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Abstract

In this paper we address the problem of visual navigation of a mobile robot which simultaneously obtains metric
localization and scene reconstruction using homographies. Initially, the robot is guided by a human and some scenes
during the trip are stored from known reference locations. The interest of this paper consist in the possibility of getting
real and precise data of the robot motion and the scene, which presents some advantages over other existing approaches.
For example, it allows the robot to carry out other trajectories than the executed during the teaching phase. We show
an extensive analysis of the output in presence of errors in some of the inputs.

Index Terms - homography, visual navigation, motion estimation, reactive navigation, metric reconstruction.

I.. Introduction

It is well known that the idea of autonomous robot navigation is of great interest for humans. The use of visual
information for this task is chosen for two reasons. First, the use of visual sensor provides big amount of information
that is contained in the scene and second, its low cost compared with other sensors.

Reviewing the literature, multiple solutions addressing this problem can be found. One of the earliest is presented
in [9], where a sequence of images with a description of the motion is given to the robot and a direct matching
between the pixels of the images is used. The recently appearance of invariant features in the images [7] [1] has given
more robustness and better matching, allowing larger displacements between the compared images. The authors of [4]
propose a qualitative navigation method with good results. In [2] a topological map formed by reference images is used
to perform different trajectories using the homography matrix. These solutions have the problem that the trajectories
performed by the robot must follow the sequence of the reference images. If for any reason some obstacles appear,
and the robot gets lost from the prefixed path, it will not be able to recover it and it will not arrive to the goal.

In this contest of image based approaches, the proposal presented in [12] provides good information about orientation
and lateral deviation errors. Solutions like the ones found in [3], [8] and [11] develop specific control laws to move
the robot to the goal, specified by a target image, with high precision. The main advantage of these approaches is that
they do not need neither information about the scene nor the positions of the images. However, its application will be
limited to the trajectories that move the robot from any position to the target position using the same route than the
used in the teaching phase.

We propose here a technique that obtains metric reconstruction using the homography matrix. The metric
reconstruction needs the depth of the planes in the scene and their orientation. The main disadvantage is that several
parameters of the scene must be given. The algorithms proposed here only need one of these two parameters and easily
computes the other taking advantage of the multiple images stored during the teaching phase where the robot is moved
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along a path. We present an extensive analysis of the influence of the input errors, which is confirmed with several
simulations.

The outline of this paper is as follows. After showing the Homography Sensor in section II, the methods to improve
observations when there is more than one homography are presented in section III. Section IV details the errors induced
by wrong inputs. In section V some simulations show the results of this technique. Finally, some concluding remarks
and future lines of work are exposed in section VI.

II. The Homography Sensor

First of all, let us show the notation used in this paper. If we consider one parameter a, we denote its estimated value
as â and an estimation error as ã. Matrix are denoted with capital bold letters (M) and vectors with bold lower-case
(u).

Let us consider a non holonomic unicycle robot moving on the ground plane XZ. Due to the planar motion only
three parameters are needed to express the robot state, s = (x, z, θ)T . If we refer only to the position of the robot we
will denote it as p = (x, z)T . The considered robot has fixed onboard a monocular camera. Since the robot is moving
indoors, most part of the information acquired will correspond to views of walls and planes of the environment. We
assume that all the visible planes are perpendicular to the plane where the robot is moving, which is common inside
buildings. With this assumption we can represent a generic plane π only with two parameters, its distance to the origin
and its orientation, π = (dπ, α). The normal vector of the plane then is n = (− cosα, 0, sinα)T , see Fig. 1.

s = (x, z, θ)

X

Z
O

dπ
α

π = (dπ, α)

Fig. 1. Coordinate systems and plane definition

Consider the case where the robot state s2 is unknown and we have an image of a plane captured from a known
reference position s1. If the image taken from s2 has at least four corresponding matches with the image acquired at s1,
it has been proved that there is a relation between these images expressed by a 3x3 homography matrix H21 [6]. The
Homography Sensor (HS in the following), is a function HS : R11 → R3 that allows the robot to estimate its position
s2 = HS(s1,H21,K,π) using as inputs the reference position s1, the homography matrix H21, the intrinsic calibration
parameters of the camera K and the plane information π. The homography H21 is represented by the four parameters
{h11, h13, h31, h33}, the other five parameters of the matrix are not needed in the function; the calibration matrix K is
determined by fx, the focal length in x direction measured in pixels and x0 the x-coordinate of the principal point in
the image.
HS can be computed in two steps. The first one calculates s12, the coordinates of s1 expressed in s2 reference, by

s12 = s12(H,K,π) =

 dπ(nxψ1 + nzψ2)
dπ(−nzψ1 + nxψ2)

arctan(ψ3, ψ4)

 (1)

where ψi are given by the following expressions
ψ1 = 2x0h31 + h33 − h11,

ψ2 = −f−1
x ψ5 − fxh31,

ψ3 = −nxnzψ1 − n2
xψ5 + n2

zαxh31,

ψ4 = −nxnzψ2 − n2
x(h31 + h33) + n2

z(h11 − x0h31),

ψ5 = x0h11 − x2
0h31 + h13 − x0h33,

(2)

nx = cosα and nz = sinα. The second step calculates s2, obtained from composition of s1 and s12.
If we make a more extensive analysis of (1) it is possible to see two details. First one is that the orientation

estimation is independent of the distance to the plane. This means that we will be able to obtain precise values of θ
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without the necessity of knowing the distances to the reference plane. The second detail is that the pose estimation,
p12 = (x12, z12)T , can be rewritten to the form

p12 = dπ Rα ψ, (3)

with ψ = (ψ1, ψ2)T (2) and Rα a 2x2 rotation matrix of α units. This means that the pose estimation is calculated
from a vector ψ, scaled and rotated depending on the plane π. This decoupled representation will help us to improve
the pose estimations.

The main problem of the HS is the amount of needed input parameters. The goodness of the method depends on
the goodness of the values of these input parameters. Here we will present methods to avoid errors taking advantage
of the views of multiple planes in the same image.

A. Camera calibration
In this paper we will not deal with the process of obtaining the intrinsic parameters of the camera and assume them

to be well obtained by a previous offline step [6] [5] [10]. In order to do that we refer to the recent self-calibration
method proposed by Menudet et al. [10]. We have chosen this method for its relation with our work with homographies
besides its simplicity to be implemented.

This method tries to minimize the eigenvalues of the 2x2 top-left block of

STk1Sk1 = NT1 H̄T
k1H̄k1N1, (4)

being H̄k1 the normalized homography between the image k and the reference image, and N1 the rotation matrix that
transforms the vector n = (0, 0, 1)T in the vector that represents the normal to the plane in the position where the
reference image was acquired. Note that in our case this matrix has only one degree of freedom because we assume
that the reference plane and the plane of the captured image are perpendicular. Sk1 is a 3x3 matrix that represents a
planar similarity with 4 degrees of freedom. It relates the unprojected points of the images in a virtual plane parallel
to the real one. Additionally, this method also allows to estimate the normals to the plane in the reference positions.

Since the calibration parameters will still have some errors, in the simulations we will show an example with errors
in K matrix and we will show that these errors do not affect much to the estimated position. We also dismissed the
possible errors obtained in the calculation of the homography since they will be too small in comparison with the
possible errors introduced in the estimations of the remaining parameters.

III. Multiple plane observations

Since the robot will be moving indoors all the time, many of the images acquired will contain information of more
than one plane. It is possible to take advantage of this situation computing multiple homographies. Considering this
fact we combine multiple observations in order to improve the estimations. The methods proposed here are based on
geometric rules, are robust to possible errors in the inputs and also are able to decrease these possible errors so that
future estimations will not be affected by them. We propose two methods, the first is based on intersection of lines
and the second one is based on intersection of circumferences.

Let us suppose that in a previous teaching phase the robot has moved following a path in the environment and has
acquired a list of images at known positions si ∈ N. During the navigation we assume that the robot is at an unknown
position where the it is possible to compute two homographies corresponding to two of the reference images. For an
easy understanding, in the following we denote the unknown position as s3, the reference positions as s1 and s2 and
the corresponding homographies H3i and H3j . The advantage of having two homographies is that it is possible to
relax the required information about the planes. Instead of having two parameters to describe each plane, only one of
them, distance or orientation, is required. Depending on the missing parameter one method or the other will be used.

A. Depth estimation method
Depth estimation method (DEM ) can be defined as a function

DEM : R18 → R5,
(s1, s2,H31,H32,K, α1, α2)→ (s3, dπ1, dπ2),

(5)

being (dπ1, α1) the distance and orientation of one reference plane with respect to s1 and (dπ2, α2) the distance and
orientation of other reference plane with respect to s2. The reference plane can be the same for the two images or two
different planes, one for each image. As it is seem in (5), besides the computation of the actual position of the robot
s3 the distances of the reference positions to the planes are provided. Let us note that whereas in the function HS the
distance was required as an input, here it is obtained as an output parameter.
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The main idea is the following. As we have seen in eq. (3), depth acts as an scale factor in the estimation of

positions p31 and p32. Since dπ1 > 0 and dπ2 > 0, we can give them an initial value, for example d̂π1 = d̂π2 = 1 and
use this values in (1) to compute s31 and s32. With this information we know that s3 will lay in the straight line that
cross s1 and s31, which can be expressed as

r1 ≡ s1 + λ1(s31 − s1). (6)

We also know that s3 belongs to other line defined in a similar way but using the parameters of the second reference
position,

r2 ≡ s2 + λ2(s32 − s2), (7)

so the position s3 will correspond to the intersection of r1 and r2,

s3 =
[
A1 B1

A2 B2

]−1 [
C1

C2

]
(8)

with A1 = s31x − s1x A2 = s32x − s2x
B1 = s1z − s31z B2 = s2z − s32z
C1 = −(A1s1x +B1s1z) C2 = −(A2s2x +B2s2z).

(9)

As we can observe in the equation, this technique only works when s1, s2 and s3 are not collinear (r1 6= r2). The
other singularity case would be if r1 and r2 were parallel but this is not possible since they always share a common
point s3.

Once the true s3 is known, we are also able to compute the actual distances of s1 and s2 to the planes with the
following equations,

dπ1 = d̂π1|s3 − s1|/|s31|
dπ2 = d̂π2|s3 − s2|/|s32|

(10)

The resulting method is simple and it does not deal with any of the camera orientations where the images are taken.
The estimation of the robot orientation in s3 will not be affected by the errors of the method. It is a good technique
to combine with the self-calibration method chosen [10] because it computes the remaining input parameters.

B. Normal-Orientation estimation method
In other cases, the distances to the planes can be better known than the normals. In these situations the Depth

Estimation Method will not work properly. The solution we propose here has the form

NOEM : R18 → R5,
(s1, s2,H31,H32,K, dπ1, dπ2)→ (s3, α1, α2).

(11)

As in the previous method an initial estimation of the unknown angles of the plans is required. In this case, for
simplicity we can take α̂1 = α̂2 = 0, so Rαi = I and π̂i ⊥ si, and compute s31 and s32 with eq. (1).

Looking again at (3) we see that uncertainty of the normal to the plane implies that s3 can be any point situated
on the circumference of center the reference point and radius |s3i − si| = |dπiψi|, i = {1, 2}. We define then the
circumferences:

C1(s1, |dπ1ψ1|)≡ (X − s1x)2 +(Z − s1z)2 = |dπ1ψ1|2
C2(s2, |dπ2ψ2|)≡ (X − s2x)2 +(Z − s2z)2 = |dπ2ψ2|2.

(12)

The value of s3 will be one of the intersection points of C1 and C2. Let us note that in this case the orientation of the
robot is still wrong unless we compute the actual normals to the planes. In order to obtain the values of the normals,
we propose an iterative method using the previous information. If the robot orientation was computed correctly even
with bad inputs of the normals, the right values of the angles α1 and α2 would be{

α1 = α̂1 + ∠([s1, s31], [s1, s3])
α2 = α̂2 + ∠([s2, s32], [s2, s3]), (13)

where [si, sj ] denotes the line formed by the points si and sj . Since the points s31 and s32 are expressed in reference
coordinates they depend on the estimated orientation, but the computed orientations, θ31 and θ32, are wrong, so α1 and
α2 are wrong too. However the new values of α1 and α2 will be closer to the real ones, so it is possible to compute
new orientations with the HS and repeat the process until the difference between the αi obtained iteratively are close
enough.

As it is known, there are two possible solutions to the problem of the intersection of two circumferences. Once
both possibilities are computed we have to discern what of both solutions is the true one. We do this by comparing
the two new orientations of the robot obtained applying HS. The good solution will be the one that gives the same
orientation for the robot using the αi computed angles.
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The main advantages of this method are that it will work although the three points are collinear, in this case the

intersection of C1 and C2 will return only the true solution. It will not work if the two centers correspond to the same
point (which is impossible with our hypothesis) or if the two radius are too short so that the circumferences do not
intersect, which will mean that K, dπi or both are badly estimated. The main problem of this method is that it needs
to compute the actual normals and the orientation of the robot using an iterative algorithm. In our simulations we have
seen that no more than five iterations are required to compute the final value of the angles. Other problem we have
found is that it does not work properly when one of the reference positions is too close to the unknown position.

IV. Errors in the inputs

The methods presented here assume the goodness of the input parameters. In this section we have analyzed how
some errors in the inputs affect to the values of the outputs using DEM equations. Specifically we have focused on
errors in the reference positions and in the normals to the planes, which probably will be the parameters with greater
errors. Similar analysis can be done to the NOEM equations.

A. Errors in the reference positions
We show here how the DEM will be affected by errors in the reference position. We define the errors in these

inputs as
s̃1 = s1 − ŝ1, s̃2 = s2 − ŝ2. (14)

s1

s2

s3
ŝ1

ŝ01ŝ2

ŝ02

ŝ3

u1

v1

u2

v2

u1

u2

l1

l2

l3

l4

Fig. 2. Error obtained in s3 estimation when there are errors in the reference systems. It is possible
to observe that s̃3 = u1 + u2

We show graphically the induced errors. Looking at Fig. 2 we observe that the error in s3 estimation can be expressed
as the sum of two vectors u1 and u2. In order to obtain the analytical expressions of these vectors we define ŝ01 as the
point where the lines l1 ≡ ŝ1 + λ(ŝ3 − ŝ1) and l2 ≡ s1 + λ(ŝ3 − ŝ2) intersect. We also define ŝ02 as the intersection of
l3 ≡ ŝ2 + λ(ŝ3 − ŝ2) and l4 ≡ s2 + λ(ŝ3 − ŝ1). Once these two points have been computed the desired vectors will be

u1 = ŝ01 − s1, u2 = ŝ02 − s2, (15)

and the expression of s̃3 is given by
s̃3 = u1 + u2. (16)

It is clear that |̃s3| ≤ |̃s1 + s̃2| which shows the bounds on the errors.
Depth estimation will also depend on two vectors v1 and v2 defined as

v1 = ŝ1 − ŝ01, v2 = ŝ2 − ŝ02. (17)

With these new vectors it can be proved that

d̃1 = d1 − d̂1 = |s3−s1|−|̂s3−ŝ1|
|s31| = |u2−v1|

|s31|
d̃2 = d2 − d̂2 = |s3−s2|−|̂s3−ŝ2|

|s32| = |u1−v2|
|s32| ,

(18)

where s31 and s32 are the values obtained using (1) with estimated distances equal to 1.
So expressions of estimation errors have been given using only known data and the errors in the reference positions

s̃1 and s̃2.
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B. Errors in the normals to the planes

This subsection shows the analytical expression of the errors as a function of the original errors in the normals. We
denote the errors in the angle inputs as α̃1 and α̃2. The error in the orientation of the lines that must be intersected
can be defined as

α̃∗1 = α̃1 + θ̃31 α̃∗2 = α̃2 + θ̃32, (19)

where θ̃31 and θ̃32 are the errors in the orientation estimations, which can be expressed as functions of α̃1 and α̃2

respectively. With these definitions we can build a quadrilateral like the one shown in Fig. 3.

p1

p2

p̂3
p3p̃3

α̃∗1

α̃∗2

β

γ

β + α̃∗2

β + α̃∗2 − α̃∗1

Fig. 3. Error obtained in the estimation of s3 when there are errors in the normals to the planes α̃1

and α̃2.

First, in order to obtain the analytical expression of the error we define

β = ∠([p2, p̂3], [p1, p̂3]). (20)

Looking at Fig. 3 and by using the sinus theorem we obtain the following relations

p̃3

sin α̃∗1
= |p̂3−p1|

sin(γ+β+α̃∗2−α̃∗1)

p̃3

sin α̃∗2
= |p̂3−p2|

sin γ ,
(21)

where we still have the problem of the unknown γ. Dividing the two equations of (21) and applying the basic
trigonometric rule sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) we have

sin γA+ cos γB = 0, (22)

with A and B  A = 1− cos(β + α̃∗2 − α̃∗1) sin α̃∗2
sin α̃∗1

|p̂3−p2|
|p̂3−p1|

B = − sin(β + α̃∗2 − α̃∗1) sin α̃∗2
sin α̃∗1

|p̂3−p2|
|p̂3−p1|

.
(23)

Then, γ = arctan(−B/A), function of known data and the error in the normals. Finally, using the value of computed
γ we can replace it in eq. (21) obtaining the desired expression of the estimation error s̃3.

In this case we must not forget that there will also be error in the orientation estimation because it depends on the
normal but DEM will not affect the value of the output orientation.

V. Experimental results

In order to verify our approaches several simulations have been run. We have tried to model the system as close
as possible to the reality. In our simulations we represent a room with several walls with different orientations. Each
wall has 100 features randomly generated. The camera is simulated using the parameters of the real camera installed
in our robots and each image has dimensions of 640x480 pixels. We have done different kind of experiments to show
different aspects of our proposal.
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Fig. 4. Different paths using DEM to obtain metric reconstruction. Black lines represent the
reference planes, red dashed line shows the teaching path of the robot, continuous blue lines
represent the real paths of the robot and green squares are the estimated locations using DEM .

A. Navigation with pre-learned path
In this scenario the robot makes a teaching phase. While the robot is moving several images are captured and

stored to use them later as references. Each image has associated the measurement of the position where it has been
taken. In a second step we move the robot along different paths. Using the information of the reference images, the
robot estimates its position with high precision. Figure 4 shows an example using DEM for some different simple
trajectories. In this example the robot has no information about the depth of the planes in the reference images. Figure
5 presents a more complex navigation sequence applying NOEM , here there is no information about the normals;
the wrong estimations are due to outliers of point intersection of the circumferences. When only one homography can
be computed, the sensor uses the HS function using as input the last estimation of the normal/distance to the plane.
In both examples we have added white gaussian noise to the inputs in order to see the robustness of the techniques.

B. Navigation using previous images
In this subsection we show another of the possible applications of these techniques. In this case we capture one

image of each plane from the same position. Here we can not use the methods presented because all the images have
been taken from the same position. If the distance to the planes introduced in the system is wrong it turns out that the
estimated trajectory has error proportional to the depth error (Red line in Fig 6). If the initial position is introduced, then
the location of the robot can be rightly estimated using the previous images during the route. This happens although
a wrong distance is introduced (Green squares in Fig 6).
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Fig. 5. Complex trajectory observed using NOEM . In this case we have used blue for the real
trajectory and cyan squares to represent the estimated locations. Bad estimations are due to
wrong choice of the intersections of the circumferences.

C. Combination of both navigations
It is possible to combine both approaches in order to perform harder routes. Fig. 7 shows an example where the robot

has a list of images from a pre-learned path. If an obstacle appears in the path (we assume the robot has mechanisms
to detect the obstacle), the robot avoids it and the return to the prefixed path. When only one homography can be
computed the robot uses images from previous steps (mainly during the obstacle avoidance) and uses them to apply
DEM . In this case an easy qualitative control has been used to ensure that the robot does not leave the path.

D. Error analysis
The last block of simulations pretend to validate the analytical expressions given for the errors. Here we generate

three random positions and we take one image of a reference plane from each one. We have added noise to two of the
positions (from 0cm to 25cm in each coordinate) and the normal of the planes (15 degrees top in each orientation) and
we have estimated the third one using DEM equations. The real errors have been measured using all the information
available while for the theoretical errors we only have used the data described in the equations (14) to (23). In Fig.
8 we can see this comparison for errors in the reference positions and in Fig. 9 it is possible to observe a surface
with the different errors in the orientation of the planes and the obtained errors in the output. Both cases show that
the analytical expressions are well calculated.
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Fig. 6. Path in a 4x4 square room. All the reference images are taken from the same position.
Some wrong plane depths are introduced in the simulation. If the robot knows its initial position
it can perform a reactive navigation. Red line shows the location estimation when no previous
images are used. If previous images are used then the estimation is good although the depth of
the planes is wrong.

VI. Conclusions and future work

The homography sensor is a precise estimator of the robot location when it is moving indoors. In order to make it
more robust we have combined the homographies computed from the images stored in the teaching phase. However, it
needs input data which should be as precise as possible. Now it is possible to obtain precise estimations of the position
when there is no information about scene depth or orientation. This allows to carry out reactive navigation which is
shown by simulations and different paths from those learned during the teaching phase.

We also have given analytical expressions for the errors of one of these methods when there are errors in the inputs.
Simulation results confirm our hypothesis. The analytical expressions given here can be useful to model possible
uncertainties in the observations in order to develop, for example, a fuzzy navigation algorithm or a control law to
move the robot precisely. We are now testing the proposal with real images using conventional cameras.
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Fig. 8. In these graphics it is possible to observe that the theoretical errors coincide with the real
errors in the outputs when there are some errors in the reference positions. All the points lay in
the line x = y which means that both are equal.
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Fig. 9. First surface shows the values of the real errors obtained under wrong normal inputs.
The second surface shows the values obtained using the analytical expression and the third
surface shows the difference of these errors. The correctness of the analytical expression can
be observed.


