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Abstract This paper considers an operation scheduling problem of elective patients: given
an ordered list of patients, schedule them for surgery in thenext time blocks previously
booked during a specific duration of time, theDaily Working Time(DWT). We assume that
the duration of surgeries and cleaning time after each surgery are random variables with
normal probabilistic density function. Using real data from the “Lozano Blesa” Hospital
of Zaragoza(LBHZ), their average and standard deviations are computed, and based on
these values, we propose three optimization problems. (i) The first one is a simple Mixed
Integer Linear Programming (MILP) problem that is based only on the average duration of
surgeries and schedules the patients with the objective of obtaining a givenDaily Surgery
Time(DST) that obviously should be smaller than the DWT. (ii) By assuming some average
and standard deviation of both, surgeries and cleaning times, a Mixed Integer Quadratic
Constraint Programing (MIQCP) model is proposed that additionally of obtaining a given
DST, allows to impose aMinimum Confidence Level(MCL) not exceeding the DWT by a
chance constrain. (iii) The objective of obtaining a given DST is replaced by maximizing
this DST in a New-MIQCP (N-MIQCP) that even if has a bigger complexity, can be used
to estimate the “appropriate” target DST for a given MCL in the MIQCP model. To solve
large instances of problems, aReceding Horizon Strategy(RHS) is proposed. Moreover, a
discrete event simulation model of scheduling in the LBHZ ispresented and the solutions
obtained using realistic data with different approaches/models are compared. Finally, we
propose a Decision Support System based on MIQCP and N-MIQCPthat will help doctors
in the scheduling of the LBHZ.
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1 Introduction

The Operation RoomOR is one of the most expensive material resources of the hospi-
tals. Approximately 60% of patients need it at some point during their hospital stay (NoA,
2005). Surgical costs typically account for approximately40% of the hospital resource
costs (Macario et al, 1995), while surgeries typically generate around 67% of hospital rev-
enues(Jackson, 2002). Additionally, the demand, for surgical services is increasing due to
the aging population. It is obvious that good planning and scheduling methods are necessary
to improve the efficiency of the OR.

Researchers frequently differentiate betweenstrategic (long term), tactical (medium
term) andoperational(short term) approaches to situate their planning or scheduling prob-
lems. Those works are furthermore categorized according tothe decision level they address,
i.e., to whom the particular decisions applies. Three classical levels are considered in bibli-
ography (Abdelrasol et al, 2013):

1. case mix planningis a long term strategic planning that involves the hospital’s mission
and its translation into hospital resource capacity planning on the basis of highly ag-
gregated information. Decision on the total supply of the most expensive and important
resources are based on the hospital’s mission.

2. master surgery scheduleis a medium term tactical approach that determines how much
operating room time is assigned to different surgeon groupson each weekday. These
time allocations are commonly referred to as time block booking.

3. scheduling of patientsis a short term operational approach to fix the patients that should
be operated in the next time blocks.

In this paper, different mathematical programming models for scheduling of non-urgent
surgeries (level 3 stated before) are proposed. These models are evaluated considering their
computational complexity and quality of solution using a case study given by the Orthopedic
Surgery Department of the Hospital“Lozano Blesa” Hospital of Zaragoza(LBHZ).

Due to the high computational complexity of the proposed models, aReceding Horizon
Strategy(RHS) is used. This strategy is commonly used in the control of discrete event sys-
tems (Gokbayrak, 2011a,b), where a sliding time horizon window is fixed. In our approach
RHS allows us to solve large instance of the scheduling problem by obtaining sequentially
suboptimal solutions with a much lower computational time.A similar idea based on solving
smaller subproblems is used in (Wu et al, 2013). They proposea progressive time-oriented
decomposition heuristic framework for the capacity multi-level lot sizing problem.

The proposed scheduling problems will be used in the Orthopedic Surgery Department
of the LBHZ. We propose aDecision Support Systemthat helps doctors to perform a rapid,
efficient and dynamic scheduling. It includes several features that enable to:

– update the waiting listby the inclusion of new arrival patients and by removing the
patients operated when these events occurs.

– performs a dynamic scheduling. Once the first scheduling is computed and the patients
confirm either their attendance or their absence, the DSS adds dynamically some con-
straints to the model and the scheduling is iterated.

– update and customize internal data. After each performed surgery, the data related with
its duration and the doctor who has performed it are updated.

The operation planning and scheduling of elective patientsis a problem studied in litera-
ture by many researchers. For a state of the art we can refer the reader to the survey (Cardoen
et al, 2010) and the references herein. According to the descriptive fields proposed in (Car-
doen et al, 2010), our paper can be classified as: “operation scheduling of elective inpatients
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by Mixed Integer Programing Problems with a multicriteria objective” (waiting time of pa-
tients and OR utilization). In addition, the surgery durations are not constant, but random
variables and the problem is based on real data.

Some works combine planning and scheduling problem of elective patients with the ur-
gent ones by using stochastic models (see, for example, (Lamiri et al, 2008a) and (Lamiri
et al, 2008b)). The scheduling and planning of resources have been studied for other prob-
lems, as for example home care services as in (Lanzarone et al, 2010) and (Lanzarone et al,
2012). Petri net models have been used for modeling and management of healthcare systems
(see, for example, (Amodio et al, 2009; Dotoli et al, 2009; Bernardi et al, 2014; Mahulea
et al, 2017)). The contributions of this paper with respect to the previous results are: (1)
the application of three different mathematical programming models to the particular prob-
lem in the studied hospital, (2) a chance-constrained approach considering both maximizing
occupation rate of OR and respecting the order of patients onthe waiting list; and (3) com-
parison, analysis and synthesis of the simulation results using realistic data from hospital.

This paper extends the results in (Clavel et al, September 2016) where anMixed Inte-
ger Linear Problem(MILP) was proposed for operation scheduling of the elective patients.
Considering thedaily surgery time(DST) as the total time in a day that an OR is used for
surgery, the MILP problem has the objectives of (a) to obtaina given DST and (b) to respect
as much as possible the order of patients in the waiting list.The MILP obtains the schedul-
ing based only on the average durations of each type of surgery that can be computed by
using historical data. However, two problems may appear,

– P1 - the obtained scheduling could be not robust enough if the surgery durations have
large standard deviations. This uncertainty could result in uncomfortable situations for
the medical management staff, either the doctors that usually may lengthen their working
day either low utilization of the ORs is obtained.

– P2 - a target DST is an input parameter in the optimization problem and in some cases it
is difficult to select a good value for it in order to get solutions not exceeding theDaily
Working Time(DWT) but having a good OR utilization.

In order to overcomeP1, we propose in this paper anMixed Integer Quadratic Con-
strained Problem(MIQCP) that uses not only the average durations of the surgeries but
also their standard deviations. In this way, each type of surgery has a pair of values (mean
and standard deviation) that define its duration. Additionally, it considers the cleaning time
between surgeries as random variables (with mean and standard deviation). These new as-
sumptions allow us to introduce some chance constraints allowing to impose aMinimum
Confidence Level(MCL) not exceeding the Daily Working Time.

To tackle the problemP2 stated before we change the objective function. Instead of
trying to obtain a given DST (as input parameter) we considerthe objective of maximizing
this DST (making it variable) keeping the chance constraints. A higher complexity New-
MIQCP (N-MIQCP) is proposed.

The paper is organized as follows. In Sec. 2 related works proposed in literature are
analyzed and comparing with our approach. Sec. 3 describes the problem statement and
provides a motivation example. Sec. 4 shows the proposed mathematical programming
problems (MILP, MIQCP, and N-MIQCP) to schedule the surgeries. In Sec. 5 heuristic ap-
proaches to reduce the computational times are presented. Using realistic data, in Sec. 6
some results obtained by implementing the problems in a machine with an Intel Core i5 and
8 GB of memory using a computer software (CPLEX) are analyzedand compared. ADeci-
sion Support System(DSS) for the daily scheduling in the studied department is explained
in Sec. 7. Finally, in Sec. 8, we provide the conclusions and future works.
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2 Related work

Different approaches have been proposed in the literature to address uncertain parameters in
optimization problems. They can be divided in three main groups: stochastic programming,
distributionally robust optimization, and robust optimization. In stochastic programming
(Birge and Louveaux, 2011; Shapiro et al, 2009), uncertain parameters are modelled as ran-
dom variables and their probability distribution is assumed to be know. In this way stochas-
tic programming requires both a strong statistical background to manage the mathematical
models and a thorough knowledge of the real problem to derivethe probability distribution,
which are not always easy to derive. The resulting optimization problems can be difficult to
solve, in addition, if the used distributions are not reliable, the solutions produced may not
prove to be robust. In other hand, distributionally robust optimization (Ben-Tal et al, 2010;
Goh and Sim, 2010) and ambiguous chance-constrained approaches (Erdŏgan and Iyengar,
2006) assume that the probability distribution is not known, but lies within a know family
of distribution. The problem is difficult but computationally tractable approximations ex-
ists. Robust optimization approaches (Ben-Tal and Nemirovski, 1998; Bertsimas and Sim,
2003) assume that each uncertain parameter belongs to a given convex set, and no detailed
knowledge of its probability distribution is required.

In our approach, it is assumed that the uncertain parameters(surgery duration and clean-
ing time) follow a normal distribution and consequently, the expected total duration of an
OR working day also follows a normal distribution. In this way, a resource capacity chance
constraint can be introduced by requiring that the probability of overtime be no more than a
given scalarα. The idea of using a chance constraint for the scheduling of ORs is also used
in (Shylo et al, 2012; Hans et al, 2008). The authors in (Shyloet al, 2012) present an opti-
mization framework for batch scheduling within a block booking system that maximizes the
expected utilization of ORs resources subject to a set of probabilistic capacity constraints.
They propose an algorithm that iteratively solves a series of mixed-integer programs that are
based on a normal approximation of cumulative surgery duration. In (Hans et al, 2008) con-
structive and local search heuristics for maximization of ORs utilization and minimization
of the overcoming risk is proposed. In their model, to address the randomness of surgery
processing times, a planned time slack is reserved in each scheduling block, which is func-
tion of total mean and variance of surgeries assigned to the corresponding block. When
determining an appropriate size of the planned slacks, the authors assume that the sum of
surgery durations follows a normal distribution.

The previously explained approaches (Shylo et al, 2012; Hans et al, 2008) require to
set in advance the patients that are going to be scheduled in the next blocks, therefore in
these approaches all considered patients must be scheduledin one of the available blocks.
For this, both approaches start with an initial scheduling obtained through the scheduling
rule: first-fit probabilistic. Following this rule, sequentially each surgery is assigned to the
first available block for which the probabilistic capacity constraint is satisfied after the as-
signment. Once the initial scheduling is obtained the expected occupation rate of the first
blocks are improved by rescheduling the surgeries. In this way, the last blocks are totally or
partially released.

In our case, an important criterion is to respect as much as possible the order of patients
in the waiting list. That is, first patients should be scheduled in the first surgical block, while
last patients should be preferably scheduled in the last block. This consideration is not taken
into account in the previously explained approaches because:
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1. When obtaining the initial solution, patients who are farbehind on the waiting list, but
are suitable to complete a surgical block, may be scheduled.

2. Once the initial scheduling has been obtained following the first-fit probabilistic rule,
the patients are rescheduled, and in the final solution any patient can be assigned to any
surgical block.

Unlike (Shylo et al, 2012; Hans et al, 2008), our approach does not require to know in
advance the set of patients that should be scheduled in the next surgical blocks, since any
patient on the waiting list may or may not be scheduled. Alternatively, we propose a linear
cost function composed by two balanced terms that favors patients to be scheduled in an
orderly manner at the same time that maximizes the expected occupation rate of the OR.

A realistic comparison between the approaches proposed in the related works (Shylo
et al, 2012; Hans et al, 2008) and the one explained in this work is performed and ana-
lyzed in Sec.6. Realistic data of surgery duration and surgery arrival obtained from the stud-
ied department has been considered. For each one of the threeapproaches, the scheduling
obtained for 50 scenarios and 2000 one-year replications has been analyzed. The average
results shows that:

1. Similar occupation rate/confidence level is obtained using (Shylo et al, 2012) and our
approach. However, using (Hans et al, 2008) a slightly worseoccupation rate is obtained
due to only 3 ORs are scheduled per week and (Hans et al, 2008) works better with a
high volume of ORs.

2. According to the order of the patients, a far more ordered scheduling is obtained using
our approach due to the fact that it is considered in the definition of the problem.

3 Problem Statement

Let S = {s1, s2, . . . , s|S|} be the set of surgery types that can be performed in the consid-
ered hospital department and letd : S → R>0 be theduration function: d(si) is the duration
of the surgerysi (the time from the moment when the patient enters in the OR until she/he
leaves the OR). Similarly, letc : S → R>0 be thecleaning time functionafter surgeries:
c(si) is the cleaning time of the OR after surgerysi.

Let us assume that the durationd(si) of each type of surgerysi ∈ S is a random variable
with normal probability density function (pdf)d(si) = N(µd(si), σd(si)), whereµd(si) is
the average andσd(si) is the standard deviation. The average and the standard deviation of
each type of surgery are computed by using historical data from the hospital (for our case
study we use the data of the last two years). However, if no historical data are available,
these values can be initially assigned by the medical doctors based on their experience and
external information. Moreover, bothµ/σ are updated each time a new surgery is performed.
In addition, we assume that the time to clean the OR after eachtype of surgerysi ∈ S has
been performed is also a random variables with normal pdf, i.e.,c(si) = N(µc(si), σc(si)).

Furthermore, let us considerW = {w1, w2, . . . , w|W|} an ordered list of patients such
that ifwj ∈ W, j is the order number of the patientwj in the waiting list. Letsurg : W → S

be the function that for a given patientwj ∈ W gives the surgery that should be performed.
For example, if the surgery that should be performed on patient wj is si, thensurg(wj) =
si.

Finally let us assume an ordered set of time blocksB = {b1, ..., b|B|}, whereb|B| is
the block corresponding to the latest date. Each blockb ∈ B has a fixed duration denoted
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by l(b). For our case of study each block represent one OR working day, so we assume the
same duration for each blockb ∈ B. This duration is the DWT defined asX.

The parameters considered in thisScheduling Problemare as follows:

1. an ordered waiting listW composed by|W| = n patients defined as:
– a row vectorP o = [1 . . . n] representing the preference order of the patients in the

waiting list.
– a row vectorµd = [µd(surg(w1)) . . . µd(surg(wn))] representing the average dura-

tion of the surgeries in the waiting list.
– a row vectorσd = [σd(surg(w1)) . . . σd(surg(wn))] representing the standard devi-

ation of duration associated with the corresponding surgeries in the waiting list.
– a row vectorµc = [µc(surg(w1)) . . . µc(surg(wn))] representing the average dura-

tion of cleaning times after surgeries.
– a row vectorσc = [σc(surg(w1)) . . . σc(surg(wn))] representing the standard devi-

ation of the duration of cleaning times after surgeries.
2. a setB composed by|B| = m time blocks defined as:

– a row vectorLB = [l(b1) . . . l(bm)] representing the duration of the time blocks.

For each time block to scheduleb1, b2 · · · bm there exist a binary decision vectorS1,S2 · · ·Sm

with a dimension equal to the number of the patients in the waiting listn = |W|. If Si[j] = 1
then surgery of patientwj should be performed in working dayi ≤ m.

The goal of this approach is the assignment of the patients from the waiting listW to
the set of time blocksB (each patient being scheduled at most once) with the objectives,

– O1 - maximize the DST (daily surgery time) of each blockb ∈ B;
– O2 - respect as much as possible the order of the patients inW.

Moreover a minimum guarantee of not expected overtime in each block time should be fixed.
�

Notice that for our particular case of study, we assume the same daily working timeX
for all days to schedule. However, this assumption can be easily relaxed assuming different
values. Nevertheless, for sake of clarity, in this paper, weprefer to use the sameX.

Let us introduce, by means of an small example, an illustration of a simplified hypothesis
followed by the kind of desired result.

Example 1Let us assume a waiting listW composed by|W| = n = 10 patients defined by
eps. (1) to (5). Moreover let us consider a set of three time blocksB = {b1, b2, b3} to sched-
uled having the same duration of seven hours, i.e.,l(bi) = X = 7 [hours]= 420[minutes]
∀i ∈ {1...3}.

P o = [1 2 3 4 5 6 7 8 9 10] (1)

µd = [75 153 90 75 202 45 97 85 111 133] (2)

σd = [23 23 19 23 45 12 21 24 23 24] (3)

µc = [20 20 20 20 20 20 20 20 20 20] (4)

σc = [10 10 10 10 10 10 10 10 10 10] (5)

One possibility of obtaining a computationally tractable solution for scheduling is to
consider only the average duration of the surgeries, while cleaning times are ignored. So,
instead of scheduling the patients in the available DWT of seven hours, the objective could
be to impose a DST of, for example, 80% of the DWT, i.e.,0.8× 420 = 336[minutes]. The
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rest of the time, i.e.,420− 336 = 84 minutes could be used for cleaning and to absorb any
unexpected delay.

The strategy explained before has been used in the MILP problem explained in Sec. 4.1
and Tab. 1 shows a possible scheduling solution. Each row of this table represents the op-
eration scheduling of one time block. The first column represents the ordinal number of the
time blocks (or OR working day); the next four columns indicate the patients that should be
operated (∅ means no surgery). The sixth column is the DST rate of the solution (calculated
as the sum of the average durations of the surgeries divided by the total time, i.e.,420[min]);
finally, the last column indicates the confidence of not exceeding the total time considered
as independent sum of normal random variables. Notice that the surgery of patientw6 has
not been scheduled because others are more suitable to obtain DST closer to the objective
(80%).

Table 1 Operation scheduling of the list of patients defined by eqs. (1) to (5) for an target DST rate of 80%
and 3 time blocks of 7 hours.

Day Sur. 1 Sur. 2 Sur. 3 Sur. 4 DST (%) Conf. (%)

1 w1 w2 w9 ∅ 80.71 68.56
2 w3 w4 w7 w8 82.61 44.21
3 w5 w10 ∅ ∅ 79.76 80.24

Since the MILP schedules the patients without a chance constraint imposing a confi-
dence level not exceeding the total time, working days with high risks of exceeding the
DWT of 420 minutes are obtained (e.g., day 2 has a probability of 65.79%of exceeding the
DWT).

Previously to analyze the proposed solution obtained in thetime blockb2 (see Tab. 1)
let us recall some basic statistic concepts of the normal distribution (Patel and Read, 1996)
that will be used to compute the confidence level not exceeding the working day in the
optimization problems:

1. Let x ∼ N(µ, σ) be a random variable with meanµ and standard deviationσ and let
z ∼ N(1, 0) be a random variable with mean 1 and standard deviation 0. Then,

P (x ≤ Xi) = P (z ≤ Zi) (6)

whereZi =
Xi−µ

σ .
2. Leta, b, . . . , z be independent random variables such that:i ∼ N(µi, σi), ∀i = {a, b, . . . , z}

and letU = a+ b+ ...+ z be the sum of these variables, thenU is a random variable
with normal distributionU ∼ N(µU , σU ) where:

µU = µa + µb + ...+ µz

σU =
√

σ2
a + σ2

b
+ ...+ σ2

z
(7)

The time of using the OR inb2, denotedTd2, is the sum of,

1. individual durations of each surgery:d(surg(wi)), i = {3, 4, 7, 8};
2. corresponding cleaning time after each surgery:c(surg(wi)), i = {3, 4, 7, 8}.

Since these variables (d(surg(wi)) andc(surg(wi))) are considered with normal pdf then,
according to (7) ,Td2 ∼ N(µTd2

, σTd2
) where:
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– µTd2
=

∑

i={3,4,7,8}

(µd(surg(wi)) + µc(surg(wi))) = 427

– σTd2
=

√
∑

i={3,4,7,8}

(σ2
d(surg(wi))

+ σ2
c(surg(wi))

) = 48.03

Therefore,Td2 ∼ N(427, 48.03). Since the total available time is 7 [hours]∼ 420
[minutes], it is interesting to know the probabilityP (Td2 ≤ 420).

NormalizingTd2 according to (6),

P (Td2 ≤ 420) = P (z ≤ Zi),

wherez ∼ N(0, 1).
TakingXi = 420 thenZi =

420−427
48.03 = −0.145. Therefore,

P (Td2 ≤ 420) = P (z ≤ −0.145),

and this probability is tabulated (Patel and Read, 1996):P (z ≤ −0.145) = 0.4421 ≃

44.21%.

�

In order to prevent time blocks with high risk of exceeding time, two mathematical
models (MIQCP and N-MIQCP) including chance constraints are proposed.

4 Mathematical Programing Models

In this section, three alternative mathematical programming problems to solve theSchedul-
ing Problem introduced in Sec. 3 are proposed (see Tab. 2). ObjectiveO2 (related with the
preference order of the patients) is presented in the same form in all three problems. How-
ever, objectiveO1 (related with the occupation rate) is considered in two different ways. In
the first two problems, i.e., MILP and MIQCP, the objectiveO1 is to obtain a given DST.
However, the MIQCP problem provides in general better solutions because includes chance
constraints to ensure aminimum confidence level(MCL) not exceeding the total DWT. The
third problem considers the objective (O1) of maximizing the DST, hence this DST is a vari-
able in the N-MIQCP increasing the computational complexity of the problem (compared
with the previous ones). Although, one can use the N-MICQP problem together with some
statistical information on the patients to estimate which should be the target DST for a given
confidence level not exceeding the working time and use it in the MIQCP problem. In fact,
problem MIQCP is the one that should be used to schedule the surgeries while N-MICQP is
used only once, at the beginning of the process, to compute the target DST.

Table 2 Comparison of the Mathematical Programming Problems

Objectives
Constraints

O1 O2

target DST maxim. DST Order MCL
MILP X X

MIQCP X X X

N-MIQCP X X X
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In order to satisfy objectivesO1 andO2, the following linear cost function composed
by two balanced term (C1 andC2) is proposed:

m∑

i=1




αi · (m− i+ 1)
︸ ︷︷ ︸

C1

+β · P o · Si · (m− i+ 1)
︸ ︷︷ ︸

C2




 , (8)

whereβ is the relative weighting betweenC1 andC2, m is the number of time blocks to
schedule andα a variable related with the occupation rate.

The termsC1 andC2 are two criteria related withO1 andO2 respectively:

– criterion C1, related toO1, consisting in the minimization of the absolute deviation be-
tween the target DST and the scheduled DST (in the first two problems) or maximizing
the scheduled DST (in the third problem);

– criterion C2, related toO2, consisting in the minimization of the sum of the preference
order of patients scheduled each day, giving more weights tothe first days.

From a syntactic point of view, the three proposed problems (MILP, MIQCP, N-MIQCP)
minimize the same objective function (8). However, depending on the definition of the vari-
ablesαi, the first term in the objective function is different. Variablesαi are defined by
constraints in the problems.

For the first two problems (MILP and MIQCP), a variableαi in the first term of (8)
represents the absolute deviation (in minutes) of the scheduled DST of dayi with respect to
the target DST. For N-MIQCP problem, a variableαi is the sum of durations of all sched-
uled surgeries in dayi multiplied by−1 (since we want to maximize it). Moreover,αi is
multiplied by(m− i+1) in order to get smaller deviations (or bigger utilization) in the first
working days. This implies at the same time that if are not enough patients for all working
days, the last days remain free.

The second term of (8) contains the binary decision vectorsS1,S2,S3, . . . ,Sm and the
row vectorP o (representing the order of patients in the waiting list). Multiplying P o by
Si, the sum of the preference order of surgeries scheduled in day i is obtained. This sum is
minimized, therefore bigger preference is given to the firstpatients of the waiting list. Again
we multiply the second term by(m − i + 1), implying that patients scheduled in the first
days penalize more, forcing thus the scheduling of patientswith lower preference order in
the first days.

Regarding parameterβ, it is known that exists a value such that the optimization problem
with cost (8) returns the optimal solution of the corresponding multi-objective optimization
problem (Athan and Papalambros, 1996). Furthermore,C1 andC2 in (8) have different units,
so the choice of theβ parameter will establish a compromise betweenO1 andO2. Hence,β
is a design parameter and it is used to balance the importanceof respecting the order of the
patients in the waiting list against the one of maximizationof the OR utilization.

In order to prevent solutions in which one patient is scheduled more than once the fol-
lowing set of constraints are required

m∑

i=1

Si[j] ≤ 1, ∀j = 1, 2, . . . , n. (9)

Both the objective function (8) and the set of constraints (9) appear in all three mathe-
matical programing problems.
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4.1 MILP

In this first approach, objectiveO1 is to obtain a desired DST that is given as a percentagep

of DWT. Since the DST is not including the cleaning time,p should be such thatp < 100%.
Let us assume that the DWT is denoted byX (in minutes), then

Obj = X ·
p

100
(10)

is the target DST in minutes.
A variableαi is defined as the absolute difference (in minutes) between the total sched-

uled time of dayi and theObj. This can be written as,

αi = |µd · Si −Obj| , (11)

whereµd is a vector containing the average durations of the surgeries in the waiting list
whileSi is the binary decision vector defining the surgeries scheduled dayi. In linear terms,
the absolute value can be computed as the minimumαi fulfilling

{
µd · Si −Obj ≤ αi

µd · Si −Obj ≥ −αi,
∀i = 1, 2, . . . ,m. (12)

Putting all together, the following MILP is obtained.

min
m∑

i=1

(αi · (m− i+ 1) + β · P o · Si · (m− i+ 1))

Subject to:






µd · Si −Obj ≤ αi, ∀i = 1, 2, . . . ,m
−µd · Si +Obj ≤ αi, ∀i = 1, 2, . . . ,m
m∑

i=1

Si[j] ≤ 1, ∀j = 1, 2, . . . , n

Si ∈ {0, 1}n, αi ∈ R, ∀i = 1, 2, . . . ,m.

(13)

Regarding the size of MILP (13), it has

– (n+ 1) ·m variables of which

{
m real variables;
n ·m binary variables;

– 2 ·m+ n linear inequality constrains.

4.2 MIQCP

Let the surgery durations and cleaning times be assumed random variables with normal pdf.
Therefore, the working time of dayi (denoted byTdi) is also a random variable with normal
pdf, i.e.,Tdi ∼ N(µTdi

, σTdi
) where,

– µTdi
= (µd + µc) · Si

– σTdi
=

√

(σ̄2
d
+ σ̄2

c) · Si
1

1 In this paper̄x2 is a vector such that̄x2(i) = x(i) · x(i)
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This problem (MIQCP) improves the MILP (13) by including a set of chance constraints
ensuring that the scheduled blocks have a confidence level not exceeding the total time
(given by the DWT=X) greater than a threshold0 ≤ Cl ≤ 1, i.e.,P (T di ≤ X) ≥ Cl. Some
constraints of this set are quadratic, so the proposed modelis a Mixed Integer Quadratic
Constraint Programming (MIQCP) problem. By using the statistic concepts recalled in eqs.
(6) and (7), this set of constraints is given by

X − µTdi

σTdi

≥ VCl, ∀i = 1, 2, . . . ,m, (14)

whereVCl is the value corresponding to a normal variable (x ∼ N(0, 1)) with an accumu-
lative probabilityCl, i.e.,P (x ≤ VCl) = Cl.

Developing inequality (14),

X − µTdi

σTdi

≥ VCl ⇒ X − µTdi
≥ VCl · σTdi

⇒

X − (µd + µc) · Si ≥ VCl ·
√

(σ̄2
d
+ σ̄2

c) · Si.

Let A = µd + µc andB = σ̄
2
d + σ̄

2
c .

Therefore if (X −A · Si > 0) then

[X −A · Si]
2 ≥

[

VCl ·
√

B · Si

]2

⇒

X2 + [A · Si]
2 − 2 ·X ·A · Si ≥ V 2

Cl ·B · Si ⇒
[

V 2
Cl ·B + 2 ·X ·A

]

· Si − [A · Si]
2 ≤ X2 ⇒

Let K = V 2
Cl ·B + 2 ·X ·A then the previous inequality

becomes:

K · Si − [A · Si]
2 ≤ X2.

Note thatX −A ·Si > 0 is a constraint imposing that the average working time of day
i is lower than the total timeX. In this way, the possible symmetric solutions obtained due
to [X −A ·Si]

2 are prevented. However, the model can only schedule workingdays with a
confidence level not exceeding total time greater than 50%. Inorder to impose a confidence
level lower than 50%, the constraintX−A ·Si > 0 should be changed withX−A ·Si < 0.
In this paper, we considerCl ≥ 50%.

Putting together, the set of chance-constraints that prevents the scheduling with a confi-
dence level lower thanCl is showed in (15).

{

K · Si − [A · Si]
2 ≤ X2

X −A · Si ≥ 0,
∀i = 1, 2, . . . ,m. (15)

The full MIQCP problem is obtained as,
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min
m∑

i=1

[αi · (m− i+ 1) + β · P o · Si · (m− i+ 1)]

Subject to:






µd · Si −Obj ≤ αi, ∀i = 1, 2, . . . ,m
−µd · Si +Obj ≤ αi, ∀i = 1, 2, . . . ,m
m∑

i=1

Si[j] ≤ 1, ∀j = 1, 2, . . . , n

K · Si − [A · Si]
2 ≤ X2, ∀i = 1, 2, . . . ,m

X −A · Si ≥ 0, ∀i = 1, 2, . . . ,m
Si ∈ {0, 1}n, αi ∈ R, ∀i = 1, 2, . . . ,m.

(16)

Regarding the size of MIQCP (16), the problem has

– (n+ 1) ·m variables of which

{
m real variables;
n ·m binary variables;

– 3 ·m+ n linear inequality constraints;
– m quadratic inequality constraints.

The MIQCP problem has two input parameters: the target DST percentage, i.e.,p (it
appear inObj see (10)), and the MCL, i.e.,Cl (by the value ofVCl). However, these two
parameters are dependent one by another, for example if we fixa confidence levelCl then
the value ofp is upper bounded, this bound depending on the chosen value ofCl. In the third
problem, the target DST becomes a variable in the problem andthe optimization problem
will try to maximize it.

4.3 N-MIQCP

This problem improves the MIQCP by changing the input parameter DST to schedule (given
asp) into a variable to be maximized. So, the N-MIQCP only has oneinput parameter: MCL
not exceeding the DWT (given asCl).

Because the DST becomes a variable in the N-MIQCP problem that is maximized, a new
definition of variablesαi different by the one in eq. (11) should be given. Instead of being
the absolute difference of the scheduled time with respect to the desired value, in N-MIQCP
problem the variablesαi are defined as the negative sum of the duration of the surgeries
scheduled in dayi.

αi = −µd · Si, ∀i = 1, 2, . . . ,m. (17)

Notice that the variablesαi can be removed from the problem while in the objective
function can be used its definition given by (17). The full N-MIQCP problem is obtained as,

min
m∑

i=1

[−µd · Si · (m− i+ 1)+

+β · P o · Si · (m− i+ 1)]
Subject to:






m∑

i=1

Si[j] ≤ 1, ∀j = 1, 2, . . . , n

K · Si − [A · Si]
2 ≤ X2, ∀i = 1, 2, . . . ,m

X −A · Si ≥ 0, ∀i = 1, 2, . . . ,m
Si ∈ {0, 1}n, ∀i = 1, 2, . . . ,m.

(18)
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The size of N-MIQCP (18) is given by

– n ·m binary variables;
– n+m linear inequality constraints;
– m quadratic inequality constraints.

Even if the number of variables and of the constraints is smaller than the MIQCP (16),
the computational complexity of N-MIQCP (18) is in general higher. This is due to the fact
that in MIQCP (16) the DST of the solution belong in general toa symmetric interval around
the target DST while in the case of N-MIQCP (18) the DST is maximized.

Finally, let us notice that N-MIQCP (18) can be used to estimate the DST achievable
for a given confidence level. The pair of values DST confidencelevel can be used as input
parameters in the MIQCP (16) that is computationally more efficient.

5 Heuristic Approaches

In order to reduce the computational complexity, this section introduces first areceding
horizon strategy(RHS) to obtain suboptimal scheduling for a large number of surgical
blocks. Second, a methodology using N-MIQCP and MIQCP allowing to obtain the op-
eration scheduling with reduced computation time is proposed.

5.1 Suboptimal Solution Using a Receding Horizon Strategy

The optimization problems presented in the previous section can be optimality solved by
using IBM ILOG CPLEX Optimization Studio which is often referred as CPLEX (IBM,
2016), one of the fastest software solution for integer problems (Gearhart et al, 2013). Al-
though CPLEX is quite fast, due to the large size of the problems, the computational time and
memory usage to solve the optimizations problems increase exponentially with the number
of patients in the waiting list and time blocks (ORs working days) to schedule.

After some simulations with different number of patients inthe waiting lists (n) and
with different number of time blocks to schedule (m), we observed that the variable that
more influence the computational time ism. Moreover, the computational time depends
also on the value of the design parameterβ. It has been observed that, the greater isβ

(more importance is given to the order of the patientsO2), the smaller is the computational
time. The fact that more importance is given to the order in which patients are scheduled,
allows a lower combinatorial of patients and consequently the solution converge before in
the optimal one. For example, for a value ofβ enough large the scheduling obtained has the
patients perfectly ordered.

In order to reduce the computational complexity, in (Clavelet al, September 2016) we
proposed to solve the optimization problem ofm blocks iteratively (similar with theReced-
ing Horizon Strategy(RHS) (Camacho and Bordons, 2004)). The idea is to schedule initially
N ≤ m time blocks by using the optimization problem and the full waiting list of patients.
From the obtained solution, only the firstN1 ≤ N time blocks are considered and the cor-
responding patients are removed from the waiting list. After that, anotherN time blocks are
scheduled by using the same optimization problem and the updated waiting list. Again, from
the solution only the firstN1 blocks are considered and the procedure is repeated until all m
blocks are scheduled.
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In our case of study, the scheduling is performed weekly: on Monday of week “x” the
scheduling of the time blocks available in week “x+2” is performed. Normally there arem =
3 time blocks available each week for each surgical team, so inthis case is not necessary to
use the RHS. However RHS approach could be interesting in other hospitals or departments
which greater number of time blocks to scheduled. However, RHS approach could help
to estimate an approximate surgery date for a new arrived patient by scheduling all others
patients in the waiting list. This possibility also allows hospital manager to know the number
of time blocks necessary to schedule all patients in the waiting list and increase or decrease
the hospital resources to a surgical department.

5.2 Towards Computational Tractable Scheduling

This subsection discusses an approach to obtain a computational tractable solution for oper-
ation scheduling using MIQCP (16) and N-MIQCP (18) that include chance constrains (see
Fig. 1).

N-MIQCPRANDOM LIST
SCHEDULING
(Avg Occ)

MIQCP
WAITING LIST

SCHEDULING

(max. Occ.)

GRAPH

Ocupation VS 
Confidence

SAFER

targetDST

targetDST

MCL

MCL

MCL

Fig. 1 Approach for Computational Tractable Scheduling.

The difference between these two optimization problems is that MIQCP (16) requires
a target DST as input parameter and the N-MIQCP (18) maximizes this DST. However the
computational time for the N-MIQCP is much higher than for MIQCP.

Step 1. Approximate DSTs corresponding to MCLs using N-MIQCP(18). The ob-
jective of this step is to know the appropriate target DST that should be introduce as input
parameter in the MIQCP for a given MCL. We consider that a DST is appropriated for a
given MCL if it is achievable and it is close to maximum. Besides of the MCL, the approx-
imation of DST also depends on the type of surgeries that may appear in the waiting list
(durations and probability of appearing) and the total timeavailable (DWT=X). For this, the
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approximated DSTs should be updated by performed this first step once every two months.
Fig. 2 shows the relation between average DST and minimum confidence level obtained

Fig. 2 Average occupation rate obtained using N-MIQCP depending on the minimal percentage of confidence
required (blue). The input parameters corresponds to the studied Surgery Department.

in step 1 for the particular parameters of the Orthopedic Surgery Department in Zaragoza.
Notice that for example, if the objective is to obtain a target DST equal to78%, then the
minimum confidence level is71%. Using historical data on the performed surgeries, com-
pute first the probability of appearance of each surgery as the total number of patients with
the same surgery divided by the total number of surgeries. Based on these probabilities, a
large random waiting list can be generated. Using N-MIQCP (18) with the receding horizon
strategy (e.g.,N1 = N = 3) the patients on the waiting list are scheduled with a large
number of time blocksm (ensuring that all patients are scheduled). Different scheduling
should be obtained fixing different confidence levels. Each obtained solution corresponding
to a given confidence level is used to compute the expected average DST. A representation
of the average DST vs. a given minimum confidence level can be obtained.

Step 2. Compute the scheduling by using MIQCP(16). Using the obtained rela-
tion, for a given minimum confidence level, the corresponding DST is taken and used in
MIQCP (16) for scheduling of patients. In Sec. 6 will be shownthat the computational time
necessary to solve this problem is much smaller than solvingN-MIQCP (18) while the ob-
tained solution issafer, in general, than the solution obtained by using MILP (13).

6 Results

In this section experimental setting of the heuristics approaches presented together with
some simulation results are analyzed and compared. In particular a comparison between
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different models/approaches is analyzed through a realistic simulation of one year schedul-
ing in the studied hospital department.

6.1 Receding Horizon Strategy

In order to fix the values ofN andN1 used in the RHS, different simulation using CPLEX
(version 12.6.2) in a computer with an Intel Core i3 and 4 GB ofmemory has been per-
formed.

First, the influence of the number of days considered (N1) in each iteration is checked.
For this, from a waiting list composed by 120 patients and with the same receiding time
horizon (N = 7), the MILP (13) is used to schedule 30 working days with different values
of N1. Tab. 3 shows the cost obtained for the different instances.Unlike what usually hap-
pens in control theory, increasing the value ofN1, a trend of cost improvement is observed.
For this, the following simulations are performed withN = N1. In Tab. 4 a comparison be-

Table 3 Influence ofN1 in MILP problem solutions (n = 120, m = 30, N = 7, β = 2)

N N1 Cost

7

1 88668
2 88171
3 88295
4 88382
5 88181
6 86824
7 86937

tween the optimal solution and the one obtained by using the RHS is showed. Moreover, the
computational costs are given. In particular, the first column represent the particular math-
ematical programing problem being used, the next two columns fix the size of the problem
(m andn). Notice that each instance has a different size (dependingon the complexity of
the model) in order to be able to obtain the optimal solution.The fourth one indicates the
optimal cost and the fifth one the time necessary to obtain optimal solutions for the partic-
ular instance (other instance with the same size can not be solved optimally). Column sixth
shows the parameterN = N1 of the RHS, while the seventh and eight columns represent the
cost obtained using RHS and the relative error to the optimalcost respectively. Finally the
last column indicate the computational time required to solve the different instances using
RHS.

As expected, increasing the horizonN , solutions with better costs are usually obtained.
Unfortunately, increasing the horizonN , the computational time is increased also. However,
increasingN does not implies that always a better cost is obtained. For example, solving the
particular instance in Tab. 4 of N-MIQCP using the RHS, it canbe seen that the cost obtained
with N = N1 = 5 andN = N1 = 4 is the same (-4902) and moreover, it is worse than the
one obtained forN = N1 = 3 (-4940).

6.2 Computational Tractable Scheduling

In this subsection are shown the computational time improvements, as well as the results
obtained using the heuristic approach with N-MIQCP and MIQCP. Using again the same
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Table 4 Cost and computational time for instances of the three proposed problems solved optimally and
solved by using the RHS with different parameters ofN = N1

Model
# days

(m)
# patients

(n) Op.Cost
Time

[s] N = N1 RHS Cost εr [%]
Time

[s]

MILP 12 40 5552 150
6 5850 5.36 4.76
7 5754 3.63 6.05
8 5693 2.53 10.07

MIQCP 9 30 2600 548
3 2860 10 0.63
4 2720 4.61 1.19
5 2654 2.07 4.47

N-MIQCP 6 25 -4951 373
3 -4940 0.22 11.05
4 -4902 0.99 289
5 -4902 0.99 1558

computer (Intel Core i3 and 4 GB of memory), the average computational times to schedule
m = 42 working days (for lists generated random based on the probabilities) using N-
MIQCP and MIQCP (both with receding horizon strategy withN1 = N = 3) are shown in
Tab. 5 and 6 and discussed in Ex. 2.

Example 2Let us compare the computational time for solving N-MIQCP (18) and MIQCP (16)
using in both cases the RHS. For this, we consider different list of n = 150 patients gener-
ated random andm = 42 time blocks to schedule. Let us assume also that the DWT is 6.5
hours.

First, the N-MIQCP (18) is solved assuming different MCL notexceeding DWT, namely
Cl = 68%, Cl = 72.5% andCl = 78%. For eachCl, 50 replications with different
scenarios (waiting list) has been scheduled. In Tab. 5 the average computational times to
solve the different instances and the average DST (in percentage respect to the DWT) of
the obtained solutions are presented. Then, the MIQCP (16) is solved with exactly the same

Table 5 Average Computational time and average DST obtained by solving different instances of N-
MIQCP (18) using RHS (N = N1 = 3).

MCL (%)
Avg. Time[s]
N-MIQCP

Avg. DST
(% DWT)

68 71.6 78.9
72.5 130 77.59
78 285 75.57

MCL not exceeding DWT. Since MIQCP (16) requires as input parameter a target DST, a
value 0.4 greater than the average DST obtained from the solutions of N-MIQCP (18) (Tab.
5) is used. In this way similar DST will be obtained.

Tab. 6 shows the average computational times and the averageDST obtained by solving
50 replications of the different instances using MIQCP (16).

It can be seen that for a same MCL the average computational times to solve instances
using MIQCP (16) (Tab. 5) decreases (24 < 71, 36 < 130 and47 < 285) with respect to
the obtained by using N-MIQCP (18) (Tab. 6). Moreover, the average DST obtained with
the both problems are really similar (78.9 ∼ 78.75, 77.59 ∼ 77.31 and75.57 ∼ 75.34). �
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Table 6 Average computational time and average DST obtained by solving different instances of MIQCP (16)
using RHS (N = N1 = 3).

MCL (%) Target DST
Avg. Time[s]
N-MIQCP

Avg. DST
(% DWT)

68 79.3 24 78.75
72.5 78 36 77.31
78 76 47 75.34

6.3 Influence of parameterβ in the proposed model

In this subsection, the values of the parameterβ in each model (MILP MIQCP and N-
MIQCP) are fixed.

In order to be able to compare two different scheduling from the point of view of the
order of the patients, we define the indicatorΩ. This indicator measures the disorder of the
patients in the obtained scheduling, so the smaller it is, the more orderly are the patients in
the scheduling. To compute this value, for each time block scheduledbi we define an interval
[fi, li]. If the preference order of the surgeries scheduled in the time blockbi belong to the
interval [fi, li] do not increase the value ofΩ. On contrary, each patient with a preference
order outside the interval, increases the value ofΩ. The formal calculation ofΩ is given
in Algorithm 1 whereNp is the total number of patients scheduled andPd is the average
number of patients scheduled per time block.

Algorithm 1: Calculation ofΩ parameter in a scheduling ofm time blocks
1: Ω := 0

2: Np :=
m∑

i=1
(sum(Si))

3: Pd := Np

m
4: for all bi ∈ B do
5: fi :=min(1, ⌊Pd · (i− 1)⌋ − 3)
6: li := ⌈Pd · i⌉+ 4
7: for all wj scheduled the daybi do
8: if j /∈ [fi, li] then
9: Ω := Ω+min(|j − fi|, |j − li|)

10: end if
11: end for
12: end for

Now the influence of parameterβ in the MILP problem is shown in Tab. 7. Scheduling
of 35 time blocks have been obtained (with RHS) for 50 different scenarios (waiting list)
composed by 120 patients. The target DST is fixed to 78% and different values ofβ has
been used. The waiting lists have been generated randomly asis explained in Step 1 of Sec.
5.2. The DST obtained (average and standard deviation) and the average value of parameter
Ω have been analyzed.

It can be seen that decreasingβ, better results of DST are obtained: The average DST
are closer to the target and the standard deviation decreases. This means that the data are
more concentrated around the average value. Unfortunately, this improvement is achieved by
allowing a greater disorder of the patient in the operationsscheduling: decreasing the value
of β, the value ofΩ is increased. According to these results,β = 2 is fixed for MILP (13).
Moreover, performing similar simulations using MIQCP (16)and N-MIQCP (18) a value of
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Table 7 Influence ofβ in MILP: Smallβ gives more weight to obtain the target DST (m = 30, n = 100,
N = N1 = 7 and TargetDST = 78%).

β Avg. DST Std. Dev. DST Ω
1 77.85 0.97 86.4
2 77.58 1.37 64.52
3 77.30 1.71 55.4

β = 2 is fixed for MIQCP (16) while a value ofβ = 4 is fixed for N-MIQCP (18). Using
these values, a good compromise between the DST (O1) and the order of the patients (O2)
are obtained from the medical point of view. Note that a greater value ofβ is necessary in N-
MIQCP problem compared with the other two problems because of the different definition
of αi.

6.4 One year realistic simulation in a Orthopedic Department of the LBHZ

In this subsection, in order to test the proposed approach and to compare it with the ap-
proaches proposed in (Shylo et al, 2012; Hans et al, 2008), weimplement a discrete event
simulation model of the scheduling. It is used to simulate scheduling decision for each team
in the Orthopedic department at the LBHZ. One year length (52weeks) is set for each simu-
lation run. The new patients needing a surgery are assumed toarrive according to a Poisson
distribution with a mean of 9 per week. Moreover for each set of simulations, 50 replications
are performed (each replications is a schedule for one year). The block schedule used in the
simulation is identical to the one that is used by the studieddepartment: each team have 3
blocks per week from 8:30 A.M. until 3 P.M.

Let x be the current simulation week, the steps in the simulation algorithm of the
scheduling process are described as follow:

Step 1. Generate the initial waiting list and initialize thecurrent simulation week.An
initial waiting list composed by 100 patients is generated randomly using realistic data of
the studied department. Moreover the current week “x” is initialized to x = 1

Step 2. Scheduling the time blocks.Surgeries from the current waiting list are assigned
to time blocks booking in the week “x+2”. In order to perform the assignment, besides of
the three proposed models in this work, the approaches in (Shylo et al, 2012; Hans et al,
2008) have been implemented. These approaches need a base scheduling of the blocks to
obtain the final assignment. Thefirst-fit probabilistic rule (ΠFFP) under the probabilistic
constraints (14) is used to obtain this base scheduling. By using ΠFFP sequentially each
surgery is assigned to the first available block for which theprobabilistic capacity constraint
(14) is satisfied after the assignment.

Step 3. Generate a new set of arrival patients.A numbera of new arriving surgeries
is generated based on Poison distribution with a fixed arrival rate considering realistic data
from the historical data.

Step 4. Process all scheduled blocks for the current week.We process 2000 replications
of each block available in the current week obtaining different average metrics (overtime,
utilization, confidence level).

Step 5. Update the waiting list.The patients scheduled in the current week “x” (they
should be surgically operated week“x+2”) are removed from the waiting list. Moreover the
new arrival patients (Step 3) are included at the end of the waiting list.

Step 6. Increment the current week (next week) and stop the simulation if the current
week exceeds the end week of the simulation, otherwise proceed to Step 2.
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Some events as changes in surgery dates, cancellation of surgeries or the addition of
emergency/urgent surgeries are not considered in our simulation model because are difficult
to predict and they are managed in real time based on expert opinions.

First, the scheduling obtained by using problems (13), (16)and (18) are tested and com-
pared by the simulation algorithm and represented in Tab. 8.

The input parameters of the problems are shown in the first three columns of the Tab.
8 (INPUT PARAMETERS). The last 10 columns of Tab. 8 show the SIMULATION RE-
SULTS in the operation scheduling related to: a) Occupationrate (DST), b) confidence level
and c) order of the patients (Ω). A minimum confidence level ofCl = 70% is considered
for N-MIQCP and MIQCP problems.

Table 8 Comparing of one year scheduling using MILP, MIQCP and N-MIQCP

INPUT PARAMETERS SIMULATION RESULTS
Objectives Constr. DST (% of DWT) Confidence level Order

MODEL
target
DST

maxim.
DST

min
Cl

Ave. Max Min Std. Ave. Max Min Std. Ω

MILP 78.3 77.95 82.26 72.22 1.49 78.34 96.72 56.02 7.43 368
MIQCP 78.7 70 78.02 81.61 72.47 1.48 78.4 95.87 70.13 5.68 466

N-MIQCP X 70 78.29 85.19 68.76 2.67 77.31 97.52 70.04 6.37 436

Let us analyze the results obtained:

1. From the DST point of view, the solutions of the three problems are very similar, the
average values are closer than 0.4% of its target (78.3%) and the greater standard devia-
tion is obtained by using N-MIQCP. This happens because MILPand MIQCP problem
try to obtain a target DST and consequently the values of occupation are concentrated
around this target DST.

2. Taking into account the confidence level not exceeding theDWT, the average values
obtained by using the three problems are really close. However, by using MILP, days
with higher probabilities of exceed the DWT are obtained (minimum confidence level
of 56.02 is obtained). This problem (MILP) does not impose a minimum confidence
level.

3. In relation with the order of the patients, the solution with the lower coefficientΩ is
obtained by solving MILP, however the three models obtains similar and acceptable
values ofΩ from a medical point of view results.

As expected, for the same target DST rate (for example 78.3%),the solutions obtained
with MIQCP and N-MIQCP are safer than the ones obtained by using MILP. This happens
because MIQCP and N-MIQCP prevent by chain constraint time blocks with low confidence
level. In addition the solution obtained using MIQCP (Avg. DST=78.02%) and N-MIQCP
(Avg. DST=78.29%) are very similar from the occupation rate point of view. Furthermore,
like it was shown in Tab. 5 and 6, the computational time necessary to solve MIQCP is lower
than the one of the N-MIQCP.

Tab. 9 shows a comparison between the scheduling obtained byusing: (1) theΠFFP

rule (commonly used in hospitals), (2) the batch schedulingapproach in (Shylo et al, 2012),
(3) the constructive algorithm proposed in (Hans et al, 2008) and (4) our approach based on
the MIQCP. The scheduling are obtained fixing a minimum confidence level ofCl = 70%
for the 4 approaches. The average annual values of overtime probability, occupation rate,
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and order of the patients (Ω) are analyzed. Moreover the total overtime and the total number
of treated patients per year are considered.

Table 9 Comparison of the one year scheduling using different chain-constrained approaches with a minimun
confidence level of 70%

Approach
OR Conf.

Level
Overtime

(Year) [min]
OR utilization
DST (% DWT)

Surgeries
(Year)

Ω
(Year)

ΠFFP rule (commonly used) 81.98 806.41 76.12 429.9 1935.9
Constructive Alg. (Hans et al, 2008) 80.43 922 76.69 432.02 2840
Batch Scheduling (Shylo et al, 2012) 75 1183 79.06 447.78 3993.1

MIQCP (proposed here) 77.31 1059 78.28 438.3 395.4

The 3 approaches analyzed in Tab. 9 improve the occupation rate of the time blocks with
respect to the obtained by using theΠFFP scheduling rule. However, the improvement
in the occupation rate of the time block implies a decreasingin the confidence level. For
example, the Batch Scheduling approach achieves the highest occupation rate (79.06 %)
and the highest number of treated patients (447.78), and consequently the lower confidence
level (75%) and the highest total overtime (1183[min]) is obtained. Taking into account the
pairs of values occupation rate and confidence level, the Batch Scheduling approach obtain
the better solution with: 1) the highest occupation rate and2) a confidence level within the
allowed.

Our MIQCP approach obtain a little worse occupation rate (78.28 %) than the Batch
Scheduling (79.06 %). However, considering the order of the patients by the value of pa-
rameterΩ, it can be check that our MIQCP approach obtain the best scheduling. Doctors
in the studied hospital department consider that the scheduling obtained using the other ap-
proaches are not suitable from a medical point of view because of the great disorder of the
patients. So, using our MIQCP approach and imposing a MCL of 70%, the improving in the
occupation rate with respect to use theΠFFP rule (commonly used in hospitals) is of 2.16
%. Only considering the Orthopedic department implies an increment∆Oc of 109 hours per
year in the use of the ORs (19):

∆Oc = 0.0216 · 6.5

[
hours

block

]

· 3

[
block

team · week

]

· 52

[
week

year

]

· 5[team]

= 109.512

[
hour

year

] (19)

Unfortunately, it also implies an increment∆Ov of 21.05 hours per year in the overtime
(20), but always without comprise the minimum confidence level established.

∆Ov = (1059− 806.4)

[
min

year · team

]

· 5[team] ·
1

60

[
hour

min

]

= 21.05

[
hour

year

] (20)

In Tab. 10 we show the results obtained for a one year scheduling using our MIQCP ap-
proach for different MCLCl. It can be seen that imposing a little lower MCL in MIQCP than
in the Batch scheduling approach, similar occupation ratesand total overtime are obtained.
For example, using Batch Scheduling imposing a MCL ofCl = 70 (Tab. 9) and using the
MIQCP approach with a MCL ofCl = 67.7 (Tab. 10) the average occupation rates are
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79.06[%] and 79.08[%] respectively and the total overtime are1183[min] and 1190[min]
respectively. However, the scheduling are much more ordered using the MIQCP approach
(Ω = 386.64) than using the Batch Scheduling approach (Ω = 3993.1).

Table 10 Comparison of one year scheduling using MIQCP approach with different MCL Cl [%]

MCL Cl [%]
OR Conf.

Level
Overtime

(Year) [min]
OR utilization
DST (% DWT)

Surgeries
(Year)

Ω
(Year)

51 59.49 2425.1 83.9 469.64 446.58
55 63.14 2093.2 82.80 463.92 411.78
60 67.75 1712.0 81.4 455.56 426.52
65 72.99 1340.8 79.75 446.56 410.44

67.7 75.18 1190.07 79.08 441.42 386.64
70 77.31 1059 78.28 438.3 395.38
75 81.57 805.86 76.72 428.08 380.62
80 86.1 562.33 74.76 418.962 378.82
85 89.82 376.84 72.89 408.14 366.42

7 Decision Support System for Scheduling

The Orthopedic Department in which the DSS will be used is composed by medical doctors
divided in 5 medical teams. Each doctor has assigned his own patients and the waiting list
of a team is composed by the patients of the doctor belonging to the team. Each team must
operate the patients from his waiting list during the time blocks previously booked. So each
manager team should schedule the patient from his waiting list in the time blocks available
to his team. In order to perform a rapid, efficient and dynamicoperation scheduling we
propose a decision support system (DSS). The core of the DSS is the MIQCP presented in
Sec. 4 for operation scheduling, but also it includes other features that enable a) updating the
waiting list, b) dynamic planning and, c) improving the input data by updating the surgeries
durations.

7.1 Updating the waiting list

In general, a new patient is added at the end of the waiting list but the surgeon, depending on
the priority of the pathology of the patient, could decide toput him in a higher position of the
waiting list. The DSS, based on medical criteria, automatically creates the ordered waiting
list of patients. Each patient have2 parameters that influence directly in his/her position in
the waiting list.

1. The first and the most important one is the time waiting for surgery. This time is calcu-
lated as the difference in days between the actual day and theday that the patient was
introduced in the list. The patient with highest number of waiting days, have a score
of 10 while the newest patient has a score of 0. The other patients have a proportional
score between 10 and 0. This score denoted asS1 have a weight in the calculation of
total score (denotedST ) of p1.
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2. The second parameter has to do with the priority of the surgeries. Although the DSS
schedules non-urgent surgeries, there exist3 levels of priority1, 2 and3 with a corre-
sponding score (S2) of 0, 5 and10, respectively. The weight ofS2 in the computation
of ST is p2.

Assumingp1+ p2 = 1, the final score that allows to order the waiting list is obtained as
follow:

ST = p1 · S1 + p2 · S2 (21)

Finally the patients are ordered according to their total score. The patient who has the
highest total score will be the first in the waiting list, while the patient who has the lowest
punctuation will be the last one in the waiting list.

7.2 Iterative planning

The manager of each medical team perform the operation scheduling for the nextm time
blocks ensuring a MCL (this is done by solving MIQCP (16)). Next, the time blocks sched-
uled are assigned to the available dates for the corresponding team. Then the secretary calls
the patients scheduled in the followingm days. Once all patients have been called, the sec-
retary give back to the team manager the list of patients thathave been confirmed and the
ones that cannot be contacted (or they cannot be hospitalized in the following days due to
external reasons). In this moment, the team coordinator should schedule again the empty
gaps. This process is repeated until the nextm time blocks are completely scheduled.

Once the first scheduling has been computed and secretary confirms the attendance or
the absence of patients, constraints will be added to the MIQCP (16) and the scheduling
will be iterated. This addition of constraints can be seen also as a reduction of number of
variables with respect to the initial problem since the new constraints fix the values of some
variables. If a patient with preference orderj confirms the attendance in time blocki, then
the following constraint is added:

Si[j] = 1. (22)

However, in case that a patient with preference orderj cannot be contacted or he/she
cannot be hospitalized, then the followingm constraints are added:

Si[j] = 0, ∀i = 1, . . . ,m. (23)

7.3 Updating and customizing the average durations

The average duration and standard deviation of each type of surgery has been computed
using historical data obtained during last two years in the hospital department. During a
period of two years, it is possible to obtain a sufficiently high number of surgeries and
the durations are representative. However, there exist significant differences between the
different surgeons. Moreover, for each surgeon, these average durations are continuously
improved because after performing the same surgery severaltimes the surgeon has more
experience. Therefore, it is very important to dynamic update also these input values.

After each surgery is performed, the time spent and the surgeon who performed the
surgery will be registered in a database. The DSS updates theaverage durations of the surg-
eries depending on the surgeon.
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Fig. 3 Flowchart of the DSS for operation planning.

7.4 Overview of the DSS

The flowchart of the DSS is given in Fig. 3 and starts by adding anew patient to the wait-
ing list. Each surgeon has his own waiting list while the waiting list of the medical team is
composed by the fusion of the lists of the surgeons that compose the team. Each surgeon is
responsible for introducing their patients in the DSS. The method to add a patient belonging
to a determinate surgeon is as follows: the DSS recognizes the surgeon (using a personal
password) and he/she enters the name of the patient, the pathology and the priority of the
surgery. Additionally, the DSS saves the information of theactual date in order to compute
the waiting time in the list and the surgeon that have to perform the surgery. Medical teams
are not always composed by the same surgeons, so they should be periodically updated.
When a team coordinator decides to plan the nextm time blocks, he selects in the DSS the
waiting list of his team and automatically the tool assigns average theoretical durations and
standard deviation to each surgery based on the pathology and on the surgeon. In this way,
the vectorsµd, σd, µc andσc are generated and the DSS performs an operation scheduling
in an iterative way (as is described in 7.2). The input data that the team’s manager have to
introduce in the DSS to schedule the next time blocks are: i) the corresponding team, ii) the
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number of time blocks to schedulem and its durationX and iii) the MCL. Depending on the
MCL that the manager team impose, the DSS automatically setsthe “appropriated” target
DST to solve the MIQCP. These “appropriated” values of target DST for each MCL (Fig.
2) are saved in the DSS and their are updated periodically by solving a large instance of
N-MIQCP. The states of patients that have been scheduled change from pending to sched-
ule. Once a specific surgery is performed, the surgeon introduces the operating time in the
tool. This new input data is used to update the average duration (as is described in 7.3).
Additionally, the tool removes the patients that have been operated from the waiting list. If
finally a scheduled surgery is not performed, the DSS changesthe state of this surgery from
scheduled to pending.

8 Conclusions

By modeling and solving MILP (13) it is possible to perform surgical operations schedul-
ing of elective patients with a givenDaily Surgery Time(DST) of Operation Room(OR),
respecting as much as possible the order of the patients in the waiting list. However, it has
been shown that high DST rates of OR lead to unsafe schedulingfrom the probability of
exceeding the totalDaily Working Time(DWT). Considering the duration of the surgeries
and the duration associated with the cleaning time as randomvariables with normal pfd and
using some statistics concepts, MIQCP (16) has been developed. By solving this model it
is possible to perform surgical operations scheduling of elective patients with a given DST
but, at the same time, ensuring aMinimum Confidence Level(MCL) of not exceeding DWT.
Of course, this model also respects as much as possible the order of the patients in the wait-
ing list. MIQCP has two input parameters: target DST (given as a percentage of DWT) and
a MCL not exceeding the DWT. These two parameters should be consistent. In order to
know the suitable target DST rate for a given MCL, the N-MIQCPproblem is developed. N-
MIQCP perform surgical scheduling of elective patients maximizing the occupation rate of
ORs, but at the same time, ensuring a MCL not exceeding the DWT. For the set of patholo-
gies in the studied department and a DWT of 6.5 hours, severalsolutions using N-MIQCP
have been obtained for different MCL. For each solution, theresulting average occupation
rates have been computed and use it in MIQCP to get a smaller computational time (Sec.
5.1). Using MILP (13) scheduling is obtained faster, however there exists a high risk of ex-
ceeding the DWT. In order to obtain safer scheduling, we are going to use MIQCP (16). The
target DST used in MIQCP (16) is computed by using N-MIQCP (18).

The problems have been tested and compared using realistic data from the Orthopedic
Surgery Department of the “Lozano Blesa”Hospital of Zaragoza (LBHZ), Spain. Moreover,
a receding horizon strategy to schedule a large number of working days is proposed (Sec.
5.2). It has been observed that using MIQCP (16) (MCL=70% andtarget DST=78.7%) is
possible to obtain an average confidence level of 77.31% and an average DST of 78.28%.
These values are considered appropriated from a medical point of view. Moreover, the
scheduling obtained using our approach respect the order ofthe patients in the waiting list,
making it the only suitable for the LBHZ. Using our MIQCP approach instead of thefirst
fit probabilistic (ΠFFP ) rule (commonly used) it is possible increase in 109.5 hoursper
year (see eq. (19)) the use of the ORs only considering the Orthopedic Department. How-
ever, the overtime is also increased in 21,05 hours per year (see eq. (20)) but always without
compromising the minimum level of confidence allowed.
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Currently, we are developing a software tool based on a proposed DSS that includes
the MIQCP for the daily scheduling, and the N-MIQCP for update from time to time the
approximated target DST for each MCL.

References

(2005) OECD, health data 2005 - statistics and indicators for 30 countries
Abdelrasol ZY, Harraz N, Eltawil A (2013) A proposed solution framework for the operating

room scheduling problems. In: Proceedings of the world congress on engineering and
computer science, vol 2, pp 23–25

Amodio G, Fanti MP, Martino L, Mangini A, Ukovich W (2009) A Petri Net Model for
Performance Evaluation and Management of an Emergency Cardiology Departments. In:
Proc. of the XXXV ORHAS conference, Leuven, Belgium

Athan TW, Papalambros PY (1996) A note on weighted criteria methods for compromise
solutions in multi-objective optimization. Engineering Optimization 27(2):155–176

Ben-Tal A, Nemirovski A (1998) Robust convex optimization.Mathematics of Operations
Research 23(4):769–805

Ben-Tal A, Bertsimas D, Brown DB (2010) A soft robust model for optimization under
ambiguity. Operations Research 58(4-part-2):1220–1234

Bernardi S, Albareda J, Colom JM, Mahulea C (2014) A model-based Approach for the
Specification and Verification of Clinical Guidelines. In: ETFA’2014: 19th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation, Barcelona, Spain

Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Mathematical
programming 98(1):49–71

Birge JR, Louveaux F (2011) Introduction to stochastic programming. Springer Science &
Business Media

Camacho E, Bordons C (2004) Model Predictive Control. Advanced Textbooks in Control
and Signal Processing, Springer London

Cardoen B, Demeulemeester E, Belien J (2010) Operating roomplanning and scheduling:
A literature review. European Journal of Operational Research 201(3):921 – 932

Clavel D, Mahulea C, Silva M, Albareda J (September 2016) Operation Planning of Elective
Patients in an Orthopedic Surgery Department. In: ETFA’2016: 21st IEEE International
Conference on Emerging Technologies and Factory Automation, Berlin, Germany

Dotoli M, Fanti MP, Mangini A, Ukovich W (2009) A continuous Petri net model for
the management and design of emergency cardiology departments. In: ADHS’2019: 3rd
IFAC Conference on Analysis and Design of Hybrid Systems, Zaragoza, Spain
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