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Abstract

This paper addresses the robot and landmark localization problem from bearing-only data in three views, simultaneously to
the robust association of this data. The localization algorithm is based on the 1D trifocal tensor, which relates linearly the observed
data and the robot localization parameters. The aim of this work is to bring this useful geometric construction from computer
vision closer to robotic applications. One contribution is the evaluation of two linear approaches of estimating the 1D tensor: the
commonly used approach that needs seven bearing-only correspondences and another one which uses only five correspondences
plus two calibration constraints. The results in this paper show that the inclusion of these constraints provides a simpler and faster
solution and better estimation of robot and landmark locations in the presence of noise. Moreover, a new method that makes
use of scene planes and requires only four correspondences is presented. This proposal improves the performance of the two
previously mentioned methods in typical man-made scenarios with dominant planes, while it gives similar results in other cases.
The three methods are evaluated with simulation tests as well as with experiments that perform automatic real data matching in
conventional and omnidirectional images. The results show sufficient accuracy and stability to be used in robotic tasks such as
navigation, global localization or initialization of SLAM algorithms.

Keywords: Robot vision, Bearing-only data, Robust matching, 1D Trifocal tensor, global localization, SLAM initialization

I. I NTRODUCTION

When an unknown scene is observed from multiple unknown positions, a complex but well-known geometric problem
appears. The goal is to associate the observations and to recover the robot and landmark locations. Let us focus on the
case of 1D bearing-only observations while performing planar robot motion, which is typical for robots working in man-
made environments. Robot localization based on bearing-only data has been considered in autonomous guided vehicles using
landmarks of known location [1] and also in simultaneous localization and mapping (SLAM), where the initialization and the
data matching are difficult problems [2].

This geometric problem is similar to the structure from motion problem studied in computer vision [3], but specialized
for 1D observations and 2D locations. In computer vision it is usual to relate different views with an initial matching of
relevant features, followed by a robust estimation of a projective transformation or a tensor [4]. These tensors provide general
constraints between the bearing-only observations, and allow us to recover the camera localization from them. For example,
the fundamental matrix has been extensively used for two-view robust matching [5], since it provides a general constraint for
2D bearing-only observations. Recently, it has been applied to help loop closing methods in SLAM [6].

However, using 1D bearing-only data, two views do not provide a constraint between observations; at least three views
are required. The 1D trifocal tensor encodes the three-view constraint between bearing-only observations, and can be used
to compute both the robot and landmarks 2D localization in closed form [7]. The 1D trifocal tensor has been used for self
calibration of cameras [8] and for radial distortion correction in wide angle cameras [9]. In robotics, it was previously used
for initialization of bearing-only SLAM algorithms [10], using conventional cameras and artificial landmarks on a plane.

This paper focusses on the use of the 1D trifocal tensor for matching 1D bearing-only data as well as computing robot
and landmarks localization. In previous related works [10], a minimum of seven matches were used to compute this tensor. In
the calibrated case, two constraints for the 1D tensor were presented in [7]. We evaluate here two linear methods to estimate
the tensor; first the commonly used one that needs 7 matches, and a second one that needs a minimum of 5 matches and
includes these two constraints. We also present and evaluate a third method to estimate the 1D trifocal tensor, which only
needs four matches if three of them are collinear in the 2D scene. The key issue in this third method is to take advantage
of typical structure in man-made environments (e.g. vertical planar walls). An interesting result from the experiments is that
both methods that include the calibration constraints perform better, particularly for real-time robotic applications: they provide
smaller errors in localization estimation and significantly reduce the computational cost of the robust data matching process.
Notice that these best performing methods have not yet been applied previously.

The 1D trifocal tensor can be used with bearing-only data from any source, for instance from vision sensors. Omnidirectional
images are the most intuitive situation where we can obtain it, e.g. extracting radial lines in the image and using its bearing [11].
This kind of image has received increasing attention from robotics researchers lately, due to its many well known advantages
for robotics [12], [13], [14]. In this paper we present examples using two different image features: SIFT [15] which is very
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Fig. 1. The aim is to obtain the relative location of the robot (θ′, θ′′, t′ = [t′xt′z ], t′′ = [t′′xt′′z ]) and the position of the landmarksx, from triplets of
bearing-only observationsu, u′, u′′, that are automatically matched.

effective in widely separated images, and vertical lines from natural landmarks projected in conventional and omnidirectional
images.

From our point of view, some results in vision research are difficult to be used in robotic applications, probably due
to the current divergence of computer vision and robotics communities. Here, we try to experiment and make advanced
results accessible to robotic researchers. Whereas most of the mathematics can be recovered from computer vision papers, its
particularization to the 1D bearing-only observations with planar sensor motion and the extensive experimentation presented
here are useful in robotics. Besides, the two reduced methods using 5 and 4 matches make the 1D tensor more suitable
for robotics. We believe that this work would be interesting for researchers using omnidirectional vision systems as well
as for people working in bearing-only localization and mapping, navigation or visual servoing. Two-view relations like the
fundamental matrix or the homography have been extensively used in these systems [16], [17], but the use of multiple views,
like image triplets are still poorly studied despite its attractive properties.

II. PLANAR TRIFOCAL TENSOR

Let us assume a robot moving on a plane and observing an unknown scene, where 1D bearing-only observations are acquired
from different robot locations. Ifv is the number of views andl is the number of observed landmarks, we havevl equations.
Three motion parameters are needed for each robot location (except for the first one, where we locate the origin) and two
parameters (up to a global scale factor) for each landmark. If the number of viewsv is 2, the problem is unsolvable even with
an infinite number of landmarks, sincevl < 3(v − 1) + 2l − 1. Three is the minimum number of views needed to solve it,
with at least 5 observed landmarks.

As in [10], we are interested in obtaining a linear solution to the bearing-only localization and mapping problem (Fig. 1)
that does not suffer from local minima. The first issue is to represent the bearing measurements obtained by the robot using
a projective formulation. Thus, we can easily convert a bearing measurementα to its projective formulation in a 1D virtual
retina asu = (sin α, cos α)T .

A trifocal tensor relates linearly three different views independently of the observed scene. It allows us to uncouple the
mapping and the robot localization problems, as it provides a general constraint for data association when neither robot nor
landmark locations are known. When we have landmarks in a 2D scene, observed as aP1 projective space, the 1D trifocal tensor
is used. Let us name the homogeneous representation of a feature in a 2D space asx = [x1, x2, x3]T and the representation
of its observation in theP1 projective space asu = [u1, u2]T . This projection can be expressed by a2× 3 matrix M for the
three sensor locations, as:

λu = Mx, λ′u′ = M′x, λ′′u′′ = M′′x, (1)

whereλ, λ′ andλ′′ are scale factors.
If we suppose all the 2D features in a common reference frame placed in the first robot location, the projection matrixes

relating the scene and the image features areM = [I|0], M′ = [R′|t′] and M′′ = [R′′|t′′] for the first, second and third

location respectively. Here,R′ =
[

cos θ′ sin θ′
− sin θ′ cos θ′

]
and R′′ =

[
cos θ′′ sin θ′′
− sin θ′′ cos θ′′

]
are the rotations andt′ = [t′x, t′z]

T and

t′′ = [t′′x, t′′z ]T are the translations (Fig. 1).
Removingx, λ, λ′ andλ′′ from the projection equations (1), a constraint for the three observations of a landmark appears.

It is written as the trifocal constraint [8]:

2∑

i=1

2∑

j=1

2∑

k=1

Tijkuiu
′
ju
′′
k = 0, (2)

whereTijk (i, j, k = 1, 2) are the eight elements of the2× 2× 2 tensor whose components are the3× 3 minors of the6× 3
matrix [MT M′T M′′T ]T in such a way that to obtainTijk = [̄ij̄k̄] we take thēi row of M, the j̄ row of M′ and thek̄ row
of M′′, meaninḡ· a mapping from [1,2] to [2,-1].
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A. Robot and Landmark localization from the trifocal tensor

The camera and landmark locations can be computed in closed form from the 1D trifocal tensor. The motion parameters can
be related to the components of the tensor by developing the elements of the projection matrixes (M,M′,M′′). In this work,
two methods to recover the robot and landmarks localization from those relationships were used: the algorithm presented in
[10], which is based on the decomposition of the tensor into two intrinsic homographies [18], and the method developed in
[7]. Both methods give us almost identical results, therefore, no explicit comparison will be shown. They both provide two
symmetric solutions for the location parameters, defined up to a scale for the translations. This two-fold ambiguity [7] is one
of the drawbacks of using only three 1D views to solve this problem. Both solutions of the camera and landmark localization
problem are coherent with the triplets of 1D bearing-only observations. The consistency in the visibility of the landmarks can
help in the search of the right solution. A fourth view, when available, can be used to disambiguate between the two solutions
[10]. However, in practice some additional information like approximate camera location or orientation (e.g. from odometry
or reference information) can be easily used. If the image triplets are nearly collinear the selection of the correct location is
more sensitive to noise, but the consequences of a bad selection are smaller because both solutions are close. More details
about the two-fold ambiguity can be seen in [7]. Once the relative location of the camera has been estimated, the location of
the landmarks can be obtained by solving the projection eq. (1) for each landmark [10].

III. S IMULTANEOUS ROBUST MATCHING AND 1D TRIFOCAL TENSORCOMPUTATION

To recover the structure and motion parameters from the 1D trifocal tensor, the latter must be estimated in calibrated
coordinates. The first part of this section explains two methods to estimate this tensor, and the second part shows how to
perform the robust matching simultaneously to the tensor estimation.

A. Two ways of obtaining a tensor in calibrated coordinates

To compute the tensor we can use eq (2), that relates the feature coordinates in the three views and the tensor elements

[u1u
′
1u
′′
1 u1u

′
1u
′′
2 u1u

′
2u
′′
1 u1u

′
2u
′′
2

u2u
′
1u
′′
1 u2u

′
1u
′′
2 u2u

′
2u
′′
1 u2u

′
2u
′′
2 ]T = 0,

(3)

whereT = [T111 T112 T121 T122 T211 T212 T221 T222]T is a vector with the elements of the trifocal tensor. In a general case,
T has eight parameters defined up to an overall scale factor. As each observation gives one equation (3), at least seven matches
are required to compute it. Seven triplets of corresponding features in calibrated coordinates can be used to construct a7× 8
matrix A. The solution of this system of equations corresponds to the eigenvector associated with the smallest eigenvalue of
the matrixAT A, that can be obtained from singular value decomposition (SVD) of matrixA [4].

When the tensor is not computed from features expressed in calibrated coordinates, we must perform a second step to bring
the tensor to the calibrated case. For example, if image coordinates in pixels are used, the transformation of these coordinates
from the imageup to a calibrated retinauc is linearly expressed as:up = Kuc, whereK is obtained from the camera internal
parametersK =

[
f u0

0 1

]
, beingf the focal length andu0 the position of the principal point, both expressed in pixels. Then,

if the tensorTp is computed from image coordinates, the tensor in calibrated coordinatesTc can be obtained fromTp and the
calibration matrixK as

T c
lmn =

2∑
i=1

2∑
j=1

2∑
k=1

T p
ijkK(i, l)K(j, m)K(k, n), (4)

whereK(i, l) is the element in rowi, column l of matrix K .
On the other hand, the camera motion parameters can be related to the trifocal tensor elements by expanding the elements

of the projection matrixes (M,M′,M′′)as:

T111 = t′z sin θ′′ − t′′z sin θ′; T211 = −t′z cos θ′′ + t′′z cos θ′

T112 = t′z cos θ′′ + t′′x sin θ′; T212 = t′z sin θ′′ − t′′x cos θ′

T121 = −t′x sin θ′′ − t′′z cos θ′; T221 = t′x cos θ′′ − t′′z sin θ′

T122 = −t′x cos θ′′ + t′′x cos θ′; T222 = −t′x sin θ′′ + t′′x sin θ′.

(5)

In eq. (5), we can find the following two linear constraints for the elements of the tensor expressed in calibrated coordinates:

−T111 + T122 + T212 + T221 = 0
T112 + T121 + T211 − T222 = 0.

(6)

In [7] it is shown that a tensorT is expressed in calibrated coordinates if and only if it satisfies eq. (6). These calibration
constraints are linear with the elements of the 1D trifocal tensor, which allows us to linearly obtain this tensor from only five
matches expressed in calibrated coordinates. Notice that instead of using eq. (3), the following eq. (7) is applied now to each
triplet of corresponding features.

T111(u1u
′
1u
′′
1 + u2u

′
2u
′′
1 ) + T112(u1u

′
1u
′′
2 + u2u

′
2u
′′
2 )+

T121(u1u
′
2u
′′
1 + u2u

′
2u
′′
2 ) + T122(u1u

′
2u
′′
2 − u2u

′
2u
′′
1 )+

T211(u2u
′
1u
′′
1 + u2u

′
2u
′′
2 ) + T212(u2u

′
1u
′′
2 − u2u

′
2u
′′
1 ) = 0

(7)
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To sum up, there are two ways to estimate the tensor:
• To compute the tensor using (3), making a search in a 7 degrees of freedom (d.o.f.) space of solutions. This is the classical

solution, used for example in [10] or [9], named in the rest of the paper TT7 for short.
• To compute a tensor from data in calibrated coordinatesuc using (7), which imposes the two linear calibration constraints

(6). So, a search in a 5 d.o.f. space of solutions is made. Let us name this method as TT5 from now on.
The second option simplifies the computations using subsets of 5 matches instead of the 7 matches needed in the first one.

These are easier to obtain and allow us to reduce the number of iterations required for the robust computation, as it will be
explained in next subsection. Besides, the TT5 gives more accurate motion estimation in presence of noise, according to the
results from the experimental section (V).

B. Robust Matching and 1D Trifocal Tensor Computation

The computation ofT can be carried out usingSVD as explained before. With more matches than the minimum number
required, that procedure gives the least squares solution, which assumes that all measurements can be interpreted with the same
model. This is very sensitive to outliers, so robust estimation methods are necessary to avoid outliers in the process. From the
existing robust estimation methods, we useRANSAC [19], which carries out a search in the space of solutions obtained from
subsets of minimum number of matches. This robust estimation allows us to obtain simultaneously the tensor estimation and
a robust set of correspondences. It consists of the following steps:
• After extracting relevant features in the three views, the automatic matching process first obtains a putative set of matches

(basic matching) based on the appearance of the features in the image.
• Afterwards, the geometrical constraint imposed by the tensor is included to obtain arobust matchingset using aRANSAC

voting approach. This robust estimation efficiently rejects the outliers from the basic matching.
• Optionally, the tensor constraint can be used to grow the final set of matches, obtaining new ones with weaker appearance-

based similarity but fitting the geometric constraint.
The RANSAC voting approach needs an error value to measure how good a certain match fits the tensor constraint. This

fitting error is computed as the average difference between the observed coordinates and the coordinates estimated by the
tensor. Given the coordinates of a certain feature in two images (e.g.u’ andu” ) and the components of the trifocal tensor, the
estimation (̂ ) of the coordinatesu = (u1, u2) in a third view is obtained as follows:

û1
u2

= −T211u′1u′′1 +T212u′1u′′2 +T221u′2u′′1 +T222u′2u′′2
T111u′1u′′1 +T112u′1u′′2 +T121u′2u′′1 +T122u′2u′′2

. (8)

Similarly for each view, the total error is computed as the mean of the three squared errors(u1
u2
− û1

u2
)2, (u′1

u′2
− û′1

u′2
)2, (u′′1

u′′2
−

û′′1
u′′2

)2, which are expressed in pixels. If angle units are required, the reprojection error can be obtained from the expression

(arctan u1
u2
− arctan û1

u2
)2. Both residues are more convenient than the residue obtained from (3), which has only an algebraic

meaning and unknown units.
In practice, there is an agreement between the computational cost of the search in the space of solutions, and the probability

of failure (1−P ). A random selection ofm subsets ofn matches ends up with a good solution if all the matches are correct
in at least one of the subsets. Assuming a ratioε of outliers, to obtain a good result with a probabilityP the number of
subsets to explore ism = log(1−P )

log(1−(1−ε)n) . For random sampling methods, such asRANSAC , it is important to solve the model in
closed form because a narrow space of solutions must be evaluated. It is also important to use as small number of matches as
possible to reduce the probability of a mismatch being included in the random subsets. So, there is a great advantage for TT5
with regard to TT7 (both models are linear with respect to observations), because of the smaller number of matches required.
For instance, let us assume a situation with a 40% of outliers. If estimating TT5, theRANSAC method needs to perform 57
iterations to get a result with 99% of probability of being correct. However, if we use TT7, theRANSAC algorithm will need
163 iterations for the same level of confidence, which is almost three times more.

IV. T ENSOR COMPUTATION WITH A PLANE IN THE SCENE

When the robot moves in man-made environments, there are many vertical planar surfaces in the scene, which can help in
the computation of the trifocal tensor. The implicit coplanarity of the observations gives new constraints for the tensor, which
simplify the situation and reduce the number of required matches. These constraints have been presented for three views of
a 3D scene, with the 2D trifocal tensor [20], [3]. There, it is shown a relation between the tensorT, defined between three
views, and two homographiesH′ (from image 1 to 2) andH′′ (from image 1 to 3) corresponding to the same scene plane.
Here, we develop these constraints for 1D bearing-only observations of a 2D scene.

Two 1D homographiesH′ and H′′, corresponding to a line in the 2D scene, relate the bearing-only observations in three
views (u, u′ andu′′) of a certain landmark as:

u′ = H′u , u′′ = H′′u. (9)
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On the other hand, the constraint imposed by the 1D trifocal tensor (2) can be reordered as,

u1(T111u
′
1u
′′
1 + T112u

′
1u
′′
2 + T121u

′
2u
′′
1 + T122u

′
2u
′′
2 )+

u2(T211u
′
1u
′′
1 + T212u

′
1u
′′
2 + T221u

′
2u
′′
1 + T222u

′
2u
′′
2 ) = 0.

If we nameT1 =
[

T111 T112

T121 T122

]
and T2 =

[
T211 T212

T221 T222

]
, the trifocal equation can be written as:

[u1u2]

[
u′T T1u′′
u′T T2u′′

]
= 0. (10)

Substituting with (9) and namingB1 = H′T T1H′′ andB2 = H′T T2H′′, eq. (10) becomes:

u1uT B1u + u2uT B2u = 0. (11)

Equation (11) must be certain for any pointu = [u1u2]T , so it must be the zero polynomial inu1 andu2 , and therefore
the coefficients should be zero. Thus, four new constraints for the elements of the tensor can be stated:

B2(1, 1) + B1(2, 1) + B1(1, 2) = 0; B1(1, 1) = 0;
B1(2, 2) + B2(2, 1) + B2(1, 2) = 0; B2(2, 2) = 0.

(12)

It is known that 3 matched features are enough to compute a 1D homography from visual data in two 1D projections [21].
Thus, the coplanarity constraint reduces by one the minimum number of features required to compute the 1D trifocal tensor,
which gives a constraint for all landmarks in a general scene. It can be computed from four observed features, three of them
coplanar (collinear in the 2D scene) to estimate the homography, and a fourth correspondence out of that vertical plane. Let
us name this method TT4 from now on.

This reduction of the minimum number of matched features is advantageous because of the robust technique used. In this
case, instead of doing a random search in a 5 d.o.f. space of solutions, we perform a search in a 3 d.o.f. space to robustly
estimate the homography; plus a second search in a 1 d.o.f. space to find the fourth required match. For example, let us suppose
a RANSAC estimation with 40% of outliers, and a probabilityP = 99% of not failing in the random search. Now, theRANSAC

algorithm would need 19+6 iterations, less than the iterations needed for TT5 (57 iterations). Notice that this big difference is
realistic only if the vertical plane is dominant in the images. Another important advantage of the estimation of the homography
is that it can give us some hint about degenerate situations (e.g. when a sole homography explains all the scene) and a model
selection would be useful [22].

V. EXPERIMENTAL RESULTS

The first part of this section evaluates the performance of the different algorithms with simulated data. Afterwards, several
real data experiments test their behavior in robotics.

A. Simulated data experiments

We implemented a simulator of 2D scenes which are projected into 1D virtual cameras with53◦ of field of view and
1024 pixels. All tests were done for two different movements of the robot (Fig 2). The first one (MovA) could fit a common
multi-robot configuration. The second one (MovB) represents a typical situation with a mobile robot going forward.
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Fig. 2. MovA & MovB. Scheme of the two simulated scenarios.

In all simulation tests, measuring errors were represented as Gaussian random noise (with zero mean and standard deviation
varying from 0 to 1 pixel) added to feature image coordinates. The evaluation parameters shown for each method are the RMS
(root-mean-square) error in the rotation angles (θ′ andθ′′) and in the translation directions (t′ and t′′) of the camera location.

1) Experiment 1Sim. General scenario:This experiment compares the performance of TT7 and TT5 in general scenarios.
To estimate the trifocal tensor we chose 30 random matches all over the scene. Fig. 3 shows the localization errors achieved
in these experiments. It is clear that TT5 method performs better than the classical TT7: it provided more accurate and stable
results for both evaluated parameters (rotation and translation direction), as TT5 always gave smaller errors and standard
deviations than TT7. The same experiments were also done using 20 matches instead of 30, and we obtained similar behavior,
indeed with slightly higher errors (around 10% more).
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Fig. 3. Experiment 1Sim. General scenario.RMS error (mean and mean+std from 100 executions) in rotation and translation direction estimation using TT5
and TT7.

2) Experiment 2Sim. Scene with planes:This experiment evaluates the performance taking or not into account the coplanarity
constraints; TT4 against TT5.

Two cases were considered: first a general case, where the vertical plane is not dominant (10 random matches in the plane
and 20 random matches out of it). Second, the plane is dominant in the images (20 random matches in the plane and 10 out
of it). The vertical plane was placed parallel to the first image, 20 units ahead the origin, in both scenarios shown in Fig. 2.
For the first case, TT4 gave similar results to TT5 (both very similar to results shown in previous experiment Sim1). However,
when the plane is dominant in the images, some performance improvements were detected using TT4 method. Fig. 4 shows
the results of this case. Notice that TT4 behaves better than TT5, particularly when noise increases.
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Fig. 4. Experiment 2Sim. Dominant plane in the scene.RMS error (mean and mean+std from 100 executions) in rotation and translation direction estimation
using TT5 and TT4.

Therefore, from all the simulations we can extract two conclusions:
- TT5 is the best general method to estimate the 1D trifocal tensor, it gives better performance and is simpler than the

commonly used TT7 method.
- When there are planes in the scene, using TT4 reduces the complexity and gives similar results to TT5. In the special case

that the plane is dominant in the images, TT4 behaves better, particularly with higher values of noise. Computing the tensor
through the homography has also an additional advantage, because the intermediate estimation of the homography can help to
detect a singular situation. For example, if the whole image matches can be explained with a sole homography, then the scene
is planar or the baseline is nearly zero. In this case, the localization results from the trifocal tensor are not good, as we have
tested in [23].

B. Real data experiments

This section shows several experiments with automatic data association in different kinds of real images. In these experiments,
the scale and the double solution ambiguity were solved using data from ground truth. In practice, they can be determined
from additional information like the odometry, or from the relative location of two cameras if working with reference images
from a database [24].
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Fig. 5. Experiment 1R-TT7vs.TT5. Top: Omnidirectional images with robust line matches and scene reconstruction scheme, with landmark and camera
locations obtained through the tensor estimations and ground truth. Bottom: Matching results and table with robot and landmark localization errors.

The following experiments show the behavior of the methods when the vertical placement of the camera is not perfect (the
optical axis is not strictly vertical for omnidirectional cameras, or the image plane is not strictly vertical for conventional ones).
There are not explicit experiments to measure this, but the images were taken with neither special care nor calibration, which
probably explains part of the small performance reduction in real data experiments with regard to simulation tests.

1) Experiment 1R:This experiment compares the results obtained with TT7 and TT5 using omnidirectional images. The
vertical lines (projected as radial ones in the image) are quite suitable for this kind of image. A very stable cue of these lines
in omnidirectional images is their orientation, that is used as the 1D bearing-only data to estimate a 1D trifocal tensor.

Fig. 5 shows on the top an example of the three views with the line matching results obtained with TT5 and TT7. The
initial basic matchingwas performed following the appearance-based algorithm explained in [24]. Therobust matchingresults
were better using TT5 than using TT7, which directly influenced the localization estimation, also better and more stable using
TT5. For example in 30 executions, TT5 had standard deviations of1.1o and3.5o in rotation and translation direction errors
respectively, while for TT7 these values were of4o and12o. The same Fig. 5 includes a scene reconstruction and a table with
the localization parameters obtained in an execution where both TT7 and TT5 achieved an acceptable robust set of matches.
Still in this case, where both methods performed properly the robust estimation, the localization accuracy obtained from TT5
was higher. The most important advantage of TT5 is that it gives a good robust set of matches, even in these experiments with
few three-view correspondences.

2) Experiment 2R:Once we have checked that TT5 behaves better also in real cases, this experiment performs a more
exhaustive test and shows an example using another kind of feature, SIFT, from where we take only the x-coordinate to obtain
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Fig. 6. Experiment 2R-Left: Location of the robot in the 10 tests performed, and contour map of the building. Right: average and standard deviation errors
for rotations (θ′,θ′′) and translation direction (t′,t′′) estimation.
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Basic matches in yellow-star(*): 39 matches with 8 mismatches.

Robust matches in red-circle (o): 27 matches, all correct.
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Fig. 7. Experiment 2R- Results fortest1(see Fig. 6). Left: Images with basic and robust three-view SIFT matches. Right: landmarks reconstruction obtained
from TT5 and from the ground truth of selected vertical features shown in image on the right.

the 1D bearing-only data. We use the original implementation of SIFT extraction and initial matching [15]. In this case the
scenario was a sequential robot motion extracted from a robot indoors tour. We used the robot SLAM test-bed presented in
[25]. These images were taken with a conventional camera (768x512 pixels) and a detailed ground truth (taken mostly with a
theodolite) of the experiment was given together with all the necessary sensor calibration data. We chose 10 different triplets
of images distributed all over the trajectory, shown in the left of Fig. 6. The table on the right of the same figure shows the
average results in robot and landmark localization (for 50 different executions per case). Fig. 7 presents on the left a typical
example (test1) of three-view SIFT matches obtained in this experiment, where all the final matches are correct. The tensor
allows us to improve this initial matching by rejecting wrong SIFT correspondences, mostly due to pattern repetitions in the
scene. The right part of the same Fig. 7 shows the comparison of the reconstruction obtained through the tensor (o) and with
the ground truth motion (+). To measure the landmarks reconstruction with more accuracy, we chose several vertical lines.
They were automatically extracted but manually selected, in order to show the most relevant scene landmarks.

3) Experiment 3R:This experiment intends to compare in a real situation the results obtained comparing TT5 and TT4.
The bearing-only data used here is thex-coordinate of image vertical lines, which were extracted from conventional images
of an outdoor scene. Thebasic matchingof these line features was performed similarly to [21].

Image 1. Robust line matches Image 2. Robust line matches

Image 3. Robust line matches

building

meters

m
e

te
rs

0

10

30

20

40

50

60

0 10 20 30 40 50 60-10

water

Landmarks from GT
Landmarks from TT5
Landmarks from TT4
Robot locations

Scene reconstruction

Robot localization error Landmarks reconstruction error
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θ′ θ′′ t′ t′′ repr. err (std) 2D x 2D z
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TT4 0.17o 0.5o 2.9o 3.4o 0.6 pix.(0.8) 0.5 m. 1.5 m.

Fig. 8. Experiment 3R- Top: Outdoor real images with line robust matches (coplanar lines [1..14] marked in red) and scene reconstruction scheme with robot
and landmark locations obtained through TT5 (in pink o), through TT4 (in red *) and from the ground truth motion (in blue +). Bottom: robot and landmark
localization errors.

The line matches, the scene reconstruction and the robot and landmark localization errors are shown in Fig. 8. We observe
a very similar behavior for both tensor estimation methods, with a slightly higher accuracy for TT4 in reconstructing the
landmarks. The ground truth was obtained making a photogrammetrical bundle adjustment, using the softwarePhotomodeler
for the landmarks, and from the contour map of the building and the park. Also here, the advantages for the matching provided
by the tensor are proved. It allows us to correctly match several features, which initially were mismatched due to pattern
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repetitions (e.g. to another window-edge or lamppost) or due to different relative position (a lamppost is on the right or on the
left of another lamppost depending on the image).

VI. CONCLUSIONS

The central issue of this work is the 1D trifocal tensor and its application to robotic tasks. This tensor imposes a
general constraint for triplets of bearing-only observations which helps in automatic data association. Experiments with both
conventional and omnidirectional images show that the trifocal tensor improves the quality of the matching. Robot and landmark
localization can be obtained from this tensor as well. This paper explains and evaluates three ways of estimating the tensor with
different minimum number of matches required. From the experimental work, we can conclude that computing a constrained
tensor with 5 matches provides better performance for localization than using the typical solution based on 7 matches. It is
simpler, less time consuming and gives smaller localization errors. Another important contribution of this work is the constrained
method to compute the 1D trifocal tensor taking advantage of planes in the scene. It is estimated from only 4 matches, 3 of
them collinear in the 2D scene. Our tests also indicate that the 4 matches method provides similar results to the 5 matches one
in general cases, but if the plane is dominant in the image its results are slightly better. A fourth image or simple additional
information can be used to solve for the scale and the double-solution ambiguity, which are inherent issues of the structure
and motion problem from 1D view triplets. The experiments performed with conventional and omnidirectional images show
sufficient accuracy and stability to be successfully used in robotic tasks such as navigation or initialization of bearing-only
SLAM algorithms.
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