
DIIS - I3A
Universidad de Zaragoza
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Abstract. This paper addresses the recovery of epipolar geometry us-
ing homographies computed automatically from matched lines between
two views. We use lines because they have some advantages with respect
to points, particularly in man made environments. Although the funda-
mental matrix cannot be directly computed from lines, it can be deduced
from homographies obtained from them. We match lines lying on a plane,
estimating simultaneously a planar projective transformation with a ro-
bust method. A homography allows us to select and to grow previous
matches that have been obtained combining geometric and brightness
image parameters. Successive homographies can be computed depending
on the number of planes in the scene. From two or more, the fundamental
matrix can be obtained.

1 Introduction

The recovery of epipolar geometry has been more broadly treated using points
[1]. The use of lines as image features has some advantages, mainly in man
made environments. Straight lines can be accurately extracted in noisy images,
they capture more information than points, and they may be used where partial
occlusions occur. The epipolar geometry cannot be computed directly from lines,
but it can be made through homographies [2].

Line matching, which has also been previously treated [3], is more difficult
than point matching [4] because the end points of the extracted lines are not re-
liable. Besides that, there is no geometrical constraint, like the epipolar, for lines
in two images. The putative matching of features based on image parameters has
many drawbacks, resulting in non matched or wrong matched features.

Perspective images of planar scenes are usual in the perception of man made
environments, and how to work with them is well known. Points or lines on the
world plane in one image are mapped to points or lines in the other image by
a plane to plane homography, also known as a plane projective transformation
[5]. This is an exact transformation for planar scenes or for small baseline image
pairs. We match lines between two images computing simultaneously a planar
projective transformation.
? This work was supported by projects DPI2000-1265, DPI2000-1272.



So, the first homography allows us to select and to grow previous matches
which have been obtained combining geometric and brightness image parameters
[6]. After that, successive homographies can be computed until no more of them
could be obtained. As we use least median of squares to compute the homography
and several homographies are supposed, we play with some percentile to select
the inliers and outliers. From at least two homographies the fundamental matrix
can be directly obtained.

After this introduction, we will present the process to obtain the initial
matches which will be used to compute the homography (§2). The robust esti-
mation of homographies from lines, and the process to obtain the final matches
using geometrical constraints given by the homographies, is explained in §3.
After that, we present in §4 how to compute fundamental matrix once we have
information about two homographies of the scene. Experimental results with real
images are presented in §5. Finally, §6 is devoted to exposing the conclusions.

2 Initial matches

Lines are extracted using our implementation of the method proposed by Burns
[7]. This method computes spatial brightness gradients to detect the lines in the
image. Pixels having the gradient magnitude larger than a threshold are grouped
into regions of similar direction of brightness gradient. These groups are named
line-support regions (LSR). A least-squares fitting into the LSR is used to obtain
the line. For each one, we store four geometric parameters: midpoint coordinates
(xm, ym), the line orientation (θ) and the length of the extracted line (l). We
also use two brightness attributes: agl and c (average grey level and contrast).

We determine correspondences between lines in two images without knowl-
edge about motion or scene structure. The initial matching is made using the
weighted nearest neighbor. Naming rg the difference of geometric parameters
between both images (1, 2), rg = [xm1 − xm2, ym1 − ym2, θ1 − θ2, l1 − l2]

T ,
and rb the variation of the brightness parameters between both images, rb =
[agl1 − agl2, c1 − c2]

T , we can compute two Mahalanobis distances, one for ge-
ometric parameters, dg = rgT S−1rg, and the other for brightness parameters,
db = rbT B−1rb. To establish the matches, we test the geometric and the bright-
ness compatibility. A line in the first image can have more than one compatible
line in the second image. From the compatible lines, the line having the smallest
dg is selected as putative match. Details are in [6].

3 From lines to homographies

The representation of a line in the projective plane is obtained from the analytic
representation of a plane through the origin: n1x1 +n2x2 +n3x3 = 0. The equa-
tion coefficients n = (n1, n2, n3)T correspond to the homogeneous coordinates of
the projective line. All the lines written as λn are the same as n. As cameras have
a limited field of view, observed lines have usually n3 close to 0. Similarly, an



image point p = (x1, x2, 1)T is also an element of the projective plane. A projec-
tive transformation between two projective planes (1 and 2) can be represented
by a linear transformation H21, in such a way that p2 = H21p1. Considering the
above equations for lines in both images, we have n2 =

[
H−1

21

]T
n1. A homog-

raphy requires eight parameters to be completely defined, because there is an
overall scale factor. A corresponding point or line gives two linear equations in
terms of the elements of the homography. Thus, four corresponding lines assure
a unique solution for H21, unless three of them are parallel or intersect in the
same point. To have an accurate solution it is interesting to have the lines as
separate as possible in the image.

3.1 Computing homographies from corresponding lines

Here, we will obtain the projective transformation of points (p2 = H21p1), but
using matched lines. To deduce it, we suppose the start (s) and end (e) tips
of a matched line segment to be ps1,pe1,ps2,pe2, which will not usually be
corresponding points. The line in the second image can be computed as the
cross product of two of its points (in particular the observed tips) as

n2 = ps2 × pe2 = [ps2]×pe2, (1)

where [ps2]× is the skew-symmetric matrix obtained from vector ps2.
As the tips belong to the line we have, pT

s2n2 = 0; pT
e2n2 = 0. As the tips of

the line in the first image once transformed also belong to the corresponding line
in the second image, we can write, pT

s1H
T
21n2 = 0; pT

e1H
T
21n2 = 0. Combining

with equation (1) we have,

pT
s1H

T
21[ps2]×pe2 = 0 ; pT

e1H
T
21[ps2]×pe2 = 0. (2)

Therefore each couple of corresponding lines gives two homogeneous equa-
tions to compute the projective transformation, which can be determined up
to a non-zero scale factor. Developing them according to the elements of the
projective transformation, we have

(
Axs1 Ays1 A Bxs1 Bys1 B Cxs1 Cys1 C
Axe1 Aye1 A Bxe1 Bye1 B Cxe1 Cye1 C

)
h =

(
0
0

)
,

where h = (h11 h12 h13 h21 h22 h23 h31 h32 h33)T is a vector with the elements of
H21 , and A = ys2−ye2, B = xe2−xs2 and C = xs2ye2−xe2ys2, being (xs1, ys1)
the coordinates of the start tip ps1.

Using four corresponding lines, we can construct a 8×9 matrix M. In order to
have a reliable transformation, more than the minimum number of matches and
an estimation method may be considered. Thus from n matches a 2n× 9 matrix
M can be built, and the solution h can be obtained from SVD decomposition
of this matrix [5]. In this case the relevance of each line depends on its observed
length, because the cross product of the segment tips is related to the segment
length.



It is known that a previous normalization of data avoids problems of numer-
ical computation. As our formulation only uses image coordinates of observed
tips, data normalization proposed for points [8] has been used.

3.2 Robust estimation

The least squares method assumes that all the measures can be interpreted with
the same model, which makes it very sensitive to out of norm data. Robust es-
timation tries to avoid the outliers in the computation of the estimate. From
the existing robust estimation methods [9], we have chosen the least median
of squares method. This method makes a search in the space of solutions ob-
tained from subsets of minimum number of matches. The algorithm to obtain
an estimate with this method can be summarized as follows:

1. A Monte-Carlo technique is used to randomly select m subsets of 4 features.
2. For each subset S, we compute a solution in closed form HS .
3. For each solution HS , the median or other percentile MS of the squares of

the residue with respect to all the matches is computed.
4. We store the solution HS which gives the minimum percentile MS .

A selection of m subsets is good if at least in one subset the 4 matches are
good. Assuming a ratio ε of outliers, the probability of one of them being good
can be obtained [10] as, P = 1− [

1− (1− ε)4
]m.

Once the solution has been obtained, the outliers can be selected from those
of maximum residue. As in [9] the threshold is fitted proportionally to the stan-
dard deviation of the residue, estimated as [10], σ̂ = 1.4826 [1 + 5/(n− 4)]

√
MS .

Assuming that the measurement error is Gaussian with zero mean and standard
deviation σ, then the square of the residues follows a χ2

2 distribution with 2
degrees of freedom. Taking, for example, that a 95% probability is established
for the line to fit in the homography (inlier) then the threshold will be fixed to
5.99 σ̂2.

3.3 Growing matches from homography

From here on, we introduce the geometrical constraint introduced by the esti-
mated homography to get a bigger set of matches. Thus final matches consist
of two sets. The first one is obtained from the initial set of matches selected
after the robust computation of the homography that passes an overlapping test
compatible with the transformation of the segment tips additionally. The second
set of matches is obtained using all the segments not matched initially and those
previously rejected. With this set of lines a matching process similar to the basic
matching is carried out. However, now the matching is made with the nearest
neighbor segment transformed with the homography. The transformation is ap-
plied to the end tips of the image segments using the homography H21 to find,
not only compatible lines but also compatible segments in the same line. In the
first stage of the matching process, there was no previous knowing of camera



motion. However, in this second step the computed homography provides infor-
mation about an expected disparity and therefore the uncertainty of geometric
variations can be reduced.

3.4 Several homographies

Previously, we have explained how to determine a homography from lines, assum-
ing some of the lines used are outliers. The first homography can be computed
in this way, assuming that a certain percentage of matched lines between im-
ages are good matches of lines in the plane to be extracted, and the others are
outliers. We have not got a priori knowledge about which plane of the scene is
going to be extracted first, but the probability of being chosen increases with the
number of lines on it. If we execute the process two times, the same plane will be
extracted with high probability, unless the number of lines in two main planes
of the scene are similar. So, the only reasonable way to extract a second plane
of the scene consists of eliminating lines used to determine first homography,
expecting the second plane to have the largest number of lines then. Here we
are assuming that lines belonging to the first plane do not belong to the second
plane. That is true except for the intersection line between both planes.

So, once we have computed a first homography we should eliminate all lines
belonging to that plane, that is to say, the lines which verify the homography.
Probably it is better to eliminate all lines belonging to the region where the
plane has been extracted, but at the moment it is not easy to determine the
limits of the region, and other planes could exist inside.

4 Fundamental matrix from homographies

Fundamental matrix is a 3 × 3 matrix of rank 2 which encapsulates the epipo-
lar geometry. It only depends on cameras’ internal parameters and on relative
motion.

As the images are obtained with the same camera whose projection matrix
in a common reference system are P1 = K[I|0], P2 = K[R|t] (being R the
camera rotation, t the translation and K the internal calibration matrix), then,
the fundamental matrix can be expressed as F21 = K−T ([t]×R) K−1. It can be
computed from corresponding points [1], in such a way that epipolar constraint
for points in both images can be expressed as pT

2 F21 p1 = 0.
It can also be computed from homographies obtained through two or more

planes. In this way when there are planar structure, corresponding lines in two
images can be used. If at least two homographies (Hπ1

21 ,Hπ2
21) can be computed

between both images corresponding to two planes (π1, π2), a homology H =
Hπ1

21 ·(Hπ2
21)−1, that is a mapping from the second image into itself, exists. Under

this mapping the epipole in second image (e2) is a fixed point and therefore
e2 = He2. So (e2) may be determined by the eigenvector of H corresponding
to unary eigenvalue [5]. From two planes, the fundamental matrix can be either
computed as F21 = [e2]×Hπ1

21 or F21 = [e2]×Hπ2
21 .



Our algorithm consists of an iteration of robust estimation of a homography
and elimination of lines verifying it. We can iterate while planes are extracted.
Then, if we have extracted two or more, we can compute the fundamental ma-
trix as we have described previously. If we have estimated a first homography,
any new homography will not be good for fundamental matrix estimation. A
fundamental matrix computed from two close planes is inaccurate. This can be
avoided checking the condition number of the homology H = Hπ1

21 · (Hπ2
21)−1. If

Hπ1
21 and Hπ2

21 are two homographies of the same plane, the condition number
of the homology H would be close to 1. We demand a greater value than a
threshold. However, a large value is not suitable, because large condition num-
bers indicate a nearly singular matrix. So the condition number should fit into
a fixed range. In this way, if second homography leads us to a homology with a
condition number out of the fixed range, it is discarded and lines belonging to
that plane are also eliminated, in order to let us get a new homography with the
rest.

Moreover, knowledge of one homography of the scene restricts others. Lin-
ear subspace constraints on homographies have been previously derived in [11].
They showed that the collection of homographies of multiple planes between a
pair of views span a 4-dimensional linear subspace. This constraint, however,
requires the number of planes in the scene to be greater than 4. Zelnik-Manor
and Irani apply it [12], replacing the need for multiple planes with the need
for multiple views. They only need two planes, and often a single one (under
restricted assumptions on camera motion). We work only with two images, and
more than four planes in a scene are not always available, but easier constraints
are possible. In fact, the knowledge of first homography allows us to compute
the second only from three matched lines, and knowledge of first and second let
us compute the third from two.

This method may fail if only one plane in the scene exists, or in case of pure
rotation, because epipolar geometry is not defined and only one homography
can be computed, but an automatic detection of this situation is made through
condition number of the homology.

5 Experimental Results

The proposed method works properly with indoor images and outdoor images
provided that at least two planes, containing enough lines, exist in the scene.

To measure the goodness of the computed fundamental matrix we use the
first order geometric error computed as the Sampson distance [5] for points
extracted and matched manually,

∑

i

(pT
2 F21 p1)2

(F21 p1)2f + (F21 p1)2s + (FT
21 p2)2f + (FT

21 p2)2s
(3)

here ()f and ()s indicate the first and second components of the corresponding
vectors.
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Fig. 1. (a) and (b) Synthetic images to compute the fundamental matrix. (c) Matches
belonging to each plane in one execution. We show only one image because all matches
are correct. (d) Sampson distance, with the two fundamental matrices computed from
homology for 100 iterations and theoretical fundamental matrix. Sampson distance for
theoretical matrix gives us a measure of quality of manually selected points. Notice
that the average distance for fundamental matrices computed is only about a pixel
over theoretical matrix.

The square root resulting on dividing such value between the number of
points used, gives us a measure in pixels comparable with other pairs of images.
One pixel of error could have been introduced in the manual selection of point
matches. Since point matches are different for every image pair, measure noise
is also different, and comparisons should be done with care.

The first experiment is made with synthetic images (Fig. 1). The motion of
the camera includes translation and rotation. The first image camera centre is
on an equidistant line to the planes showed, four meters from each one. The
motion is a rotation of 15 degrees using as axis the intersection line of both
planes. We can compute theoretically the epipole and the fundamental matrix
knowing the camera motion. The theoretical epipole can be compared with the
obtained epipole, computing the angle of both epipoles in relation to the camera
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Fig. 2. Real images to compute the fundamental matrix. (a) and (b) Initial matching
of straight lines. (c) and (d) Matches in the first homography. (e) and (f) Matches
in the second homography. In both extracted planes we obtain new matches, whereas
outliers are reduced significantly. (Images supplied by D. Tell, KTH Stockholm).



center. We have done 100 executions forcing the condition number over 1.4. The
mean value of this error is 1.7628 degrees with a standard deviation of 0.6037.
We want to emphasize that, in this case and for a standard execution, all final
matches of lines between images are correct and are considered as belonging to
the correct plane.

We also show an experiment carried out with real outdoor images. Initial
matches of lines and final matches obtained computing two homographies in
one execution can be seen in Fig. 2. Outliers are common in initial matching,
whereas in final matching they are rare. Moreover, lines not considered initial
matches, appear after estimating the homography. However, lines not belonging
to the region of the plane in the image also appear in this phase, because they
are close to satisfying the constraint imposed by it, because they are nearly
collinear with corresponding epipolar line. We think they do not spoil neither
the computed homography, nor therefore the fundamental matrix estimation.
We have executed the algorithm 200 times, ordering executions by condition
number. In this experiment the condition number has not been limited in any
way, in order to analyze its influence on the quality of fundamental matrix. In
Fig. 3, we show the Sampson distance and the condition number obtained in
each execution. We can notice that it exists an interval (from execution 125 to
185 approximately), where Sampson distance takes low values. That is to say,
we can use condition number to determine when an execution is good. In this
experiment, an execution with condition number between 1.53 and 1.64 can be
considered good. Out of this range, fundamental matrix should be discarded,
and a new execution done.

6 Conclusions and future work

We have presented a method to compute automatically the fundamental matrix
between two images using lines.

The proposed method works properly with indoor images and outdoor images
provided that at least two planes, containing enough lines, exist in the scene. The
condition number of the obtained homology can be used to decide the goodness
of the fundamental matrix.

However, matches obtained not always belong to the corresponding region
of the plane extracted. Lines used for the computation of one homography are
discarded for the following homographies, but we should check that regions con-
taining such lines are not overlapping. Another improvement consists of con-
straints between homographies. Knowledge of one homography of the scene re-
stricts others. The use of regions associated to planes and constraints between
homographies will lead us to a faster and more accurate algorithm.
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