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Abstract

This paper addresses the computation of the fundamental matrix between two
views, when camera motion and 3D structure are unknown, but planar surfaces can
be assumed. We use line features which are automatically matched in two steps.
Firstly, with image based parameters, a set of matches are obtained to secondly com-
pute homographies, which allows to reject wrong ones, and to grow good matches in
a final stage. The inclusion of projective transformations gives much better results
to match features with short computing overload. When two or more planes are
observed, different homographies can be computed, segmenting simultaneously the
corresponding planar surfaces. These can be used to obtain the fundamental matrix,
which gives constraints for the whole scene. The results show that the global pro-
cess is robust enough, turning out stable and useful to obtain matches and epipolar
geometry from lines in man made environments.

Key words: Robust line matching, multi-plane scenes, homographies, epipolar
geometry, fundamental matrix.

1 Introduction

The fundamental matrix encapsulates the geometric information which relates
two different views regardless of the observed scene. The non metric basis of
this matrix makes possible to use uncalibrated cameras. It has been normally
computed using points [1] which fails when all the points lie in a plane or
with small baseline images. Besides, it can not be computed directly from
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lines. It can be obtained from lines, however, if they are in different planes
through the corresponding homographies [2]. The use of lines instead of points
has advantages, mainly in man made environments, because the lines can be
accurately extracted in noisy images, they capture more information than
points and they may be matched where partial occlusions occur [3].

In this context the matching problem is crucial to make the process work au-
tomatically. The matching of features based on image parameters has many
drawbacks, giving non matched or wrong matched features. Projective trans-
formations allow image dependent measures, as cross-correlation, to be a view-
point invariant which make possible to afford wide baseline matching [4]. So,
the epipolar constraint imposed by the fundamental matrix can be used for
the matching of points, but it can not be used for line matching, because the
end points of the extracted lines are not reliable. If the features lie on a planar
surface then a plane projective transformation can be used.

Scenes with several planes are usual in man made environments, and the
model to work with multiple views of them is well known. Points or lines
in one image of the world plane are mapped to points or lines in the other
image by a plane to plane homography, also known as a plane projective
transformation [5]. This is an exact transformation for planar scenes or for null
baseline image pairs. We robustly match lines between two images using the
projective transformations corresponding to the existing scene planes [6]. The
robust line matching and the computation of the corresponding homography
is iteratively carried out until we have no more available planes. If two planes
have been computed at least, the fundamental matrix can be computed, which
gives a general constraint for the whole scene. It has been reported that the
multi-plane algorithm is unstable, but when only two planes are observed,
which is quite usual in man made environments, the multi-plane algorithm
gives better results than the general method [7].

In this paper the automatic matching of lines computing homographies and
its use to obtain the epipoles in an image pair is exposed and discussed. Some
results related to the accuracy of the computed fundamental matrix, the seg-
mentation of planes and the simultaneous matching of lines are given. To get
enough initial basic matches, scenes where two planes take up most part of
the images are required.

After this introduction, we present in Section 2 the matching of lines based
in the simultaneous estimation of homographies. After that, we present in
Section 3 the equations which relate the homographies and the fundamental
matrix. The conditioning of the motion and the scene for the fundamental
matrix to be computed is exposed in Section 4. Experimental results with
real images and synthetic data are presented in Section 5. Finally, Section 6
is devoted to expose the conclusions. The availability of both, homographies
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and the fundamental matrix may be useful in other applications. For example,
we have used it for robot homing [8].

2 Robust Matching

We take straight lines as key features because, as said before, they are plentiful
in man made environments, they have a simple mathematical representation,
they can be extracted more accurately than points and they behave better
with partial occlusions.

2.1 Basic Matches

In the first stage we match the lines using image information. We take into
account not only the geometric parameters of the lines, but also the brightness
attributes supplied by the line extractor. So, average grey level (agl) and
contrast (c), are combined with geometric parameters of the segments, such
as midpoint coordinates (xm, ym), line orientation (θ in 2π range with dark on
the right and bright on the left) and its length (l).

The lines are stated as compatible when they have geometric and brightness
similarity. The match between two lines is made to the weighted nearest neigh-
bor. So, naming rg the difference of geometric parameters between both images
(1, 2), rg = [xm1 − xm2, ym1 − ym2, θ1 − θ2, l1 − l2]

T and rb the variation of

the brightness parameters between both images, rb = [agl1 − agl2, c1 − c2]
T ,

we can compute two Mahalanobis distances, one for the geometric parame-
ters dg = rg

TS−1rg and other for the brightness parameters, db = rb
TB−1rb.

Here, S is a matrix that expresses the uncertainty due to extraction noise
and the uncertainty due to camera motion and unknown scene structure, and
B is a matrix that expresses the uncertainty due to measurement noise and
changes of illumination. From these distances, the similarity is measured by
the simultaneous compliance of geometric and brightness compatibility tests,

• Geometric compatibility. Assuming that the noise is Gaussian distributed,
the similarity distance for the geometric parameters is distributed as a χ2

with 4 d.o.f. Establishing a significance level of 5%, the compatible lines
must fulfill, dg ≤ χ2

4(95%).
• Brightness compatibility. Similarly, referring to the brightness parameters,

the compatible lines must fulfill, db ≤ χ2
2(95%).
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2.2 Matches and homographies

From matched lines (n1,n2) belonging to the same plane, a projective trans-

formation H21 exits, in such a way that n2 =
[
H−1

21

]T
n1, being H21 the 3× 3

projective transformation of points x2 = H21x1.

We obtain the projective transformation of points, but using matched lines. To
deduce it, we suppose the start (s) and end (e) tips of a couple of matched lines
to be xs1,xe1,xs2,xe2, which usually will not be corresponding points. As the
tips belong to the line, we have that xT

s2n2 = 0; xT
e2n2 = 0. Besides, the tips of

line in the first image, once transformed, also belong to the corresponding line
in the second image, and therefore we can write, xT

s1H
T
21n2 = 0; xT

e1H
T
21n2 = 0.

Combining both equations, we have

xT
s1H

T
21[xs2]×xe2 = 0 ; xT

e1H
T
21[xs2]×xe2 = 0, (1)

where [xs2]× is the skew-symmetric matrix obtained from the vector xs2.

Therefore each couple of corresponding lines gives two homogeneous equations
to compute the projective transformation, which can be determined up to a
non-zero scale factor. To compute the homography, we have chosen the ransac
algorithm [9], which is a robust method to consider the existence of outliers. It
makes a search in the space of solutions obtained from subsets of four matches.
Each subset provides a 8 × 9 system of equations whose solution is obtained
from singular value decomposition.

From here on, we introduce the geometrical constraint introduced by the esti-
mated homography to get a bigger set of matches. Our objective is to obtain
at the end of the process more good matches, and to discard the wrong ones
obtained in the first stage, which was based on image properties. Thus, fi-
nal matches are composed by two sets. The first one is obtained from the
matches selected after the robust computation of the homography that passes
additionally an overlapping test compatible with the transformation of the
segment tips. The second set of matches is obtained taking all the segments
not matched initially and those being rejected previously. With these lines, a
matching process similar to the basic matching is carried out. However, now
the matching is made to the nearest neighbor segment transformed with the
homography. The transformation is applied to the end tips of the image seg-
ments using the homography H21 to find, not only compatible lines, but also
compatible segments in the same line. In the first stage of the matching pro-
cess there was no previous knowing of camera motion. However in this second
step, the computed homography provides information about expected dispar-
ity due to motion and therefore the uncertainty of geometric variations can
be reduced.
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Details of this method of matching and the experiments introducing the good-
ness of the projective transformation to obtain better matches have been pre-
viously presented [6].

3 From homographies to the fundamental matrix

The fundamental matrix has been stated as a crucial tool when using uncali-
brated images. As known, it is a 3×3 matrix of rank 2 which encapsulates the
epipolar geometry, and it only depends on internal parameters of the camera
and on the relative motion.

Let us suppose the images are obtained with the same camera whose projec-
tion matrixes in a common reference system are P1 = K[I|0], P2 = K[R|t]
(being R the camera rotation, t the translation and K the internal cali-
bration matrix). Then, the fundamental matrix can be expressed as F21 =
K−T ([t]×R) K−1. Normally, it has been computed from corresponding points
[1,10,11], using the epipolar constraint, which can be expressed as xT

2 F21 x1 =
0. However the fundamental matrix is unstable when points lie close to planes
[7].

Lines can not be used to compute the fundamental matrix directly, but they
can be used to compute it through homographies, in such a way that: F21 =
[e2]×Hπ

21, where e2 is the epipole of the second image and Hπ
21 is the ho-

mography between first and second image through plane π. If at least two
homographies (Hπ1

21 ,H
π2
21) can be computed between both images correspond-

ing to two planes, a homology H = Hπ1
21 · (Hπ2

21)
−1, that is a mapping from

one image into itself, exists. Under this mapping the epipole is a fixed point
e2 = He2, so it may be determined from the eigenvector of H corresponding
to non unary eigenvalue [5]. Thus, the fundamental matrix can be computed
with either of the following equations as,

F21 = [e2]×Hπ1
21 (2)

F21 = [e2]×Hπ2
21 (3)

being [e2]× the skew matrix corresponding to e2 vector.

Alternatively the fundamental matrix can be computed from homographies
using directly the epipolar constraint xT

2 F21 x1 = 0. We have two homogra-
phies obtained for planes (π1 and π2) which relate the coordinates of the points
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of the planes in both images, in such a way that

xT
2 F21 x1 = (Hπ1

21 x1)
T F21 x1 = x1

T Hπ1
21

T F21 x1 = 0

xT
2 F21 x1 = (Hπ2

21 x1)
T F21 x1 = x1

T Hπ2
21

T F21 x1 = 0
(4)

As this relation is satisfied by any point x1, we can write the following relations
[7],

Hπ1
21

T F21 + F21
T Hπ1

21 = 0

Hπ2
21

T F21 + F21
T Hπ2

21 = 0
(5)

From here, a system of twelve linear equations with the elements of the fun-
damental matrix is available and it can be solved using singular value decom-
position.

4 Conditioning of scene and motion on the fundamental matrix

As known the goodness of the fundamental matrix depends on motion, in
such a way that if the two camera centers are coincident, then the epipolar
geometry is not defined. Similarly, when points or lines of the images are in
a single scene plane, the fundamental matrix can not be computed. As we
propose to compute the fundamental matrix from homographies, a check on
the homology conditioning may help to determine if the fundamental matrix
may or may not be computed.

As said, H = (Hπ1
21)

−1 ·Hπ2
21 and taking into account that for a plane H21 =

K (R− t nπ
T

dπ
)K−1, it turns out that

H = (K(R− tnπ1
T

dπ1

)K−1)−1 (K(R− tnπ2
T

dπ2

)K−1), (6)

being nπ1 , nπ2 the normals and dπ1 , dπ2 the distances to the planes.

Using the Sherman-Morrison formula [12], in a similar way than in [13], it
turns out that

(R− t nT
π1

dπ1

)−1 = R−1 +
(R−1t)(

nT
π1

dπ1
R−1)

I + nT
π1

R−1t
. (7)
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Substituting in equation (6) and operating, we obtain

H = I + vpT (8)

where v is a view dependent vector

v = K
R−1t

1 +
nT

π1

dπ1
R−1t

, (9)

and p is a plane dependent vector. It corresponds with the difference of the
two normals and it is the image of the intersection between both planes

p = (
nT

π1

dπ1

− nT
π2

dπ2

)K−1. (10)

If we name v = (v1, v2, v3)
T and p = (p1, p2, p3)

T it turns out that the eigen-
values of the H homology are (1, 1, 1 + v1p1 + v2p2 + v3p3).

So, the homology has two equal eigenvalues and the third one is related to the
motion and to the structure of the scene. These eigenvalues are used to test
when two different planes have been computed, and then the epipole and the
intersection of the planes can be also computed. The epipole is the eigenvector
corresponding to the non-unary eigenvalue and the other two eigenvectors
define the intersection line of the planes [5]. In case of small baseline or if
there exist only one plane in the scene, epipolar geometry is not defined and
only one homography can be computed, so the possible homology H will be
close to identity, up to scale.

In practice a homology filter is proposed using these ideas. Firstly, we nor-
malize the homology dividing by the median eigenvalue. If there are no two
unary eigenvalues, up to a threshold, then the computation is rejected. When
the three eigenvalues are similar, we search if the homology is close to identity
to avoid the case where two similar homographies explain the scene or the
motion. In other case, the homology is accepted.

As said, when two planes are available, the corresponding homographies can be
used to obtain the fundamental matrix. The steps carried out to automatically
compute the fundamental matrix from lines is summarized in the Algorithm 1.
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Algorithm 1 Line matching, homographies and the fundamental matrix

Matches := ComputeBasicMatchesfromImages
repeat

ComputeHomography(Matches)
MatchesH := GrowMatchesfromHomography
Matches = Matches - MatchesH

until Two Homographies

if Homology Filter then
ComputeFundamentalMatrix

end if

5 Experimental Results

Many experiments have been carried out with synthetic and real images. The
homology filter just commented has been used to determine when a second
plane has been obtained. In this case the fundamental matrix can be computed
and several criteria can be used to measure its accuracy. So, with synthetic
images, where the motion and the epipoles are known, we measure the angle
between the direction of the computed epipole and the theoretical one. With
real images the theoretical epipole is not given and we show the angle of the
epipole with respect to the epipole obtained with more than 300 points using
the ”image-matching” solution [1]. On the other hand, we also measure the
first order geometric error computed as the Sampson distance (dS) for a set
of corresponding test points manually extracted and matched,

dS =
(xT

2 F21 x1)
2

(F21 x1)2
f + (F21 x1)2

s + (FT
21 x2)2

f + (FT
21 x2)2

s

(11)

being ()f and ()s the first and second components of vectors.

In case of real images, the matches are automatically obtained for the planes in
each scene (Fig. 1 and Fig. 2). In Table 1 we show the number of matches and
the ratio of good matches. In this case, once a homography has been computed,
the robust homography computation and the growing matches process has
been iteratively repeated twice. The number and quality of final matches can
be seen in Fig. 1 and Fig. 2.

As we have seen in section 4 one of the results of the homology is the in-
tersection line of the planes. We have proposed to use a homology filter to
avoid situations where a sole homography can be computed or where the ho-
mographies do not give a right homology due to noise or bad extraction. In
these cases the epipole, the fundamental matrix or the intersection line would
be badly computed. In Fig. 3 and Fig. 4 we can see the intersection lines for
one hundred executions with and without the homology filter for two pairs of
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Fig. 1. House: Image pair used to compute the homographies and the epipole. (a),
(b) Basic matches. (c), (d) Matches corresponding to the first homography. (e), (f)
Matches corresponding to the second one. (Original images from KTH, Stockholm).
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Fig. 2. College: Image pair used to compute the homographies and the epipole. (a),
(b) Basic matches. (c), (d) Matches corresponding to the first homography. (e), (f)
Matches corresponding to the second one. (Original images from VGG, Oxford).
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(a) (b)

Fig. 3. Intersection lines of two planes through the eigenvalues of the homology.
The lines corresponding to one hundred runs are represented without the homology
filter (a) and with it (b).

(a) (b)

Fig. 4. Intersection lines of two planes through the eigenvalues of the homology.
The lines corresponding to one hundred runs are represented without the homology
filter (a) and with it (b).

test images. As it can be seen the quality of the results improves significantly
applying the proposed homology filter.

Basic matches Good Final matches Good

House 148 75% 114.6 (8.91) 99% (1%)

College 196 82% 156.7 (11.09) 96% (1%)
Table 1
Matches of scenes in Fig. 1 (House) and Fig. 2 (College). Only the lines on the two
main planes are considered. We have repeated the experiments one hundred times
using the same Basic matches and we show as Final matches the mean values and,
in brackets, the standard deviation.
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Fig. 5. Mean Sampson distance for twenty test points manually matched in the
images of the House, the College and Synthetic. Median (a) and mean (b), in one
hundred executions. Mean of the angle with the three image pairs, in one hundred
executions, between the theoretical epipole and the computed one (c). These results
are shown for the three ways of computing F: FH using equation (5), eH1 using
equation (2), eH2 using equation (3).

With respect to the fundamental matrix computation, we show the mean of
the Sampson distance for twenty test points which are manually matched
(Fig. 5(a),(b)). We consider the images of the House, the College, and two
Synthetic images. The synthetic images have been created from straight seg-
ments in two planes. We have added white noise on the projected tips. This
noise has half pixel standard deviation in the segment direction and ten times
less in the perpendicular direction. The experiment has been repeated one
hundred times and we show mean and median values. In most cases the er-
ror is similar to the obtained with many points which are all over the image
(with the fundamental matrix computed with more than 300 points using the
”image-matching” software [1], the Sampson distance is about 0.35 pixels).
We show the results using the equation (5), using the equation (2) and us-
ing the equation (3). The Sampson distance is similar for the three presented

13



ways of computing the fundamental matrix, although it is a bit worse using
equation (3). Probably the reason is that the first homography is computed
more accurate than the second one, because of the iterative method used to
compute them. The angle between the epipoles is also shown (Fig. 5(c)). The
epipole is a bit better computed using equation (2) than using equation (5),
but the difference is nearly null.

Additionally we have tested the results when the fundamental matrix is di-
rectly computed from the intersection points of the automatically matched
lines. We have the matched lines corresponding to each homography. Therefore
they are coplanar and we can get the cross-points between them as correspond-
ing points. We apply the eight-point algorithm with ransac [5] to compute the
fundamental matrix (FP). Then, we compare the mean of the Sampson dis-
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Fig. 6. Mean Sampson distance for twenty test points manually matched in the
images of the House, the College and Synthetic. Median (a) and mean (b), in one
hundred executions. Mean of the angle with the three image pairs, in one hundred
executions, between the theoretical epipole and the computed one (c). These results
are shown for a fundamental matrix computed with homographies (FH), and for a
fundamental matrix computed with cross-points (FP).
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Intersection lines of two planes through the eigenvalues of the homology. The
original images (a)-(d) have been obtained from [14].

tance when we use a fundamental matrix computed with the homographies
(FH) or with these intersection points of the lines (FP) (Fig. 6(a),(b)). The
results with this FP are worse than the ones computed with the homographies.
This confirms that the general method to compute the fundamental matrix
does not work better than the proposed multiplane method when there are
two planes. In addition, the noise is concerning more to these cross-points
than to the lines and the homographies, as each of these points accumulate
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the orientation errors from the two lines used to compute it. For the angle be-
tween the epipoles, we find again worse performance using cross-points than
using the proposed method with lines and homographies (Fig. 6(c)). Here it
is important to notice that we have used an anisotropic noise model for the
tips of the segment (ten times bigger in the line direction than in the perpen-
dicular direction), while an isotropic noise model gives worse results using the
cross-points (FP).

We also show results with more images from outdoor and indoor scenes (Fig.
7). Here, we only show the image pair with the intersection lines from one
hundred runs that passed the homology filter. We can see that the homology
filter works even if both planes are not the same size (Fig. 7(a),(b)). What
happens in this case is that many times the two found homographies are
corresponding to the big plane, but the homology filter discard them properly
giving only the fundamental matrix, the epipoles and the intersection line of
the planes, as result, when the homology is well conditioned.

In the images of Fig. 8 we show the case where only one homography can
be obtained because the baseline is nearly null, what is explained by one
homography. So, in one hundred iterations the algorithm has not found any
correct pair of homographies because the homology filter has detected that
in case of computing two homographies they were the same one. At the same
time, it can be seen that the number of correct matches is very high (in this
case more than 99%).
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Fig. 8. Computation of matches in image pair of nearly null baseline. The features
all over the image are explained with only one homgraphy.
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6 Conclusions

We have presented the computation of epipoles and the intersection of the
planes in two views from automatically matched lines. This is carried out
through homographies corresponding to planes, which are quite usual in man
made environments. The robust computation of matches based on homogra-
phies works especially well to automatically eliminate outliers which may ap-
pear when there is no information of scene structure or camera motion. The
fundamental matrix is properly obtained if the images correspond to motion
and scenes which are geometrically well conditioned. If that does not happen,
what is detected with the homology filter, a homography is given as result of
the algorithm.

Many experiments have been carried out and a summary of the most relevant
are presented to show the goodness of the ideas presented. The main contri-
bution of the work is that all is made automatically with only previous tuning
of some parameters for image based matching. It is a quite good solution for
man made scenes, because in many situations no more than two good planes
are available. We are actually working with moment invariants to get a better
basic set of matches robust to wide baseline images.
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