller does not need any information of
system parameters and thus, its robustness is implicit.

The bounded controller (3.13) is able to locally stabilize the system (3.8) and its region of
attraction grows as long as the control gains kυ and kω are higher. Given that the control strategy
commutes between two switching controllers according to a rule defined by the threshold Th
(so that each one acts inside of its region of attraction), the commutation between them does
not affect the stability of the overall control system.

Once sliding surfaces are reached for any case of SMC law, the system’s behavior is in-
dependent of matched uncertainties and disturbances. Uncertainties in the system (3.8) fulfill
the matching condition; they belong to the range space of the input vector, and as a result,
robustness of the control loop is accomplished.

Proposition 3.4.2 The translational velocity υdc (3.18) achieves global stabilization of the sys-
tem (3.16) even with uncertainty of parameters, while the rotational velocity (3.19) achieves
lateral drift compensation assuming that Proposition 3.4.1 is accomplished.

Proof: We prove the stabilization of system (3.16) by using controller (3.18) and showing that
the sliding surfaces (3.17) can be reached in a finite time. Simultaneously, given the control
action (3.19), the epipoles e23 and respectively e22ar are maintained in zero with finite time con-
vergence, keeping the alignment with the target. Let us define the following candidate Lyapunov
function

Vst2 =
1

2
s2 +

1

2

(
e22⋆ + e2⋆2

)
,

where ⋆ refers to the target I3(K,C3) or the intermediate image I2ar(K,C2ar). The time-
derivative of this function is

V̇st2 = sṡ+ e2⋆ė2⋆ + e⋆2ė⋆2.

The dynamic ṡ is obtained from (3.16) and ė2⋆, ė⋆2 are given as

ė2⋆ =
−αx sin (ϕ2 − ψ2)

d2⋆ cos2 (ϕ2 − ψ2)
υdc +

αx
cos2 (ϕ2 − ψ2)

ωb,

ė⋆2 =
−αx sin (ϕ2 − ψ2)

d2⋆ cos2 (ψ2)
υdc. (3.24)

By the assumption that Proposition 3.4.1 is accomplished, the robot starts the second step
aligned with the target (x2 = 0, ϕ2 = 0), which implies ϕ2 − ψ2 ≈ 0. Then, we use the
small angle approximation sin (ϕ2 − ψ2) ≈ 0, cos (ϕ2 − ψ2) ≈ 1 to obtain
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V̇st2 = −k1
αxd12e
αxed12

|s|+Ds− kωαx |e2⋆| ,

where D =
(
1− αxd12e

αxed12

)
k0ξ12. Therefore, V̇st2 is negative definite if and only if the following

inequalities are guaranteed for all s ̸= 0 and e2⋆ ̸= 0:

k1 >
αxed12
αxd12e

|D| , (3.25)

kω > 0.

For ideal conditions, the right side of the first inequality is zero and any value k1 > 0 is
enough to reach the sliding surface in finite time. On the contrary, when controller parameters
are different to the real ones, the gain k1 should be increased. Once the sliding mode is reached,
the stability of the reduced order system is guaranteed for k0 > 0. Additionally, any disturbance
caused by the small angle approximation accomplishes the matching condition and it can be
rejected by the SMC input. So, the system (3.24) is maintained around e2⋆ = 0, e⋆2 = 0 and the
alignment to the target (ϕ2 = 0, x2 = 0) is ensured correcting any possible deviation. Finally,
the joint action of υdc (3.18) and ωb (3.19) steers the robot in straight motion toward the target
in the second step. The stop condition e12 − e13 = 0 guarantees to reach the desired location
(x2 = 0, y2 = 0, ϕ2 = 0).

Note that the parameters d23 and d12 are unknown, but according to conditions (3.22) and
(3.25), they appear as a factor of the translational velocity that can be absorbed by the control
gains. However, a good strategy to set the corresponding controller parameters d23e and d12e is
to over-estimate them, ensuring that they are coherent with the scenario.

Although we are not dealing with a totally uncalibrated case, we have shown that robust
global stabilization of the error function can be achieved by setting adequate control gains. Our
approach has been developed specifically for mobile robots on the basis of a square control
system unlike some uncalibrated approaches, for instance [106]. Indeed, our approach does not
require any additional feedback or initialization information, in contrast with [159].

3.5 Experimental evaluation

3.5.1 Simulation results
In this section, we present some simulations of our visual control. Simulations have been per-
formed in Matlab with a sampling time of 100 ms. Results show that the main objective of
driving the robot to a desired pose ((0,0,0o) in all the cases) is attained regardless of passing
through the singularity that occurs in the first step for some initial poses, and moreover, the task
is accomplished even when the robot starts exactly in a singular pose. In this section, we report
realistic results using simulated conventional and central catadioptric cameras. As mentioned
previously, the scheme is calibrated for central catadioptric cameras. However, for the case of
conventional cameras, we present the good performance and robustness of the approach under

Unifying vision and control for mobile robots
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Figure 3.4: 3D virtual scenes used to generate synthetic images. (a) Conventional camera. (b)
Central catadioptric camera. Draw of cameras with EGT ( [115]).

a wide range of parametric uncertainty. Finally, a simulation with a complete dynamic model
of the robot is presented.

Along the first two subsequent sections we keep fixed all the parameters of the control law.
We set an estimated focal length (fe) of 6 mm, an initial distance between the current and target
positions (d23e) of 10 m, the same for d12e . The duration of the first step (alignment with the
target) is fixed to 80% of the task execution time and the remaining time is left for longitudinal
error correction. The threshold to commute to the bounded control law (Th) is fixed to 0.03
rad. Related to the control gains, they are set to λc = 2, λt = 1, κc = 2, κt = 2, kυ = 0.1,
kω = 0.06, k0 = 1 and k1 = 2.

Evaluation using conventional cameras

In this section, we use virtual perspective images of size 640×480 pixels, which are generated
from the 3D scene shown in Fig. 3.4(a). The camera is fixed to the robot looking forward and
the task execution time is set to 20 s. Fig. 3.5(a) presents the resultant paths and Fig. 3.5(b) the
epipoles evolution for the initial poses (4,-8,40o), (3,-11,15.26o), (-5,-13,0o) and (-7,-18,-10o).

In the two last cases the plots of the epipoles are almost superimposed, the robot starts with
sign(e23) = sign(e32) and the epipoles are taken to the desired trajectories. In both cases e23
changes its sign during the first seconds, which causes a rotation of the robot, and then, it begins
a direct motion toward the target. The initial pose (3,-11,15.26o) corresponds to a special case
where the state trajectory just starts on the singularity e23 = 0. The line from the robot initial
position to the target shows that the camera axis is aligned with the baseline for this pose. When
the robot starts just on the singularity, we assign a suitable amplitude to the desired trajectory
for the current epipole. Given that |ϕ2 − ψ2| is less than the threshold, the bounded controller
takes the system out of the singularity and then, the epipoles evolve as shown in Fig. 3.5(b).

Note that the evolution of the epipoles crosses the singularity e23 = 0 for the initial cases
(-5,-13,0o) and (-7,-18,-10o). The behavior of the state of the robot is presented in Fig. 3.6(a)
for the first case. We have included the behavior without using SMC to show the explosion of
the state at the singularity. The corresponding computed velocities are presented in Fig. 3.6(b),
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Figure 3.5: Simulation results with conventional cameras for different initial locations. (a) Paths
on the x− y plane. (b) Current and target epipoles.
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Figure 3.6: Simulation results with conventional cameras for a case where the singularity is
crossed at the beginning ((-5,-13,0o) of Fig. 3.5). (a) State of the robot. (b) Control inputs.

where can be seen that the proposed SMC provides bounded velocities. The control inputs
are maintained bounded even when the epipoles are close to zero around 16 s, which ensures
entire correction of orientation and lateral position. We can see an exponential decay for the
translational velocity after 16 s, which corrects any remaining longitudinal error. The good
behavior of the approach can be seen also in the image space. Fig. 3.7 shows the motion of
the point features in the virtual images. We can notice that the images at the end of the motion
(marker “×”) are practically the same as the target images (marker “O”).

Unifying vision and control for mobile robots
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Figure 3.7: Motion of the image points using conventional cameras for initial locations: (a)
(4,-8,40o), (b) (-7,-18,-10o), (c) (3,-11,15.26o).

Evaluation using omnidirectional cameras

In this section, we present the behavior of our control scheme using virtual omnidirectional im-
ages of size 640×480 pixels, which are generated from the 3D scene shown in Fig. 3.4(b). In
this case, the camera calibration parameters are needed in order to obtain the points on the uni-
tary sphere, from which, the EG can be estimated similarly as for conventional cameras. Results
using different types of central cameras are included. Moreover, we also report results using
fisheye cameras, which in spite of being noncentral imaging systems, their projection process
may be well approximated by the generic central camera model with the adequate parameters.
The task execution time has been set to 60 s.
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Figure 3.8: Simulation results with omnidirectional cameras for different initial locations. (a)
Paths on the x− y plane. (b) Current and target epipoles.

Similar results to the previous section are obtained by using omnidirectional vision, but
with the additional advantage of ensuring to keep the features in the field of view during the
servoing. Fig. 3.8(a) shows the resultant robot motion and Fig. 3.8(b) depicts the epipoles
evolution for the initial poses (-5,-9,-50o), (-4,-14,0o), (8,-16,10o) and (2.5,-12,11.77o). The
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first case corresponds to a position from where the robot can exert a direct navigation to the
target and has been tested using a hypercatadioptric camera. In the second and third cases,
the robot rotates initially and then it begins a direct motion toward the target after crossing the
singularity. These cases are tested using paracatadiotric and fisheye cameras respectively. The
last case, tested using a hypercatadioptric imaging system, shows that the robot is effectively
driven to the target from a singular initial pose, where e23 = 0.
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Figure 3.9: Simulation results with omnidirectional cameras for a case where the robot starts in
a singular configuration ((2.5,-12,11.77o) of Fig. 3.8). (a) State of the robot. (b) Control inputs.

Fig. 3.9(a) presents the behavior of the state of the robot for the case (2.5,-12,11.77o),
i.e., the singular initial pose. We can see in Fig. 3.9(b) that both of the input velocities are
maintained bounded at the beginning and along the navigation. Given the time execution time
of these simulations, the alignment with the target is reached in 48 s. After that, we can see
the exponential behavior of the translational velocity, which corrects the remaining longitudinal
error while orientation is also preserved through the bounded switching rotational velocity. The
good behavior of the approach in the image space can be seen in Fig. 3.10, where the motion of
the point features in the different types of virtual images is shown.
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Figure 3.10: Motion of the points in the image plane for different omnidirectional images. (a)
(2.5,-12,11.77o) Hypercatadioptric. (b) (-4,-14,0o) Paracatadioptric. (c) (8,-16,10o) Fisheye.

Robustness under parametric uncertainty

In this section, we report some tests in order to show the robustness of the control law under
uncertainty in parameters for conventional cameras, where calibration can be avoided in contrast

Unifying vision and control for mobile robots



with the case of omnidirectional cameras. Up to now, all the parameters for the control law are
maintained as described in section 3.5.1. The first aspect to notice is that for the four paths
shown previously, the distance (d23 in meters) between cameras is different for each initial pose
and even so, the final target is reached with good precision for all the cases (see Table 3.1).

Table 3.1: Robustness under different initial distance between cameras (d23 = d12 = d).

d = 8.9 d = 11.4 d = 13.9 d = 19.3
(4,-8) m (3,-11) m (-5,-13) m (-7,-18) m

xfinal (cm) 0 0 0 0
yfinal (cm) 0.53 0.16 −2.84 −4.10
ϕfinal (deg) −0.08 0.04 0.01 −0.02

Regarding to camera parameters uncertainty, we analyze the effect of changing the focal
length (f ) in the computation of epipoles while keeping fe constant in the controller. The initial
position is (2,-7,30o) for all the cases, however, the obtained behavior is recurrent for any initial
pose. Fig. 3.11 presents the final pose and mean squared tracking error for a wide range of
focal length values. We can see that regardless of the difference of the focal length used in the
controller with respect to the real one, the robot always reaches the target with good precision
and the tracking error is maintained in a low value. The last plot in Fig. 3.11 shows the final
pose for different values of the x-coordinate of the principal point. In all the trials the target is
reached closely.
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Figure 3.11: Simulations with different values of focal length (f ) and principal point (x0) show-
ing robustness against parametric uncertainty.

Fig. 3.12(a) shows the performance of the approach under image noise for the initial pose
(-6,-16,-10o). The simulation time is set to 40 s and the noise added to the image points has a
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standard deviation of 0.5 pixels. It is clear the presence of this noise in the motion of the image
points in Fig. 3.12(b). In Fig. 3.12(c) we can see the exponential behavior of the depth after
T = 32 s, which reaches zero by using feedback from e12. We can notice in Fig. 3.12(d) that
the epipoles e23 and e32 become unstable before the end. However, after 32 s the controller uses
e12 to compute the translational velocity by regulating e12 to a constant value as shown in Fig.
3.12(e). We can see that e21 is more sensitive because also depends on the rotational velocity,
but it is not used in the controller.
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Figure 3.12: Simulation results: robustness under image noise. (a) Robot trajectory on the x−y
plane. (b) Motion of the points in the image. (c) State variables of the robot during the motion.
(d) Epipoles e23 and e32. (e) Epipoles e12, e21, e22ar and e2ar2. (f) Computed velocities.

The corresponding input velocities obtained by the control algorithm are shown in Fig.
3.12(f). The epipoles e23 and e32 are used to compute the decoupled velocities (3.12) until 26
s and the bounded velocities (3.13) until 32 s. The same rotational velocity computed from e23
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is maintained from 32 s to 35.5 s. As e23 turns out unstable, from 35.5 s to 40 s, e22ar is used
to compute the rotational velocity according to (3.19). The translational velocity between 32 s
and 40 s is computed from e12 given by (3.18). Notice that none of both velocities are subject
to the problem of short baseline at the end of the motion, since they are computed from stable
measurements (e12 and e22ar , respectively).

Complete dynamic robot model

The next simulation has been performed with a complete dynamic model of the vehicle to show
the performance of the controller in this realistic situation. For this purpose we use WebotsTM

(http://www.cyberbotics.com) [126], a commercial mobile robot simulation software developed
by Cyberbotics Ltd. The physics simulation of WebotsTM relies on ODE (Open Dynamics En-
gine, http://www.ode.org) to perform accurate physics simulation. We can define, for each com-
ponent of the robot, parameters like mass distribution, static and kinematic friction coefficients,
bounciness, etc.
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Figure 3.13: Simulation results using a complete dynamic model for a Pioneer robot. (a) Sim-
ulation setup. (b) Path on the x− y plane. (c) State of the robot. (d) Evolution of the epipoles.
(e) Computed velocities.

In this experiment, we use the model of a Pioneer 2 robot from ActivMedia Robotics (Fig.
3.13(a)) with the dynamic parameters, and the closed loop frequency is set to 10 Hz. In Fig.
3.13(b)-(d) it is noticeably that the chattering effect yielded by the control inputs in Fig. 3.13(e)
is practically negligible. Chattering is an undesirable phenomenon presented in SMC systems
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that generates an oscillation within a neighborhood of the switching surface such that s = 0 is
not satisfied as expected ideally. Although there exist methods for chattering suppression [87],
if the frequency of the switching is high enough compared with the dynamic response of the
system, then the chattering is not significative. In our results, the discontinuous switching
control inputs have a relatively high frequency and because of the low-pass filtering effect of
the robotic mechanical system, the state of the robot behaves smoothly.

3.5.2 Real-world experiments
The proposed control law has been tested in real conditions using a Pioneer P3-DX from Ac-
tivMedia. The robot is equipped with a USB camera mounted on top (Logitech QuickCam
Communicate STX) as shown in Fig. 2.1(a). The images are acquired at size 640×480 pix-
els. The camera is connected to a laptop onboard the robot (Intel R⃝ CoreTM 2 Duo CPU at
2.50 GHz) with operating system Debian Linux. This computer communicates with the robot
through the serial port using the ARIA library available from ActivMedia Robotics. The scene
observed is set up with two planes consisting on square patterns, from which the corners of the
squares are extracted and matched to estimate the EG relating the current and target images.
The acquired image data is processed using the OpenCV library. This framework allows us
to achieve an adequate closed loop frequency (limited to 100 ms due to hardware constraints).
During the navigation, the system performs the tracking of the image points using a Lucas-
Kanade pyramidal algorithm [104]. The corresponding points of these features are the entries
of the 8-point epipolar computation algorithm as implemented in OpenCV. This algorithm auto-
matically applies data normalization, solves the overdetermined system of equations built from
the epipolar constraint and returns the adequate denormalized rank-2 fundamental matrix. Then
the epipoles are obtained using the SVD decomposition. The control law parameters have been
set to d23e = d12e = 5 m and fe = 9 mm, and the image center as the principal point without
performing specific calibration. Fig. 3.14 shows sequences of some images taken by the robot
camera and an external video camera respectively for one of the runs of the experiment.

Figure 3.14: Sequence of some images taken from the robot camera (1st row) and from an
external camera (2nd row) during the real experiment. The first is the target image, the second
is the initial and the last is the image at the end of the motion. The robot behind is not involved
in the experiment.

Fig. 3.15(a) presents the resultant path, given by the robot odometry, from the initial location
(-0.3 m,-1.3 m, 0o) for one of the experimental runs. Fig. 3.15(b) shows the evolution of the
state during the 30 s in which the positioning task is carried out. The final position error is
less than 5 cm and the orientation error is practically negligible. The time τ for the execution
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of the first step, alignment with the target, is set to 21 s. We can see in Fig. 3.15(c) how the
bounded SMC law is applied around 16 s due to the occurrence of the singularity. It avoids
the unbounded growing of the translational velocity at the same time that longitudinal error
correction continues. After 21 s the feedback for this correction is provided from the error
of e12. The behavior of those epipoles involved in the control law is shown in Fig. 3.15(d).
Notice that each one of them reaches its desired final values. Although the tracking error for
the current epipole (e23) is not as good as in simulations, the behavior is as expected. This
epipole starts at a positive value and goes to negative during the initial rotation to reach finally
the reference. The fluctuations in e23 and e32 around 20 s correspond to the switching behavior
of the bounded translational input. However, note that this is not reflected on the state of the
robot. The termination condition of the task is given when the difference e12 − e13 is less than
a threshold.
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Figure 3.15: Real experiment with target location (0,0,0o). (a) Robot motion on the x−y plane.
(b) State of the robot. (c) Computed velocities. (d) Evolution of the epipoles involved in the
control law. The data presented in (a)-(b) corresponds to the robot odometry. As can be seen in
the plot of the linear velocity at the end, the robot moves forward until the termination condition
explained after (3.18) is met and the robot stops.

The non-ideal behavior of the tracking for e23 is due to the hardware constraints, given that
the closed loop frequency is limited in the robots at our disposal. Nevertheless, simulations and
real-world experiments show that a closed loop frequency around 10 Hz is enough to obtain sys-
tem’s behavior with small chattering effect. The experimental evaluation shows the validity of
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our proposal and its satisfactory performance with the hardware used. As long as the sampling
period could be reduced the results could be better.

As can be noticed in the experimental evaluation of this section, we have focused on the
problem of a direct robot motion toward the target. We do not consider explicitly maneuvers
to be carried out. However, the pose regulation from some particular initial locations can be
addressed by maneuvering, for instance, when the three cameras are aligned or there is only a
lateral error. In those cases, the commuted control law of the first step is able to take the robot
to a general configuration by defining adequate references for the epipoles. In this sense, the
proposed control law complies with the Brockett’s theorem. The control inputs are time-varying
and computed in two steps, in such a way that some maneuvers can be carried our if required.

3.6 Conclusions
In this chapter, a robust control law based on sliding mode control has been presented in order to
perform image-based visual servoing of mobile robots. The approach is valid for differential-
drive wheeled robots moving on a plane and carrying a conventional or an omnidirectional
camera onboard. The generic control law has been designed on the basis of kinematic control
by exploiting the pairwise epipolar geometries of three views. The interest of the ideas pre-
sented in this chapter turns out in a novel control law that performs orientation, lateral error
and depth correction without needing to change to any approach other than epipolar-based con-
trol. The control scheme deals with singularities induced by the epipolar geometry maintaining
always bounded inputs, which allows the robot to carry out a direct motion toward the target.
Additionally, it is a robust scheme that does not need a precise camera calibration in the case
of conventional cameras, although it is calibrated for omnidirectional vision. On one hand, the
approach can be used provided that there are enough point features to estimate the epipolar
geometry between the views. On the other hand, the SMC requires an adequate closed loop
frequency, which can be achieved in typical experimental hardware as shown in our real-world
experiments.

Unifying vision and control for mobile robots





Chapter 4

A robust control scheme based on the
trifocal tensor

In the previous chapter, we have introduced the benefits of exploiting the information of three
views using the epipolar geometry (EG), so that, the drawbacks of a two-view framework,
like the short baseline problem, have been solved by means of particular strategies. In this
chapter, we rely on the natural geometric constraint for three views, the trifocal tensor (TT),
which is more general, more robust and without those drawbacks of the EG. We present a novel
image-based visual servoing (IBVS) scheme that also solves the pose regulation problem of the
previous chapter, in this case by exploiting the properties of omnidirectional images to preserve
bearing information. This is achieved by using the additional information of a third image
in the geometric model through a simplified TT, which can be computed directly from image
features avoiding the need of a complete camera calibration for any type of central camera.
The main contribution of the chapter is that the elements of the tensor are introduced directly
in the control law and neither any a prior knowledge of the scene nor any auxiliary image are
required. Additionally, a sliding mode control (SMC) law in a square system ensures stability
and robustness for the closed loop. The good performance of the control system is proven via
simulations and real-world experiments with a hypercatadioptric imaging system.

4.1 Introduction

Typically, the visual information to carry out visual servoing is extracted from two images: the
target and the image acquired at the current location. We propose to take advantage of more
information by using three views and a particular geometric constraint that relates them. Besides
the target and current views, it is always possible to save the initial image in order to exploit
the TT computed from that triplet of images. The TT describes all the geometric relationships
between three views and is independent of the observed scene [70].

The first work that proposes a robotic application of a trilinear constraint is [55], in which
a simplified tensor is exploited, the so-called 1D TT. In that work, conventional perspective
cameras are converted to 1D virtual cameras through a transformation of bearing measurements
for localization. In the context of computer vision, the same idea is introduced to wide-angle
cameras as a tool for calibrating the radial distortion in [151]. The same authors present a
general hybrid trifocal constraint by representing conventional and omnidirectional cameras
as radial 1D cameras in [152]. They assert that the radial 1D camera model is sufficiently
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general to represent the great majority of omnidirectional cameras under the assumption of
knowing the center of radial distortion. The effectiveness of applying the 1D TT to recover
location information has been also proved in [69]. It uses the TT with both conventional and
omnidirectional cameras for scene reconstruction, and proposes this approach for initialization
of bearing-only SLAM algorithms. A recent work presents a visual control for mobile robots
based on the elements of a 2D trifocal tensor constrained to planar motion [96]. This approach
shows good results reaching the target location, but it uses a non-exact system inversion that
suffers of potential stability problems. Moreover, the benefits of using more than three views
and higher order tensors have been explored for visual odometry [45].

In this chapter, we propose an IBVS scheme for mobile robots that exploits the 1D TT to
define an adequate error function. The control law uses direct feedback of the elements of the
1D TT. This idea has been introduced in our conference paper [20], where a visual control
based on the 1D TT obtained from metric information is proposed for conventional cameras.
However, because of the constrained field of view of conventional cameras, it is better to take
advantage of the omnidirectional vision. Such extension has been developed in our journal
paper [16]. The approach is suitable for all central catadioptric cameras and even for fisheye
cameras, since all of these imaging systems present high radial distortion but they preserve the
bearing information, which is the only required data in our approach.

As detailed along the chapter, the proposed approach does not require any a priori knowl-
edge of the scene and does not need any auxiliary image. The control scheme ensures total
correction of the robot pose even for initial locations where epipolar geometry or homography
based approaches fail, for instance, avoiding the problem of short baseline. In comparison with
classical IBVS approaches, the proposed scheme allows to prove stability of the closed loop on
the basis of a square control system. Additionally, from a control theory point of view, we have
incorporated robustness properties to the system by using SMC. We have tested the robustness
of the control law under image noise and the general performance is also analyzed through
real-world experiments with images of a hypercatadioptric system.

The chapter is organized as follows. Section 4.2 details the 1D TT and analyzes the possi-
bilities to define an adequate error function from this constraint. Section 4.3 details the design
procedure of the control law. Section 4.4 presents the stability analysis. Section 4.5 shows the
performance of the control system via simulations with synthetic images, experimental analysis
with real images and real-world experiments in closed loop. Finally, Section 4.6 provides the
conclusions.

4.2 Defining a control framework with the 1D TT

The 1D Trifocal Tensor (TT) is a simplified tensor that relates three views in the frame of planar
motion, which is the typical situation in the context of mobile robots. This tensor provides the
advantage of being estimated from bearing visual measurements avoiding the need of complete
camera calibration. In general, the point features have to be converted to their projective formu-
lation in a 1D virtual retina in order to estimate the 1D TT. The computation of this geometric
constraint is basically the same for conventional cameras and for central catadioptric systems
assuming that all of them approximately obey the generic central camera model of section 2.2.1.

For catadioptric imaging systems looking upward, this tensor particularly adapts to the prop-
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θ

x−x0
(a) (b)

Figure 4.1: Extracted measurements from central cameras to estimate the 1D TT. (a) Hyper-
catadioptric image. (b) Perspective image.

erty of these omnidirectional images to preserve bearing information in spite of the high radial
distortion induced by lenses and mirrors. Fig. 4.1(a) shows the bearing angle of an observed
feature in a hypercatadioptric system. The angle is measured with respect to a frame centered in
the principal point of the image. For conventional cameras looking forward, the 1D projective
formulation can be obtained as shown in Fig. 4.1(b) using the normalized x-coordinate of the
point features with respect to x0, i.e., p =

[
xn 1

]T . For omnidirectional cameras, a bearing
measurement θ can be converted to its 1D projection as p =

[
sin θ cos θ

]T . By relating this
representation for three different views of a feature that is expressed in a 2D projective space, it
results in the simplified trifocal constraint

2∑
i=1

2∑
j=1

2∑
k=1

Tijkuivjwk = 0, (4.1)

where u = [u1,u2]
T , v = [v1,v2]

T and w = [w1,w2]
T are the image coordinates of a feature

projected in the 1D virtual retina of the first, second and third camera respectively, and Tijk are
the eight elements of the 1D TT.

The described representation of bearing measurements is sufficiently general to model from
pin-hole cameras to omnidirectional ones, as shown in [152]. Moreover, it allows computing
a mixed trifocal constraint for heterogeneous cameras. In our case, the three images are cap-
tured by the same omnidirectional camera. In order to compute the eight elements of the 1D
TT we have to solve the linear system of equations obtained from seven stacked trifocal con-
straints (4.1). Thus, seven triples of matched features (eventually five for the calibrated case)
are required to solve for the 1D TT linearly.

Let us define a global (world) reference frame in the plane as depicted in Fig. 4.2(a) with
the origin in the third camera. Then, the camera locations with respect to that global reference
are C1 = (x1, y1, ϕ1), C2 = (x2, y2, ϕ2) and C3 = (0, 0, 0). The relative locations between
cameras are defined by a local reference frame in each camera as is shown in Fig. 4.2(b).

Unifying vision and control for mobile robots
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Figure 4.2: Complete geometry between three camera-robot locations in the plane. (a) Abso-
lute locations and bearing measurements extracted from omnidirectional images. (b) Relative
locations.

The geometry of the three described views is encoded in the tensor elements as follows:

Tm
ijk =



Tm111
Tm112
Tm121
Tm122
Tm211
Tm212
Tm221
Tm222


=



ty1 sinϕ2 − ty2 sinϕ1

−ty1 cosϕ2 + ty2 cosϕ1

ty1 cosϕ2 + tx2 sinϕ1

ty1 sinϕ2 − tx2 cosϕ1

−tx1 sinϕ2 − ty2 cosϕ1

tx1 cosϕ2 − ty2 sinϕ1

−tx1 cosϕ2 + tx2 cosϕ1

−tx1 sinϕ2 + tx2 sinϕ1


, (4.2)

where txi = −xi cosϕi − yi sinϕi, tyi = xi sinϕi − yi cosϕi for i = 1, 2 and the superscript m
states that they are the tensor elements given by metric information. The complete deduction
of the trifocal constraint (4.1) and the expressions (4.2) can be verified in [69]. There exist two
additional constraints that are accomplished when the radial TT is computed from a calibrated
camera: −T111 + T122 + T212 + T221 = 0, and T112 + T121 + T211 + T222 = 0. These calibration
constraints allow us to compute the 1D TT from only five triplets of point correspondences,
which improves the tensor estimation [69]. It is worth noting that these additional constraints
can be always used for omnidirectional images because the bearing measurements are indepen-
dent on focal length in that case. Therefore, to estimate de 1D TT, we only require the center of
projection for omnidirectional images or the principal point for conventional cameras.

In order to fix a common scale during the navigation, each estimated element of the tensor
must be normalized dividing them by a non-null element (Tijk = Te

ijk/TN ). We can see from
(4.2) that T121 tends to ty1 as the robot reaches the target. If the initial robot location C1 is
different to C3, we have T121 ̸= 0. Additionally, this tensor element changes slightly as the
robot moves. This fact is determined by the form of the derivative of T121, which directly
depends on the products ω sinϕ1 and ω sinϕ2, corresponding to small values in our framework.
This is also supported by simulations and real experiments. Thus, in the sequel we assume that
T121 is constant, and therefore, used as normalizing factor.
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To design a controller for solving the pose regulation problem using only the tensor ele-
ments, we have to consider the corresponding final tensor values as control objective, analyze
the dynamic behavior of the tensor elements and select an adequate set of them as outputs to
be controlled. This analysis is carried out from the tensor elements as defined in the previous
section.

4.2.1 Values of the 1D TT in particular locations
Let us define the initial location of the robot to be (x1, y1, ϕ1), the target location (x3, y3, ϕ3) =
(0, 0, 0) and (x2, y2, ϕ2) the current location, which varies as the robot moves. It is worth empha-
sizing that C1 could be the moving camera and similar overall results may be obtained. Initially,
when the second camera is in the starting location then C2 = C1, i.e., (x2, y2, ϕ2) = (x1, y1, ϕ1),
the relative location between these cameras is tx2 = tx1 , ty2 = ty1 and the values of the tensor
elements produce the relationships

T111 = 0, T112 = 0, T221 = 0, T222 = 0, T121 + T211 = 0, T122 + T212 = 0. (4.3)

When the robot is in the goal C2 = C3, i.e., (x2, y2, ϕ2) = (0, 0, 0), the relative location
between these cameras is tx2 = 0, ty2 = 0, and it yields the relationships

T111 = 0, T122 = 0, T211 = 0, T222 = 0, T112 + T121 = 0, T212 + T221 = 0. (4.4)

4.2.2 Dynamic behavior of the elements of the 1D TT
In order to carry out the control from the tensor elements, we have to obtain the dynamic system
that relates the change in the tensor elements exerted by a change in the velocities of the robot.
This dynamic system involves the robot model (2.2) with ℓ = 0 and is obtained by finding the
time-derivatives of the tensor elements (4.2). We show two examples of the procedure to obtain
these time-derivatives. The non-normalized tensor is denoted by Tmijk. From (4.2) and using the
rates of change of the state variables (2.2) for T111 we have

Tm111 = ty1 sinϕ2 − (x2 sinϕ2 − y2 cosϕ2) sinϕ1,

Ṫm111 = ty1ϕ̇2 cosϕ2 −
(
ẋ2 sinϕ2 + x2ϕ̇2 cosϕ2 − ẏ2 cosϕ2 + y2ϕ̇2 sinϕ2

)
sinϕ1

= ty1ω cosϕ2 − (−υ sinϕ2 sinϕ2 + x2ω cosϕ2 − υ cosϕ2 cosϕ2 + y2ω sinϕ2) sinϕ1

= υ sinϕ1 + ω (ty1 cosϕ2 + tx2 sinϕ1) = υ sinϕ1 + Tm121ω.

By applying (2.10) in both sides of the equation, it results in the normalized time-derivative
of T111

Ṫ111 =
sinϕ1

TmN
υ + T121ω.

The same procedure is carried out for each element. Thus, for T121

Unifying vision and control for mobile robots



Tm121 = ty1 cosϕ2 + (−x2 cosϕ2 − y2 sinϕ2) sinϕ1,

Ṫm121 = −ty1ϕ̇2 sinϕ2 +
(
−ẋ2 cosϕ2 + x2ϕ̇2 sinϕ2 − ẏ2 sinϕ2 − y2ϕ̇2 cosϕ2

)
sinϕ1

= −ty1ω sinϕ2 + (υ sinϕ2 cosϕ2 + x2ω sinϕ2 − υ cosϕ2 sinϕ2 − y2ω cosϕ2) sinϕ1

= ω (−ty1 sinϕ2 + ty2 sinϕ1) = −Tm111ω.

By normalizing, the result is Ṫ121 = −T111ω. Thus, the normalized dynamic system is the
following:

Ṫ111 =
sinϕ1

TmN
υ + T121ω, Ṫ211 =

cosϕ1

TmN
υ + T221ω,

Ṫ112 = −cosϕ1

TmN
υ + T122ω, Ṫ212 =

sinϕ1

TmN
υ + T222ω,

Ṫ121 = −T111ω, Ṫ221 = −T211ω,
Ṫ122 = −T112ω, Ṫ222 = −T212ω.

(4.5)

It is worth noting that in (4.5) there are four elements that are independent on the transla-
tional velocity (T121, T122, T221 and T222). It means that a change in υ does not produce a vari-
ation in these tensor elements and consequently, only orientation correction can be performed
using such elements. Moreover, the normalizing factor is a kind of gain for the translational
velocity.

4.2.3 Selecting suited outputs

The problem of taking three variables to desired values (tx2 , ty2 , sinϕ2) = (0, 0, 0) may be
completely solved with at least three outputs being controlled. However, it is also possible to
find two outputs to take two variables to their desired values and then a third one is left as a
DOF to be corrected a posteriori. We propose to use only two outputs, because defining more
than two generates a non-square dynamic system, in which its non-invertibility makes difficult
to prove stability of the control system.

Under the definition of a global frame in the target view, we can define the longitudinal
error as the y coordinate and the lateral error as the x robot position. By taking into account
three premises: 1) the values of the tensor elements in the final location, 2) the solution of the
homogeneous linear system generated when the outputs are equal to zero, 3) the invertibility of
the matrix relating the output dynamics with the inputs, we can state:

• It is possible to design a square control system which can correct orientation and longitu-
dinal error. However, it leaves the lateral error as a DOF. This error cannot be corrected
later considering the nonholonomic constraint of the robot. Thus, this case does not have
practical interest.

• It is not possible to design a square control system which allows us to correct orientation
and lateral error, leaving the longitudinal error as a DOF.
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• It is feasible to design a square control system which can correct both longitudinal and
lateral error, leaving the orientation as a DOF. The orientation error can be corrected
in a second step considering that the robot uses a differential drive. We concentrate in
exploiting this option.

4.3 1D Trifocal Tensor-based control law design

We present the development of a two-step control law, which firstly drives the robot to a desired
position and then corrects its orientation. The first step is based on solving a tracking problem
for a nonlinear system in order to correct x and y positions. The second step uses direct feedback
from one element of the tensor to correct orientation.

4.3.1 First step - Position correction

The initial location of the robot is (x1, y1, ϕ1), the target location (x3, y3, ϕ3) = (0, 0, 0) and the
current location (x2, y2, ϕ2), which varies as the robot moves. The goal is to drive the robot to
the target location, i.e., to reach (x2, y2, ϕ2) = (0, 0, 0). Now we define the control objective as
a function of the 1D TT elements. When the robot reaches the target, it achieves the condition
given in (4.4) and therefore, the following sum of normalized tensor elements are selected as
outputs:

ξ1 = T112 + T121, (4.6)
ξ2 = T212 + T221.

We can see that these outputs go to zero as the robot moves to the target. When ξ1 = 0 and
ξ2 = 0 the following homogeneous linear system is given:[

T112 + T121
T212 + T221

]
=

[
sinϕ1 cosϕ1

cosϕ1 − sinϕ1

] [
tx2
ty2

]
=

[
0
0

]
.

This system has unique solution tx2 = 0, ty2 = 0 for any value of ϕ1 (det(·) = −1). Thus,
(tx2 , ty2 , sinϕ2) = (0, 0, sinϕ2) is accomplished, which ensures position correction (x2 = 0,
y2 = 0). A robust tracking controller is proposed to take the value of both outputs to zero in a
smooth way. Let us define the tracking errors as e1 = ξ1 − ξd1 and e2 = ξ2 − ξd2 . Thus, the error
system is given as

[
ė1
ė2

]
=

 −cosϕ1

TmN
T122 − T111

−sinϕ1

TmN
T222 − T211

[ υω
]
−
[
ξ̇d1
ξ̇d2

]
. (4.7)

This system has the form ė = M (T, ϕ1)u − ξ̇d, where M (T, ϕ1) corresponds to the
decoupling matrix and ξ̇d represents a known disturbance. We need to invert the system in
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order to assign the desired dynamics using the inverse matrix

M−1 (T, ϕ1) =
1

det (M)

 T222 − T211 T111 − T122
sinϕ1

TmN
−cosϕ1

TmN

 , (4.8)

where det (M) = 1
Tm
N
[(T122 − T111) sinϕ1 + (T211 − T222) cosϕ1] and TmN = Tm121. At the final

location T221 = −αtx1 , T212 = αtx1 , T121 = αty1 , T112 = −αty1 , where α is an unknown scale
factor, and the other tensor elements are zero. The proposed normalizing factor is never zero
in our framework as described in section 4.2, although det(M) = 0 at the final location. This
entails the problem that the rotational velocity (ω) increases to infinite as the robot reaches the
target. We face this problem by commuting to a bounded control law, as described later.

We treat the tracking problem as the stabilization of the error system (4.7). We propose
a robust control law to solve the tracking problem using SMC [156], which provides good
properties to the control system. A common way to define sliding surfaces in an error system is
to take directly the errors as sliding surfaces, so that, let us be

s =

[
s1
s2

]
=

[
e1
e2

]
=

[
ξ1 − ξd1
ξ2 − ξd2

]
,

in such a way that, if there exist switched feedback gains that make the states to evolve in
s = 0, then the tracking problem is solved. We use the sliding surfaces and the equivalent
control method in order to find switched feedback gains to drive the state trajectory to s = 0
and maintaining it there for future time. From the equation ṡ = 0, the so-called equivalent
control is

ueq = M−1ξ̇d.

A control law that ensures global stabilization of the error system has the form usm =
ueq + udisc, where udisc is a two-dimensional vector containing switched feedback gains. We
propose the gains as

udisc = M−1

[
−κ1sign(s1)
−κ2sign(s2)

]
,

where κ1 > 0 and κ2 > 0 are control gains. Although usm can achieve global stabilization
of the error system, high gains may be needed, which can cause undesirable effects in real
situations. We add a pole placement term in the control law to alleviate this problem

upp = M−1

[
−λ1 0
0 −λ2

] [
s1
s2

]
,

where λ1 > 0 and λ2 > 0 are control gains. Finally, a decoupling-based control law that
achieves robust global stabilization of the system (4.7) is as follows:

udb =

[
υdb
ωdb

]
= ueq + udisc + upp = M−1

[
u1
u2

]
, (4.9)

where u1 = ξ̇d1 −κ1sign(s1)−λ1s1, and u2 = ξ̇d2 −κ2sign(s2)−λ2s2. Note that this control law
depends on the orientation of the fixed auxiliary camera ϕ1. This orientation has to be estimated
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only in the initial location and can be obtained from the epipoles that relate the initial and target
images. Any uncertainty in the estimation of the initial orientation can be overcome given the
robustness properties of our control law, which justify the application of SMC. Moreover, ϕ1

can be fixed to zero as shown in Table 4.1 of section 4.5.1. Additionally, the SMC provides
robustness against the assumption of constant normalizing factor, whose effects as matched
disturbances are rejected in the error system.

Solving the singularity

We use the inverse of the decoupling matrix (4.8) to compute the control inputs, which causes
a singularity problem at the final condition. The singularity affects the computation of both
velocities, however υ tends to zero as the robot reaches the target. To keep ω bounded and
the outputs tracking their references, we propose the commutation to a direct sliding mode
controller when det(M) is near to zero. This kind of controller has been studied for output
tracking through singularities with good performance [77]. For this case, a bounded sliding
mode controller is as follows:

ub =

[
υb
ωb

]
=

[
kυ sign (s1)

−kω sign(s2 g(T))

]
, (4.10)

where kυ and kω are suitable gains, and g(T) will be defined in the stability analysis (section
4.4). It is found by achieving the negativeness of a Lyapunov function derivative. The control
law (4.10) locally stabilizes the system (4.7) and is always bounded.

Desired trajectories

The goal of the reference tracking is to take the outputs to zero in a smooth way in such a way
that the robot performs a smooth motion in a desired time. We propose the following references:

ξd1 =
T ini112 + T ini121

2

(
1 + cos

(π
τ
t
))

, 0 ≤ t ≤ τ, (4.11)

ξd1 = 0, t > τ,

ξd2 =
T ini212 + T ini221

2

(
1 + cos

(π
τ
t
))

, 0 ≤ t ≤ τ,

ξd2 = 0, t > τ,

where τ is the time to reach the target and T iniijk are the values of the tensor elements at t = 0.
The choice of these trajectories obeys just to the requirement of a smooth zeroing of the outputs
along a fixed temporal horizon. Indeed, a parabolic function may be used without difference
in the resulting behavior. By defining τ , we fix the duration of the first part of the control and
the time to commute to correct orientation. Note that, although initially the current image is the
same than the starting one, there is enough information in the 1D TT (4.3) to have well defined
references.
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4.3.2 Second step - Orientation correction
Once position correction has been reached in t = τ , we can use any single tensor element whose
dynamics depends on ω and with desired final value zero to correct orientation. We select the
dynamics Ṫ122 = −T112ω. A suitable input ω that yields T122 exponentially stable is

ω = λω
T122
T112

, t > τ, (4.12)

where λω > 0 is a control gain. This rotational velocity assigns exponentially stable dynamics
to T122

Ṫ122 = −T112
(
kω
T122
T112

)
= −λωT122. (4.13)

Note that (4.12) never becomes singular because T112 = −ty1 cosϕ2 for t = τ and it tends
to −ty1 ̸= 0 as final value. Although only a rotation is carried out in this second step, we keep
the translational velocity υb given in (4.10) in order to have closed loop control along the whole
motion.

4.4 Stability analysis

The control action in the first step is based on zeroing the defined outputs. So, when these
outputs reach zero, the so-called zero dynamics in the robot system is achieved as defined in
section 2.3.1. In the particular case of the robot system (2.2) with ℓ = 0 and output vector (4.6),
this set is given as

Z∗ =
{
(x2, y2, ϕ2)

T | ξ1 ≡ 0, ξ2 ≡ 0
}
=
{
(0, 0, ϕ2)

T , ϕ2 ∈ R
}
.

Zero dynamics in this control system means that, when the chosen outputs are zero, the x
and y-coordinates of the robot are corrected, but orientation may be different to zero. This zero
dynamics yields T122 = ty1 sinϕ2 and, therefore, when we make T122 = 0 then ϕ2 = nπ with
n ∈ Z, and the orientation is corrected. It is clear the exponential stability of T122 in the second
step (4.13) for any λω > 0, and we focus on proving stability for the tracking control law.

Proposition 4.4.1 Global stabilization of the system (4.7) is achieved with a commuted control
law applied for t ≤ τ , which starts with the decoupling-based control (4.9) and commutes to
the bounded control (4.10) if |det (M (T, ϕ1))| < Th, where Th is a suitable threshold value.

Proof: As mentioned above, the commutation between the decoupling-based control to the
bounded one happens only when the robot is near to the target location. For a sliding mode
controller we have to prove the existence of sliding modes. This means to develop a stability
proof to know if the sliding surfaces can be reached in a finite time and the state trajectory can
be maintained there. Let us use the natural Lyapunov function for a sliding mode controller

V = V1 + V2, V1 =
1

2
s21, V2 =

1

2
s22, (4.14)
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which accomplishes V (s1 = 0, s2 = 0) = 0 and V > 0 for all s1 ̸= 0, s2 ̸= 0. The time-
derivative of this candidate Lyapunov function is

V̇ = V̇1 + V̇2 = s1ṡ1 + s2ṡ2. (4.15)

Now, we analyze each term of (4.15) for the decoupling based controller (4.9). After some
simple mathematical simplifications we have

V̇1 = s1

(
u1 − ξ̇d1

)
= s1

(
ξ̇d1 − κ1sign (s1)− λ1s1 − ξ̇d1

)
= −κ1 |s1| − λ1s

2
1,

V̇2 = s2

(
u2 − ξ̇d2

)
= s2

(
ξ̇d2 − κ2sign (s2)− λ2s2 − ξ̇d2

)
= −κ2 |s2| − λ2s

2
2.

V̇1 and V̇2 are negative definite if and only if the following inequalities are guaranteed for all
s1 ̸= 0, s2 ̸= 0:

κ1 > 0, λ1 ≥ 0, κ2 > 0, λ2 ≥ 0. (4.16)

Therefore, V̇ < 0 if and only if both inequalities (4.16) are fulfilled. So, global convergence
to the sliding surfaces is achieved.

Now, let us develop the existence conditions of sliding modes for the bounded controller
(4.10). The same Lyapunov function (4.14) is used, and for each term of (4.15) we have

V̇1 = −kυ cosϕ1

TmN
|s1|+ s1

(
(T122 − T111) (−kω sign(s2 g(T)))− ξ̇d1

)
,

V̇2 = s2

(
−kυ sinϕ1

TmN
sign (s1)− ξ̇d2

)
− kω |s2| (T222 − T211) sign (g(T)) .

Let us define A = −kω (T122 − T111) sign(s2 g(T))− ξ̇d1 and B = −kυ sinϕ1
Tm
N

sign(s1)− ξ̇d2 .

In order to enforce negativeness of V̇2 for some value of kω, the function g(T) has to be g(T) =
T222 − T211. Hence, we have

V̇1 = −kυ cosϕ1

TmN
|s1|+ s1A,

V̇2 = −kω |s2| |T222 − T211|+ s2B.

We can see that

V̇1 ≤ −
(
kυ cosϕ1

TmN
− |A|

)
|s1| ,

V̇2 ≤ − (kω |T222 − T211| − |B|) |s2| .

V̇1 and V̇2 are negative definite if and only if the following inequalities are assured for all
s1 ̸= 0, s2 ̸= 0:

Unifying vision and control for mobile robots



kυ >
TmN |A|
cosϕ1

, (4.17)

kω >
|B|

|T222 − T211|
.

Recall that SMC drives the system around the sliding surface without maintaining the sys-
tem exactly on the surface, which could only happen in ideal conditions of modeling [156].
Thus, the denominator of the right hand side of the last inequality does not become null for real
behavior of sliding mode control. Moreover, the difference g(T) = T222 − T211 is the same
as s1 when the robot is reaching the target, so that, the proof of asymptotic stability with finite
convergence time excludes the occurrence of g = 0 when s1 ̸= 0, as mention above (4.17).
Therefore, V̇ < 0 if and only if both inequalities (4.17) are fulfilled. The bounded controller
does not need any information of system parameters and thus, its robustness is implicit.

According to the existence conditions of sliding modes, the bounded controller (4.10) is
able to locally stabilize the system (4.7). Its attraction region is bigger as long as the control
gains kυ and kω are higher. Because of the bounded control law is also a switching one, the
commutation from the decoupling-based control to the bounded one does not affect the stability
of the closed loop system. The first controller ensures entering to the attraction region of the
second one. Once the sliding surfaces are reached for any case of control law, the system’s
behavior is independent of matched uncertainties and disturbances [156]. Uncertainties in the
system (4.7) due to ϕ1 fulfill the so-called matching condition, and as a result, robustness of the
control system is accomplished.

4.5 Experimental evaluation

4.5.1 Simulation results
In this section, we present some simulations of the overall control system as established in the
Proposition 4.4.1 for the first step, and using ω (4.12) and υb (4.10) for the second one. Simu-
lations have been performed in Matlab. The results show that the main objective of driving the
robot to a desired pose ((0,0,0o) in all the cases) is attained just from image measurements and
even with noise in the images. The 1D TT is estimated from more than five point correspon-
dences in virtual omnidirectional images of size 1024×768. These images have been generated
from a 3D scene (Fig. 4.3(a)) through the generic model for central catadioptric cameras [64].
We report results with hypercatadioptric, paracatadioptric and also fisheye cameras, which can
be approximately represented with the same model [48]. Besides, the computation of the 1D
TT has been studied for fisheye cameras in [151], which supports the claim that our approach
is robust to small deviations of the central camera configuration. It is worth noting that, al-
though analytically we can deduce values of the tensor elements by substituting in (4.2) the
relative location between cameras, in practice, it is troublesome when the image coordinates of
two images are exactly the same. It causes that the linear estimation of the trifocal constraint
degenerates for such condition. We avoid this issue by moving the robot forward for a short
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time before to start the control. When the robot reaches the target, there is always a minimum
difference between image coordinates that is enough to prevent numeric problems to solve for
the 1D TT even in simulations. Without loss of generality, the projection center is zero for all
the simulations. For the controllers, the time to reach the target position τ is fixed to 100 s, the
threshold to commute to the bounded control Th is fixed to 0.04, and the control gains are set to
λ1 = 1, λ2 = 2, κ1 = 0.02, κ2 = 0.02, λω = 0.3, kυ = 0.1, kω = 0.05.

Fig. 4.3 shows the paths traced by the robot and the state variables evolution from four
different initial locations. The thick solid line starts from (5,-5,45o), the long dashed line from
(-5,-12,-30o), the solid line from (0,-8,0o), and the short dashed line from (1,-14,-6o). In the
paths of Fig. 4.3(b) we can differentiate between three kind of autonomously performed robot
motions. The solid lines correspond to a rectilinear motion to the target, while the long dashed
line and the short dashed line both describe an inner curve and an outer curve before reaching
the target respectively. The rectilinear motion is obtained when the initial rotation is such that
tx1 = tx2 = 0, which implies that the robot is pointing toward the target. The inner curve
is generated when the initial rotation is such that tx1 = tx2 > 0 and the outer curve when
the initial rotation is such that tx1 = tx2 < 0. In both later cases the robot rotation increases
autonomously, and it is efficiently corrected in the second step after 100 s, as shown in Fig.
4.3(c).
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Figure 4.3: Simulation results with synthetic images. (a) 3D scene. (b) Paths on the plane. (c)
State variables of the robot.

We can see in Fig. 4.4(a) that both outputs are driven to zero in 100 s for all the cases. This is
achieved by using bounded inputs, which are presented in Fig. 4.4(b) for the case (-5,-12,-30o).
Both control inputs commute to a bounded value around 86 seconds because the determinant
of the decoupling matrix falls under the fixed threshold. We can also see how the rotational
velocity presents an exponential decay after 100 s, which takes the element T122 to zero as can
be seen in Fig. 4.5. This forces the orientation to decrease with a fixed exponential rate, whose
settling time is approximately 16.7 s (5/λω). This time or a threshold for T122 may be used to
stop both of the control inputs and finish the task.

The previous results have been obtained for three different kind of omnidirectional cam-
eras. Fig. 4.6(a) shows the motion of the image points for the case (-5,-12,-30o), in which a
hypercatadioptric camera is simulated. Fig. 4.6(b) corresponds to the case (1,-14,-6o) with a
paracatadioptric camera and Fig. 4.6(c) is a fisheye camera for the initial location (0,-8,0o).

Unifying vision and control for mobile robots



0 20 40 60 80 100 120

0

0.5

1

ξ 1=
T

11
2+

T
12

1

0 20 40 60 80 100 120
-1

-0.5

0

0.5

ξ 2=
T

21
2+

T
22

1

Time (s)

0 20 40 60 80 100 120
-0.2

-0.1

0

0.1

0.2

υ 
(m

/s
)

0 20 40 60 80 100 120
 -0.2

 -0.1

0

0.1

ω
 (

ra
d/

s)

Time (s)

(a) (b)

Figure 4.4: Control law performance. (a) Controlled outputs for the four cases of Fig. 4.3. (b)
Example of the computed velocities for initial location (-5,-12,-30o).
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Figure 4.5: Tensor elements evolution for the four cases of Fig. 4.3. (a) Behavior of the first
four elements. (b) Behavior of the second four elements.
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Figure 4.6: Motion of the points in the image plane for three different kind of omnidirectional
virtual images. (a) Hypercatadioptric. (b) Paracatadioptric. (c) Fisheye. The images depict the
point features from the initial, current and target views.

Table 4.1 shows that the target location is reached with good accuracy. The results in the
first part of the table are obtained considering that the initial orientation ϕ1 is known for each
case. On the other hand, the second part of the table shows that the precision is preserved even
if the initial orientation is fixed to ϕ1 = 0 in the controller for all the cases. We can assert that
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Table 4.1: Final error for the paths in Fig. 4.3 using the control based on the trifocal tensor.

(5 m,-5 m,45o) (-5 m,-12 m,-30o) (0 m,-8 m,0o) (1 m,-14 m,-6o)
Final error considering the initial orientation ϕ1 as known.

x (cm) -0.28 0.85 0 0.91
y (cm) 0.59 0.71 0.11 -0.47
ϕ (o) 0.10 0.02 0 0.08

Final error fixing ϕ1 = 0 in the controller.
x (cm) -0.51 0.77 0 0.98
y (cm) 0.86 0.39 0.11 -0.25
ϕ (o) 0.11 0.01 0 0.07

similar accuracy is obtained by fixing ϕ1 in the range −30 ≤ ϕ1 ≤ 30, since that the SMC law
is robust to parametric uncertainty. For all the experiments, the mean squared tracking error is
very low, in the order of 1× 10−5.

Fig. 4.7(a) shows the good performance of the approach under image noise for initial pose
(5,-10,35o). The added noise has a standard deviation of 1 pixel and the time to reach the target
(τ ) is set to 60 s. The control inputs are affected directly by the noise, as can be seen in Fig.
4.7(b). Nevertheless, the outputs are regulated properly to the desired reference as shown in Fig.
4.7(c). The presence of the noise can be observed in the image points motion of Fig. 4.8(a),
which results in the behavior of the tensor elements that is presented in Fig. 4.8(b)-(c).

0 2 4 6

-10

-8

-6

-4

-2

0

x (m)

y 
(m

)

0 15 30 45 60 75
-0.2

0

0.2

0.4

0.6

0.8

υ 
(m

/s
)

0 15 30 45 60 75
 -0.4

 -0.2

0

0.2

0.4

ω
 (

ra
d/

s)

Time (s)

0 15 30 45 60 75

0

0.5

1

ξ 1=
T

11
2+

T
12

1

0 15 30 45 60 75

-0.4

-0.2

0

ξ 2=
T

21
2+

T
22

1

Time (s)

(a) (b) (c)

Figure 4.7: Control law performance with image noise. (a) Resultant robot path. (b) Control
inputs. (c) Controlled outputs.

4.5.2 Experiments with real data
This section describes an analysis of the behavior of the proposed control scheme through ex-
periments with omnidirectional images. Two techniques of extracting the required features are
employed. The first case corresponds to the use of the well known SIFT features [100] and, in
the second case, we use the Lucas-Kanade pyramidal algorithm [104], [1]. These experiments
are performed off-line, which means that a sequence of images were taken and then used to
compute the 1D TT and the control inputs to analyze the effect of the feature extraction. This
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Figure 4.8: Visual measurements from synthetic images with image noise. (a) Motion of the
image points. (b) Behavior of the first four tensor elements. (c) Behavior of second four tensor
elements.

analysis is a key factor toward the real-world experimentation of the next section. SMC requires
a relatively high closed loop frequency, around 10 Hz as minimum, and consequently, the com-
putational cost of the feature extraction and the matching process becomes very important. For
these experiments, we use an omnidirectional system with a camera Sony XCD-X7101CR and
a mirror Neovision H3S (Fig. 2.2(b)) to capture images of size 1024×768. The image data is
acquired using the free software tool Player. The commanded robot motion is a slight curve
going forward and finishing with a rotation.

An important parameter required to obtain the bearing measurements is the projection cen-
ter. We have tested the singleness of this point in our imaging system by estimating the projec-
tion center along a sequence. Like in [138], the center is robustly estimated using a RANSAC
approach from 3D vertical lines, which project in radial lines for central imaging systems. Re-
sults have shown that our imaging system properly approximates a single view point configura-
tion, with standard deviation of around 1 pixel for each image coordinate of the estimated center.
For the size of images that we are using, these deviations have a negligible effect in the com-
putation of bearing measurements and thus, we have fixed the projection center to (x0 = 541,
y0 = 405).

Behavior using SIFT features

We have implemented a 1D TT estimation algorithm by solving the trifocal constraint for at least
five points that are extracted using SIFT and robustly matched using RANSAC. Fig. 4.9 shows
an example of the SIFT [100] point matches (34 good matches) used to compute the tensor. The
five-point method reduces the number of iterations required for the robust estimation, however,
the computation time of the 1D TT with this method is still very high (approximately 5 seconds
per iteration). Moreover, as can be seen in Fig. 4.10, the 1D TT estimation is very unstable
even having correct matches. It happens because in some cases the matches are concentrated
in a region of the image. Besides, due to the property of SIFT features of being a region in the
image, the effective coordinates of the features may change discontinuously along the sequence.
We can see that the elements of T2 are the most unstable, in particular when the current image
is close to the target image (around 35 seconds), however, after this time the first control step is
finishing and the noisy elements are not used anymore.
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Figure 4.9: Robust SIFT matching between three omnidirectional images with translation and
rotation between them. The lines between images show 34 corresponding features, which have
been extracted using SIFT and matched robustly to be the entries of the 1D TT estimation.
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Figure 4.10: Performance of the 1D TT estimation using SIFT features. (a) Behavior of the first
four tensor elements. (b) Behavior of the second four tensor elements.
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Figure 4.11: Behavior of the control law using SIFT features. (a) Outputs and their references.
(b) Computed velocities.

Fig. 4.11(a) shows how the reference trajectory for the first output is well approximated
while output two is not close to its reference. Fig. 4.11(b) presents the computed control inputs.
The translational velocity approximately describes the forward motion; however, the rotational
velocity is very noisy.
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Behavior using tracking of features

In order to achieve an adequate closed loop frequency, we evaluate the strategy of tracking a
set of chosen points using the Lucas-Kanade algorithm [104], [1]. The tracking of features has
been extensively applied for VS purposes [110]. It allows us to have the matching between
features for each iteration without additional computations, which makes the scheme feasible
for real-world experimentation. Additionally, the smooth motion of the image features with the
Lucas-Kanade tracker results in a stable tensor estimation. We have defined 12 point features
to be tracked along the same image sequence and then, the corresponding point coordinates are
used to estimate the 1D TT and the velocities as given for our control law. Fig. 4.12 displays
some of these tracked points and their motion in the image. The resulting behavior of the TT
elements (Fig. 4.13) shows that they are more stable than in the case of SIFT features. However,
a similar behavior is obtained at the end for the elements T212 and T221. According to Fig. 4.14
both of the outputs are close to their reference trajectories, and consequently, the computed
velocities in Fig. 4.14(b) actually describe the real motion of the camera.

Figure 4.12: Some of the tracked points (stars) and their motion in the image along a sequence.
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Figure 4.13: Performance of the 1D TT estimation using tracking of point features. (a) Behavior
of the first four tensor elements. (b) Behavior of the second four tensor elements
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Figure 4.14: Behavior of the control law using tracking of point features. (a) Outputs and their
references. (b) Computed velocities.

4.5.3 Real-world experiments
The proposed approach has been tested in closed loop with real conditions using the Pioneer
3-AT robot as shown in Fig. 2.1(b). The same hypercatadioptric imaging system of the previous
section is used, but now the images are acquired at a size of 800×600 pixels. The projection
center has been fixed according to a calibration process to (x0 = 404, y0 = 316). The observed
scene has been set up with features on three different planes in order to ensure a sufficient num-
ber of points in the scene. However, points not belonging to these planes are also used to achieve
a total of 15 points, which are manually matched in the three initial images. We have imple-
mented these experiments using the tracking of features because its low computational cost. It
gives good closed loop frequency, which leads to a good behavior in the 1D TT estimation, as
described in the previous section.
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Figure 4.15: Experimental results with the control law in closed loop. (a) Resultant path. (b)
Computed velocities. (c) Controlled outputs. The data to plot the path is given by the robot
odometry.

Fig. 4.15(a) presents the resultant path, given by odometry, of the closed loop control from
the initial location (-0.55 m,-1.35 m,-35o) for one of the experimental runs. The duration of the
task is almost 14 s, the final position error is around 2 cm and the orientation error is practically
negligible. The time τ for the execution of the first step is set to 9.4 s through fixing a number of
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iterations in our control software. Before that, we can see in Fig. 4.15(b) that the bounded SMC
law is applied due to the singularity of the decoupling-based controller. Fig. 4.15(c) shows
that the behavior of the outputs is always close to the desired one but with a small error. The
reason of the remaining error is that our robotic platform is not able to execute commands at a
frequency higher than 10 Hz, and consequently the performance of the SMC is not the optimum.

According to Fig. 4.16(a) the motion of the image points along the sequence does not exhibit
a damaging noise, in such a way that the tensor elements evolve smoothly during the task, as
presented in Fig. 4.16(b)-(c). Fig. 4.17 shows a sequence of some images taken by the robot
camera.
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Figure 4.16: Behavior of the visual measurements for the real experiments. (a) Motion of the
image points. (b) Evolution of the first four tensor elements. (c) Evolution of the second four
tensor elements.
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Figure 4.17: Sequence of some of the omnidirectional images taken from the hypercatadioptric
robot camera during the real experiments. The first is the target image, the second is the initial
and the last is the image at the end of the motion.

In accordance to the results and the methodology presented along the chapter, we can state
that the main advantages of using the 1D TT on VS are that the geometric constraint improves
the robustness to image noise by filtering the data, allows applying the control approach with
any visual sensor obeying approximately a central projection model and avoids the problem of
short baseline by exploiting the information of three views. Thus, total correction of both po-
sition and orientation is ensured without commuting to any visual constraint other than the 1D
trifocal tensor. Since we assume planar motion and the omnidirectional camera is placed look-
ing upward, the use of the 1D TT particularly adapts to the property of this imaging process of
preserving bearing information. Therefore, we have achieved an algorithm that is independent
of the radial distortion induced by lenses and mirrors.

From a control theory point of view, an additional advantage of our approach with respect
to the basic IBVS schemes is that the selected outputs allow us to prove stability on the basis of
a square control system. Additionally, we have incorporated robustness properties to the closed
loop by using SMC. The lack of clear stability properties and robustness has been a serious
concern in IBVS approaches [34]. However, the cost of proving stability with large range of
convergence and without local minima, is to be limited to the application of our approach on
differential drive robots, for which the final remaining orientation can be corrected.

In the evaluation of the proposed visual control scheme we have not considered explicitly
maneuvers to be carried out. Thus, only initial locations allowing a direct motion toward the
target without maneuvers are considered. However, the pose regulation for some particular
initial locations can be addressed by maneuvering, for instance, when there is only a lateral
error. In those cases, the robot can be driven to a general configuration by defining adequate
references for the outputs. Therefore, the proposed time-varying two-step control law complies
with the Brockett’s theorem in the sense that some maneuvers can be carried our if required.

Unifying vision and control for mobile robots



4.6 Conclusions
Along this chapter we have presented a novel image-based (IB) scheme to perform visual servo-
ing (VS) for pose regulation of mobile robots using the elements of the 1D trifocal tensor (TT)
directly in the control law. This tensor is an improved visual measurement with respect to the
epipolar geometry (EG), more general, more robust and without the drawbacks of the EG, like
the problem of short baseline. Moreover, it allows exploiting the property of omnidirectional
images of preserving bearing information in a natural way. The proposed visual control utilizes
the usual teach-by showing strategy without requiring any a priori knowledge of the scene and
does not need any auxiliary image. This control scheme is valid for any visual sensor obeying
the central projection model and without requiring a complete calibration. The proposed two-
step control law ensures total correction of position and orientation without need of commuting
to any visual constraint other than the 1D TT. We have proposed an adequate two-dimensional
error function in such a way that a sliding mode control (SMC) law in a square system ensures
stability, with large region of convergence, no local minima and robustness of the closed loop.
The effectiveness of our approach is tested through simulations and real-world experiments with
a hypercatadioptric camera.



Chapter 5

Dynamic pose-estimation for visual control

The approaches presented in the two previous chapters are image-based (IB) schemes. Although
these schemes solve the problem of pose regulation with good robustness, they are memoryless
and depend completely on the information in the images. In the same context of control using
a monocular generic camera and exploiting a geometric constraint as visual measurement, we
propose to estimate the pose (position and orientation) of the camera-robot system in order to
regulate the pose in the Cartesian space. This provides the benefits of reducing the dependence
of the control on the visual data and facilitates the planning of complex tasks, for instance,
making possible to define a subgoal location for obstacle avoidance. The camera-robot pose
is recovered using a dynamic estimation scheme that exploits visual measurements given by
the epipolar geometry (EG) and the trifocal tensor (TT). The contributions of the chapter are
a novel observability study of the pose-estimation problem from measurements given by the
aforementioned geometric constraints, and the demonstration that the estimated pose is suitable
for closed loop control. Additionally, a benefit of exploiting measurements from geometric
constraints for pose-estimation is the generality of the estimation scheme, in the sense that it is
valid for any visual sensor obeying a central projection model. The effectiveness of the approach
is evaluated via simulations and real-world experiments.

5.1 Introduction

In control theory, the state estimation is an important tool for the implementation of full state
feedback control laws. In the case of a mobile robot, the state of the system corresponds to
the position and orientation with respect to a coordinate system, which can be fixed to a target
location. The availability of the robot state may facilitate the planning of a navigation task using
a visual servoing approach [60]. Herein, we rely on the use of state estimation in visual control
to reduce the dependence on the visual information because the knowledge of the previous
motion may be used to recover some lost data or to define a new goal location when required. In
contrast to static pose-estimation approaches [26], [59], [136], [50], where the pose is extracted
from the decomposition of a particular mathematical entity at each instant time, dynamic pose-
estimation is an alternative that has been little exploited for VS purposes of mobile robots. The
pose estimated dynamically depends on its previous time-history and this process improves the
robustness of the estimation by filtering and smoothing the visual measurements.

In this chapter, an efficient mapless pose-estimation scheme for application in visual ser-
voing of mobile robots is proposed. The scheme exploits dynamic estimation and uses visual
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measurements provided by a geometric constraint: the EG or the 1D TT. These geometric con-
straints have shown its effectiveness to recover relative camera locations in [70], [130], [55],
[69] as static approaches. Additionally, the EG and the TT have been exploited for VS of mo-
bile robots as raw feedback information in previous approaches [99], [113], [96], as well as in
our proposals of the two previous chapters, but they have never been used in dynamic estima-
tion for VS purposes. A work in the field of computer vision shows the applicability of the TT
for dynamic camera-motion estimation [162], which presents a filtering algorithm to tackle the
vision-based pose-tracking problem for augmented reality applications.

The basics of the proposed scheme has been introduced in our preliminary works [21]
and [22]. The former work presents a basic estimation scheme using the 1D TT and the second
introduces a complete analysis of the EG for dynamic pose-estimation. Given the good ben-
efits of the 1D TT as measurement, the application of the estimated pose in a visual servoing
scheme has been extensively analyzed in the journal paper [23]. The approach is valid for any
visual sensor obeying approximately a central projection model and only requires the center of
projection of the omnidirectional images or the principal point for conventional ones, therefore,
a semicalibrated scheme is obtained. A novel observability analysis of the estimation scheme
is developed using nonlinear and linear tools, which gives evidence about the rich information
encoded in the geometric constraints. Since the control scheme uses feedback of the estimated
state, a stability analysis of the closed loop shows the validity of a separation principle between
estimation and control in our nonlinear framework.

The proposed approach integrates the rich visual information provided by a geometric con-
straint into an effective estimation scheme, which results in an adequate compromise between
accuracy and computational cost. Thus, Cartesian information is available to be used for differ-
ent types of tasks, such as homing for large displacements, path following or reactive naviga-
tion. The innovative aspects of the approach presented in this chapter are that, to the authors’
knowledge, it is the first semicalibrated pose-estimation scheme and valid for the large group
of cameras with a central configuration. The approach does not need a target model, scene re-
construction or depth information. Additionally, the proposed control scheme is able to drive
the robot to a desired position and also orientation (pose regulation problem), through smooth
velocities given by a single controller.

The chapter is organized as follows. Section 5.2 presents an extensive observability analysis
and the proposed estimation scheme for measurements from the EG and the 1D TT. Section 5.3
details the control law and the stability of the closed loop with feedback of the estimated pose.
Section 5.4 shows the performance evaluation through simulations and real-world experiments
using a hypercatadioptric imaging system, and finally, Section 5.5 states the conclusions.

5.2 Dynamic pose-estimation from a geometric constraint

In this chapter, we propose to use the information provided by a minimum set of visual mea-
surements in order to estimate the camera location of the nonholonomic camera-robot (2.4).
The visual measurements are taken from a geometric constraint, and they pass through a filter-
ing process given by a dynamic estimation scheme. This process provides robustness against
image noise and reduces the dependence on data of the image space.

Given that the model of the system and the measurement model are nonlinear, the estimation
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problem faced herein is intrinsically nonlinear. So, it is more adequate to take the nonlinear
properties of the problem into account using the appropriate theory. In this chapter, new results
on the observability of the robot pose with measurements from the EG or the 1D TT are reported
using nonlinear tools. Additionally, this analysis leads us to conclude about the effect of the
control inputs over the estimation scheme.

In this section, it is shown the feasibility of estimating the robot pose through a suitable
selection of a vector of measurements h(x) (eventually scalar). We present a novel observability
analysis in continuous and discrete time in order to show the benefits of the proposed visual
measurements according to the theoretical tools introduced in section 2.4.

5.2.1 Observability analysis with the epipoles as measurement
It has been usual to exploit the EG that relates two images to extract the relative rotation and
translation between the corresponding camera locations in static approaches [136], [90], [50].
We propose to use the horizontal coordinate of the epipoles to estimate the current camera-robot
pose C2 = (x, y, ϕ) through a dynamic approach. These epipoles can be expressed as a function
of the current pose as

ecur = αx
x cosϕ+ y sinϕ

y cosϕ− x sinϕ
= αx

ecn
ecd

,

etar = αx
x

y
. (5.1)

This section shows the feasibility of the estimation by analyzing the observability of the
camera-robot state with the vector of measurements

he (x) =
[
he1 = ecur he2 = etar

]T
, (5.2)

where the superscript e refers to epipoles as measurements.

Nonlinear observability analysis

This section utilizes the theory introduced in section 2.4.1 using the epipoles as measurements.
The conclusions about the observability of the camera-robot system for this case is stated in the
following lemma.

Lemma 5.2.1 The continuous camera-robot system (2.3) with both epipoles as measurements
(5.2) is a locally weakly observable system. Moreover, this property is maintained even by using
only the target epipole as measurement.

Proof: The proof of this lemma is done by finding the space spanned by all possible Lie deriva-
tives and verifying its dimension. This space is given as

Ωe =
(
hep, L

1
g1
hep, L

1
g2
hep, L

2
g1
hep, L

2
g2
hep, Lg1g2h

e
p, ...

)T for p = 1, 2.

First, the Lie derivatives given by the current epipole as measurement (he1 = ecur) are pre-
sented. As a good approach, the search of functions in the Lie group is constrained for n − 1,
where n = 3 in our case.
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L1
g1
he1 = ∇he1 · g1 =

αx
e2cd

[
y −x x2 + y2

]  − sinϕ
cosϕ
0

 = −αx
ecn
e2cd

,

L1
g2
he1 = ∇he1 · g2 =

αx
e2cd

[
y −x x2 + y2

]  −ℓ cosϕ
−ℓ sinϕ

1

 = αx
x2 + y2 − ℓecd

e2cd
,

L2
g1
he1 = ∇L1

g1
he1 · g1 = 2αx

ecn
e3cd

,

L2
g2
he1 = ∇L1

g2
he1 · g2 = αx

ecn (2 (x
2 + y2)− 3ℓecd)

e3cd
,

Lg1g2h
e
1 = −αx

2e2cn − ℓecd
e3cd

,

Lg2g1h
e
1 = −αx

x2 + y2 − ℓecd + e2cn
e3cd

.

To verify the dimension of the space spanned by these functions, the gradient operator is
applied to obtain the matrix Ocur (5.3). Recall that we use the notation sϕ = sinϕ and cϕ =
cosϕ. Given the complexity of the entries of the matrix, only four rows are shown, however,
the matrix is of rank two even with more rows.

Ocur =
[
(∇he

1)
T (

∇L1
g1h

e
1

)T (
∇L1

g2h
e
1

)T (
∇L2

g1h
e
1

)T · · ·
]T

(5.3)

=
αx

e2cd


y −x x2 + y2

− (y + sϕecn) /ecd (x+ cϕecn) /ecd −
(
x2 + y2 + e2cn

)
/ecd

− (ℓsϕecd − 2yecn) /ecd (ℓcϕecd − 2xecn) /ecd ecn
(
2
(
x2 + y2

)
− ℓecd

)
/ecd

(2cϕecd + 6sϕecn) /e
2
cd (2sϕecd − 6cϕecn) /e

2
cd

(
2 (ycϕ− xsϕ)

2
+ 6e2cn

)
/e2cd

...
...

...

 .

It is required that the Lie derivatives obtained from the target epipole as measurement (he2 =
etar) provide one row linearly independent on those previous in (5.3). These new Lie derivatives
are the following:

L1
g1
he2 = ∇he2 · g1 =

αx
y2
[
y −x 0

]  − sinϕ
cosϕ
0

 = −αx
y2
ecn,

L1
g2
he2 = ∇he2 · g2 =

αx
y2
[
y −x 0

]  −ℓ cosϕ
−ℓ sinϕ

1

 = −αxℓ
y2

ecd,

L2
g1
he2 = ∇L1

g1
he2 · g1 =

2αx
y3

cosϕecn,

L2
g2
he2 = ∇L1

g2
he2 · g2 =

αxℓ

y3
(yecn − 2ℓ sinϕecd) .
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By applying the gradient operator, the matrix Otar (5.4) is obtained, which effectively pro-
vides the additional linearly independent row to span the three dimensional state space.

Otar =
[
(∇he2)

T (
∇L1

g1
he2
)T (

∇L1
g2
he2
)T (

∇L2
g1
he2
)T (

∇L2
g2
he2
)T ]T (5.4)

=
αx
y4


y3 −y2x 0

−y2cϕ y (ysϕ+ 2xcϕ) −y2 (ycϕ− xsϕ)
ℓy2sϕ ℓy (ycϕ− 2xsϕ) ℓy2 (xcϕ+ ysϕ)
2ycϕ2 −2cϕ (3xcϕ+ 2ysϕ) 2y (y (cϕ2 − sϕ2)− 2xsϕcϕ)

−ℓy (ycϕ+ 2ℓs2ϕ) o52 ℓy ((y − 2ℓcϕ) ecd + 2ℓsϕecn)

 ,
where o52 = −ℓ

(
y2 sinϕ+ y cosϕ (2x− 4ℓ sinϕ) + 6ℓx sin2 ϕ

)
. Thus, from the matrix Oe =[

OT
cur OT

tar

]T , we can state that the system has the property of locally weak observability
and the three state variables constituting the camera-robot pose can be estimated from these
two measurements. Moreover, the matrix (5.4) is full rank by itself, which means that the rank
condition of definition 2.4.1 is satisfied by using the target epipole as unique measurement. So,
the camera-robot system (2.3) with both epipoles as measurements is locally weakly observable
and this property is achieved even by using only the target epipole as measurement.

Notice that the previous proof implicitly considers the action of both velocities, however,
we can analyze the effect for each one of them. For simplicity, we observe the results with the
target epipole as measurement, i.e., analyzing the matrix (5.4). On one hand, it can be shown
that

det

([
(∇he2)

T (
∇L1

g1
he2
)T (

∇L2
g1
he2
)T ]T)

= −2αxy
2ecn,

which means that, when only a translational velocity is being applied, the matrix loses rank if
the current epipole is zero. In other words, observability is lost if the robot is moving forward
along the line joining the projection center of the cameras because the target epipole remains
unchanged. Notice that if the robot is not in the described condition, observability is guaranteed
by a translational velocity different than zero. On the other hand,

det

([
(∇he2)

T (
∇L1

g2
he2
)T (

∇L2
g2
he2
)T ]T)

= αxℓ
2y2d (x) , with d (x) ̸= 0 for all x ̸= 0.

This means that the rotational velocity provides observability iff the camera is shifted from
the axis of rotation (ℓ ̸= 0), given that in this situation, the target epipole changes as the robot
rotates. Thus, the control strategy should provide the appropriate excitation, at least non-null
rotational velocity, in order to ensure the property of observability for any condition, even when
the robot is looking directly toward the target.

Analysis as Piece-Wise Constant System (PWCS)

We propose to implement an estimation scheme through a discrete Kalman filtering approach
in order to estimate the camera-robot pose x̂k=

[
x̂k ŷk ϕ̂k

]T
from visual measurements.

Unifying vision and control for mobile robots



This estimation scheme provides generality to our VS approach in comparison to other options
like nonlinear observers, which are designed for a particular system. Additionally, a Kalman
estimator allows to change easily the set of measurements during the operation. Given that
we are dealing with a nonlinear estimation problem, an Extended Kalman Filter (EKF) is an
effective way to solve it. In order to achieve a good compromise between accuracy in the
estimation and computational cost, we use the basic form of the EKF, as described in section
2.5.

In the previous section, it is proved that the camera-robot model with the epipoles as mea-
surement is an observable system from a nonlinear point of view. The linearization process
may affect the observability and inconsistent estimation may be obtained [78]. Since the EKF
is based on linearization of the system (2.5) and outputs (5.1), in this section, the observability
property of the linear approximation (Fk,Gk,H

e
k) is investigated. The matrices Fk and Gk are

given in section 2.5 and the corresponding measurement matrix from the epipoles is

He
k =

∂h

∂xk
=


αx
e2cd,k

[
yk −xk x2k + y2k

]
αx
y2k

[
yk −xk 0

]
 , (5.5)

where ecd,k = yk cosϕk − xk sinϕk.

Lemma 5.2.2 The linear approximation (Fk,Gk,H
e
k) of the discrete nonlinear system (2.5)

and epipoles as measurements (5.1) used in an EKF-based estimation scheme (section 2.5), is
an observable system. Moreover, observability is achieved by using only the target epipole as
measurement.

Proof: Firstly, we verify the property of local observability, which is given by the typical ob-
servability matrix

Oe
k =

[
(He

k)
T (He

kFk)
T · · ·

(
He
kF

n−1
k

)T ]T .
This is a 6×3 matrix that can be built by stacking the local observability matrices (LOM)

for each measurement

Ocur,k =
αx
e2cd,k

 yk −xk x2k + y2k
yk −xk Σk + x2k + y2k
yk −xk 2Σk+x

2
k+y

2
k

 ,
Otar,k =

αx
y2k

 yk −xk 0
yk −xk Σk

yk −xk 2Σk

 ,
where Σk = yk∆y,k + xk∆x,k and ∆x,k = Ts (ωkℓ cosϕk + υk sinϕk), ∆y,k = Tsωkℓ sinϕk −
Tsυk cosϕk. It can be seen that the matrix Oe

k =
[
OT
cur,k OT

tar,k

]T
is of rank 2 and the linear

approximation is not observable at each instant time. Thus, a local observability analysis is not
enough to conclude about this property. The linearization can be seen as a piece-wise constant
system (PWCS) for each instant time k, and the theory described in section 2.4.3 can be used.
It can be verified that the null space basis of the matrix Oe

k is any state xk = λ
[
xk yk 0

]T ,
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where λ ∈ R. This subset of the state space satisfies Fkxk = xk and then, the observability can
be determined through the stripped observability matrix (SOM) as defined in (2.18).

In order to get a smaller SOM, we use the LOM obtained from the target epipole (Otar,k).
This is enough to conclude about the observability of the system with both measurements but
also to achieve observability with only one measurement. This LOM for the next instant time is

Otar,k+1 =
αx
y2k+1

 yk+1 −xk+1 0
yk+1 −xk+1 Σk+1

yk+1 −xk+1 2Σk+1

 .

Given that any non-null factor does not affect the rank of a matrix, we omit the different
multiplicative factors of each LOM to write the stripped observability matrix that is obtained in
two steps as

Oe
SOM,1 =


yk −xk 0
yk −xk yk∆y,k + xk∆x,k

yk −xk 2 (yk∆y,k + xk∆x,k)
yk −∆y,k −xk +∆x,k 0
yk −∆y,k −xk +∆x,k (yk −∆y,k)∆y,k+1 + (xk −∆x,k)∆x,k+1

yk −∆y,k −xk +∆x,k 2 ((yk −∆y,k)∆y,k+1 + (xk −∆x,k)∆x,k+1)

 .
(5.6)

This matrix can be reduced by Gaussian elimination to a 3×3 triangular matrix whose de-
terminant is −2x2k∆x,k∆y,k+2xkyk∆

2
x,k− 2xkyk∆

2
y,k+2y2k∆x,k∆y,k. Thus, under the assump-

tion of sampling time different than zero, this matrix is full rank and the linear approximation
(Fk,Gk,H

e
k) is observable iff non-null velocities are applied at each instant time. Moreover, a

rotational velocity different than zero is enough to achieve observability iff ℓ ̸= 0, which agrees
with the comments after lema 5.2.1. This analysis states that observability is gained in two steps
even if local observability for each k is not ensured.

It is worth emphasizing that both previous lemmas are valid for any pair of images, for
instance, observability is also ensured by using the epipoles that relate the first captured image
(initial image) and the current one. This property is exploited in order to solve the problem of
short baseline when the target is being reached. It is known that the EG relating the current and
the target images becomes ill-conditioned when the cameras are very close each other. In this
case, the epipoles are unstable and they are not useful as measurements anymore.

In order to avoid this problem, we propose to switch the measurements to some new epipoles
when an intermediate location aligned to the target without lateral error is reached. Thus, we
exploit one of the benefits of the Kalman filtering approach, which allows to change the set of
measurements online accordingly. The new epipoles are computed from the initial and the cur-
rent images, and the intermediate location can be reached by tracking an adequate reference as
will be described later (section 5.3.3). After the intermediate goal is reached, only a rectilinear
forward motion remains to reach the target. So, the pose in this second stage is estimated from
the epipoles relating the initial and the current images, which behave adequately.

Another important aspect in the EKF implementation is related to the initial values of the
estimated state. For this purpose, the initial pose can be recovered by decomposing the essential
matrix like in the localization stage of the approach [50], which is based on the 5-point algorithm
[130].
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5.2.2 Observability analysis with the 1D TT as measurement

The elements of the 1D TT have shown to be useful providing information of position and
orientation of a camera-robot through static methods, mainly for localization [55], [69]. The
use of the 1D TT allows to avoid the problem of short baseline without the need of switching
the measurements. Additionally, given that the computation of the 1D TT only needs the center
of projection of the images, the resulting estimation scheme is semicalibrated. Moreover, as
the 1D TT is a more stable geometric constraint, the estimation scheme results more robust to
image noise. This section analyzes the feasibility to implement an estimation scheme using
one element of the 1D TT as measurement with appropriate theoretical tools. Looking the
expressions in (4.2), the elements of the tensor can be expressed related to the current location
C2 = (x, y, ϕ) using a generic measurement model of the form

ht(x) = αx sinϕ+ βx cosϕ+ γy sinϕ+ δy cosϕ, (5.7)

where α, β, γ, δ are suitable constants defined for each tensor element and the superscript t
refers to measurement from the tensor. This expression of the measurement model allows us to
generalize the results for any tensor element.

Nonlinear observability analysis

Similarly to the analysis for the case of measurements from the epipoles, this section utilizes
the theory introduced in section 2.4.1. Since the analysis is more complex than for the epipoles
because there are eight tensor elements, the following proposition is firstly established.

Proposition 5.2.3 The space spanned by all possible Lie derivatives given by the generic mea-
surement model (5.7) along the vector fields g1 and g2 of the continuous system (2.3) is of
dimension three if the measurement accomplishes α + δ ̸= 0 or β − γ ̸= 0.

Proof: This proposition is proved by finding the space spanned by all possible Lie derivatives
and verifying its dimension. This space is given as

Ωt =
(
ht, L1

g1
ht, L1

g2
ht, L2

g1
ht, L2

g2
ht, Lg1Lg2h

t, Lg2Lg1h
t, ...
)T
. (5.8)

The first order Lie derivatives are

L1
g1
ht = δ cos2 ϕ− α sin2 ϕ+ (γ − β) sinϕ cosϕ = φa (ϕ) ,

L1
g2
ht = −ℓ

(
β cos2 ϕ+ γ sin2 ϕ+ (α + δ) sinϕ cosϕ

)
+ ∂ht

∂ϕ
.

We have introduced the notation φ for functions depending on ϕ, which emphasizes that
some of the Lie derivatives only span in that direction. As a good approach, the search of
functions in the Lie group is constrained for n − 1, where n = 3 is the dimension of the state
space. Then, the required second order Lie derivatives turn out to be
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L2
g1
ht = 0,

L2
g2
ht = −ℓ

(
(2α + δ) cos2 ϕ+ 3 (γ − β) sinϕ cosϕ

)
− ℓ (2δ + α) sin2 ϕ− h,

Lg1Lg2h
t = φb (ϕ) ,

Lg2Lg1h
t = φc (ϕ) .

In order to know the dimension of the space Ω, the gradient operator is applied to each one
of the functions defining such space. Notice that the Lie derivatives Lg1Lg2h and Lg2Lg1h span
in the same direction of L1

g1
h and the corresponding gradients of the formers do not contribute

to the dimension of the space. The dimension of the observable space is determined by the rank
of the matrix

∇Ωt =
[
(∇ht)

T (
∇L1

g1h
t
)T (

∇L1
g2h

t
)T (

∇L2
g2h

t
)T ]T

(5.9)

=


αsϕ+ βcϕ γsϕ+ δcϕ αxcϕ− βxsϕ+ γycϕ− δysϕ

0 0 −2 (α+ δ) sϕcϕ+ (β − γ)
(
s2ϕ− c2ϕ

)
αcϕ− βsϕ γcϕ− δsϕ ℓ

(
(α+ δ)

(
s2ϕ− c2ϕ

)
− 2 (β − γ) sϕcϕ

)
− ht

−αsϕ− βcϕ −γsϕ− δcϕ ℓ
(
6 (α+ δ) sϕcϕ− 3 (β − γ)

(
s2ϕ− c2ϕ

))
− ∂ht

∂ϕ

 .

By taking, for instance, the first three rows, this matrix has rank three if α + δ ̸= 0 or
β − γ ̸= 0. Thus, the space spanned by all possible Lie derivatives is of dimension three under
such conditions.

The interest of this analysis is to conclude about the observability property of the camera-
robot pose using one element of the 1D TT. In this sense, the following lema is stated.

Lemma 5.2.4 The continuous camera-robot system (2.3) does not satisfy the observability rank
condition of definition 2.4.1 for any element of the 1D TT (4.2) as measurement. Thus, locally
weak observability cannot be ensured using information of the 1D TT.

Proof: This proof results as a derivation of the proposition 5.2.3. From (4.2), it is seen that, by
including an additional term κfsc (ϕ) with κ a generic constant and fsc (ϕ) being sϕ or cϕ, the
non-normalized elements of the tensor can be expressed in two of the following forms:

1. Any of the elements T121, T122, T221 and T222 can be written as ht1 (x) = βx cosϕ +
γy sinϕ + κfsc (ϕ). In accordance to the generic measurement model (5.7), for these
tensor elements α = 0, δ = 0, β = γ, and consequently the conditions of the previous
proposition are not accomplished.

2. The elements T111, T112, T211 and T212 can be expressed as ht2 (x) = αx sinϕ+δy cosϕ+
κfsc (ϕ). In this case, β = 0, γ = 0, α = −δ, and the conditions in proposition 5.2.3 to
span a space of dimension three are not fulfilled.

Hence, since α + δ = 0 and β − γ = 0 in any case, the observability matrix has only two
rows linearly independent

Oc =

[
∇ht

∇L1
g2
ht

]
=

[
α sinϕ+ β cosϕ γ sinϕ+ δ cosϕ ∂ht

∂ϕ

α cosϕ− β sinϕ γ cosϕ− δ sinϕ −ht

]
. (5.10)
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Given that this matrix Oc has a lower rank than the dimension of the state space (n = 3), the
observability rank condition is not satisfied and consequently locally weak observability cannot
be ensured for the continuous system (2.3) with any element of the 1D TT (4.2) as measurement.
The same result is obtained by using any linear combination of elements of the tensor. Higher
order Lie derivatives do not modify this result because they are linearly dependent on lower
order derivatives. In any case, the maximum rank of the observability matrix is two.

Notice that in the observability matrix (5.10) only appears the gradient of the measurement
along g2, in addition to the gradient of ht. This means that, since the vector field g2 is associated
to the rotational velocity, this velocity is important to provide a second observable direction in
the state space. However, this is not enough to cover the three dimensional space. In contrast, the
translational velocity does not contribute to gain any observable direction, because the gradient
of any Lie derivative related to g1 provides a linearly dependent row vector.

In spite of the previous continuous analysis is not able to state the complete observability of
the camera-robot pose, the theory of section 2.4.2 about discrete nonlinear observability allows
us to enunciate the following result.

Lemma 5.2.5 The discrete camera-robot system (2.5) is said to be observable according to
definition 2.4.2 by using only one element of the 1D TT (4.2) as measurement if rotational
velocity is applied during two consecutive instant times and the corresponding velocities are
different and no-null for these two consecutive steps.

Proof: This is proved by constructing the corresponding nonlinear observability matrix and
verifying its rank. Let us rewrite the generic measurement (5.7) to represent any of the eight
elements of the 1D TT in discrete time.

ht (xk) = −κ1txk + κ2tyk + κ3fsc (ϕk) , (5.11)

where txk = −xk cosϕk − yk sinϕk, tyk = xk sinϕk − yk cosϕk and related to (5.7) we have
α = κ2, β = κ1, γ = κ1, δ = −κ2. The Jacobian matrix ∂f/∂xk required in the discrete
nonlinear observability matrix (2.17) is given in (2.23) and the measurement matrix in this case
is

∂ht

∂xk
=

[
κ1 cosϕk + κ2 sinϕk κ1 sinϕk − κ2 cosϕk −κ1tyk − κ2txk + κ3fcs (ϕk)

]
= Ht

k =
[
Ht
x,k Ht

y,k Ht
ϕ,k

]
. (5.12)

The recursive operations of (2.17) result in the following nonlinear observability matrix, in
which ϵk = ϕk + Tsωk and ζk = ϕk + Ts (ωk + ωk+1):

Od =

 κ1cϕk + κ2sϕk κ1sϕk − κ2cϕk κ1 (−xksϕk + ykcϕk) + κ2 (xkcϕk + yksϕk) + κ3fcs (ϕk)
κ1cϵk + κ2sϵk κ1sϵk − κ2cϵk κ1 (−xksϵk + ykcϵk) + κ2 (xkcϵk + yksϵk) + κ3fcs (ϵk)
κ1cζk + κ2sζk κ1sζk − κ2cζk κ1 (−xksζk + ykcζk) + κ2 (xkcζk + yksζk) + κ3fcs (ζk)

 .

(5.13)
It can be seen that this matrix has three vector rows linearly independent if the following

conditions are fulfilled:

Ts ̸= 0, ωk ̸= 0, ωk+1 ̸= 0, ωk ̸= ωk+1. (5.14)
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Thus, it is proved that the observability matrix is full rank three and the system (2.5) is
observable if rotational velocity is applied during two consecutive instant times and the corre-
sponding velocities are different and no-null at each time.

Notice that the difference between both previous observability analysis is that the continuous
case considers only the information in a specific state of the system while in the discrete case,
the analysis provides a way to introduce information from consecutive instant times. According
to lemma 5.2.5, a digital implementation of an estimation scheme for the system (2.5) with
measurement of the type (5.11) collects enough information along two instant times. In this
sense, both results are complementary each other. The no locally weak observability states that
the robot pose cannot be distinguished instantaneously; however, the pose can be estimated
in two steps in accordance to the discrete analysis. The conditions for the observability in
lemma 5.2.5 confirm the dependence of this property on the control inputs, in particular on the
rotational velocity. Both continuous and discrete-time analysis agree each other with the fact
that the translational velocity does not contribute to gain any observable direction, while the
rotational velocity does.

Analysis as Piece-Wise Constant System (PWCS)

Up to now, we have proved that the camera-robot model with one element of the 1D TT as
measurement is an observable system from a nonlinear point of view. However, similarly to the
case of epipolar measurements, the implementation is proposed through a linearization-based
scheme as the EKF is. In order to ensure a consistent estimation, it is important to verify the
effect of the linearization over the observability of the state. We use the basic form of the EKF
as described in section 2.5. The linear approximation (Fk,Gk,H

t
k) is treated as a PWCS so that

the theory introduced in section 2.4.3 is used.
Let us verify the condition that allows to test the observability from the stripped observabil-

ity matrix (SOM) (see definition 2.4.3). The local observability matrix for the k-th instant time
is

Ok =

 Ht
x,k Ht

y,k Ht
ϕ,k

Ht
x,k Ht

y,k Λk +Ht
ϕ,k

Ht
x,k Ht

y,k 2Λk +Ht
ϕ,k

 ,
with Λk = Ts (κ2ωkℓ− κ1υk) and Hx,k, Hy,k , Hϕ,k as defined in (5.12). This is a matrix of rank
two and its null space NULL (Ok) is any state xk = λ

[
−Hy,k Hx,k 0

]T , where λ ∈ R.
This subset of the state space satisfies Fkxk = xk and then, the observability can be determined
through the SOM (2.18). The local observability matrix for the next instant time is

Ok+1 =

 Ht
x,k+1 Ht

y,k+1 Ht
ϕ,k+1

Ht
x,k+1 Ht

y,k+1 Λk+1 +Ht
ϕ,k+1

Ht
x,k+1 Ht

y,k+1 2Λk+1 +Ht
ϕ,k+1

 .
Thus, the following stripped observability matrix Ot

SOM,1, with ϵk = ϕk+Tsωk, is obtained
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in two steps:

Ot
SOM,1 =



κ1cϕk + κ2sϕk κ1sϕk − κ2cϕk Ht
ϕ,k

κ1cϕk + κ2sϕk κ1sϕk − κ2cϕk Ts (κ2ωkℓ− κ1υk) +Ht
ϕ,k

κ1cϕk + κ2sϕk κ1sϕk − κ2cϕk 2Ts (κ2ωkℓ− κ1υk) +Ht
ϕ,k

κ1cϵk + κ2sϵk κ1sϵk − κ2cϵk Ht
ϕ,k+1

κ1cϵk + κ2sϵk κ1sϵk − κ2cϵk Ts (κ2ωk+1ℓ− κ1υk+1) +Ht
ϕ,k+1

κ1cϵk + κ2sϵk κ1sϵk − κ2cϵk 2Ts (κ2ωk+1ℓ− κ1υk+1) +Ht
ϕ,k+1

 .
(5.15)

By looking at the conditions that make the matrix Ot
SOM,1 full rank and comparing with

those conditions stated in lemma 5.2.5, the following corollary can be enunciated.

Corollary 5.2.6 The PWCS given by the linear approximation (Fk,Gk,H
t
k) of the system (2.5)

and measurement from the 1D TT (5.12), as used by the EKF (section 2.5), is observable under
the same conditions stated in lemma 5.2.5. Under such conditions, the matrix Ot

SOM,1 (5.15) is
full rank.

It is worth mentioning that the results on observability of this section are valid for any nor-
malized element of the tensor, except for T121, which is equal to one after the normalization.
Although the previous mathematical development has been shown for the non-normalized ten-
sor for clarity, the implementation of the EKF considers normalized measurements.

Initialization of the estimation

Additional to the initial values of the estimated state, in our framework, the measurement Ja-
cobian (5.12) requires to know the initial location C1. We propose a method that obtains all
the required initial information through the 1D TT. It is known that estimating the 1D TT from
a set of images where two of them are exactly the same is numerically troublesome, which is
the case for the initial condition. In order to avoid this problem and also obtain a useful met-
ric information, a third image is captured after an initial forward motion. Thus, the complete
geometry of the three views is estimated by knowing the relative location of one of the images
with respect to another. Because of the initial motion, we know the relative position between
C1 and C2 and also that ϕ1 = ϕ2 = ϕ. The following system of equations gives the position up
to scale and orientation of C3 with respect to C1:

x
y
αsϕ
αcϕ

 = 1
a21+a

2
2


a1a2
a4

a1a2
a4

a21
a4

−a22
a4

a21
a4

a22
a4

a1a2
a4

a1a2
a4

a1 a1 −a2 −a2
a2 a2 a1 a1



T112
T121
T212
T221

 . (5.16)

The choice of the tensor elements in (5.16) is the unique possible in order to have a non-
singular system of equations, given that a1 = 0, a2 = dini, a3 = 0, a4 = 1, with dini being
the longitudinal distance in the initial motion. These values are obtained by analyzing the
particular configuration of the locations with reference in C1 to facilitate the derivations. Once
the orientation ϕ is known, the scale factor (σ) can be estimated from σT211 = −tx1 sinϕ2 −
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ty2 cosϕ1, where ϕ1 = −ϕ, ϕ2 = 0, ty2 = dini and the value of tx1 is not important. Thus, the
estimated scale factor is

σ = −dini cosϕ
T211

.

Recall that finally the coordinates of C1 and C2 must be expressed with respect to C3.
Now, the required information, C1 for the measurement Jacobian (5.12) and C2 for the EKF
initialization, has been deduced.

5.3 Nonholonomic visual servoing in the Cartesian space
Similarly to previous chapters, the goal in this section is to drive a mobile robot to a target
location, i.e., to reach a desired position and orientation C2 = (0, 0, 0). In spite of the Brock-
ett’s theorem is not satisfied by nonholonomic mobile robots, in this section we solve the pose
regulation problem for these robots by using a smooth estimated-state feedback control law and
adequate references to track. The controller drives the lateral and longitudinal robot positions
to zero by tracking desired references. At the same time, orientation correction is also achieved
through smooth input velocities.

The location of the camera mounted on the robot is controlled instead of the robot reference
frame because the measurements are given with respect to the camera frame. The controller
is designed from the discrete model (2.4) considering that the feedback information is given
by the estimated state x̂k=

[
x̂k ŷk ϕ̂k

]T
obtained as described in lemma 5.2.2 or corollary

5.2.6. The important aspect in control theory regarding to the stability of the closed loop system
using feedback of the estimated state is addressed in this section. In this sense, the validity of a
separation principle for our nonlinear framework is verified.

The advantage of the proposed control scheme with respect to all previous works on VS for
mobile robots is that the real-world path followed by the platform can be predefined. This is
possible because the state estimation allows us to tackle the VS problem as a trajectory tracking
in the Cartesian space. It provides the advantage to facilitate the planning of complex tasks, like
homing for large displacements, path following or reactive navigation [60].

5.3.1 Control of the position error
This section presents a solution to the problem of output feedback tracking using the input-
output linearization control technique [141]. Because of a mobile robot is a underactuated
system, by controlling the lateral and longitudinal position’s coordinates, the orientation (ϕ)
remains as a DOF of the control system. Nevertheless, the orientation can be simultaneously
corrected by tracking suitable desired trajectories. Thus, a discrete linearizing controller to take
the value of the robot position to zero in a smooth way is proposed. Let us define the output to
be controlled as the reduced state vector

xr,k =
[
xk yk

]T . (5.17)

Hence, the tracking errors are ξ1k = xk − xdk, ξ2k = yk − ydk, where xdk and ydk are the discrete
values of the desired smooth time-varying references that are defined later. The difference
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equations of these errors result in the system

[
ξ1k+1

ξ2k+1

]
=

[
ξ1k
ξ2k

]
+ Ts

[
− sinϕk −ℓ cosϕk
cosϕk −ℓ sinϕk

] [
vk
ωk

]
− Ts

[
ẋdk
ẏdk

]
. (5.18)

This position error system can be expressed as

ξk+1 = ξk + TsD (ϕk, ℓ)uk − Tsẋ
d
r,k, (5.19)

where ξk = xr,k − xdr,k, D (ϕk, ℓ) is the decoupling matrix depending on the orientation and the

fixed parameter ℓ and ẋdr,k =
[
ẋdk, ẏ

d
k

]T represents a known perturbation for the error dynamics.
The corresponding inverse matrix to decouple the system is given as

D−1 (ϕk, ℓ) =
1

ℓ

[
−ℓ sinϕk ℓ cosϕk
− cosϕk − sinϕk

]
. (5.20)

Given that the control inputs appear in the first differentiation of each output, the camera-
robot system (2.4) with position coordinates as outputs (5.17) has a vector relative degree {1,1}.
Then, the sum of the indices of the system (1 + 1) is less than the dimension of the state space
(n = 3) and a first order zero dynamics appears, which represents the previously mentioned
DOF (ϕ) of the system.

As the control is based on estimation, the static state feedback control law uk resulting from
the inversion of the error system (5.19) turns out to be

ûk=

[
υ̂k
ω̂k

]
= D−1

(
ϕ̂k, ℓ

)[ ν̂1k
ν̂2k

]
, (5.21)

where ν̂1k = −λ1ξ̂1k+ ẋdk and ν̂2k = −λ2ξ̂2k+ ẏdk. It can be verified that the input velocities achieve
global stabilization of the position error system (5.19) in the case of feedback of the real state
uk. In such a case, the dynamic behavior of the closed loop position error is exponentially stable
iff λ1 and λ2 ∈ (0, 2/Ts). In the subsequent section, the stability of the closed loop system with
feedback of the estimated state ûk is analyzed.

Note that this input-output linearization via static feedback is only possible for the camera-
robot system (2.4) with known ℓ ̸= 0. Otherwise, a singular decoupling matrix is obtained and
a static feedback fails to solve the input-output linearization problem. Nevertheless, the case of
having the camera shifted from the robot rotational axis over the longitudinal axis is a common
situation.

5.3.2 Stability of the estimation-based control loop

In this section, the stability of the closed loop with feedback of the estimated camera-robot pose
is studied. It is well known that the separation principle between estimation and control does not
apply for nonlinear systems, however, it has been investigated for a class of nonlinear systems
[9], which can be expressed in a nonlinear canonical form. As the position error dynamics
(5.19) does not lie in that class of systems, then we present a particular analysis.
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Let us first obtain the dynamic system of the estimation error and subsequently study the
interaction of this error with the closed loop control system. The dynamic behavior of the a
priori estimation error is given by

e−k+1= xk+1 − x̂−
k+1=f (xk, ûk)− f

(
x̂+
k , ûk

)
. (5.22)

It is worth emphasizing that the same conclusions of the analysis can be obtained using the
a posteriori estimation error e+k [134]. Let us introduce some expressions to expand the smooth
nonlinear functions f and h, with the last being a generic function representing (5.2) or (5.11)

f (xk, ûk)− f
(
x̂+
k , ûk

)
= Fk

(
xk − x̂+

k

)
+ Φ

(
xk, x̂

+
k , ûk

)
, (5.23)

h (xk)− h
(
x̂−
k

)
= Hk

(
xk − x̂−

k

)
+Ψ

(
xk, x̂

−
k

)
, (5.24)

with matrices Fk and Hk the Jacobians of the corresponding functions. By substituting (5.23)
into (5.22) and using the discrete observer as given by the update stage of the EKF

x̂+
k = x̂−

k +Kk

(
h (xk)− h

(
x̂−
k

))
,

we have

e−k+1=Fk

(
xk − x̂−

k −Kk

(
h (xk)− h

(
x̂−
k

)))
+ Φ

(
xk, x̂

+
k , ûk

)
.

By substituting (5.24) and knowing that the a priori estimation error is given as e−k= xk−x̂−
k ,

then

e−k+1=Fk (I3 −KkHk) e
−
k +Θk,

where Θk = Φ
(
xk, x̂

+
k , ûk

)
− FkKkΨ

(
xk, x̂

−
k

)
. Let us denote the first two components of

the vector e−k as e−r,k . The estimated tracking error (ξ̂k) is related to this reduced vector of
estimation errors as follows:

ξ̂k = ξk − e−r,k.

The control law (5.21), with D̂−1 = D−1
(
ϕ̂k, ℓ

)
to simplify the notation, can be written

using the estimated tracking error

ûk= D̂
−1 (−k

(
ξk − e−r,k

)
+ ẋdr,k

)
.

By introducing this control input in the tracking error system (5.19), the closed loop differ-
ence equation with estimated state feedback results

ξk+1 =
(
I2 − TsDD̂

−1
k
)
ξk + TsDD̂

−1
ke−r,k + Ts

(
DD̂

−1 − I2

)
ẋdr,k.

The product of matrices

DD̂
−1

=

[
sinϕk sin ϕ̂k + cosϕk cos ϕ̂k − sinϕk cos ϕ̂k + sin ϕ̂k cosϕk
− sin ϕ̂k cosϕk + sinϕk cos ϕ̂k cosϕk cos ϕ̂k + sinϕk sin ϕ̂k

]
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turns out to be a definite positive matrix with det(DD̂
−1
) =

(
sinϕk sin ϕ̂k

)2
+
(
cosϕk cos ϕ̂k

)2
+(

sinϕk cos ϕ̂k

)2
+
(
sin ϕ̂k cosϕk

)2
> 0 and DD̂

−1
becomes the identity if ϕk = ϕ̂k. Finally,

the overall closed loop control system with estimated state feedback is expressed as follows:

[
ξk+1

e−k+1

]
=

[
I2 − TsDD̂

−1
k

[
TsDD̂

−1
k, 0
]

0 Fk (I3 −KkHk)

] [
ξk
e−k

]
+

[
Ts

(
DD̂

−1 − I2

)
ẋdr,k

rk

]
.

The triangular form of this system shows that the stability property can be achieved ensur-
ing the stability of each one of the dynamics ξk and e−k , i.e., a separation principle holds for the
system. Notice that each dynamics is subject to perturbations. The tracking error is subject to
a perturbation depending on the derivative of the desired references and the estimation error is
subject to a vanishing perturbation depending on its own dynamics. The more important effect
comes from the second one, because the former perturbation depends on the accuracy of the
orientation estimation and even, it can be neglected considering the smoothness of the refer-
ence signals. Thus, the stability of the overall control scheme is determined by the estimation
error dynamics. According to Theorem 7 stated in [134], the EKF behaves as an exponential
observer given the boundness of the matrices of the linear approximation, the boundness of
the estimation covariances, the nonsigularity of the matrix Fk and boundness of the perturba-
tion Θk. These conditions of convergence are accomplished in our system, and consequently,
exponential stability of the overall control system is achieved.

It is worth noting that, as any dynamic observer, the EKF needs the value of the robot
velocities uk. In our framework of visual control, the velocities given to the robot are known
without the need of measuring them. Moreover, any uncertainty in uk can be considered as
noise in the state of the camera-robot system and assumed by the corresponding covariance.

5.3.3 Pose regulation through adequate reference tracking
The pose regulation problem requires to reach a desired position and orientation with respect
to a fixed reference frame, which in our case is defined by the location associated to the target
image. Up to now, the proposed controller drives to zero the lateral and longitudinal errors
through a smooth evolution, but the orientation evolves freely. In order to obtain also orientation
correction for nonholonomic mobile robots, a good option is to define an adequate path for the
robot position. The following time-differentiable references are proposed to achieve the desired
behavior of the robot position and consequently to reach the desired orientation

ydk =
yi − yf

2

(
1 + cos

(
π

τst
kTs

))
+ yf , 0 ≤ kTs ≤ τst,

xdk =
xi − xf

(yi − yf )2
(
ydk − yf

)2
+ xf , 0 ≤ kTs ≤ τst, (5.25)

where (xi, yi) is the initial position and (xf , yf ) is the desired final position that is reached
in τst seconds. The subscript st refers to stage, given that it may be needed several stages
to eventually reach the target pose. For instance, when the epipoles are used it is needed to
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define an intermediate goal without lateral error before the target. Thus, minimum two stages
are defined in such case. Similarly to how an intermediate aligned goal is defined, we are
able to define any other intermediate location through the parabolic path. So, this provides the
possibility to avoid an obstacle detected along the path toward the target.

Additionally, the tracking of these references allows to define a fixed temporal horizon τ
(the sum of the time of each stage) to reach the target location. Notice that these references
depict a parabolic path on the x − y plane from the point (xi, yi), which corresponds to the
estimated starting position C2 as obtained from the initialization procedure. Thus, the robot
always begins over the desired path and the controller has to maintain it tracking that path.
Because of the nonholonomic motion of the robot, the reference tracking drives the robot to
perform an initial rotation autonomously in order to be aligned with the path.

As mentioned previously, when the controlled outputs reach zero at the time τ the so-called
zero dynamics is achieved in the system. In the particular case of the camera-robot system (2.4)
with outputs s1 = xk, s2 = yk, this set is given as

Z∗ =
{[

xk yk ϕk
]T | s1 ≡ 0, s2 ≡ 0

}
=
{[

0 0 ϕ̄k
]T
, ϕ̄k = constant ∈ R

}
.

The constant value of the orientation ϕ̄k is the solution to the following difference equation
that characterize the zero dynamics:

ϕk+1 − ϕk = −1

ℓ

(
ν̂1k cosϕk + ν̂2k sinϕk

)
= 0,

because ν̂1k = 0 and ν̂2k = 0 when s1 ≡ 0 and s2 ≡ 0. Thus, zero dynamics in this control system
means that when lateral and longitudinal positions of the camera-robot system are corrected,
the orientation may be different to zero. Next, it is proved that orientation correction is also
achieved by tracking the proposed references, in such a way that pose regulation is achieved.

Proposition 5.3.1 The proposed control inputs (5.21) with feedback of the estimated state x̂k =[
x̂k ŷk ϕ̂k

]T
provided by the estimation scheme described in lemma 5.2.2 or corollary 5.2.6

and using the reference signals (5.25), drive the camera-robot system (2.4) to reach the location
(x = 0, y = 0, ϕ = 0), i.e., orientation is also corrected.

Proof: In the previous section we have proved the stability of the position error dynamics with
feedback of the estimated state, in such a way that correction of the lateral and longitudinal
errors is ensured in τ seconds. It only remains to prove that the orientation is also zero when the
target location is reached. From the decomposition of the translational velocity vector given by
the kinematic behavior of the robot and using the difference equations xk+1−xk = −δυ̂k sinϕk,
yk+1 − yk = δυ̂k cosϕk, we have that

ϕk = arctan

(
−xk+1 − xk
yk+1 − yk

)
.

Let us define the parabolic relationship between Cartesian coordinates x = x0
y20
y2 according

to the desired trajectories (5.25). Its corresponding discrete time-derivative results in xk+1 −
xk = 2x0

y20
yk (yk+1 − yk). Thus, when the x and y-coordinates track the desired trajectories, the

robot orientation is related to the current lateral position as follows:
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ϕk = arctan

(
−2

x0
y20
yk

)
.

As mentioned, when the robot has followed the reference path and kTs = τ the position
reaches zero (x = 0, y = 0), and consequently ϕ = arctan (0) = 0. This proves that although
the orientation is a DOF for the control system, the location (x = 0, y = 0, ϕ = 0) is reached in
τ seconds by tracking the defined profile (5.25) for the position coordinates.

This behavior can be obtained whenever the tangent of the path is zero at the origin, as
in (5.25). Thus, it is possible to use different functions besides a parabolic one in order
to ensure that the robot reaches the target with the desired orientation, for instance, xd =
x0
(
1− cos

(
ydπ/2y0

))
. However, a smoother initial performance of the robot motion is ob-

tained using the parabolic path.
Note that pose regulation is achieved using a single controller and smooth control inputs.

Additionally, the proposed approach takes into account the nonholomicity of wheeled mobile
robots unlike [113]. We claim that as well as solving the pose regulation problem, the proposed
VS scheme can be extended, for instance, to navigation from a visual memory.

5.4 Experimental evaluation
This section presents an evaluation of the proposed approach, first, through simulations for
different types of central cameras. Then, its validity is verified in real-world experiments using
our experimental platform, the robot Pioneer 3-AT that is shown in Fig. 2.1(a), equipped with
the hypercatadioptric imaging system of Fig. 2.2(b). In both, simulations and experiments, the
performance of the estimation scheme and of the pose controller is presented. This evaluation
shows that the desired pose is always reached with good precision.

5.4.1 Simulation results
Simulations have been performed in Matlab, where the geometric constraints are estimated from
virtual omnidirectional images. The distance from the rotation axis to the camera position on
the robot is set to ℓ = 8 cm. For the controllers, the control gains are set to λ1 = 1, λ2 = 1.
The sampling time of the control loop Ts is set to 0.5 s. Related to the Kalman filtering, the
matrices Mk and Nk have been fixed accordingly by using small standard deviations in Nk

and similar standard deviations in Mk. An image noise with standard deviation of 1 pixel has
been added, which produces a significative noise in the measurements. Initial standard devia-
tions for the state estimation errors have been suggested as P0 = diag(52 cm, 102 cm, 12 deg),
which roughly reflect the error in the estimation of the initial values given by the initialization
procedure.

Performance of the estimation scheme

In this section, we show an example of the performance of the estimation scheme from mea-
surements of the 1D TT, given that the results are analogous using the epipoles. The results are
for the initial location (−8,−12,−20o) although they are similar for any case. As an example
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of the measurements used in the estimation process, the evolution of the elements of the TT
is displayed in Fig. 5.1. The state estimation errors of Fig. 5.2(a) are obtained by taking the
element T111 as measurement. The figure presents the average errors and the average uncer-
tainty bounds over all 100 Monte Carlo runs for each time step. The instantaneous errors are
computed as the difference between the truth state given by the camera-robot model and the
estimated state. It can be seen that each one of the three estimation errors are maintained within
the 2σ confidence bounds.
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Figure 5.1: Example of the evolution of the normalized elements of the tensor for the initial
location (-8,-12,-20o). (a) First four tensor elements. (b) Second four tensor elements. T111 is
used as measurement for the estimation. Notice that although any tensor element can be taken
as measurement, T212 and T221 are particularly troublesome because they exhibit an unstable
behavior at the end of the task.

We have also carried out a consistency test in order to determine if the computed covariances
match the actual estimation errors. To do that, the consistency indexes defined in section 2.5
are used. Fig. 5.2(b) shows the average indexes NEES and NIS over the same 100 Monte Carlo
runs as for the estimation errors. According to this figure, where the NEES and NIS indexes
are less than one, the EKF with the chosen measurement is always consistent in spite of the
nonlinearities of the state model and of the measurement model.

Robustness to vertical camera alignment and center of projection. The estimation scheme
that exploits the 1D TT as measurements provides benefits of robustness against uncertainty
in parameters, given that in the omnidirectional case the scheme using the epipolar geometry
requires to know the calibration parameters and to ensure the vertical alignment of the camera.
Fig. 5.3 presents the performance of the estimation scheme from the 1D TT for variation of
the vertical alignment and the center of projection. The figures depict the mean and standard
deviation of the mean squared error for each state variable over 50 Monte Carlo runs. In order
to discard any effect of the distribution of image features, the 3D scene in this simulation is
a random distribution of points for each Monte Carlo run. It can be seen from both figures
that the effect of disalignment of the camera and variation of the center of projection over the
estimation errors is small, which provides good robustness of the estimation scheme against
these aspects. This result is a consequence of the small effect of varying these parameters over
the computation of the bearing measurements.

Unifying vision and control for mobile robots
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Figure 5.2: Example of performance of the estimation process obtained from Monte Carlo
simulations with the 1D TT as measurement. (a) State estimation errors and 2σ uncertainty
bounds. (b) Consistency of estimation. Although this is for the initial location (−8,−12,−20o),
similar results are obtained in any case.
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Figure 5.3: Robustness of the estimation against (a) disalignment of the camera and, (b) varia-
tion of the center of projection from Monte Carlo simulations with the 1D TT as measurement.

Closed loop performance using the estimated pose

This section evaluates the validity of using the estimated pose in visual servoing tasks from
different initial locations, firstly, using the epipolar geometry and secondly, exploiting the 1D
TT. The control law is used as established in the proposition 5.3.1. The synthetic images have
been generated from the same 3D scene used for the simulations in chapter 3 (Fig. 3.4).

Estimation from the epipoles. The size of the images used is 800×600 and the time τ to
complete the whole task is fixed to 120 s for three different initial locations (8,-8,0o), (2,-12,45o)
and (-6,-16,20o). Fig. 5.4(a) shows an upper view of the robot motion on the plane for each
initial location. It can be seen that in each case an initial rotation is carried out autonomously
to align the robot with the parabolic path (5.25) to be tracked. In the three cases the robot is
successfully driven to the target and for the last case, a fixed obstacle is also avoided by defining
accordingly an intermediate goal position using the reference path (5.25). We assume that the
obstacle detection is provided in time in order to modify the reference path as required. In Fig.
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5.4(b), it can be seen that the position and orientation reach to zero at the end, but firstly, the
longitudinal position (y) reaches −2 m at 100 s. After that, the measurements are changed to
avoid the short baseline problem.
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Figure 5.4: Simulation results for some VS tasks. The motion of the robot starts from three
different initial locations and for one of them, an obstacle avoidance in carried out. (a) Paths on
the x− y plane. (b) State variables of the robot. (c) Computed velocities.

The two stages of the control task can be appreciated in the computed velocities shown in
Fig. 5.4(c). From 0 s to 100 s, adequate velocities are computed for each case and particularly, it
is worth commenting the case with obstacle avoidance. During the first seconds, the robot aligns
with the initial reference path by rotating and follows that path until the obstacle is detected at
32 s, which interrupts the task. In this moment, the robot stops and rotates to the left and then,
it follows a new path until that a desired intermediate goal is reached at 45 s. In that point, the
robot stops and rotates to the right to start following a new path until 100 s, when it achieves
to aligned to the target without lateral error. Finally, from rest, the robot moves forward for 20
s to correct the remaining longitudinal error by tracking the same sinusoidal profile for each
case. Thus, the same translational velocity is applied for the final rectilinear motion in the three
cases. It is worth noting that the velocities excite to the system adequately, in such a way that
observability is always ensured.
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Figure 5.5: Example of the behavior of the control scheme. (a) Motion of the image points. (b)
Epipoles current-target. (c) Epipoles initial-current.

The results of the previous figures have been obtained for hypercatadioptric and parabolic
imaging systems. As an example, Fig. 5.5(a) shows the motion of the image points for the case

Unifying vision and control for mobile robots



(-6,-16,-20o) for a hypercatadioptric system. The corresponding epipoles as computed from
twelve image points along the sequence are shown in Fig. 5.5(b)-(c) for each initial location.
The epipole etar is the one used as measurement for the estimation during the first 100 s and
after that, when it becomes unstable, the epipole eini is used for the last 20 s. Notice that even
that no rotation is carried out during these last seconds, the measurement eini changes as the
robot moves and then, observability is achieved given that the translational velocity is non-null.

Estimation from the 1D TT. As proven theoretically in section 5.2.2, any tensor element
can be used as measurement and the same observability properties are obtained. However, T111
is chosen for the evaluation since it has shown a good behavior during a servoing task in the
previous chapter. In this case, the size of the images is 1024×768 and the time τ to complete
the whole task is fixed to 100 s. Fig. 5.6(a) shows the paths traced along the motion of the
robot from initial locations (-8,-12,-20o), (-6,-18,-70o), (0,-10,0o) and (8,-8,50o). Notice that, in
contrast to the use of the epipoles, the robot is able to reach the target from an initial location
aligned without lateral error (0,-10,0o).
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Figure 5.6: Behavior of the robot motion as given by the smooth velocities obtained from the
proposed control law. (a) Paths on the x−y plane. (b) State variables of the robot. (c) Computed
velocities.

In Fig. 5.6(b), both outputs (x and y positions) are driven to zero in 100 s and the robot
reaches the target also with the desired orientation (ϕ = 0). It is worth emphasizing that the
previous behavior is obtained through the smooth control inputs shown in Fig. 5.6(c) for each
initial location. These velocities start and end with zero value and they are always well defined.
Although for these results the rotational velocity is more sensitive to the noise of the measure-
ment, the resultant motion of the robot is not affected, as seen in the evolution of the robot state
(Fig. 5.6(b)).

The results of the previous figures have been obtained for three different types of central
cameras. Fig. 5.7(a) shows the motion of the image points for the case (-8,-12,-20o), in which
a hypercatadioptric system is simulated. Fig. 5.7(b) corresponds to the case (-6,-18,-70o) with
a paracatadioptric system and Fig. 5.7(c) presents the points as seen for a conventional camera
for the initial location (0,-10,0o). Particularly in the last case, the 3D scene has been adapted to
be in the field of view of the camera. This emphasize the advantage of using omnidirectional
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Figure 5.7: Synthetic images showing the motion of the point features for (a) hypercatadioptric,
(b) paracatadioptric and (c) conventional cameras. Each figure depicts the image points of the
three views: (initial image - marker “·”, target image - marker “O” and image at the end of the
motion - marker “×”).

vision for VS in order to avoid problems with the scene leaving the field of view. Addition-
ally, the tensor estimation is in general more sensitive to noise for conventional images than for
omnidirectional ones. A noisy estimated tensor yields a light heading that may become signi-
ficative for conventional images, as can be seen in Fig. 5.7(c). For instance, the control for the
last two initial locations is complicated using a conventional camera even by adapting the 3D
scene, given that the large required rotation during the task makes the target to leave the field of
view.

Additionally, in order to test the performance in the servoing task, we have carried out Monte
Carlo simulations. Table 5.1 shows that the target location (0,0,0o) is reached with good preci-
sion according to the average final location as obtained from 100 Monte Carlo runs. The final
orientation is one degree or less with small standard deviation in any case. The robot reaches
the target with neglected pose error for the initial location (0,-10,0o) and it is not included in the
table. The most challenging initial location in terms of lateral error is (8,-8,50o), as can be seen
in Fig. 5.6(a), and this is the reason of the largest ex in the table. A similar behavior is observed
regarding to ey for the initial location (-6,-18,-70o). This large initial longitudinal error makes
the largest final error for the y−coordinate. Nevertheless, these largest values correspond to
errors that are small.

Table 5.1: Final error obtained by averaging 100 Monte Carlo runs to reach the target (0,0,0)
from different initial locations.

(2m,-12m,45o) (-6m,-16m,-20o) (8m,-8m,50o) (-6m,-18m,-70o) (-8m,-12m,-20o)
Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

ex (cm) 0.90 1.03 -0.90 0.74 -6.4 0.2 3.5 0.5 -3.4 0.35
ey (cm) -0.54 0.18 -1.5 0.27 -1.3 0.2 -17.0 0.2 1.4 0.2
eϕ (o) -0.10 0.46 0.05 0.12 -1.0 0.13 -1.0 0.2 -0.5 0.15

Unifying vision and control for mobile robots



5.4.2 Real-world experiments
The proposed approach has been tested experimentally using the 1D TT, given that this mea-
surement provides better benefits than the EG, mainly, avoidance of complete camera calibra-
tion and the problem of short baseline. The experimental platform used is presented in Fig. 2.1.
The omnidirectional images are captured at a size of 800×600 pixels using the free software
Player. The camera is connected to a laptop onboard the robot (Intel R⃝ CoreTM 2 Duo CPU
at 2.50 GHz with operating system Debian Linux), in which the pose-estimation and the con-
trol law are implemented in C++. The observed scene has been set up with features on three
different planes in order to ensure a sufficient number of points in the scene. However, points
not belonging to these planes are also used to achieve a total of 13 points, which are manu-
ally matched in the three available images. These experiments have been carried out using a
tracking of features as implemented in the OpenCV library. The tracking of features has been
extensively applied for VS purposes [110], it has a low computational cost and leads to a good
behavior of the 1D TT estimation.

The 1D TT is estimated using the five-point method as described in section 4.2 with the
projection center (x0 = 404, y0 = 316) as the only required information of the imaging system.
The projection center has been previously estimated using a RANSAC approach from 3D ver-
tical lines [69], which project in radial lines in central omnidirectional images. Thus, for this
type of images, it is enough to find the point where radial lines join, which avoids to obtain the
complete camera calibration parameters. The sampling time Ts is set to the same value as in
the simulations (0.5 s). It is an adequate closed loop frequency that leads to a good behavior
in the estimation of the 1D TT. The distance from the camera to the rotation axis of the robot
has been roughly set to ℓ = 10 cm. The robot has been located in x = −0.6 m and y = −1.8
m from the target location and with the same orientation as the desired pose (ϕ = 0). This
metric information is considered as the ground truth for the experimental evaluation. The initial
location is estimated through the initialization procedure of the dynamic estimation using the
values of the elements of the 1D TT (section 5.2.2).
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Figure 5.8: Experimental results with the closed loop control system. (a) Resultant path. (b)
Estimated camera-robot state. (c) Computed velocities. The path is plotted using the estimated
camera-robot state, but also the reference path and the odometry are shown.

Fig. 5.8(a) presents the resultant path, given by the estimated state of the robot, for one of
the experimental runs. This figure also shows the reference path and the one given by odome-
try. It can be seen that the estimated path is closer to the reference than the path obtained from
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Figure 5.9: Behavior of the extracted information from the images for the real experiments.
(a) Motion of the point features on the initial image. (b) Four normalized tensor elements.
Regarding to the point features, the marker “·” corresponds to the initial points, the marker “O”
to the target points and the marker “+” are the points in the image at the end of the motion.

odometry. Thus, we assert that the estimation of the camera-robot pose is sufficiently accurate
and then, the estimated pose is suitable for feedback control in the Cartesian space. The dura-
tion of the positioning task is fixed to 40 s through the time τ in the references, which is the
termination condition of the control law. Fig. 5.8(b) shows the behavior of the estimated state
together with the tracked references for the position coordinates. The performance of the refer-
ence tracking is better for the longitudinal than for the lateral position. It may be because the
assumed simple robot model. Even so, the final position error is around 2 cm and the orientation
error is practically negligible.

The input velocities as given by the proposed control law from feedback of the estimated
pose are shown in Fig. 5.8(c). They behave smoothly along the task, in contrast to the control
inputs of previous approaches in the literature. Fig. 5.9(a) presents the motion of the image
points along the sequence, where the points at the end of the motion (marker “+”) are almost
superimposed to the points in the target image (marker “O”). Notice that the point features
move smoothly, in such a way that the evolution of the tensor elements is also smooth during
the task, as presented in Fig. 5.9(b). Also, it is worth noting that the tensor estimation is not
affected when the robot is reaching the target, i.e., there is no problem with the short baseline.
Fig. 5.10 shows a sequence of some images taken by the robot camera and an external video
camera respectively.

These results validate the effectiveness of the proposed approach to reach a desired position
and orientation using feedback of the estimated camera-robot pose from a geometric constraint.
Notice that the estimation scheme may be generalized to 6 DOF by using a constant-velocity
motion model for the system and some measurements from a geometric constraint. Thus, the
VS problem can be translated to the Cartesian space with the corresponding advantages given
by the possibility to define a desired motion path and avoiding the visibility problem with om-
nidirectional vision.

Unifying vision and control for mobile robots



Figure 5.10: Sequence of some of the omnidirectional images captured by the hypercatadioptric
robot camera during the real experiments (first row). The first is the target image, the second is
the initial and the last is the image at the end of the motion. In the second row, the sequence of
images taken from an external camera for the same experimental run.

5.5 Conclusions
In this chapter we have presented a new generic pose-estimation scheme that introduces a geo-
metric constraint as measurement into a dynamic estimation process. Particularly, using the 1D
TT as measurement, this approach is a semicalibrated pose-estimation scheme. This approach
does not need a target model neither scene reconstruction nor depth information. A novel com-
prehensive observability analysis using nonlinear tools has been presented, and the conditions
to preserve observability depending on the velocities have been given. An additional benefit of
exploiting the epipolar geometry or the 1D TT for dynamic pose-estimation is the generality of
the scheme, given that it is valid for any visual sensor obeying a central projection model. We
have demonstrated the feasibility of closing a control loop using the estimated pose as feedback
information in order to drive the robot to a desired location. Therefore, the proposed position-
based control scheme solves the pose regulation problem avoiding visibility constraints by using
omnidirectional vision. The control approach is a single step control law that corrects position
and orientation simultaneously using smooth velocities. We have also shown the additional util-
ity of feedback of the estimated pose when obstacles appear in the path during the execution of
the task. The performance of our proposal is proved via simulations and real-world experiments
using images from a hypercatadioptric imaging system.



Chapter 6

Visual control for long distance navigation

The control schemes presented in the previous chapters use a limited set of images (two or three)
in the framework of the pose regulation problem. Many applications of wheeled mobile robots
concern more for the autonomous mobility problem, i.e., the navigation with large displace-
ment. In this chapter, we propose two image-based control schemes for driving wheeled mobile
robots along visual paths extracted from a visual memory. The approach in these schemes is
based on the feedback information provided by a geometric constraint, namely, the epipolar
geometry (EG) and the trifocal tensor (TT). The proposed control laws only require one mea-
surement, the position of the epipole or one element of the tensor computed between the current
and target views along the sequence of a visual path. The method presented herein has two main
advantages: explicit pose parameters decomposition is not required and the rotational velocity
is smooth or eventually piece-wise constant avoiding discontinuities that generally appear when
the target image changes. The translational velocity is adapted as required for the path and the
resultant motion is independent of this velocity. Furthermore, our approach is valid for all cam-
eras obeying the unified model, including conventional, central catadioptric and some fisheye
cameras. Simulations as well as real-world experiments illustrate the validity of the proposal.

6.1 Introduction

The strategies to improve the navigation capabilities of wheeled platforms result of great interest
in Robotics and particularly in the field of service robots. A good strategy for visual navigation
is based on the use of many images, which can be studied as a visual memory. It means that
there is a learning stage in which a set of images are stored to represent the environment. Then,
a subset of images (key images) is selected to define a path to be followed in an autonomous
stage. This approach may be applied for autonomous personal transportation vehicles in places
under structured demand, like airport terminals, attraction resorts or university campus, etc. The
visual memory approach has been introduced in [120] for conventional cameras and extended
in [119] for omnidirectional cameras. Later, some position-based schemes relying on the visual
memory approach have been proposed with a 3D reconstruction carried out either using an
EKF-based SLAM [66], or a structure from motion algorithm through bundle adjustment [136].
A complete map building is avoided in [50] by relaxing to a local Euclidean reconstruction from
the essential matrix using generic cameras.

In general, image-based schemes for visual path following offer good performance with
higher closed loop frequency. The work in [40] propose a qualitative visual navigation scheme
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that is based on some heuristic rules. A Jacobian-based approach that uses the centroid of the
abscissas of the feature points is presented in [57]. Most of the mentioned approaches suffer
the problem of generating discontinuous rotational velocities when a new key image must be
reached. This problem is tackled in [41] for conventional cameras, where the authors propose
the use of a time-independent varying reference.

In this chapter, we propose image-based schemes that exploit the direct feedback of a ge-
ometric constraint in the context of navigation with a visual memory. The proposed control
schemes use the feedback of only one measurement, the value of the current epipole or one
element of the TT. The scheme exploiting the EG has been introduced in the paper [15]. Both
proposed schemes do not require explicit pose parameters estimation unlike [66], [136]. The
visual servoing problem is transformed in a reference tracking problem for the corresponding
measurement. Our schemes avoid the recurrent problem of discontinuous rotational velocity at
key image switching of memory-based schemes, that reveal [50] and [57], for instance.

The use of a geometric constraint allows us to gather many visual features into a single
measurement. As the path following problem essentially requires the computation of the ro-
tational velocity, the use of one measurement provides the advantage of getting a square con-
trol system, where stability of the closed loop can be ensured similarly to the Jacobian-based
schemes [57], [42] and in contrast to heuristic schemes [40]. Additionally, the EG and the TT,
as used in our approach, give the possibility of taking into account valuable a priori information
that is available in the visual path and that is not exploited in previous image-based approaches.
We use this information to adapt the translational velocity and also achieve piece-wise constant
rotational velocity according to the taught path.

Conventional cameras suffer from a restricted field of view. Many approaches in vision-
based robot control, such as the one proposed in this chapter can benefit from the wide field of
view provided by omnidirectional or fisheye cameras. At this aim, the generic camera model
[65] is exploited to design the control strategy. This means that the proposed method can be
applied not only to conventional cameras but also to all central catadioptric cameras and to a
large class of fisheye cameras, since that the EG and the TT can be computed from points on
the unitary sphere when the camera parameters are known.

The chapter is organized as follows. Section 6.2 outlines the visual memory approach and
presents the general scheme as used in this work. Section 6.3 details the first of the proposed
control strategies, which is based on the epipolar geometry. Section 6.4 describes the second
navigation scheme based on the trifocal tensor. Section 6.5 presents the performance of the
schemes via simulations and real-world experiments, and finally, Section 6.6 provides the con-
clusions.

6.2 Outline of the visual memory approach

The framework for navigation based on a visual memory consists of two stages. The first one
is a learning stage where the visual memory is built. In this stage, the user guides the robot
along the place where it is allowed to move. A sequence of images are stored from the onboard
camera during this stage in order to represent the environment. We assume that during learning,
the translational velocity is never zero. From all the captured images a reduced set is selected as
key images by ensuring a minimum number of shared features between two images. Thus, the
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Figure 6.1: General scheme of the navigation based on the visual memory approach.

visual memory defines a path to be replayed in the autonomous navigation stage. We assume
that n key images are chosen and that these images are separated along the path in the Cartesian
space by a minimum distance dmin.

Fig. 6.1 presents an overview of the proposed framework starting from the visual path.
We focus on the development of control laws exploiting the benefits of the use of a geometric
constraint. For more details about the visual memory building and key images selection refer
to [50].

6.3 Epipolar-based navigation

There are some works that use the epipoles as direct feedback in the control law for a pose
regulation task [98], [114]. In the first work the robot moves directly toward the target, but the
translational velocity computation suffers of singularity problems, which make non-feasible its
direct application for navigation. In the second work, the effort to avoid the singularity takes
the robot to perform some inappropriate maneuvers for path following navigation. We propose
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Figure 6.2: Epipolar geometry between two views with reference frame in the target image.

to use only the x-coordinate of the current epipole as feedback information to modify the robot
heading and so, to correct the lateral deviation. As can be seen in Fig. 6.2, the current epipole
gives information of the translation direction and it is directly related to the required robot
rotation to be aligned with the target assuming that the center of projection coincides with the
rotational axis.

Considering that we have a reference frame attached to the target view, the current epipole
is obtained from the general geometry between two views given in section 2.2.2 as follows:

ecx = αx
x cosϕ+ y sinϕ

y cosϕ− x sinϕ
, (6.1)

where the current camera position can be expressed in polar coordinates as x = −d sinψ and
y = d cosψ, with ψ = − arctan(etx/αx), ϕ− ψ = arctan(ecx/αx) and d2 = x2 + y2.

Figure 6.3: Control strategy based on zeroing the current epipole.

As can be seen in Fig. 6.3, ecx = 0 means that the longitudinal camera axis of the robot
is aligned with the baseline and the camera is looking directly toward the target. Therefore,
the control goal is to take this epipole to zero in a smooth way, which is achieved by using an
appropriate reference. This procedure allows avoiding discontinuous rotational velocity when
a new target image is required to be reached. Additionally, we propose to take into account
some a priori information of the shape of the visual path that can be obtained from the epipoles
relating two consecutive key images. This allows us to adapt the translational velocity and also
achieve piece-wise constant rotational velocity according to the taught path.
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6.3.1 Control law for autonomous navigation
Let us define a one-dimensional task function to be zeroed that depends on the current epipole
ecx. In the sequel, we avoid the use of the subscript x. This function represents the tracking
error of the current epipole ec with respect to a desired reference edc(t)

ζce = ec − edc(t). (6.2)

The tracking error is defined using the ith key image as target, although it is not indicated
explicitly. The following nonlinear differential equation represents the rate of change of the
tracking error as given by both input velocities and it is obtained by taking the time-derivative
of (6.1) and using the corresponding polar coordinates:

ζ̇ce = −αx sin (ϕ− ψ)

d cos2 (ϕ− ψ)
υ +

αx
cos2 (ϕ− ψ)

ωt − ėdc . (6.3)

The subscript of the rotational velocity ωt refers to the velocity for reference tracking. We
define the desired behavior through the differentiable sinusoidal reference

edc (t) =
ec(0)

2

(
1 + cos

(π
τ
t
))

, 0 ≤ t ≤ τ, (6.4)

edc (t) = 0, t > τ,

where ec(0) is the value of the current epipole at the beginning or at the time of key image
switching and τ is a suitable time in which the current epipole must reach zero, before the next
switching of key image. Thus, a timer is restarted at each instant when a change of key image
occurs. The time-parameter required in the reference can be replaced by the number of iteration
of the control cycle. Note that this reference trajectory provides a smooth zeroing of the current
epipole from its initial value. Let us express the equation (6.3) as follows:

ζ̇ce = µυ +
αx

cos2 (ϕ− ψ)
ωcert − ėdc , (6.5)

where µυ = −αx sin(ϕ−ψ)
d cos2(ϕ−ψ)υ represents a known disturbance depending on the translational ve-

locity. The velocity ωcert can be found by using input-output linearization of the error dynamics.
Thus, the following rotational velocity assigns a new dynamics through the auxiliary input δa:

ωcert =
cos2 (ϕ− ψ)

αx

(
−µυ + ėdc + δa

)
.

We define the auxiliary input as δa = −kcζce to keep the current epipole tracking the refer-
ence trajectory, where kc > 0 is a control gain. Thus, the resulting rotational velocity is

ωcert =
sin (ϕ− ψ)

d
υ +

cos2 (ϕ− ψ)

αx

(
ėdc − kcζce

)
. (6.6)

This velocity reduces the error dynamics to ζ̇ce = −kcζce. So, the tracking error exhibits
an exponentially stable behavior, with settling time γ ≈ 5/kc. Since that the control goal of
this controller is the tracking, ωcert starts and finishes at zero for every key image. In order to
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maintain the velocity around a constant value we propose to add a term for a nominal rotational
velocity ω̄ce. The next section describes how this nominal velocity is obtained. So, the rotational
velocity can be eventually computed as

ωce = ktω
ce
rt + ω̄ce, (6.7)

where kt > 0 is a weighting factor on the reference tracking control ωcert . It is worth emphasizing
that the velocity ωt by itself is able to drive the robot along the path described by the image
memory, however, the total input velocity in (6.7) behaves more natural around constant values.
We will refer to the only reference tracking control, ωcert (6.6), as RT and the complete control,
ωce (6.7), as RT+.

6.3.2 Exploiting information from the memory
All previous image-based approaches for navigation using a visual memory only exploit local
information, i.e., the required rotational velocity is only computed from the current and the next
nearest target images. We propose to exploit the visual memory in order to have an a priori
information about the whole path without the need of a 3D reconstruction or representation of
the path, unlike [66], [136], [50]. A kind of qualitative map of the path can be easily obtained
from the current epipole relating two consecutive key images of the memory, which is denoted
by emc . Thus, emci shows qualitatively the orientation of the camera in the (i− 1)th key image
with respect to the ith one and so, it gives an idea of the curvature of the path.

We propose to use this a priori information to apply an adequate translational velocity and
to compute the nominal rotational velocity that appears in (6.7). As before, we suppress the
subscript i, but recall that the epipole emc is computed between all consecutive pairings of key
images. The translational velocity is changed smoothly for every switching of key images using
the following mapping ekic → (υmin, υmax):

υce = υmax+υmin +
υmax−υmin

2
tanh

(
1−

∣∣ekic /dmin

∣∣
σ

)
, (6.8)

where σ is a positive parameter that determines the distribution of the velocities. Once a trans-
lational velocity is set from the previous equation for each key image, υ can be used to compute
the nominal velocity ω̄ce as follows (ω̄ ∝ ekic ):

ω̄ce =
kmυ

ce

dmin

ekic , (6.9)

where km < 0 is a constant factor to be set. This velocity by itself is able to drive the robot
along the path, but correction is introduced in (6.7) through (6.6). This is the reason why the
RT+ control is limited for initial locations on the path.

6.3.3 Timing strategy and key image switching
It is clear that there is a need to zero the current epipole before reaching the next key image
during the navigation, which imposes a constraint for the time τ . Thus, a strategy to define
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this time is related to the minimum distance between key images (dmin) and the translational
velocity (υ) for each key image as follows:

τ =
dmin

υ
.

We have found that a good approach to relate this time with the settling time γ of the tracking
error is to consider 0.4τ = 5/kc, from which kc = 12.5/τ .

By running the controller (6.6) with the reference (6.4), the time τ and the control gain kc as
described above, an intermediate location determined by dmin is reached. In the best case, when
dmin coincides with the real distance between key images, the robot reaches the location of the
corresponding key image. In order to achieve a good correction of the longitudinal position for
each key image, the reference (6.4) is maintained to zero, which implies that ω = 0, until the
image error starts to increase. The image error is defined as the mean squared error between
the r corresponding image points of the current image (Pi,j) and points of the next closest target
key image (Pj), i.e.,

ϵ =
1

r

r∑
j=1

∥Pj − Pi,j∥ . (6.10)

As shown in [40], the image error decrease monotonically until the robot reaches each target
view. In our case, the increment of the image error is the switching condition for the next key
image, which is confirmed by using the current and the previous difference of instantaneous
values of the image error.

6.4 Trifocal Tensor-based navigation

The trifocal tensor has been exploited for the positioning of a mobile robot in [96] and in the
proposed approach of chapter 4. In these works, both, the rotational and the translational veloc-
ities are computed from elements of the tensor, which are driven to zero in order to accomplish
the positioning task. As mentioned previously, the visual path following problem only requires
a rotational velocity to correct the deviation from the desired path. Consider that we have two
images I1(K,C1) and I3(K,C3) belonging to the visual path and the current view of the on-
board camera I2(K,C2). As can be seen in Fig. 6.4, the element T221 of the trifocal tensor
provides direct information of the lateral deviation of the current location C2 with respect to the
target C3. The 1D TT does not provides this particular information of lateral error, so that, the
2D TT is used.

Assuming that the center of projection coincides with the rotational axis of the robot, the
element T221 of the tensor is related to the current location of the robot as follows:

Tm221 = tx2 = −x2 cosϕ2 − y2 sinϕ2.

It can be seen that if Tm221 = 0,

ϕ2 = ϕt = − tan

(
x2
y2

)
,
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Figure 6.4: The relative locations between cameras up to a scale are provided by the trifocal
tensor.

and consequently the current camera C2 is looking directly toward the target. Thus, we propose
to compute the rotational velocity from feedback information given by the element T221. The
control goal is to drive this element with smooth evolution from its initial value to zero before
reaching the next key image of the visual path. We can define a reference tracking control
problem in order to avoid discontinuous rotational velocity in the switching of key image. It
is also possible to exploit the a priori information provided by the visual path to compute an
adequate translational velocity and a nominal rotational velocity according to the shape of the
path.

Figure 6.5: Control strategy based on driving to zero the element of the trifocal tensor T221.

6.4.1 Control law for autonomous navigation
In this section, we describe the proposed control law that corrects the lateral deviation of the
robot with respect to the taught visual path for each key image. As depicted in Fig. 6.5, the con-
trol law must take to zero the following one-dimensional function that represents the tracking
error of the normalized tensor element T221 with respect to a desired reference T d221(t):

ζtt = T221 − T d221(t). (6.11)

The normalization of the trifocal tensor is done as defined at the end of section 2.2.2 using
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TN = T232, which is non-null assuming that C1 ̸= C3. The desired evolution of the tensor
element is defined by the differentiable sinusoidal reference

T d221(t) =
T221(0)

2

(
1 + cos

(π
τ
t
))

, 0 ≤ t ≤ τ, (6.12)

T d221(t) = 0, t > τ,

where T221(0) is the initial value of the normalized tensor element or the value at the time of key
image switching, and τ is a suitable time in which the tensor element must reach zero, before
the next switching of key image. Thus, the time is restarted at each instant when a change of
key image occurs. This reference trajectory drives the tensor element to zero in a smooth way
from its initial value.

The tracking error is computed using information extracted from the ith key image as
I3(K,C3), the (i − 2)th key image as I1(K,C1) and the current image I2(K,C2). Accord-
ing to the expressions of the trifocal tensor elements (2.9) and using the derivatives of the robot
state as given by the model of the unicycle, we have that the time-derivative of T221 is

Ṫm221 = −ẋ2 cosϕ2 + x2ϕ̇2 sinϕ2 − ẏ2 sinϕ2 − y2ϕ̇2 cosϕ2,

Ṫm221 = υ sinϕ2 cosϕ2 + x2ω sinϕ2 − υ sinϕ2 cosϕ2 − y2ω cosϕ2

= (x2 sinϕ2 − y2 cosϕ2)ω

= Tm223ω.

This time-derivative is also valid for normalized tensor elements and therefore, the differ-
ential equation relating the rate of change of the error with the reference tracking velocity is as
follows:

ζ̇tt = T223ω
tt
rt − Ṫ d221. (6.13)

Thus, the velocity ωttrt is worked out from the error dynamics (6.13). The following rota-
tional velocity assigns a new dynamics through the auxiliary input δa:

ωttrt =
1

T223

(
Ṫ d221 − δa

)
.

We define the auxiliary input as δa = −kcζtt to keep the current epipole tracking the refer-
ence trajectory, where kc is a control gain. Thus, the resulting rotational velocity is

ωttrt =
1

T223

(
Ṫ d221 − kcζtt

)
. (6.14)

This velocity yields the error dynamics ζ̇tt = −kcζtt, which is exponentially stable for kc >
0. This RT (standing for reference tracking) velocity is continuous with a sinusoidal behavior
between key images. A nominal rotational velocity can be added in order to obtain an RT+
velocity that is maintained almost constant between key images, i.e., almost piece-wise constant
rotational velocity during the navigation. So, the complete velocity can be eventually computed
as

ωtt = ktω
tt
rt + ω̄tt, (6.15)
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where kt > 0 is a weighting factor on the reference tracking control ωttrt.
In this case, the shape of the visual path can be estimated using the same element of the

tensor computed from three consecutive key images. The value of this element, denoted as
T ki221, shows qualitatively the orientation of the camera in the (i− 1)th key image with respect to
the ith one and so, we can set an adequate translational velocity according to the curvature of the
path as well as to compute the nominal rotational velocity that appears in (6.15).We suppress the
subscript i, but recall that the tensor is computed between all consecutive triplets of key images
with target in the ith one. We propose the following smooth mapping T ki221 → (υmin, υmax) to
modify the translational velocity between two limits accordingly:

υtt = υmax+υmin +
υmax−υmin

2
tanh

(
1−

∣∣T ki221/dmin

∣∣
σ

)
, (6.16)

where σ is a positive parameter that determines the inflection point of the function. The nominal
velocity ω̄tt is computed proportional to the tensor elements T ki221 as

ω̄tt =
kmυ

tt

dmin

T ki221, (6.17)

where km < 0 is a constant factor. This velocity by itself is able to drive the robot along the
path, but correction is introduced in (6.15) through (6.14). Finally, the same timing strategy and
the condition for the switching of key image described in section 6.3.3 is used for the control
law based on the trifocal tensor.

6.5 Experimental evaluation

In this section, we present some simulations in Matlab of the proposed navigation schemes.
We use the generic camera model [65] to generate synthetic images from the 3D scene of Fig.
6.6(a) for conventional or fish eye cameras, and the scene of Fig. 6.6(b) for central catadioptric
cameras.
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Figure 6.6: Scene 3D and predefined path used for (a) conventional and fish eye cameras looking
forward, and (b) central catadioptric cameras looking upward.
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A set of key images is obtained according to the motion of the robot through the predefined
path also shown in the figures. This learned path starts in the location (5,-5,0o) and finishes just
before to close the loop of 54 m long. The camera parameters are used to compute the points
on the sphere from the image coordinates as explained at the end of section 2.2.1.

6.5.1 Epipolar-based navigation
The navigation scheme based on the feedback of the current epipole is evaluated using a fish
eye camera. The camera parameters are αx = 222.9, αy = 222.1, x0 = 305.1, y0 = 266.9 all of
them in pixels, ξ = 2.875 and the size of the images is 640×480 pixels. In these simulations, a
typical 8-point algorithm has been used to estimate the essential matrix [70]. Then, the current
epipole (ecx) is computed as the right null space of the essential matrix E [ecx, ecy, ecz]

T = 0.
The first simulation uses a fix distance between key images of one meter, i.e., there are 54

key images. The translational velocity is bounded between 0.2 m/s and 0.4 m/s. In order to
set the time τ and the control gain kc, it is assumed a minimum distance between key images
dmin = 0.8 m.
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Figure 6.7: Simulation results of the epipolar-based navigation. (a) Resultant paths and key
images distribution. (b) Rotational velocity and epipole for the first 4 key images. (c) Velocities
and epipole evolution for the whole path.

We present the results for two cases according to (6.7): 1) only reference tracking (RT) and
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2) reference tracking + nominal velocity (RT+). The applicability of the last control is limited
to start on the path and the former is able to correct an initial position out of the path. We can
see in Fig. 6.7(a) that the resultant path of the autonomous navigation stage is almost similar
to the learned one in both cases. Although the initial location is out of the learned path for the
RT, the robot achieves the tracking just in the second key image. The first plot of Fig. 6.7(b)
shows the behavior of the rotational velocity for the four first key images. On one hand, we
can see that this velocity is smooth for the RT case. The velocity starts to grow always from
zero in the marked points, which corresponds to changes of key image, and returns to zero at
the next switching. On the other hand, we have a constant velocity for the RT+. The third plot
of the same figure presents the reference tracking of the epipole for the RT with a mark when
it reaches zero. Fig. 6.7(c) presents the varying translational velocity as given by (6.8) for the
whole path. The evolution of this velocity agrees with the level of curvature of the path. Fig.
6.7(c) shows the evolution of the rotational velocity and the reference tracking for the epipole
along the whole path. The addition of the nominal value allows to achieve a piece-wise constant
rotational velocity.
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Figure 6.8: Performance of the navigation task for the results in Fig. 6.7. (a) Image error and
path following errors. (b) Examples of snapshots reaching key images (current: “+”, target:
“O”).

Fig. 6.8 presents the performance of the approach for the same experiment. The first plot of
Fig. 6.8(a) shows the behavior of the image error for the RT case. During the first seconds, the
error increases because the robot is out of the path. In the subsequent steps, from the second
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key image, this error exhibits a monotonic decay at each step. After that, the largest peaks in the
image error correspond to the sharp curves in the path, which also causes the highest error in the
path following. We can see in the plots of the errors to reach each key image in the same figure
that the RT+ control obtains best tracking performance than the RT control for this condition of
fixed distance between key images. The snapshots of Fig. 6.8(b) show that the points features
of key images are reached with good precision even in curves.

In order to evaluate the performance of the scheme including image noise and using harder
conditions, 28 key images are placed randomly along the predefined path separated from 1.8 m
to 2.0 m. Therefore, a minimum distance dmin = 1.75 m is assumed. A Gaussian noise with
standard deviation of 0.5 pixels is added to the image coordinates.
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Figure 6.9: Simulation results of the epipolar-based navigation including image noise and ran-
dom distance between key images. (a) Resultant paths and key images distribution. (b) Veloci-
ties and current epipole evolution. (c) Image error and path following errors.

The path following is still good along the whole path for the RT control (Fig. 6.9(a)) and
adequate for the RT+. The RT+ control is slightly sensitive to longer and random distance
between key images along sharp curves. The RT performs well in spite of that the current
epipole and the rotational velocity are noisy (Fig. 6.9(b)). The errors to reach each key image
are comparable for both controllers, as can be seen in Fig. 6.9(c).
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6.5.2 Trifocal Tensor-based navigation
The proposed scheme that uses the feedback of the tensor element T221 has been evaluated with
synthetic hypercatadioptric images. We use images of size 1024×768 pixels obtained with
camera parameters: αx = 950, αy = 954, x0 = 512, y0 = 384 all of them in pixels and
ξ = 0.9662. The trifocal tensor is estimated using the typical 7-point algorithm as introduced
in section 2.2.2 and using the projected points on the sphere.

The performance of the navigation scheme including image noise and challenging condi-
tions is evaluated. In this case, 36 key images are distributed randomly along the learned path.
The distance between consecutive key images is between 1.42 m and 1.6 m, in such a way that
a minimum distance dmin = 1.4 m is assumed. The same limits of the translational velocity 0.2
m/s and 0.4 m/s are used.
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Figure 6.10: Simulation results of the trifocal tensor-based navigation including image noise
and random distance between key images. (a) Resultant paths and key images distribution. (b)
Velocities and evolution of the element T221. (c) Image error and path following errors.

Both options of control are evaluated: the only reference tracking (RT) and the reference
tracking + nominal velocity (RT+), as given by (6.15). It can be seen in Fig. 6.10(a) that the
path following for both cases of control RT and RT+ are good, but the performance is better for
the RT control. Similarly to the epipolar control, the RT+ control with feedback of the tensor
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decreases its performance in sharp curves, however, it is better as long as the key images are
closer. The first plot of Fig. 6.10(b) shows how the translational velocity is effectively changed
according to the shape of the path. For instance, between 55 s and 85 s the higher velocity
is applied, which corresponds to the almost straight part of the path. The rotational velocity
and the evolution of the tensor element in the same Fig. 6.10(b) show the benefits of using the
trifocal tensor, namely, problems with the short baseline are avoided and the robustness to image
noise is increased. It is worth noting the more adequate behavior of the rotational velocity given
by the RT+ control. Also, the path following errors to reach each key image are comparable for
both controllers, as can be seen in Fig. 6.10(c).

In order to show the behavior of the visual information using the trifocal tensor-based
scheme, we present the motion of the image points along the navigation for the hypercatadiop-
tric imaging system in Fig. 6.11(a). Although 12 points are used to compute the tensor, only
the motion of 7 points is shown. It is appreciable the advantage of using a central catadioptric
system looking upward, which is able to see the same scene during the whole navigation. This
evaluation has shown the effectiveness of the estimation of the trifocal tensor through points
on the sphere obtained from coordinates in the image. Fig. 6.11(b) presents an example of the
projection on the sphere of a triplet of the images used for the navigation.
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Figure 6.11: Example of the synthetic visual information: (a) Motion of the points in the images
for the navigation of Fig. (6.10). The markers are: initial image “·”, final key image “O”, final
reached location “×”. (b) Example of a triplet of images projected to the unitary sphere.

6.5.3 Real-world experiments
In order to test the proposed control law we have used the software platform described in [50].
This software selects a set of key images to be reach from a sequence of images that is acquired
in a learning stage. It also extracts features from the current view and the next closest key im-
age, matches the features between these two images at each iteration and computes the current
epipole that relates the two views. The interest points are detected in each image with Harris
corner detector and then matched by using a Zero Normalized Cross Correlation score. This
method is almost invariant to illumination changes and its computational cost is small. The
software is implemented in C++ and runs on a common laptop. Real-world experiments have
been carried out for indoor navigation along a living room with a Pioneer robot. The imaging
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system consists of a Fujinon fisheye lens and a Marlin F131B camera looking forward, which
provides a field of view of 185 deg. The size of the images is 640×480 pixels. A constant trans-
lational velocity υ = 0.1 m/s is used and a minimum distance between key images dmin = 0.6
is assumed.

Fig. 6.12(a) shows the resultant and learned paths for one of the experimental runs as given
by the robot odometry. In this experiment, we test the RT control since the initial robot position
is out of the learned path. We can see that after some time, the reference path is reached and
followed closely. The computed rotational velocity and the behavior of the current epipole
are presented in Fig. 6.12(b). The robot follows the visual path until a point where there is
not enough number of matched features. In the same figure, we depict the nominal rotational
velocity as computed offline only to show that it agrees the shape of the path. In Fig. 6.12(c)
we can see that the image error is not reduced initially because the robot is out of the path, but
after it is reached, the image error for each key image is reduced. The same figure presents a
sequence of images as acquired for the robot camera during the navigation.
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Figure 6.12: Real-world experiment for indoor navigation with a fish eye camera. (a) Learned
path and resultant replayed path. (b) Rotational velocity, current epipole evolution, and image
error. (c) Sequence of images during navigation.
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6.6 Conclusions
Along this chapter, we have presented an extension of the image-based control schemes of
previous chapters for the problem of visual path following in the same framework of generic
schemes, valid for any central camera and using feedback of a geometric constraint. We have
developed two control schemes, for which, no pose parameters decomposition is carried out.
The value of the current epipole or one element of the trifocal tensor is the unique required
information by the control law. This method allows to gather the information of many point
features in only one measurement in order to correct the lateral deviation from the visual path.
The approach avoids discontinuous rotational velocity when a new target image must be reached
and, eventually, this velocity can be piece-wise constant. The translational velocity is adapted
according to the shape of the path and the control performance is independent of its value.
Both of the described schemes need the camera calibration parameters to compute the geomet-
ric constraints from projected points on the sphere, however, they can be easily obtained with
the available calibration tools. The described extension of visual control schemes for long dis-
tance navigation concerns for the autonomous mobility more than for the accuracy of the path
following or final positioning, however, these aspects could be improved with the inclusion of
pose-estimation in the control system for navigation. Additionally, the estimation may provide
the possibility of carrying out obstacle avoidance, and after that, the robot could recover the de-
sired path. The proposed schemes have exhibited good performance according to the simulation
results and real-world experiments.
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Chapter 7

Conclusions

In this thesis we have proposed and evaluated experimentally solutions to the problem of visual
control for autonomous navigation of wheeled mobile robots (WMR) using exclusively the
information provided by an onboard monocular imaging system. The importance of addressing
this problem is motivated by the increasing number of applications with this type of robots for
service tasks. In this context, the general contribution of the thesis is the formal treatment of
the aspects from control theory applied in the particular problem of vision-based navigation of
WMR, in such a way that vision and control have been unified to design control schemes with
properties of stability, a large region of convergence (without local minima) and good robustness
against parametric uncertainty and image noise.

Different proposals are presented along the thesis in order to address two main problems that
can be found in the framework considered: the pose regulation and the long distance navigation
of mobile robots. In the former, the control system provides suitable input velocities to drive the
robot to the desired location using the teach-by-showing strategy. This implies that the target
image must be previously known and the measurements are relative values between the loca-
tions associated to the target and current views. Thus, it is clear the need of a learning phase in
a visual control loop, where the target image must be memorized. Similarly, the problem of vi-
sual navigation rely on the availability of a set of target images previously acquired. Therefore,
in pro of versatility, we have considered that no previous additional information about the scene
is needed, i.e., any model of the environment and no artificial landmarks are used. Given that
most of the mobile robots have nonholonomic motion constraints and they are underactuated
systems that feature a degree of freedom in the robot dynamics, the proposed control schemes
are designed taking into account these properties.

In order to extract feedback information from the current and target images, it is required
that both views share information, which means to have some common visual features in both
images. In many cases, and especially when the initial camera position is far away from its de-
sired value, the target features may leave the camera field of view during the navigation, which
leads to failure because feedback error cannot be computed anymore. Recently, omnidirectional
vision has attracted the attention of the robotics research community for the benefits provided
by its wide field of view. This is motivated by the better understanding of those systems that
capture all the scene around a single view point, i.e., central imaging systems. In this sense, a
general contribution of the thesis is the development of control schemes that are all valid for
imaging systems obeying approximately a central projection model.

Because of the nonlinearity of the problem of visual control for WMR, singularities fre-
quently appear when the robot velocities are computed using an input-output transformation of
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the system. The proposed control systems cope with these singularities ensuring the stability
of the feedback control system. There are many visual servoing schemes in the literature based
on a pseudoinverse approach for nonsquare systems, which present potential problems of sta-
bility. We have designed square control systems where stability can be demonstrated with a
large region of convergence and without local minima. Regarding to robustness, the effects of
parametric uncertainty due to calibration errors and the effects of the measurement noise added
to the feedback signals have been minimized through the use of the particular control technique
sliding mode control.

The geometric constraints relate corresponding features in a multiview framework and en-
capsulates their geometry in a few visual measurements. We have exploited these properties
in order to propose adequate task functions from a reduced set of measurements. Moreover,
the geometric constraints provide a kind of filtering to the visual measurements. We focus on
exploiting the epipolar geometry (EG) and the trifocal tensor (TT) given that they can be used
for generic scenes, not limited to particular scenes like planar ones. For the epipolar constraint,
we have taken advantage of the information provided by three images through their pairwise
epipolar geometries. The pose regulation problem has been solved without needing to change
to any approach other than epipolar-based control. The proposed epipolar control deals with
singularities induced by the EG maintaining always bounded inputs, which allows the robot to
carry out a direct motion toward the target.

Although the trifocal tensor is a geometric constraint that intrinsically integrates the rich
information of three views, it has been little exploited for visual servoing. Moreover, this tensor
is an improved visual measurement with respect to the EG, more general, more robust and
without the drawbacks of the EG, like the problem of short baseline. We exploit a simplified
version of the TT, the 1D TT, for solving the pose regulation problem without commuting to any
other approach. The 1D TT is estimated from bearing information of the visual features, which
allows exploiting the properties of omnidirectional images of preserving that information. The
direct feedback of this tensor, for the stabilization of an adequate two-dimensional error function
using a robust control law, results in a visual servoing scheme that requires only one calibration
parameter of the imaging system.

As complement to the aforementioned image-based schemes and in order to reduce the
dependence on the data from the image plane, we have presented an estimation scheme based
also on the EG and the TT for position-based control purposes. It has been demonstrated that
these geometric constraints can be used for dynamic pose-estimation by using a comprehensive
nonlinear observability study. The proposed method is the first semicalibrated pose-estimation
scheme exploiting the properties of the 1D TT. This approach does not need a target model
neither scene reconstruction nor depth information. Additionally, we have demonstrated the
feasibility of closing a control loop using the estimated pose as feedback information in order
to drive the robot to a desired location. Therefore, this position-based control approach solves
the pose regulation problem avoiding visibility constraints by means of omnidirectional vision.
The control approach is a single-step control law that corrects the robot pose using smooth
velocities.

Finally, in the same framework of generic control schemes valid for any central camera
and using feedback of a geometric constraint, we have exploited the memory-based approach
for visual navigation. This approach allows to extend the typical teach-by-showing monocular
visual servoing task to a large displacement, where the target image is completely out of the
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initial view. Thus, the previous image-based visual servoing schemes have been adapted to
achieve the required mobility for navigation more than accuracy in positioning. The proposed
method exploits the advantage provided by the EG and the TT to gather a set of visual features
into a single selected measurement. We have proposed time-varying control laws that present an
improved performance in terms on continuity of the velocities with respect to previous schemes
in the literature.

The different control schemes proposed along this thesis have been validated experimentally.
Simulations and real-world experiments with different platforms and imaging systems have
been carried out to show the performance of the approaches. The real-world experimentation
has shown that all the proposed control schemes are feasible to be implemented in a common
laptop, providing adequate closed loop frequency that can be achieved with typical experimental
hardware. There are several open issues in the problem of visual control, as an outline of future
work, it can be mentioned the use of pose-estimation for long distance navigation, the extension
of some of the ideas proposed in this thesis to the problem of visual control in 6 DOF and the
use of noncentral imaging systems as vision sensors.
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