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Abstract This paper considers an operation scheduling problem ofiedepatients: given
an ordered list of patients, schedule them for surgery inniiae time blocks previously
booked during a specific duration of time, thaily Working TimgDWT). We assume that
the duration of surgeries and cleaning time after each sy random variables with
normal probabilistic density function. Using real datanfréhe “Lozano Blesa” Hospital
of Zaragoza(LBHZ), their average and standard deviations are computed based on
these values, we propose three optimization problems.h@)first one is a simple Mixed
Integer Linear Programming (MILP) problem that is based/aml the average duration of
surgeries and schedules the patients with the objectivétafiring a giverDaily Surgery
Time(DST) that obviously should be smaller than the DWT. (ii) Bygpaming some average
and standard deviation of both, surgeries and cleaningstimeéMixed Integer Quadratic
Constraint Programing (MIQCP) model is proposed that amfthily of obtaining a given
DST, allows to impose 8inimum Confidence Lev@MCL) not exceeding the DWT by a
chance constrain. (iii) The objective of obtaining a give8TDis replaced by maximizing
this DST in a New-MIQCP (N-MIQCP) that even if has a bigger pberity, can be used
to estimate the “appropriate” target DST for a given MCL ie MIQCP model. To solve
large instances of problemsReceding Horizon StratedfiRHS) is proposed. Moreover, a
discrete event simulation model of scheduling in the LBHpriesented and the solutions
obtained using realistic data with different approacheslets are compared. Finally, we
propose a Decision Support System based on MIQCP and N-MIiQ&tRvill help doctors
in the scheduling of the LBHZ.
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1 Introduction

The Operation RoonmOR is one of the most expensive material resources of thei-hosp
tals. Approximately 60% of patients need it at some pointrautheir hospital stay (NoA,
2005). Surgical costs typically account for approximaté®p6 of the hospital resource
costs (Macario et al, 1995), while surgeries typically gateearound 67% of hospital rev-
enues(Jackson, 2002). Additionally, the demand, for satgiervices is increasing due to
the aging population. It is obvious that good planning artedaling methods are necessary
to improve the efficiency of the OR.

Researchers frequently differentiate betwegmategic (long term),tactical (medium
term) andoperational(short term) approaches to situate their planning or sdivegprob-
lems. Those works are furthermore categorized accorditigetdecision level they address,
i.e., to whom the particular decisions applies. Three adaktevels are considered in bibli-
ography (Abdelrasol et al, 2013):

1. case mix plannings a long term strategic planning that involves the hospitaission
and its translation into hospital resource capacity plagmin the basis of highly ag-
gregated information. Decision on the total supply of thesth@xpensive and important
resources are based on the hospital’s mission.

2. master surgery scheduie a medium term tactical approach that determines how much
operating room time is assigned to different surgeon graupsach weekday. These
time allocations are commonly referred to as time block frogpk

3. scheduling of patientis a short term operational approach to fix the patients tiauilg
be operated in the next time blocks.

In this paper, different mathematical programming modelsstheduling of non-urgent
surgeries (level 3 stated before) are proposed. These madekvaluated considering their
computational complexity and quality of solution using aeatudy given by the Orthopedic
Surgery Department of the Hospitélozano Blesa” Hospital of Zaragozé_ BHZ).

Due to the high computational complexity of the proposed elmdReceding Horizon
Strategy(RHS) is used. This strategy is commonly used in the confrdiszrete event sys-
tems (Gokbayrak, 2011a,b), where a sliding time horizordaimis fixed. In our approach
RHS allows us to solve large instance of the scheduling prolily obtaining sequentially
suboptimal solutions with a much lower computational tidegimilar idea based on solving
smaller subproblems is used in (Wu et al, 2013). They propge®gressive time-oriented
decomposition heuristic framework for the capacity migtiel lot sizing problem.

The proposed scheduling problems will be used in the Ortilicfgurgery Department
of the LBHZ. We propose Becision Support Systetiat helps doctors to perform a rapid,
efficient and dynamic scheduling. It includes several festthat enable to:

— update the waiting lisby the inclusion of new arrival patients and by removing the
patients operated when these events occurs.

— performs a dynamic schedulin@nce the first scheduling is computed and the patients
confirm either their attendance or their absence, the DSS dyltamically some con-
straints to the model and the scheduling is iterated.

— update and customize internal datsfter each performed surgery, the data related with
its duration and the doctor who has performed it are updated.

The operation planning and scheduling of elective patisragproblem studied in litera-
ture by many researchers. For a state of the art we can refezdlder to the survey (Cardoen
et al, 2010) and the references herein. According to therigi¢ise fields proposed in (Car-
doen et al, 2010), our paper can be classified as: “operatlwedsiling of elective inpatients
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by Mixed Integer Programing Problems with a multicriterigestive” (waiting time of pa-
tients and OR utilization). In addition, the surgery dwas are not constant, but random
variables and the problem is based on real data.

Some works combine planning and scheduling problem ofietepatients with the ur-
gent ones by using stochastic models (see, for example,ifLenal, 2008a) and (Lamiri
et al, 2008b)). The scheduling and planning of resources haen studied for other prob-
lems, as for example home care services as in (Lanzarong2&tldl) and (Lanzarone et al,
2012). Petri net models have been used for modeling and reareag of healthcare systems
(see, for example, (Amodio et al, 2009; Dotoli et al, 2009rrBedi et al, 2014; Mahulea
et al, 2017)). The contributions of this paper with respecthie previous results are: (1)
the application of three different mathematical prograngmodels to the particular prob-
lem in the studied hospital, (2) a chance-constrained agbroonsidering both maximizing
occupation rate of OR and respecting the order of patientas®waiting list; and (3) com-
parison, analysis and synthesis of the simulation ressltgyuealistic data from hospital.

This paper extends the results in (Clavel et al, SeptembEs)20here arMixed Inte-
ger Linear Problen{MILP) was proposed for operation scheduling of the elecgatients.
Considering thelaily surgery timg[DST) as the total time in a day that an OR is used for
surgery, the MILP problem has the objectives of (a) to obgagiven DST and (b) to respect
as much as possible the order of patients in the waitingTltst. MILP obtains the schedul-
ing based only on the average durations of each type of sutgat can be computed by
using historical data. However, two problems may appeatr,

— P - the obtained scheduling could be not robust enough if tihgesy durations have
large standard deviations. This uncertainty could resultncomfortable situations for
the medical management staff, either the doctors thatlysual lengthen their working
day either low utilization of the ORs is obtained.

— P, -atarget DST is an input parameter in the optimization mobind in some cases it
is difficult to select a good value for it in order to get saus not exceeding tHeaily
Working TimgDWT) but having a good OR utilization.

In order to overcome?;, we propose in this paper afixed Integer Quadratic Con-
strained Problem(MIQCP) that uses not only the average durations of the siegéut
also their standard deviations. In this way, each type ajesyrhas a pair of values (mean
and standard deviation) that define its duration. Additiigné considers the cleaning time
between surgeries as random variables (with mean and sthdeeation). These new as-
sumptions allow us to introduce some chance constrairggvigig to impose aMinimum
Confidence LevéMCL) not exceeding the Daily Working Time.

To tackle the problen, stated before we change the objective function. Instead of
trying to obtain a given DST (as input parameter) we conditeiobjective of maximizing
this DST (making it variable) keeping the chance constsaiAthigher complexity New-
MIQCP (N-MIQCP) is proposed.

The paper is organized as follows. In Sec. 2 related workpgsed in literature are
analyzed and comparing with our approach. Sec. 3 desciileeproblem statement and
provides a motivation example. Sec. 4 shows the proposetiematical programming
problems (MILP, MIQCP, and N-MIQCP) to schedule the surggrin Sec. 5 heuristic ap-
proaches to reduce the computational times are presenssdg tealistic data, in Sec. 6
some results obtained by implementing the problems in a maeftith an Intel Core i5 and
8 GB of memory using a computer software (CPLEX) are analyzeticompared. Deci-
sion Support Syste(DSS) for the daily scheduling in the studied departmenkfgdaned
in Sec. 7. Finally, in Sec. 8, we provide the conclusions araré works.
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2 Related work

Different approaches have been proposed in the literabiaddress uncertain parameters in
optimization problems. They can be divided in three mairugso stochastic programming,
distributionally robust optimization, and robust optimtiion. In stochastic programming
(Birge and Louveaux, 2011; Shapiro et al, 2009), uncertamameters are modelled as ran-
dom variables and their probability distribution is assdrteebe know. In this way stochas-
tic programming requires both a strong statistical backgdoto manage the mathematical
models and a thorough knowledge of the real problem to dén@robability distribution,
which are not always easy to derive. The resulting optinopgbroblems can be difficult to
solve, in addition, if the used distributions are not rdkalthe solutions produced may not
prove to be robust. In other hand, distributionally robystiraization (Ben-Tal et al, 2010;
Goh and Sim, 2010) and ambiguous chance-constrained apyw®éErdgan and lyengar,
2006) assume that the probability distribution is not knptwt lies within a know family
of distribution. The problem is difficult but computatiohatractable approximations ex-
ists. Robust optimization approaches (Ben-Tal and Nerskipw998; Bertsimas and Sim,
2003) assume that each uncertain parameter belongs toraggimgex set, and no detailed
knowledge of its probability distribution is required.

In our approach, it is assumed that the uncertain param@tagery duration and clean-
ing time) follow a normal distribution and consequentlye #xpected total duration of an
OR working day also follows a normal distribution. In thisywa resource capacity chance
constraint can be introduced by requiring that the proligwf overtime be no more than a
given scalan. The idea of using a chance constraint for the schedulingRs S also used
in (Shylo et al, 2012; Hans et al, 2008). The authors in (Skylal, 2012) present an opti-
mization framework for batch scheduling within a block bmaksystem that maximizes the
expected utilization of ORs resources subject to a set dighitistic capacity constraints.
They propose an algorithm that iteratively solves a sefiesixed-integer programs that are
based on a normal approximation of cumulative surgery duraln (Hans et al, 2008) con-
structive and local search heuristics for maximization &sQutilization and minimization
of the overcoming risk is proposed. In their model, to adsltbe randomness of surgery
processing times, a planned time slack is reserved in edgdsting block, which is func-
tion of total mean and variance of surgeries assigned to aheesponding block. When
determining an appropriate size of the planned slacks, utiees assume that the sum of
surgery durations follows a normal distribution.

The previously explained approaches (Shylo et al, 2012 ;sHaral, 2008) require to
set in advance the patients that are going to be scheduléet inext blocks, therefore in
these approaches all considered patients must be schedwed of the available blocks.
For this, both approaches start with an initial schedulibtaimed through the scheduling
rule: first-fit probabilistic Following this rule, sequentially each surgery is asdigiwethe
first available block for which the probabilistic capacignstraint is satisfied after the as-
signment. Once the initial scheduling is obtained the etqueoccupation rate of the first
blocks are improved by rescheduling the surgeries. In thig the last blocks are totally or
partially released.

In our case, an important criterion is to respect as much ssilple the order of patients
in the waiting list. That is, first patients should be scheduh the first surgical block, while
last patients should be preferably scheduled in the laskblthis consideration is not taken
into account in the previously explained approaches becaus
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1. When obtaining the initial solution, patients who areldahind on the waiting list, but
are suitable to complete a surgical block, may be scheduled.

2. Once the initial scheduling has been obtained followhng first-fit probabilistic rule,
the patients are rescheduled, and in the final solution atigrpa&an be assigned to any
surgical block.

Unlike (Shylo et al, 2012; Hans et al, 2008), our approactsdu require to know in
advance the set of patients that should be scheduled in #tesmeical blocks, since any
patient on the waiting list may or may not be scheduled. Alévely, we propose a linear
cost function composed by two balanced terms that favoliemiatto be scheduled in an
orderly manner at the same time that maximizes the expectagation rate of the OR.

A realistic comparison between the approaches proposdukinelated works (Shylo
et al, 2012; Hans et al, 2008) and the one explained in thik wwoperformed and ana-
lyzed in Sec.6. Realistic data of surgery duration and syrgeival obtained from the stud-
ied department has been considered. For each one of theajhpeeaches, the scheduling
obtained for 50 scenarios and 2000 one-year replicatioasban analyzed. The average
results shows that:

1. Similar occupation rate/confidence level is obtainedgi¢Shylo et al, 2012) and our
approach. However, using (Hans et al, 2008) a slightly wocseipation rate is obtained
due to only 3 ORs are scheduled per week and (Hans et al, 208/8% Wwetter with a
high volume of ORs.

2. According to the order of the patients, a far more ordeosgduling is obtained using
our approach due to the fact that it is considered in the diefimof the problem.

3 Problem Statement

LetS = {s1,s2,..., 5|5} be the set of surgery types that can be performed in the consid
ered hospital department anddet S — R~ be theduration functiond(s;) is the duration
of the surgery; (the time from the moment when the patient enters in the OR shé/he
leaves the OR). Similarly, let : S — R~ be thecleaning time functiomafter surgeries:
c(s;) is the cleaning time of the OR after surgety

Let us assume that the duratidfs; ) of each type of surgery; € S is a random variable
with normal probability density function (pdf)(s;) = N(ua(s,), 7d(s,))» Wherepgs,y is
the average andy,,) is the standard deviation. The average and the standaraltidevof
each type of surgery are computed by using historical data the hospital (for our case
study we use the data of the last two years). However, if noticsl data are available,
these values can be initially assigned by the medical dedtased on their experience and
external information. Moreover, bojly o are updated each time a new surgery is performed.
In addition, we assume that the time to clean the OR after gge&hof surgery; € S has
been performed is also a random variables with normal pfcis;) = N(ue(s;), 0e(s,))-

Furthermore, let us consid@y = {w1, w2, ..., w)y} an ordered list of patients such
thatifw; € W, j is the order number of the patienj in the waiting list. Letsurg : W — S
be the function that for a given patient € »V gives the surgery that should be performed.
For example, if the surgery that should be performed on ptie is s;, thensurg(w;) =
S

Finally let us assume an ordered set of time bloBks-= {b1, ..., b5/}, whereb is
the block corresponding to the latest date. Each bloekB has a fixed duration denoted



6 Daniel Clavel et al.

by i(b). For our case of study each block represent one OR workingsdaye assume the
same duration for each bloéke B. This duration is the DWT defined as.
The parameters considered in tBisheduling Problemare as follows:

1. an ordered waiting listy composed byW| = n patients defined as:
— arow vectorP, = [1 ... n] representing the preference order of the patients in the
waiting list.
— AroW VeCtony = [ftd(surg(w,)) -+ Md(surg(w,))] Fepresenting the average dura-
tion of the surgeries in the waiting list.
— ATOW VECOIoy = [0g(surg(uw)) -+ Td(surg(w,))) F€Presenting the standard devi-
ation of duration associated with the corresponding siegém the waiting list.
— ATOW VECIONe = [fe(surg(un)) -+ Me(surg(w,))) TEPresenting the average dura-
tion of cleaning times after surgeries.
— ATOW VECOlo e = [0¢(surg(uw:)) -+ Tec(surg(wn))] EPresenting the standard devi-
ation of the duration of cleaning times after surgeries.
2. asetB composed bys| = m time blocks defined as:
— arow vectorLg = [I(b1) ... l(bm)] representing the duration of the time blocks.

For each time block to schedulg, bs - - - by, there exist a binary decision vectsi, Sa - - - Sy,
with a dimension equal to the number of the patients in thémgglistn = |W|. If S;[j] = 1
then surgery of patienb; should be performed in working day< m.

The goal of this approach is the assignment of the patieats the waiting list to
the set of time block# (each patient being scheduled at most once) with the obgssti

— O - maximize the DST (daily surgery time) of each bldck 5;
— O3 - respect as much as possible the order of the patiemg. in

Moreover a minimum guarantee of not expected overtime ih bk time should be fixed.
[ |
Notice that for our particular case of study, we assume theesdaily working timeX
for all days to schedule. However, this assumption can bigyeataxed assuming different
values. Nevertheless, for sake of clarity, in this paperpreder to use the same.
Let us introduce, by means of an small example, an illustnadf a simplified hypothesis
followed by the kind of desired result.

Example 1Let us assume a waiting li3¥ composed byW| = n = 10 patients defined by
eps. (1) to (5). Moreover let us consider a set of three timeksB = {b1, b2, b3} to sched-
uled having the same duration of seven hours, i(¢;) = X = 7 [hours}= 420[minutes]
Vi€ {1...3}.

P,=[123456789 10] 1)

pa = [75 153 90 75 202 45 97 85 111 133] )
og=[23 23 19 23 45 12 21 24 23 24] @)
pe = [20 20 20 20 20 20 20 20 20 20] 4)
oe=1[10 10 10 10 10 10 10 10 10 10] (5)

One possibility of obtaining a computationally tractabtéusion for scheduling is to
consider only the average duration of the surgeries, whéaning times are ignored. So,
instead of scheduling the patients in the available DWT wéséours, the objective could
be to impose a DST of, for example, 80% of the DWT, i0e8,x 420 = 336[minutes]. The
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rest of the time, i.e420 — 336 = 84 minutes could be used for cleaning and to absorb any
unexpected delay.

The strategy explained before has been used in the MILP gmmobkplained in Sec. 4.1
and Tab. 1 shows a possible scheduling solution. Each rowitable represents the op-
eration scheduling of one time block. The first column repnés the ordinal number of the
time blocks (or OR working day); the next four columns indéctne patients that should be
operated{ means no surgery). The sixth column is the DST rate of theisalgcalculated
as the sum of the average durations of the surgeries diviglgeeliotal time, i.e.420[min]);
finally, the last column indicates the confidence of not edoegthe total time considered
as independent sum of normal random variables. Notice fieasurgery of patients has
not been scheduled because others are more suitable ta 6t8ai closer to the objective
(80%).

Table 1 Operation scheduling of the list of patients defined by etjstq (5) for an target DST rate of 80%
and 3 time blocks of 7 hours.

[Day [ Sur.1] Sur.2[ Sur.3] Sur.4[ DST (%) | Conf. (%) |

1 w1 wo wo [ 80.71 68.56
2 w3 wa wr ws 82.61 4421
3 ws w10 0 0 79.76 80.24

Since the MILP schedules the patients without a chance @nstmposing a confi-
dence level not exceeding the total time, working days withh lrisks of exceeding the
DWT of 420 minutes are obtained (e.g., day 2 has a probability of 65.@Bé&ceeding the
DWT).

Previously to analyze the proposed solution obtained irtithe blockb. (see Tab. 1)
let us recall some basic statistic concepts of the norméilligion (Patel and Read, 1996)
that will be used to compute the confidence level not exceetlie working day in the
optimization problems:

1. Letz ~ N(u,o) be a random variable with meanand standard deviation and let
z ~ N(1,0) be a random variable with mean 1 and standard deviation 0, The

Pz < X;) = P(2 < Z;) (6)

wherez; = Xt

2. Leta,b,...,zbeindependentrandom variables such that:N (u;, o;), Vi = {a,b,...,2}
and letU = a + b+ ... + z be the sum of these variables, théns a random variable
with normal distribution/ ~ N (uy, o) where:

KU = Ha + py + ot e
UU:\/U(%+U§+...+O'§

)

The time of using the OR ke, denotedr’;,, is the sum of,

1. individual durations of each surged(surg(w;)), i = {3,4,7,8};
2. corresponding cleaning time after each surgeyurg(w;)), i = {3,4,7,8}.

Since these variabled((surg(w;)) ande(surg(w;))) are considered with normal pdf then,
according to (7) T2 ~ N(ur,,,or,,) Where:
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— i1 = 2 (Bd(surg(w)) T He(surg(uw:))) = 427
i={3,4,7,8}
B z-:{s%:,m}(ajwwg(wm + 0% surg(uy))) = 48:03

Therefore, Ty, ~ N(427,48.03). Since the total available time is 7 [hours] 420
[minutes], it is interesting to know the probabili(T,;, < 420).
NormalizingT,, according to (6),

P(Td2 < 420) = P(Z < Zi),

wherez ~ N(0,1).

: _ _ 420-427 _
Taking X; = 420 thenz; = 422=227 — —0.145. Therefore,

P(Tyq < 420) = P(z < —0.145),

and this probability is tabulated (Patel and Read, 1998 < —0.145) = 0.4421 ~
44.21%.

[ ]
In order to prevent time blocks with high risk of exceedingéi two mathematical
models (MIQCP and N-MIQCP) including chance constrainéspoposed.

4 Mathematical Programing Models

In this section, three alternative mathematical programgrproblems to solve th&chedul-
ing Problem introduced in Sec. 3 are proposed (see Tab. 2). ObjeCtiverelated with the
preference order of the patients) is presented in the sameifoall three problems. How-
ever, objective); (related with the occupation rate) is considered in twoed#ht ways. In
the first two problems, i.e., MILP and MIQCP, the object®e is to obtain a given DST.
However, the MIQCP problem provides in general better smhstbecause includes chance
constraints to ensuremainimum confidence lev@ICL) not exceeding the total DWT. The
third problem considers the objectiv@y) of maximizing the DST, hence this DST is a vari-
able in the N-MIQCP increasing the computational compjegitthe problem (compared
with the previous ones). Although, one can use the N-MICQ@lem together with some
statistical information on the patients to estimate whiobudd be the target DST for a given
confidence level not exceeding the working time and use heniIQCP problem. In fact,
problem MIQCP is the one that should be used to schedule tgerses while N-MICQP is
used only once, at the beginning of the process, to competeathet DST.

Table 2 Comparison of the Mathematical Programming Problems

O?bjecnves 05 Constraints
target DST | maxim. DST | Order MCL
MILP v v
MIQCP v v v
N-MIQCP v v v
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In order to satisfy objective®; andO2, the following linear cost function composed
by two balanced term({; andCx) is proposed:

ai-(m—i+1)+8-Po-S;-(m—i+1)]|, (8)

1 Cq Cy

m
1=
whereg is the relative weighting betweeti; andCs, m is the number of time blocks to
schedule and: a variable related with the occupation rate.

The terms”; andC- are two criteria related witly; andO, respectively:

— criterion C1, related ta0;, consisting in the minimization of the absolute deviatiea b
tween the target DST and the scheduled DST (in the first twblenas) or maximizing
the scheduled DST (in the third problem);

— criterion C2, related to05, consisting in the minimization of the sum of the preference
order of patients scheduled each day, giving more weightsetdirst days.

From a syntactic point of view, the three proposed probleviitR, MIQCP, N-MIQCP)
minimize the same objective function (8). However, depegdin the definition of the vari-
ablesq;, the first term in the objective function is different. Vdiies «; are defined by
constraints in the problems.

For the first two problems (MILP and MIQCP), a variaklg in the first term of (8)
represents the absolute deviation (in minutes) of the sdbdd ST of day with respect to
the target DST. For N-MIQCP problem, a variablgis the sum of durations of all sched-
uled surgeries in day multiplied by —1 (since we want to maximize it). Moreovet; is
multiplied by (m — i+ 1) in order to get smaller deviations (or bigger utilizatiom}fe first
working days. This implies at the same time that if are notugihgpatients for all working
days, the last days remain free.

The second term of (8) contains the binary decision ve@ersSs, Ss, ..., S» and the
row vector P, (representing the order of patients in the waiting list).lfiplying P, by
S;, the sum of the preference order of surgeries scheduledyin idaobtained. This sum is
minimized, therefore bigger preference is given to the fiestents of the waiting list. Again
we multiply the second term b — ¢ 4+ 1), implying that patients scheduled in the first
days penalize more, forcing thus the scheduling of patieitts lower preference order in
the first days.

Regarding parametgr, it is known that exists a value such that the optimizatiabfgm
with cost (8) returns the optimal solution of the correspongdnulti-objective optimization
problem (Athan and Papalambros, 1996). Furtherm@re&ndCs in (8) have different units,
so the choice of thg parameter will establish a compromise betwégarandO,. Hence 3
is a design parameter and it is used to balance the importdmespecting the order of the
patients in the waiting list against the one of maximizatidthe OR utilization.

In order to prevent solutions in which one patient is scheduhore than once the fol-
lowing set of constraints are required

m

Zsi[j]ﬁl, Vi=1,2,...,n. 9)
=1

Both the objective function (8) and the set of constrainjsaf®ear in all three mathe-
matical programing problems.
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4.1 MILP

In this first approach, objectiwe; is to obtain a desired DST that is given as a percentage
of DWT. Since the DST is not including the cleaning tippeshould be such that < 100%.
Let us assume that the DWT is denotedXoy(in minutes), then

T
Obj =X 100 (10)

is the target DST in minutes.
A variableq; is defined as the absolute difference (in minutes) betwestothl sched-
uled time of day: and theOb;. This can be written as,
a; = |pq - Si — Objl, (11)

where i is a vector containing the average durations of the surgémi¢he waiting list
while S; is the binary decision vector defining the surgeries scleetididy:. In linear terms,
the absolute value can be computed as the minimufalfilling

kg - Si—Obj < a; -
{“d'si_Oij—ai7 VZ—1727~..,m. (12)

Putting all together, the following MILP is obtained.

ming(azw(m7i+1)+ﬂ~Po~S¢~(m7i+1))

1=1
Subject to:

g - S; —Obj <o, Vi=1,2,....m (13)
—pq - S; + Obj <a;,Vi=1,2,...,m

m

>8] <1, Vi=1,2,....n

1=1

S; €{0,1}", a; € R, Vi=1,2,...,m.

Regarding the size of MILP (13), it has

m real variables;
n - m binary variables;
— 2-m + nlinear inequality constrains.

— (n+ 1) - m variables of whic

4.2 MIQCP

Let the surgery durations and cleaning times be assumedmawariables with normal pdf.
Therefore, the working time of day(denoted byr;;) is also a random variable with normal
pdf, i.e., Ty ~ N(ur,,,or,,) Where,

= pry = (Ba + pe) - S;

—UTdi:,/(a-Z—i—&%)Sil

1 In this paperz? is a vector such thag? (i) = (i) - 2(3)
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This problem (MIQCP) improves the MILP (13) by including @ sechance constraints
ensuring that the scheduled blocks have a confidence letetxoeeding the total time
(given by the DWT=X) greater than a threshole C1 < 1,i.e.,,P(Ty; < X) > Cl. Some
constraints of this set are quadratic, so the proposed niedeMixed Integer Quadratic
Constraint Programming (MIQCP) problem. By using the staticoncepts recalled in egs.
(6) and (7), this set of constraints is given by

X — g,
27 e sy, vi=1,2,.. ., m, (14)
OTy;

whereV; is the value corresponding to a normal variable N (0, 1)) with an accumu-
lative probabilityC, i.e., P(z < V) = CI.
Developing inequality (14),

X — )
s o 1 >Vor= X —pry, 2 Voo, =
OTa;

X — (pa+pe) - Si > Vo -1/ (83 +62) - Si.

Let A = py + pc andB = &3 + 2.
Therefore if (X — A-S; > 0) then

2
X-A-8]>> [VCIW/B-SZ-} -
X’+[A-8)?-2-X-A-8; >V -B-S;=>
[vgl-B+2~X-A]-si—[A.SifSX?;»

Let K = V72, - B+2- X - A then the previous inequality
becomes:
K-S;—[A 8] <Xx?%

Note thatX — A - S; > 0 is a constraint imposing that the average working time of day
1 is lower than the total time&. In this way, the possible symmetric solutions obtained due
to [X — A - §;]? are prevented. However, the model can only schedule wodaiyg with a
confidence level not exceeding total time greater than 50%rdar to impose a confidence
level lower than 50%, the constraifit— A -.S; > 0 should be changed with — A-S; < 0.
In this paper, we consider! > 50%.

Putting together, the set of chance-constraints that ptetke scheduling with a confi-
dence level lower tha@'l is showed in (15).

{K-si—[A-si]Qéﬂ Vi=1.2 . ..m. (15)

X-A-S; >0,

The full MIQCP problem is obtained as,
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min gj ;- (m—i+1)+B-Po-8;- (m—i+1)]

1=1
Subject to:
nq - S; —Obj <a; Yi=1,2,....m
—pg - S; j <oy, Vi=
mp’d Sz+0b.7 =S Gy, VZ 1725 , M (16)
> 8] <1, Vj=1,2,....n
i=1
K-S;—[A-S]° <X%Vi=12,....,m
X-A-S; >0, Vi=1,2,...,m
S; €{0,1}", a; € R, Vi=1,2,...,m.

Regarding the size of MIQCP (16), the problem has

m real variables;

n - m binary variables;
— 3-m + nlinear inequality constraints;

— m quadratic inequality constraints.

— (n+ 1) - m variables of whic

The MIQCP problem has two input parameters: the target DSGep¢age, i.e.p (it
appear inOb; see (10)), and the MCL, i.eGl (by the value ofi;). However, these two
parameters are dependent one by another, for example if veectixfidence level’l then
the value oy is upper bounded, this bound depending on the chosen valtie bf the third
problem, the target DST becomes a variable in the problenttadptimization problem
will try to maximize it.

4.3 N-MIQCP

This problem improves the MIQCP by changing the input patani2@ST to schedule (given
asp) into a variable to be maximized. So, the N-MIQCP only hasiapat parameter: MCL
not exceeding the DWT (given &%).

Because the DST becomes a variable in the N-MIQCP problenistheximized, a new
definition of variablesy; different by the one in eq. (11) should be given. Instead aidpe
the absolute difference of the scheduled time with respeitig desired value, in N-MIQCP
problem the variables; are defined as the negative sum of the duration of the susgerie
scheduled in day.

;= —pg-Si,¥i=1,2,...,m. (17)

Notice that the variables; can be removed from the problem while in the objective
function can be used its definition given by (17). The full NCP problem is obtained as,

min 3> [+ Si - (m — i+ 1)+
i=1
+8-Po-8i-(m—i+1)]
Subject to:
> Sili] <1, Vi=12..,n (18)
i=1

K- Si—[A-8]><X%vi=12.. . m
X—A-S, >0, Vi=1,2,....m
S; € {0,1}", Vi=1,2,...,m.
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The size of N-MIQCP (18) is given by

— n -m binary variables;
— n + m linear inequality constraints;
— m quadratic inequality constraints.

Even if the number of variables and of the constraints is Emtiian the MIQCP (16),
the computational complexity of N-MIQCP (18) is in genergjtter. This is due to the fact
that in MIQCP (16) the DST of the solution belong in general gymmetric interval around
the target DST while in the case of N-MIQCP (18) the DST is mmazed.

Finally, let us notice that N-MIQCP (18) can be used to edinithe DST achievable
for a given confidence level. The pair of values DST confiddecel can be used as input
parameters in the MIQCP (16) that is computationally mofieieht.

5 Heuristic Approaches

In order to reduce the computational complexity, this secthtroduces first aeceding
horizon strategy(RHS) to obtain suboptimal scheduling for a large numberwgisal
blocks. Second, a methodology using N-MIQCP and MIQCP atigwo obtain the op-
eration scheduling with reduced computation time is pregos

5.1 Suboptimal Solution Using a Receding Horizon Strategy

The optimization problems presented in the previous sead#n be optimality solved by
using IBM ILOG CPLEX Optimization Studio which is often refed as CPLEX (IBM,
2016), one of the fastest software solution for integer |enois (Gearhart et al, 2013). Al-
though CPLEX is quite fast, due to the large size of the problehe computational time and
memory usage to solve the optimizations problems incregsenentially with the number
of patients in the waiting list and time blocks (ORs workirayd) to schedule.

After some simulations with different number of patientsttie waiting lists {) and
with different number of time blocks to schedule), we observed that the variable that
more influence the computational timesis. Moreover, the computational time depends
also on the value of the design parametent has been observed that, the greatep is
(more importance is given to the order of the patiem$, the smaller is the computational
time. The fact that more importance is given to the order iictvipatients are scheduled,
allows a lower combinatorial of patients and consequelhiysolution converge before in
the optimal one. For example, for a valuebénough large the scheduling obtained has the
patients perfectly ordered.

In order to reduce the computational complexity, in (Claatedl, September 2016) we
proposed to solve the optimization problemmoblocks iteratively (similar with th&®eced-
ing Horizon StrategyRHS) (Camacho and Bordons, 2004)). The idea is to schewitikly
N < m time blocks by using the optimization problem and the fulltimg list of patients.
From the obtained solution, only the fir&4 < N time blocks are considered and the cor-
responding patients are removed from the waiting list. Athiat, anotherV time blocks are
scheduled by using the same optimization problem and thatagdvaiting list. Again, from
the solution only the firsiv; blocks are considered and the procedure is repeated until al
blocks are scheduled.
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In our case of study, the scheduling is performed weekly: amdi&y of week “x” the
scheduling of the time blocks available in week “x+2” is merfied. Normally there ane =
3 time blocks available each week for each surgical team, #usrcase is not necessary to
use the RHS. However RHS approach could be interesting er bibspitals or departments
which greater number of time blocks to scheduled. HowevetSRpproach could help
to estimate an approximate surgery date for a new arrivadrdiy scheduling all others
patients in the waiting list. This possibility also allowsdpital manager to know the number
of time blocks necessary to schedule all patients in theingglist and increase or decrease
the hospital resources to a surgical department.

5.2 Towards Computational Tractable Scheduling
This subsection discusses an approach to obtain a congnahtiactable solution for oper-

ation scheduling using MIQCP (16) and N-MIQCP (18) thatuiel chance constrains (see
Fig. 1).

targetDST

lMCL i

GRAPH

RANDOM LIST N-MIQCP

> » SCHEDULING Ocupation VS
(max. Occ.) (Avg Occ)
9 Confidence
MCL
MCL
Y
WAITING LIST
— 3] MIQCcP |3 SCHEDULING SAFER
targetDST

Fig. 1 Approach for Computational Tractable Scheduling.

The difference between these two optimization problembas MIQCP (16) requires
a target DST as input parameter and the N-MIQCP (18) maxagntizis DST. However the
computational time for the N-MIQCP is much higher than forQu@P.

Step 1. Approximate DSTs corresponding to MCLs using N-MIQCP(18). The ob-
jective of this step is to know the appropriate target DST #heuld be introduce as input
parameter in the MIQCP for a given MCL. We consider that a DSagpropriated for a
given MCL if it is achievable and it is close to maximum. Besdf the MCL, the approx-
imation of DST also depends on the type of surgeries that rpagar in the waiting list
(durations and probability of appearing) and the total tawailable (DWT=X). For this, the
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approximated DSTs should be updated by performed this feptance every two months.
Fig. 2 shows the relation between average DST and minimurfidesrce level obtained

Ocupation rate Vs min Confidence using N-MIQCP
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Fig. 2 Average occupation rate obtained using N-MIQCP dependirth@minimal percentage of confidence
required (blue). The input parameters corresponds to tligestiSurgery Department.

in step 1 for the particular parameters of the Orthopedig&yrDepartment in Zaragoza.
Notice that for example, if the objective is to obtain a taf8T equal to78%, then the
minimum confidence level i1%. Using historical data on the performed surgeries, com-
pute first the probability of appearance of each surgeryasotial number of patients with
the same surgery divided by the total number of surgeriese@an these probabilities, a
large random waiting list can be generated. Using N-MIQGH) (iith the receding horizon
strategy (e.g.N1 = N = 3) the patients on the waiting list are scheduled with a large
number of time blocksn (ensuring that all patients are scheduled). Different duhieg
should be obtained fixing different confidence levels. Eduthioed solution corresponding
to a given confidence level is used to compute the expectad@y®ST. A representation
of the average DST vs. a given minimum confidence level carbtareed.

Step 2. Compute the scheduling by using MIQCH16). Using the obtained rela-
tion, for a given minimum confidence level, the correspogddST is taken and used in
MIQCP (16) for scheduling of patients. In Sec. 6 will be shaat the computational time
necessary to solve this problem is much smaller than soNigIQCP (18) while the ob-
tained solution isafer, in general, than the solution obtained by using MILP (13).

6 Results

In this section experimental setting of the heuristics apphes presented together with
some simulation results are analyzed and compared. Ircpktia comparison between
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different models/approaches is analyzed through a readishulation of one year schedul-
ing in the studied hospital department.

6.1 Receding Horizon Strategy

In order to fix the values oV and N7 used in the RHS, different simulation using CPLEX
(version 12.6.2) in a computer with an Intel Core i3 and 4 GBngfmory has been per-
formed.

First, the influence of the number of days consider€d) (in each iteration is checked.
For this, from a waiting list composed by 120 patients andhlie same receiding time
horizon (v = 7), the MILP (13) is used to schedule 30 working days with défe values
of N;. Tab. 3 shows the cost obtained for the different instaridaike what usually hap-
pens in control theory, increasing the valueNaf, a trend of cost improvement is observed.
For this, the following simulations are performed with= ;. In Tab. 4 a comparison be-

Table 3 Influence of Ny in MILP problem solutions# = 120, m = 30, N =7, 8 = 2)

N | N1 Cost

88668
88171
88295
88382
88181
86824
86937

~
~N| O O B W| N[

tween the optimal solution and the one obtained by using th® R showed. Moreover, the
computational costs are given. In particular, the first soluepresent the particular math-
ematical programing problem being used, the next two colufixthe size of the problem
(m andn). Notice that each instance has a different size (deperatintpe complexity of
the model) in order to be able to obtain the optimal solutiime fourth one indicates the
optimal cost and the fifth one the time necessary to obtaimaptolutions for the partic-
ular instance (other instance with the same size can notlbedsoptimally). Column sixth
shows the parametéf = N; of the RHS, while the seventh and eight columns represent the
cost obtained using RHS and the relative error to the optousl respectively. Finally the
last column indicate the computational time required toesdhe different instances using
RHS.

As expected, increasing the horizoh solutions with better costs are usually obtained.
Unfortunately, increasing the horizav, the computational time is increased also. However,
increasingV does not implies that always a better cost is obtained. Famele, solving the
particular instance in Tab. 4 of N-MIQCP using the RHS, it barseen that the cost obtained
with N = N; = 5andN = N; = 4 is the same (-4902) and moreover, it is worse than the
one obtained fo’v = Ny = 3 (-4940).

6.2 Computational Tractable Scheduling

In this subsection are shown the computational time imprmms, as well as the results
obtained using the heuristic approach with N-MIQCP and MRQUsing again the same



Title Suppressed Due to Excessive Length 17

Table 4 Cost and computational time for instances of the three prappseblems solved optimally and
solved by using the RHS with different parameters\oft= N

#days | # patients Time Time

Model m) ") Op.Cost [s] N = N; | RHSCost | &, [%] [s]
6 5850 5.36 4.76

MILP 12 40 5552 150 7 5754 3.63 6.05
8 5693 2.53 10.07

3 2860 10 0.63

MIQCP 9 30 2600 548 4 2720 4.61 1.19
5 2654 2.07 4.47
3 -4940 0.22 11.05

N-MIQCP 6 25 -4951 373 4 -4902 0.99 289
5 -4902 0.99 1558

computer (Intel Core i3 and 4 GB of memory), the average cdatjmnal times to schedule
m = 42 working days (for lists generated random based on the pilitied) using N-
MIQCP and MIQCP (both with receding horizon strategy with = N = 3) are shown in
Tab. 5 and 6 and discussed in Ex. 2.

Example 2Let us compare the computational time for solving N-MIQC®)@nd MIQCP (16)
using in both cases the RHS. For this, we consider diffeishof n = 150 patients gener-
ated random ang: = 42 time blocks to schedule. Let us assume also that the DWT is 6.5
hours.

First, the N-MIQCP (18) is solved assuming different MCL erteeding DWT, namely
Cl = 68%, Cl = 72.5% andCl = 78%. For eachC!, 50 replications with different
scenarios (waiting list) has been scheduled. In Tab. 5 teeage computational times to
solve the different instances and the average DST (in p&agenespect to the DWT) of
the obtained solutions are presented. Then, the MIQCP gl&)lved with exactly the same

Table 5 Average Computational time and average DST obtained by spldifferent instances of N-
MIQCP (18) using RHSK = N; = 3).

Avg. Time[s] | Avg. DST

MCL(%) | "NImIQcP | (% DWT)
68 716 78.9
725 130 7759
78 285 75.57

MCL not exceeding DWT. Since MIQCP (16) requires as inputipsater a target DST, a
value 0.4 greater than the average DST obtained from thé@odof N-MIQCP (18) (Tab.
5) is used. In this way similar DST will be obtained.

Tab. 6 shows the average computational times and the avB&i§®btained by solving
50 replications of the different instances using MIQCP (16)

It can be seen that for a same MCL the average computationastio solve instances
using MIQCP (16) (Tab. 5) decreaseXxl (< 71, 36 < 130 and47 < 285) with respect to
the obtained by using N-MIQCP (18) (Tab. 6). Moreover, therage DST obtained with
the both problems are really similaf§.9 ~ 78.75, 77.59 ~ 77.31 and75.57 ~ 75.34). W
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Table 6 Average computational time and average DST obtained by gptlifferent instances of MIQCP (16)
using RHS (V = N; = 3).

Avg. Time[s] | Avg.DST

MCL (%) Target DST N-MIQCP (% DWT)

68 79.3 24 78.75
72.5 78 36 77.31
78 76 a7 75.34

6.3 Influence of parametegrin the proposed model

In this subsection, the values of the parametan each model (MILP MIQCP and N-
MIQCP) are fixed.

In order to be able to compare two different scheduling frbme point of view of the
order of the patients, we define the indicatarThis indicator measures the disorder of the
patients in the obtained scheduling, so the smaller it esntlore orderly are the patients in
the scheduling. To compute this value, for each time blobleduled; we define an interval
[fi,1;]. If the preference order of the surgeries scheduled in the Hlockd; belong to the
interval [f;, ;] do not increase the value ¢f. On contrary, each patient with a preference
order outside the interval, increases the valug2ofThe formal calculation of? is given
in Algorithm 1 whereNp is the total number of patients scheduled dnilis the average
number of patients scheduled per time block.

Algorithm 1: Calculation of(2 parameter in a scheduling of time blocks
1. 2:=
Np:= 37 (sum(S;))

: Pd = N2
. forall bime Bdo
fi=min(1, |Pd- (i —1)] —3)
li:=[Pd-i]+4
for all w; scheduled the day; do

if Fi % [f17l7] then

Q2 == +min(|j — fil, 15 — L)

10: end if
11: endfor
12: end for

N

QONOID AW

Now the influence of parametgrin the MILP problem is shown in Tab. 7. Scheduling
of 35 time blocks have been obtained (with RHS) for 50 différgcenarios (waiting list)
composed by 120 patients. The target DST is fixed to 78% affierelift values of3 has
been used. The waiting lists have been generated randorigyeaplained in Step 1 of Sec.
5.2. The DST obtained (average and standard deviation}enaverage value of parameter
2 have been analyzed.

It can be seen that decreasifigbetter results of DST are obtained: The average DST
are closer to the target and the standard deviation desre€8Bis means that the data are
more concentrated around the average value. Unfortungteymprovement is achieved by
allowing a greater disorder of the patient in the operatsnfeduling: decreasing the value
of 3, the value off2 is increased. According to these resultss 2 is fixed for MILP (13).
Moreover, performing similar simulations using MIQCP (&6)d N-MIQCP (18) a value of
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Table 7 Influence of3 in MILP: Small 8 gives more weight to obtain the target DST (= 30, n = 100,
N = N1 = 7and TargeDST = 78%).

B | Avg.DST | Std. Dev.DST| @2

1| 7785 0.97 86.4
2| 7758 137 64.52
3| 77.30 171 55.4

B = 2 s fixed for MIQCP (16) while a value of = 4 is fixed for N-MIQCP (18). Using
these values, a good compromise between the 8T 4nd the order of the patient®4)
are obtained from the medical point of view. Note that a gnealue of3 is necessary in N-
MIQCP problem compared with the other two problems becabifgeddifferent definition
of a;.

6.4 One year realistic simulation in a Orthopedic Departnoéthe LBHZ

In this subsection, in order to test the proposed approadit@eompare it with the ap-
proaches proposed in (Shylo et al, 2012; Hans et al, 2008)ywkement a discrete event
simulation model of the scheduling. It is used to simulateesitling decision for each team
in the Orthopedic department at the LBHZ. One year lengthw@eks) is set for each simu-
lation run. The new patients needing a surgery are assunad\e according to a Poisson
distribution with a mean of 9 per week. Moreover for each §sirulations, 50 replications
are performed (each replications is a schedule for one yBae€)block schedule used in the
simulation is identical to the one that is used by the studigghartment: each team have 3
blocks per week from 8:30 A.M. until 3 P.M.

Let x be the current simulation week, the steps in the siraraalgorithm of the
scheduling process are described as follow:

Step 1. Generate the initial waiting list and initialize therrent simulation weekin
initial waiting list composed by 100 patients is generat@adomly using realistic data of
the studied department. Moreover the current week “x” igahted to x = 1

Step 2. Scheduling the time blocksirgeries from the current waiting list are assigned
to time blocks booking in the week “x+2”. In order to perforhretassignment, besides of
the three proposed models in this work, the approaches iyiq&h al, 2012; Hans et al,
2008) have been implemented. These approaches need a hadelsg of the blocks to
obtain the final assignment. THiest-fit probabilistic rule (I7erp) under the probabilistic
constraints (14) is used to obtain this base scheduling. 8ygu7rrp sequentially each
surgery is assigned to the first available block for whichgtebabilistic capacity constraint
(14) is satisfied after the assignment.

Step 3. Generate a new set of arrival patiefisnumbera of new arriving surgeries
is generated based on Poison distribution with a fixed dnrata considering realistic data
from the historical data.

Step 4. Process all scheduled blocks for the current wékelprocess 2000 replications
of each block available in the current week obtaining défgraverage metrics (overtime,
utilization, confidence level).

Step 5. Update the waiting listhe patients scheduled in the current week “x” (they
should be surgically operated week“x+2") are removed frbmwaiting list. Moreover the
new arrival patients (Step 3) are included at the end of thengdist.

Step 6. Increment the current week (next week) and stop riindagion if the current
week exceeds the end week of the simulation, otherwisequido&Step 2.
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Some events as changes in surgery dates, cancellationgdr|s or the addition of
emergency/urgent surgeries are not considered in our afionlmodel because are difficult
to predict and they are managed in real time based on expeibog.

First, the scheduling obtained by using problems (13), é06) (18) are tested and com-
pared by the simulation algorithm and represented in Tab. 8.

The input parameters of the problems are shown in the firsetbolumns of the Tab.
8 (INPUT PARAMETERS). The last 10 columns of Tab. 8 show th®ISLATION RE-
SULTS in the operation scheduling related to: a) Occupatte (DST), b) confidence level
and c) order of the patients2j. A minimum confidence level of'l = 70% is considered
for N-MIQCP and MIQCP problems.

Table 8 Comparing of one year scheduling using MILP, MIQCP and N-MRQC

INPUT PARAMETERS SIMULATION RESULTS
Objectives Constr. DST (% of DWT) Confidence level Order
target | maxim. min . .
MODEL DST DST c, Ave. Max Min Std. | Ave. Max Min Std. 2
MILP 78.3 7795 | 82.26 | 72.22 | 1.49 | 78.34| 96.72 | 56.02 | 7.43 | 368
MIQCP 78.7 70 78.02 | 81.61 | 72.47| 1.48 | 78.4 | 9587 | 70.13| 5.68 | 466
N-MIQCP v 70 78.29 | 85.19 | 68.76 | 2.67 | 77.31 | 97.52 | 70.04 | 6.37 | 436

Let us analyze the results obtained:

1. From the DST point of view, the solutions of the three peofld are very similar, the
average values are closer than 0.4% of its target (78.3% hagreater standard devia-
tion is obtained by using N-MIQCP. This happens because MihéMIQCP problem
try to obtain a target DST and consequently the values ofstian are concentrated
around this target DST.

2. Taking into account the confidence level not exceedingDWET, the average values
obtained by using the three problems are really close. Hewdy using MILP, days
with higher probabilities of exceed the DWT are obtainednimum confidence level
of 56.02 is obtained). This problem (MILP) does not imposeiaimum confidence
level.

3. In relation with the order of the patients, the solutiothwthe lower coefficient? is
obtained by solving MILP, however the three models obtainslar and acceptable
values of(2 from a medical point of view results.

As expected, for the same target DST rate (for example 78 Bfkolutions obtained
with MIQCP and N-MIQCP are safer than the ones obtained byguBIiILP. This happens
because MIQCP and N-MIQCP prevent by chain constraint tilmekis with low confidence
level. In addition the solution obtained using MIQCP (AvgSD=78.02%) and N-MIQCP
(Avg. DST=78.29%) are very similar from the occupation rasépof view. Furthermore,
like it was shown in Tab. 5 and 6, the computational time nemgsto solve MIQCP is lower
than the one of the N-MIQCP.

Tab. 9 shows a comparison between the scheduling obtainediby: (1) thellppp
rule (commonly used in hospitals), (2) the batch schedw@roach in (Shylo et al, 2012),
(3) the constructive algorithm proposed in (Hans et al, 2608 (4) our approach based on
the MIQCP. The scheduling are obtained fixing a minimum cemigg level ofC! = 70%
for the 4 approaches. The average annual values of overtiaimlpility, occupation rate,




Title Suppressed Due to Excessive Length 21

and order of the patientsX) are analyzed. Moreover the total overtime and the totalberm
of treated patients per year are considered.

Table 9 Comparison of the one year scheduling using different chairstrained approaches with a minimun
confidence level of 70%

OR Conf. Overtime OR utilization Surgeries 0

Approach Level (Year) [min] | DST (% DWT) (Year) (Year)
IIrrp rule (commonly used) 81.98 806.41 76.12 429.9 1935.9
Constructive Alg. (Hans et al, 2008)  80.43 922 76.69 432.02 2840
Batch Scheduling (Shylo et al, 2012) 75 1183 79.06 447.78 3993.1
MIQCP (proposed here) 77.31 1059 78.28 438.3 395.4

The 3 approaches analyzed in Tab. 9 improve the occupatienfthe time blocks with
respect to the obtained by using thg-rp scheduling rule. However, the improvement
in the occupation rate of the time block implies a decreasinipe confidence level. For
example, the Batch Scheduling approach achieves the highespation rate (79.06 %)
and the highest number of treated patients (447.78), ansbguiently the lower confidence
level (75%) and the highest total overtime (1183[min]) isadted. Taking into account the
pairs of values occupation rate and confidence level, thetBatheduling approach obtain
the better solution with: 1) the highest occupation rate 2na confidence level within the
allowed.

Our MIQCP approach obtain a little worse occupation rate2886) than the Batch
Scheduling (79.06 %). However, considering the order of téepts by the value of pa-
rameters?, it can be check that our MIQCP approach obtain the best stihgd Doctors
in the studied hospital department consider that the sdimgdabtained using the other ap-
proaches are not suitable from a medical point of view bezatishe great disorder of the
patients. So, using our MIQCP approach and imposing a MCIl0&6,the improving in the
occupation rate with respect to use tfig rp rule (commonly used in hospitals) is of 2.16
%. Only considering the Orthopedic department implies areimentA .. of 109 hours per
year in the use of the ORs (19):

Ape = 0.0216-6.5 | 1urs | g | __Yock | 5o |WeCk] 5t oam)
block team - week year (19)
=109.512 [h(’“’“
year

Unfortunately, it also implies an incrememiy,, of 21.05 hours per year in the overtime
(20), but always without comprise the minimum confidencell@stablished.

min 1 | hour

(20)

—21.05 {hm”}

year

In Tab. 10 we show the results obtained for a one year schrefugiing our MIQCP ap-
proach for different MCLC!. It can be seen that imposing a little lower MCL in MIQCP than
in the Batch scheduling approach, similar occupation ratestotal overtime are obtained.
For example, using Batch Scheduling imposing a MCICof= 70 (Tab. 9) and using the
MIQCP approach with a MCL of®l = 67.7 (Tab. 10) the average occupation rates are
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79.06[%] and 79.08[%] respectively and the total overtime J@3[min] and 1190[min]
respectively. However, the scheduling are much more oddeseng the MIQCP approach
(£2 = 386.64) than using the Batch Scheduling approagh= 3993.1).

Table 10 Comparison of one year scheduling using MIQCP approach \iffégrent MCL CI [%)]

MCL Cl [%] OR Conf. Overtim_e OR utilization Surgeries 7]

Level (Year) [min] | DST (% DWT) (Year) (Year)
51 59.49 2425.1 83.9 469.64 446.58
55 63.14 2093.2 82.80 463.92 411.78
60 67.75 1712.0 81.4 455.56 426.52
65 72.99 1340.8 79.75 446.56 410.44
67.7 75.18 1190.07 79.08 441.42 386.64
70 77.31 1059 78.28 438.3 395.38
75 81.57 805.86 76.72 428.08 | 380.62
80 86.1 562.33 74.76 418.962 | 378.82
85 89.82 376.84 72.89 408.14 | 366.42

7 Decision Support System for Scheduling

The Orthopedic Department in which the DSS will be used ispased by medical doctors
divided in 5 medical teams. Each doctor has assigned his avarps and the waiting list
of a team is composed by the patients of the doctor belongitiget team. Each team must
operate the patients from his waiting list during the timeckk previously booked. So each
manager team should schedule the patient from his waitidnlithe time blocks available
to his team. In order to perform a rapid, efficient and dynaaperation scheduling we
propose a decision support system (DSS). The core of the ®8® MIQCP presented in
Sec. 4 for operation scheduling, but also it includes otbatures that enable a) updating the
waiting list, b) dynamic planning and, c) improving the inglata by updating the surgeries
durations.

7.1 Updating the waiting list

In general, a new patient is added at the end of the waitihgudisthe surgeon, depending on
the priority of the pathology of the patient, could decide@t him in a higher position of the
waiting list. The DSS, based on medical criteria, autonadljiccreates the ordered waiting
list of patients. Each patient hageparameters that influence directly in his/her position in
the waiting list.

1. The first and the most important one is the time waiting twgery. This time is calcu-
lated as the difference in days between the actual day andathéhat the patient was
introduced in the list. The patient with highest number ofting days, have a score
of 10 while the newest patient has a score of 0. The other patievis & proportional
score between 10 and 0. This score denotefl;alsave a weight in the calculation of
total score (denotefi;) of p; .
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2. The second parameter has to do with the priority of theesigg. Although the DSS
schedules non-urgent surgeries, there existvels of priority 1, 2 and3 with a corre-
sponding scoreqz) of 0, 5 and 10, respectively. The weight of2 in the computation
of St is ps.

Assumingp: + p2 = 1, the final score that allows to order the waiting list is obéal as
follow:
Sp=p1-51+p2-5S2 (21)

Finally the patients are ordered according to their totatescThe patient who has the
highest total score will be the first in the waiting list, whihe patient who has the lowest
punctuation will be the last one in the waiting list.

7.2 lterative planning

The manager of each medical team perform the operation stthgdor the nextmn time
blocks ensuring a MCL (this is done by solving MIQCP (16))xN¢he time blocks sched-
uled are assigned to the available dates for the correspgietam. Then the secretary calls
the patients scheduled in the following days. Once all patients have been called, the sec-
retary give back to the team manager the list of patientsttae¢ been confirmed and the
ones that cannot be contacted (or they cannot be hospdatizine following days due to
external reasons). In this moment, the team coordinatauldhechedule again the empty
gaps. This process is repeated until the nexime blocks are completely scheduled.

Once the first scheduling has been computed and secretdiynt®ithe attendance or
the absence of patients, constraints will be added to the@Q®@L6) and the scheduling
will be iterated. This addition of constraints can be semo als a reduction of number of
variables with respect to the initial problem since the newstraints fix the values of some
variables. If a patient with preference ordeconfirms the attendance in time blogkhen
the following constraint is added:

S;[i]=1. (22)

However, in case that a patient with preference ordeannot be contacted or he/she
cannot be hospitalized, then the followingconstraints are added:

Silil=0¥i=1,....,m. (23)

7.3 Updating and customizing the average durations

The average duration and standard deviation of each typargéry has been computed
using historical data obtained during last two years in tbspital department. During a
period of two years, it is possible to obtain a sufficientlghhinumber of surgeries and
the durations are representative. However, there exisifwignt differences between the
different surgeons. Moreover, for each surgeon, theseageedurations are continuously
improved because after performing the same surgery seieras the surgeon has more
experience. Therefore, it is very important to dynamic up@éso these input values.
After each surgery is performed, the time spent and the sargého performed the

surgery will be registered in a database. The DSS updatesérage durations of the surg-
eries depending on the surgeon.
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Fig. 3 Flowchart of the DSS for operation planning.

7.4 Overview of the DSS

The flowchart of the DSS is given in Fig. 3 and starts by adding\wa patient to the wait-
ing list. Each surgeon has his own waiting list while the wngjtlist of the medical team is
composed by the fusion of the lists of the surgeons that cemfiee team. Each surgeon is
responsible for introducing their patients in the DSS. Tiehuad to add a patient belonging
to a determinate surgeon is as follows: the DSS recognizesutgeon (using a personal
password) and he/she enters the name of the patient, thelggttand the priority of the
surgery. Additionally, the DSS saves the information ofdlceual date in order to compute
the waiting time in the list and the surgeon that have to perfihe surgery. Medical teams
are not always composed by the same surgeons, so they st®yleriodically updated.
When a team coordinator decides to plan the mexime blocks, he selects in the DSS the
waiting list of his team and automatically the tool assigvsrage theoretical durations and
standard deviation to each surgery based on the patholaggrathe surgeon. In this way,
the vectoru, o4, pe ando . are generated and the DSS performs an operation scheduling
in an iterative way (as is described in 7.2). The input da#4 tihe team’s manager have to
introduce in the DSS to schedule the next time blocks arbeirbrresponding team, ii) the
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number of time blocks to schedueand its durationX and iii) the MCL. Depending on the
MCL that the manager team impose, the DSS automaticallytset&ppropriated” target
DST to solve the MIQCP. These “appropriated” values of taR@T for each MCL (Fig.
2) are saved in the DSS and their are updated periodicallyolwng a large instance of
N-MIQCP. The states of patients that have been scheduletyelfaom pending to sched-
ule. Once a specific surgery is performed, the surgeon inteslithe operating time in the
tool. This new input data is used to update the average darédis is described in 7.3).
Additionally, the tool removes the patients that have beserated from the waiting list. If
finally a scheduled surgery is not performed, the DSS chathgestate of this surgery from
scheduled to pending.

8 Conclusions

By modeling and solving MILP (13) it is possible to perfornrgical operations schedul-
ing of elective patients with a giveDaily Surgery TimgDST) of Operation Roon{OR),
respecting as much as possible the order of the patientg iwditing list. However, it has
been shown that high DST rates of OR lead to unsafe schedutngthe probability of
exceeding the totdDaily Working Time(DWT). Considering the duration of the surgeries
and the duration associated with the cleaning time as randoiables with normal pfd and
using some statistics concepts, MIQCP (16) has been deackl@y solving this model it
is possible to perform surgical operations scheduling ettale patients with a given DST
but, at the same time, ensuring/énimum Confidence Lev@ICL) of not exceeding DWT.
Of course, this model also respects as much as possibledbeafithe patients in the wait-
ing list. MIQCP has two input parameters: target DST (givemagercentage of DWT) and
a MCL not exceeding the DWT. These two parameters should bsistent. In order to
know the suitable target DST rate for a given MCL, the N-MIQ@Bblem is developed. N-
MIQCP perform surgical scheduling of elective patients imazing the occupation rate of
ORs, but at the same time, ensuring a MCL not exceeding the.MTthe set of patholo-
gies in the studied department and a DWT of 6.5 hours, sesehafions using N-MIQCP
have been obtained for different MCL. For each solution,rdseilting average occupation
rates have been computed and use it in MIQCP to get a smahepwational time (Sec.
5.1). Using MILP (13) scheduling is obtained faster, howekere exists a high risk of ex-
ceeding the DWT. In order to obtain safer scheduling, we aiegto use MIQCP (16). The
target DST used in MIQCP (16) is computed by using N-MIQCP (18

The problems have been tested and compared using reabstidrom the Orthopedic
Surgery Department of the “Lozano Blesa”Hospital of Zamg(.BHZ), Spain. Moreover,
a receding horizon strategy to schedule a large number dimgpdays is proposed (Sec.
5.2). It has been observed that using MIQCP (16) (MCL=70%tanget DST=78.7%) is
possible to obtain an average confidence level of 77.31% araverage DST of 78.28%.
These values are considered appropriated from a medicat pbiview. Moreover, the
scheduling obtained using our approach respect the ordaegfatients in the waiting list,
making it the only suitable for the LBHZ. Using our MIQCP apgach instead of thérst
fit probabilistic (11 p) rule (commonly used) it is possible increase in 109.5 hpers
year (see eq. (19)) the use of the ORs only considering theoPetic Department. How-
ever, the overtime is also increased in 21,05 hours per geardq. (20)) but always without
compromising the minimum level of confidence allowed.
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Currently, we are developing a software tool based on a @eEp®SS that includes
the MIQCP for the daily scheduling, and the N-MIQCP for ugdiiom time to time the
approximated target DST for each MCL.
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