
Timed Continuous Petri Nets:

Quantitative Analysis,

Observability and Control

Cristian Mahulea

TESIS DOCTORAL

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza

Directores:

Manuel Silva Suárez

Laura Recalde Frisón

Septiembre 2007









Timed Continuous Petri Nets:

Quantitative Analysis,

Observability and Control

Cristian Mahulea

TESIS DOCTORAL

Departamento de Informática e Ingeniería de Sistemas

Universidad de Zaragoza

Directores:

Manuel Silva Suárez

Laura Recalde Frisón

Septiembre 2007





To Liliana





Acknowledgements

I would like to thank all the people who, during the last four years help me in many ways,

making possible the present work.

I would like to thank, first and foremost, Manuel Silva and Laura Recalde, my Ph.D. advi-

sors at the University of Zaragoza, Spain. This thesis is based on the work done together in a

crucial learning period of my life. I cannot remember how many meetings we had together

that clarified me many problems. I am very proud that I had the opportunity to work with

two of the most important figures in the field of Petri nets.

Several people have played a decisive role in my work, and I want to mention here Alessan-

dro Giua and Carla Seatzu, professors at the University of Cagliari, that have visited our De-

partment, but also for their hospitality during my stay in their group, in Cagliari. A special

thanks to Alessandro that have read part of this thesis at the beginning and gave me tips to

improve the presentation.

Thanks a lot to Antonio Ramírez Treviño with which I have worked during his stay in our

group. Dear Antonio, I’m looking forward to share a plate of Mexican food with you, not

necessarily in a Sunday at the University.

I would like to thank Jorge Júlvez, one of the most intelligent people I have ever met, a

mind always wondering, that help me at the beginning of my work to understand better the

formalism of continuous Petri nets and made my interest in this particular field to grow.

I cannot forget my supervisor in Romania, Professor Octavian Păstrăvanu, a brilliant

teacher and a friend that believed in me and supported me into following this way.

I want to thank the institution that provided me financial support during this thesis: a

Ph.D. grant from Spanish Ministry of Science and Education (reference BES-2004-6120), the

projects CICYT - FEDER DPI2003-06376 and DPI2006-15390 from the Spanish Ministry of

Science and Education and an integrated action Italy-Spain HI2006-0149.

At the personal level, I would like to thank first Manolo and his wife Regina because they

help us (me and my wife) to accommodate in Spain. Then, to Juan Pablo, Diego and Jorge,

my best friends, for all that they have done for me during my stay in Zaragoza. Thanks to

Alessandro and Maria Paola for the moments spent together in Cagliari. Thanks to DIISas-

ters, for all the fun I had in your company, for all the "tapas", for introducing me to "padel"

and for allowing me to pretend I was a football player, especially when I was goalkeeper. I

cherish all the moments we spent together. I want to thank Javier Campos, for letting me

know The Pyrenees in many occasions and Ana Cris for showing me Ezcaray.

I would like to thank all my family in Romania for their support; I want to mention here

my grandfather, Ioan. Many thanks to my lovely wife, Liliana that after one year was near

me, supporting me and giving me power to finish this thesis. I wish to dedicate this thesis to

her.

i





Redes de Petri fluidas y

temporizadas: análisis cuantitativo,

observabilidad y control

Resumen

Las redes de Petri constituyen un paradigma muy potente para modelar, analizar y sinteti-

zar sistemas concurrentes basados en eventos. Sin embargo, su análisis y síntesis requiere

con frecuencia de algoritmos cuya complejidad crece exponencialmente con el tamaño o

marcado de la red. Dada la complejidad computacional subyacente, las relajaciones por flu-

idificación (redes de Petri Continuas e Híbridas), aunque no siempre utilizables, permiten

resolver gran cantidad de casos prácticos. Esta abstracción es útil en el estudio de sistemas

procedentes de muchos dominios de aplicación como Sistemas Logísticos, de Fabricación

Flexible, de Work Flow Management o redes inalámbricas "ad hoc"; en todos los casos se

comparten principios metodológicos para la construcción de modelos, la caracterización

de propiedades de buen comportamiento o principios de diseño.

Las redes de Petri continuas, consideradas en esta tesis, difieren de las discretas en que

el disparo de las transiciones no está restringido al conjunto de números naturales sino al de

los reales positivos. De esta manera, los problemas de programación entera utilizados para

estudiar distintas propiedades de las redes discretas se transforman en problemas de progra-

mación lineal que tienen una complejidad polinomial. Aunque esto no quiere decir que los

problemas son todos polinomiales en complejidad, habiéndolos que son hasta indecidibles.

Este trabajo se alinea en el marco anterior, siendo -en cierto sentido- prolongación de

trabajos realizados con carácter previo en las tesis de Laura Recalde y de Jorge Júlvez. Se

propone el estudio de cinco temas distintos, todos relacionados con las redes de Petri con-

tinuas temporizadas y en general bajo la semántica de infinitos servidores. Los temas pro-

puestos son: (1) semánticas de disparo y monotonía de las prestaciones de la red continua

respecto a cambios en la velocidad de disparo de las transiciones y el aumento del marcado

inicial (2) transiciones inmediatas para las redes de Petri continuas bajo la semántica de in-

finitos servidores (3) la observabilidad y la observabilidad óptima para las redes fluidas tem-

porizadas bajo la semántica de infinitos servidores (4) la estimación del estado para las redes

fluidas no temporizadas y temporizada bajo la semántica de finitos servidores (5) control en

régimen permante y control óptimo del régimen transitorio.

iii





Contents

1 Preliminary 1

2 ContPNs: notations, previous work and first results 7

2.1 Discrete Petri nets and the state explosion problem . . . . . . . . . . . . . . . . 8

2.1.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Structural concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Liveness and deadlock-freeness . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Petri net subclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 State explosion and fluidification . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Untimed Continuous Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Implicit arcs and places . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Configurations and regions . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.5 Liveness and deadlock-freeness . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 (Unforced) Timed Continuous Petri nets . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Finite and infinite server semantics . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Immediate transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Timed implicit arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Steady state performance Bounds . . . . . . . . . . . . . . . . . . . . . . 26

2.3.5 Mono-T-semiflow reducible systems . . . . . . . . . . . . . . . . . . . . 27

3 Performance properties and simulation 31

3.1 Comparison of server semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Monotonicity and fluidification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Some properties of non-monotonicity . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Algorithms to check monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Simulation of immediate transitions . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Observability of contPN with infinite server semantics 53

v



vi

4.1 Observability: basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Observability of linear systems . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 Observability of hybrid systems . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Observability of unforced timed continuous Petri nets . . . . . . . . . . . . . . 57

4.3 Structural observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Generic observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Minimum cost observability of JF nets . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.2 Brute force method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.3 Splitting the net in threads . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.4 Dominance and an improved algorithm . . . . . . . . . . . . . . . . . . 76

5 State estimation of contPN with finite server semantics 81

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 State estimation of untimed contPN . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Relaxing finite server semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 State estimation of timed contPN with relaxed finite server semantics . . . . . 89

5.5 Going back to finite server semantics . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 On controllability and steady state control 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Controllability of linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Controllability of timed continuous Petri nets: problem statement . . . . . . . 99

6.4 Control of timed contPNs and characterization of steady-states . . . . . . . . . 100

6.5 Optimal control for steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Approaching dynamic control: on controllability and marking invariance laws 111

6.6.1 Definition of controllability . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6.2 Uncontrollable zero valued poles and decomposition . . . . . . . . . . 113

6.6.3 Token conservation laws and controllable zero valued poles . . . . . . 115

6.6.4 Token conservation laws and controllable non zero valued poles . . . . 116

6.7 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Optimal control of continuous Petri nets 119

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Constrained linear representation of controlled timed continuous Petri nets . 120

7.3 On sampled (or discrete-time) continuous Petri nets models . . . . . . . . . . . 122

7.4 Reachability “equivalence”between sampled and continuous models . . . . . 124

7.5 Optimal transient control via MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.6 Explicit Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.7 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.7.1 First example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.7.2 Second example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.8 Properties of the closed-loop system . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.8.1 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.8.2 Asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



vii

8 Concluding remarks 139

Bibliography 143



List of Figures

2.1 Continuous mono-T-semiflow reducible net system . . . . . . . . . . . . . . . . . . 10

2.2 Illustration of reachability and lim-reachability sets . . . . . . . . . . . . . . . . . . 12

2.3 First ContPN system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Second ContPN system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Evolution of a contPN system under infinite server semantics . . . . . . . . . . . . 21

2.6 Evolution of a contPN system under finite server semantics . . . . . . . . . . . . . 22

2.7 Reduction of the immediate transitions . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Par-begin par-end net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 Subclasses included in mono-T-Semiflow reducible nets . . . . . . . . . . . . . . . 28

2.10 Mono-T-semiflow reducible net system, adapted from a queuing network . . . . . 29

3.1 Throughput of the contPN system for different values of λ2 (i) . . . . . . . . . . . . 36

3.2 Throughput of the contPN system for different values of λ2 (ii) . . . . . . . . . . . . 36

3.3 Throughput of the contPN system for specific λ . . . . . . . . . . . . . . . . . . . . 38

3.4 Conflict between immediate transitions . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Example of a simple manufacturing cell . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Removing a non-synchronizing immediate transition . . . . . . . . . . . . . . . . . 44

3.7 Another symmetric rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 All the tokens that arrive to place p1 will immediately go through . . . . . . . . . . 45

3.9 An open queueing network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Petri net model of the queuing network . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.11 Equivalent Petri net model of the queuing network . . . . . . . . . . . . . . . . . . . 47

3.12 Reduced Petri net model of the queuing network . . . . . . . . . . . . . . . . . . . . 47

3.13 Mono-T-semiflow reducible net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.14 A manufacturing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Configuration {(p1, t1), (p2, t2)} is redundant. . . . . . . . . . . . . . . . . . . . . . . 57

4.2 ContPN with redundant regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Undistinguishable configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Two contPNs used to illustrate some observability aspects . . . . . . . . . . . . . . 62

4.5 A simple contPN system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 ContPN system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 A JF net that is observable measuring the attribution place p2 even if λ4 =λ5. . . . 69

4.8 Associated graph for generic observability . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Observability when attributions are present . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 A JF conPN system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

viii



ix

4.11 Petri net modeling a table factory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 A simple contPN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Reaching an lim-reachable marking with finite server semantics . . . . . . . . . . . 83

5.3 Conservative and consistent contPN . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Untimed contPN system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Marking evolution of a continuous system under relaxed finite server semantics . 90

5.6 Reachable markings as untimed but not reachable in the timed model . . . . . . . 91

6.1 Unique equilibrium point for a given ud . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 ContPN with many equilibrium points in the same configuration . . . . . . . . . . 105

6.3 Equilibrium points of the previous contPN . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Many equilibrium points in several configurations . . . . . . . . . . . . . . . . . . . 105

6.5 Equilibrium points of the previous contPN . . . . . . . . . . . . . . . . . . . . . . . 105

6.6 Conservative but not lim-live continuous EQ system with several eq. points . . . . 106

6.7 Bounded and lim-live contPN that has several eq. points with distinct flows . . . . 106

6.8 Timed contPN (marked graph) with several equilibrium points. . . . . . . . . . . . 109

6.9 A Join-Free timed contPN system with no controllable transitions . . . . . . . . . . 111

6.10 A Choice-Free timed contPN system . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 State space partition example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Timed continuous Marked Graph system . . . . . . . . . . . . . . . . . . . . . . . . 132

7.3 Example of an unstable contPN with basic MPC scheme . . . . . . . . . . . . . . . 133

7.4 Marking evolution of a contPN with MPC controller . . . . . . . . . . . . . . . . . . 133

7.5 Marking and flow evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



List of Tables

2.1 Increasing the size of reachability set . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Comparisons of the throughput under different formalism . . . . . . . . . . . . . . 48

3.2 Comparison of throughput under different formalisms . . . . . . . . . . . . . . . . 51

7.1 Simulation results using MPC controller . . . . . . . . . . . . . . . . . . . . . . . . . 130

x



Chapter 1

Preliminary

Petri Nets (PN) [59] are a discrete event formalism in which the distributed state is a vector of

non-negative integers. This is a major advantage with respect to others, such as automata,

where the state space is a symbolic unstructured set of global states. This property has been

exploited to develop many analysis techniques that do not require the enumeration of the

state space (structural analysis) [71]. From a modeling perspective, a key feature of PN is

their capacity to graphically represent and visualize primitives such as parallelism, concur-

rency, synchronization, mutual exclusion, etc.

As other models of concurrent systems, discrete PN may suffer the so called state ex-

plosion problem. Therefore the analysis and optimization of these systems require large

amount of computational efforts, eventually leading to analytically and computationally un-

tractable problems. One way to tackle this difficulty consists in the relaxation of the original

integrality constraints, giving a fluid (i.e., continuous) approximation of the discrete event

dynamics [28, 68, 69]. Fluid models present one important advantage with respect to dis-

crete ones: the most analysis techniques that are based on integer programming become in

the fluid case based on linear programming, and can be solved in polynomial time [7, 42, 62].

Obviously, this does not mean that all problems are polynomial, some of them are undecidi-

ble [37]. Fluidification is not a new method; it has been applied also in the case of queuing

networks to obtain fluid models [80] used, for example, in computer networks [26].

Fluidification of discrete Petri nets has been introduced independently from three dif-

ferent points of view. In [27] continuization was introduced at net level. Some new results,

with timing in particular, can be found in [2, 28]. At the same conference in 1987, continuous

relaxation was introduced in [67] were the state equation was relaxed to find linear program-

ming problems for the efficient computation of non-temporal properties. Further results

are presented in [69]. In the case in which the net system is partially fluidified, appear the so

called first order hybrid Petri nets [5, 6, 7]. In [78], the authors extend the stochastic Petri nets

framework to Fluid Stochastic Petri Nets by introducing places with continuous tokens and

arcs with fluid flow in order to handle stochastic fluid flow systems. No continuous transi-

tions are present in this model. They define hybrid nets in such a way that the discrete and

continuous portions may affect each other.

As in the discrete case, continuous Petri nets can be autonomous (untimed) or can have

time associated with the transitions or places, namely timed continuous Petri nets (timed

contPNs). In the literature, timing is mainly associated to transitions (for place timed con-

1



2

tinuous Petri nets some works can be found in [32, 21]) and two different ways of defining

their firing are often used. Since these two usual definitions are closely related to the seman-

tics used in discrete stochastic PNs, they are called: finite server semantics (or constant speed)

and infinite server semantics (or variable speed) [28, 68].

This thesis is essentially centred on timed continuous models, in particular on continu-

ous Petri nets under infinite server semantics. Under this firing semantics, due to the min

operator occurring in the synchronizations, the continuous model is a multilinear switched

dynamic system. Previous results on this class of models were presented in two PhD thesis

in Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, and this

work is a natural extension of those results.

Reachability aspects and liveness analysis of untimed (autonomous) nets are presented

in [61]. The first thesis, devoted only to continuous Petri nets, was [39] where autonomous

and timed contPN are studied. Reachability aspects were extended as well as the liveness

analysis, but also the steady state performance evaluation is given together with some fea-

tures on observability and control. The main results of these thesis are recalled in Chapter 2.

The formalism of continuous Petri nets under infinite server semantics is extended in-

cluding immediate transitions in Section 2.3.2. These transitions appear as a simplification

of a timed model when some transitions are much quicker than others, case in which they are

reduced to fireable in zero time. They improve the practical modeling power of the contin-

uous Petri nets under infinite server semantics. The introduction of this kind of transitions

means that the simulation of a model has to be done in two steps: after each time step, any

enabled immediate transition has to be fired before going on with the timed ones. This prob-

lem is discussed in detail in Section 3.5 where a simulation algorithm is provided. Removing

immediate transitions at net level becomes a crucial issue in contPNs, because the semantics

of timed continuous net models is directly expressible as ODEs with minimum operators, for

which reasonable solutions are frequently obtained by means of numerical integration. The

basic goal of Section 3.6 is to reduce the number of minimum operators both for any tim-

ing (implicitness in the autonomous model) and for a particular timing (implicitness in the

timed model).

As was mentioned, for the timed interpretation of continuous Petri nets, two basic def-

initions of the firing speeds of transitions have been extensively used in the literature: in-

finite server semantics (or variable speed) and finite server semantics (or constant speed).

Obviously, the modeler would like to know a priori which one will approximate better the

discrete model. In previous works we saw that this question depends on the net, and a gen-

eral answer could not be given [69]. In Section 3.1 we are limiting our study to the class of

mono-T-semiflow reducible nets, and prove that one of the definitions is better under very

general conditions. This will motivate the choice of infinite server semantics in many parts

of the thesis for which more in deep study is performed trying to understand better the sys-

tem properties.

The first property studied for timed continuous Petri nets under infinite server semantics

is performance monotonicity with respect to the speed of transitions and with respect to the

initial marking. This is usually a desirable property in production systems, for example, if a

machine is replaced by a faster one or more resources are available, the production should

not decrease. It is shown in Section 3.2 under which conditions these properties hold in the

case of mono-T-semiflow reducible nets, a class of nets with a significant modeling power

from a practical point of view.

State observation or observability is a very significant question for controller design. For



3

timed continuous Petri nets under infinite server semantics, the state (marking) is supposed

to be measurable through sensors, each place being measured with a different one, with dif-

ferent costs. Measuring some places allow the observation of a set of other places (“covered”

by that measure). When the set of covered places coincides with the set of all places of the

net, we are saying that the contPN system is observable. In [40] observability of contPN was

started with a deep study of Join Free nets that can be characterized using linear system the-

ory. Here the observability problem is discussed in the general case and also two new con-

cepts of observability are considered: structural and generic observability. Problems appear

for observability with (1) synchronizations (or joins) that generate switches between linear

systems giving non-linear behaviors and (2) attributions (or meeting of flows) that for some

particular values of the firing rates of the transitions may lead to the loss of observability.

Minimal cost observability of continuous Petri Nets consists in deciding the set of places

to be measured such that the net system is observable and the cost function is minimal. This

is a covering problem that is NP-complete and a covering algorithm is proposed in chapter 4

using some particular properties of contPN systems that will drastically reduce the complex-

ity.

The results obtained for the observability of systems with infinite server semantics can-

not be extended to finite server semantics. Considering that finite server semantics is opti-

mistic [28], i.e., its throughput is in general bigger than the throughput of the discrete net, in

chapter 5 we use a particular relaxation of the model assuming that the transitions are not

limited to take the biggest admissible value but a value in a given interval and we are try-

ing to determine all states that are consistent with observed sequences of transition firings.

The first problem considered here assumes that no observation is available, and thus the

set of consistent markings only depends on the time elapsed and we study the observation

based on the time-reachability analysis. The problem of state estimation of untimed con-

tPN is studied as well. We show how the results previously obtained for discrete nets can be

applied, with minor modifications.

Starting with the crucial question of how to control a contPN system, an approach based

on the idea of slowing down the firing flow of transitions [69] is considered in Chapters 6

and 7. One question that immediately appears is: given an initial marking, m0, and a con-

stant control action, ud , which steady state md is reached? This thesis explores this problem

in Chapter 6. For some particular net subclasses, unique solutions are algebraically obtained

(thus their characterization is complete). If several steady state markings appear, in many

cases they produce the same flow in steady state. In particular, it may be computationally

easy (polynomial time) to compute the (maximal) flow vector, even if several (even infinite)

steady-state markings may appear.

Computation of an optimal steady state control reference, maximizing a linear profit

function that takes into account the throughput, the initial marking and the steady state

marking is presented in Section 6.5. If all transitions are controllable, this problem is solved

in polynomial time, using a linear programming problem. If some transitions are not con-

trollable the problem becomes more complicated and a Branch & Bound algorithm can be

used, like in [42].

The solution proposed here to deal with transitory control is based on a discrete-time

version of the linear constrained model, thus we need to be sure that the discretization does

not produce spurious markings, in particular negative markings. To this aim an upper bound

on the sampling period is given that guarantees the absence of spurious solutions. Moreover,

for the sampled timed contPN, some “equivalence results” regarding the reachability space



4

of sampled timed contPN and (autonomous) contPN are also presented.

Starting from the discrete-time linear model of the contPN we propose an optimal con-

trol strategy based on Model Predictive Control (MPC) [11], a control method that has be-

come an attractive strategy in the last years. In particular, we investigate the possibility of

using both an implicit and an explicit [10] MPC control strategies. The main advantage of

the explicit solution is that the most burdensome part of the procedure is performed off-line.

However, as already pointed out in [10], the computational complexity of the explicit ap-

proach may become prohibitive when dealing with complex systems which, unfortunately

is frequent in the case of contPN models. A comparison among the two procedures is also

proposed and the results of various numerical simulations are presented.

Some properties of the system controlled via MPC are discussed also in this thesis, such

as feasibility and asymptotic stability. We prove that for contPN systems feasibility is always

guaranteed, while asymptotic stability is not ensured. Different approaches are investigated

in order to guarantee this property. One of them consists in the introduction of an appro-

priate terminal constraint, and in such a case asymptotic stability can be guaranteed under

appropriate assumptions on the initial state and on the moving horizon.

The contributions of the thesis may be summarized in the following items.

• A semantic for immediate transition in the case of contPN systems under infinite server

semantics is introduced and techniques to improve the simulation and analysis of

timed contPN are given in Chapters 2 and 3 (a first publication on the topic [62]).

• For the class of mono-T-semiflow reducible nets, performance monotonicity is studied

and it is shown under which conditions this property holds. For the same class of

nets, it is proved that infinite server semantics provides in general a more accurate

approximation of discrete model than finite server semantics. These are illustrated in

Chapter 3 (first publications on the topic [53, 54]).

• Observability aspects of timed continuous Petri nets with infinite server semantics and

optimal sensor location are shown in Chapter 4 (a first publication on the topic [52]).

• State estimation of untimed continuous Petri nets and timed continuous Petri nets

with finite server semantics are considered in Chapter 5 (publication on the topic [15])

• Aspects regarding the controllability and the steady-state control are addressed, to-

gether with some characterizations of the equilibrium markings in Chapter 6 (publi-

cations on the topic [50, 51]).

• A discrete-time linear constrained model of the controlled timed contPN is derived.

It is shown also under which assumptions the sampling period ensures that spurious

negative markings do not originate are shown in Chapter 7 (a first publication on the

topic [48]).

• The problem of reaching a given steady-state from an initial marking, while minimiz-

ing a certain performance index is considered. Two different solutions have been in-

vestigated, both based on Model Predictive Control, namely implicit and explicit MPC

in Chapter 7 (publications on the topic [33, 34]).

• Feasibility of the Model Predictive Control problem and asymptotic stability of the

closed-loop system are analyzed in Chapter 7 (publication on the topic [49]).



5

The techniques and the algorithms developed through this thesis are implemented un-

der MATLAB and some of them are integrated in the Continuous Petri Nets Simulator, a MAT-

LAB based simulator for contPNs developed in our research group. This software can be

downloaded from the following address:

http://webdiis.unizar.es/GISED/gised/contpn/.

This thesis is structured as follows: in Chapter 2 the basic notions of discrete and con-

tinuous Petri nets are given together with some results from previous works and a semantic

for immediate transitions. In Chapter 3 performance monotonicity and a comparison be-

tween the most used firing semantics for the timed interpretation of contPNs are stated.

Also, some techniques to improve the simulation and the analysis of contPN systems under

infinite server semantics are given. Chapter 4 deals with some observability aspects of timed

contPN with infinite server semantics making a bridge with the observability of piecewise

linear systems, also the optimal observability problem is discussed. The state-estimation

problem of untimed and timed contPN with finite server semantics is discussed in Chap-

ter 5. Controllability features and steady-state control are illustrated in Chapter 6. In Chap-

ter 7 discrete-time contPN systems are introduced and then used to apply model predictive

control. Some conclusions and future directions are drawn in Chapter 8.

http://webdiis.unizar.es/GISED/gised/contpn/




Chapter 2

Continuous Petri nets: notations,

previous work and first results

Summary

This chapter introduces some basic definitions and concepts related to discrete and con-

tinuous Petri nets. Classical results that will be used afterwards are recalled, all of them

accompanied by illustrative examples. For the timed interpretation, each firing semantics

is discussed in detail and some examples to show their differences are given. In general,

the analysis of a general net system is difficult and some of the results hold only for spe-

cific subclasses of systems. These subclasses are detailed here, with a more detailed study of

mono-T-semiflow reducible nets that give a quite large modeling power. Finally, immediate

transitions are introduced in the case of timed continuous Petri net systems under infinite

server semantics.

7



8

2.1 Discrete Petri nets and the state explosion prob-

lem

2.1.1 Basic concepts

Petri nets are a well-known formalism to deal with discrete event systems [29]. Discrete

event systems that are characterized as being concurrent, asynchronous, distributed, par-

allel, nondeterministic, and/or stochastic can be modeled and analyzed by means of Petri

nets. As a graphical tool, Petri nets can be used as a visual-communication aid similar to

flow charts, block diagrams, and networks. In addition, tokens are used in these nets to sim-

ulate the dynamic and concurrent activities of systems. As a mathematical tool, it is possible

to set up state equations, algebraic equations, and other mathematical models governing the

behavior of systems.

The reader is assumed to be familiar with Petri nets and for a more deep introduction the

following [1, 28, 29, 66] can be consulted. Here, the basic ideas are given.

Definition 2.1. A Petri net system is a pair 〈N ,m0〉, where N is a net, N = 〈P,T,Pr e ,Post 〉

is a PN. P and T are disjoint (finite) sets of places and transitions, and Pr e and Post are

|P |× |T | sized, natural valued, incidence matrices, and m0 is the initial marking.

A PN can be graphically represented as a weighted bipartite graph. The nodes are repre-

sented by the set of places drawn as circles and by the set of transitions drawn as rectangles.

These nodes are connected with a set of oriented arcs, each arc can connect a place with a

transition or a transition with a place. Pr e[p, t ] = w > 0 means that there is an arc from p to

t with weight (or multiplicity) w , and Post [p, t ] = w > 0 means that there is an arc from t to

p with weight w . The classical concepts of graph theory, as connectedness, strong connect-

edness can be directly applied to PN. For a node v ∈ P ∪T , the sets of its input and output

nodes are denoted as •v , and v•, respectively. Each place can contain a natural number of

tokens, this number represents the marking of the place. The initial distribution of tokens is

called initial marking and is denoted, in general, by m0.

A transition t is enabled at m iff for every p ∈ •t ,m[p] ≥ Pr e[p, t ]. Its enabling degree

measures the maximal firing of the transition that can be done in one step,

enab(t ,m) = min
p∈•t

{⌊
m[p]

Pr e[p, t ]

⌋}

.

The firing of t in a certain amount α ∈ N, α ≤ enab(t ,m) leads to a new marking m′ =

m+α ·C [P, t ], where C = Post −Pr e is the token flow matrix and we say that m′ is reachable

from m. This firing is also denoted by m[t (α)〉m′ or by m0
αt
−→m1.

If m is reachable from m0 through a sequence σ, a state (or fundamental) equation can

be written:

m = m0 +C ·σ, (2.1)

where σ ∈N|T | is the firing count vector. The set of all markings reachable from m0, or reach-

ability set is denoted by RSut (N ,m0).

If the number of tokens in a place is always less than or equal to a natural number, then

the place is bounded. A PN system is bounded when every place is bounded (∀p ∈ P,∃bp ∈

N with m[p] ≤ bp at every reachable marking m). A net N is structurally bounded when

〈N ,m0〉 is bounded for every initial marking m0



9

2.1.2 Structural concepts

Annulers of the incidence matrix are important because they induce certain invariant rela-

tions which are useful for reasoning about the behavior. Flows (semiflows) are integer (nat-

ural) annulers of C . Right and left annulers are called T- and P-(semi)flows, respectively. We

call a semiflow v minimal when its support, ||v ||, i.e., the set of its non-zero components, is

not a proper superset of the support of any other semiflow, and the g.c.d. of its elements is

one.

If y ≥ 0 is such that y ·C = 0 then, every marking m reachable from m0 satisfies: y ·m =

y ·m0. This provides a “token balance law”. Analogously, if x ≥ 0 is such that C · x = 0, then

m = m0 +C · x = m0. That is, T-semiflows correspond to potential repetitive sequences that

brings the system from m0 back to m0.

If x > 0 exists such that C · x = 0, the net is said to be consistent, and if y > 0 exists such

that y ·C = 0, the net is said to be conservative.

Traps and siphons are structural dual concepts with high importance in the analysis of

many net properties as deadlock-freeness. A set of places, Θ, is a trap iff Θ• ⊆ •
Θ. In discrete

net systems traps when marked cannot get emptied. Analogously, a set of places, Φ, is a

siphon iff •
Φ ⊆Φ

•. One interesting property is that empty siphons will unavoidably remain

empty throughout all the evolution of the net system.

2.1.3 Liveness and deadlock-freeness

A transition t is live iff it can ultimately occur from every reachable marking, i.e., for every

m ∈RSut (N ,m0), m′ ∈ RSut (N ,m) exists such that t is enabled in m′. A PN system 〈N ,m0〉

is live if every transition is live. Liveness ensures that no single action in the system can

become unattainable.

A PN is deadlock-free when any reachable marking enables some transition. Clearly,

deadlock-freeness is a necessary condition for liveness.

A PN is structurally live (deadlock-free) if an initial marking m0 exists for which the net

system 〈N ,m0〉 is live (deadlock-free).

2.1.4 Petri net subclasses

Two transitions t , t ′ ∈ T are in conflict relation at marking m iff there exist k,k ′ ∈ R>0 such

that m ≥ k ·Pr e[P, t ] and m ≥ k ′ ·Pr e [P, t ′], but m � k ·Pr e[P, t ]+k ′ ·Pr e[P, t ′]. For this, it

is necessary that •t
⋂•t ′ 6= ; and in that case it is said that t and t ′ are in structural conflict

relation. The structural conflict relation is not transitive, and the coupled conflict relation is

defined as its transitive closure. Each equivalence class is called a coupled conflict set, that

will be denoted as CCSi , and SCC S will represent the set of all the coupled conflict sets. A

particular kind of conflicts are those in which the preconditions of the transitions are all the

same. We will say that ti and t j are in continuous equal conflict relation, if a constant k exists

such that for all p ∈ P , Pr e[p, ti ] = k ·Pr e[p, t j ]. This is an equivalence relation on the set of

transitions and each equivalence class in an equal conflict set denoted, for a given t , EQS(t ).

SEQS is the set of all the equal conflict sets of a given net.

The nets can be classified according to their structure:

• N is ordinary if all the arc weights are unitary, i.e., ∀pi ∈P , ∀t j ∈T , Pr e[pi , t j ] ≤ 1 and

Post [pi , t j ] ≤ 1;



10

t1 p1
t2 p2

t3 p3
t4 p4

t5 p5 t6 p6
t7 p7

t8 p8 t9

p9
t10 p10t11 p11

t12
p12t13 p13

t14

p14t15 p15t16
p16t17

t18

Buf2

M2 M3M1

Buffer1Buf1 Buffer2

Figure 2.1: Continuous (mono-T-semiflow reducible) net system.

• N is a Marked Graph (MG) if it is ordinary and ∀p ∈P : |p•| = |•p| = 1.

• N is a Join Free (JF) if ∀t ∈T , |•t | ≤ 1;

• N is a weighted T-graph if ∀p ∈ P : |p•| = |•p| = 1;

• N is a Choice Free (CF) net if ∀p ∈ P , |p•| ≤ 1;

• N is a Free Choice (FC) net if it is ordinary and ∀t , t ′ ∈ T , if •t ∩ •t ′ 6= ; then •t = •t ′;

• N is an Equal Conflict (EQ) net iff ∀t1, t2 ∈ T such that •t1 ∩
•t2 6= ;, Pr e[P, t1] =

Pr e[P, t2].

• N is an Continuous Equal Conflict (CEQ) net iff ∀t1, t2 ∈ T such that •t1 ∩
•t2 6= ;,

Pr e[P, t1] = k ·Pr e[P, t2].

The class that will be studied in more detail in this thesis is called mono-T-semiflow re-

ducible. The definition of this class is based on the concept of mono-T-semiflow nets.

Definition 2.2. N is a mono-T-semiflow net if it is consistent, conservative, and has only

one minimal T-semiflow, x (i.e. given a transition ti there is only one T-semiflow such that

x[ti ] = 1).

2.1.5 State explosion and fluidification

The state explosion appears frequently in discrete event systems, making enumerative anal-

ysis methods practically inapplicable. This problem affects also discrete Petri nets.

Example 2.3. Let us consider the PN system in Fig. 2.1. The size of the reachability sets for

different initial markings of Bu f f er1 and Bu f f er2 is given in Table 2.1. Clearly, the size is

growing, for example if Bu f1 = Bu f2 = 10 we have more than 500.000 reachable states. If the

values are further increased, the analysis techniques based on the enumeration will be quite

difficult to apply.

Fluidification is an approximation technique that relaxes the description by removing

the integrality constraints. Applying this idea to the discrete PNs, the firing of the transitions



11

Table 2.1: The size of the reachability set of the net in Fig. 2.1.

Bu f1,Bu f2 Number of reachable markings

1 1125

2 4500

3 12500

4 28125

5 55125

10 544500

is not limited to natural numbers but to positive real numbers leading to continuous Petri

nets [28, 68].

In a continuous Petri net the firing of a transition is not constrained to be a natural num-

ber, but a nonnegative real number. Thus, when a transition is fired, a real amount of tokens

is removed from the input places and some amount is put in the output places. This way, the

marking of a continuous Petri net becomes a vector of nonnegative real numbers, where the

dimension of the vector is equal to the number of places. (In the discrete case, the marking

was a vector of natural numbers). Therefore, in continuous Petri nets, the transitions can be

seen as valves through which “fluid tokens” flow, and the places can be seen as deposits in

which this fluid is stored. Exhaustive enumeration techniques have no sense in continuous

Petri nets, since the set of reachable markings is not a discrete set anymore, but a continuous

region.

Continuization of Petri nets offers not only the advantage of avoiding the state explo-

sion problem, but also gives the chance of using linear programming techniques (that can

be solved in polynomial time) instead of integer programming problems (which entail an

exponential complexity).

2.2 Untimed Continuous Petri nets

2.2.1 Definition

In this section we will introduce the concept of continuous Petri net.

Definition 2.4. A contPN system is a pair 〈N ,m0〉, where N = 〈P,T,Pr e ,Post〉 is a net struc-

ture (defined as in discrete case: with a set of places P, a set of transitions T , and the pre

and post incidence matrices Pr e and Post ), and m0 ∈R
|P |

≥0 is the initial marking (distributed

state).

A transition t j ∈ T is enabled at m iff ∀pi ∈
•t j , mi > 0. Since in the continuous case, the

marking of a place is not limited to a natural number, the enabling degree is not limited to a

natural number as in discrete case and will be given by:

enab(t ,m) = min
p∈•t

{
m[p]

Pr e[p, t ]

}

.

An enabled transition t j can fire in any amount 0 < α < enab(t j ,m) leading to a new

marking m′ = m +αC [P, t ], where C = Post −Pr e is the token-flow matrix.



12

p1

p2

p3

p4
t1

t2 t3

2

(a) Untimed ContPN used in Exam-

ple 2.7

(b) Reachability and lim-reachability sets

Figure 2.2: Illustration of reachability and lim-reachability sets.

The structural concepts given in Section 2.1.2 for discrete nets keep the same definition

in the case of continuous nets.

2.2.2 Reachability

The set of markings that are reachable with a finite firing sequence for a given system 〈N ,m0〉

is denoted as RSut (N ,m0). It is defined as:

Definition 2.5. [64] RSut (N ,m0) = {m| a finite fireable sequence σ = α1ta1 · · ·αk tak exists

such that m0
α1ta1
−→m1

α2ta2
−→ m2 · · ·

αk tak
−→ mk = m} where tai ∈T and αi ∈R+

≥0.

An interesting property of RSut (N ,m0) is that it is a convex set [64]. That is, if two mark-

ings m1 and m2 are reachable, then any marking m3 =α ·m1 + (1−α) ·m2, ∀α ∈ [0,1] is also

reachable. Therefore, the reachability space of a continuous PN is at least the convex hull of

the discrete one.

Reachability may be extended to lim-reachability assuming that infinitely long sequences

can be fired. From the point of view of the analysis of the behavior of the system, it is inter-

esting to consider these markings since in the limit the system may converge to them.

Definition 2.6. [64] Let 〈N ,m0〉 be a continuous system. A marking m ∈R+
≥0 is lim-reachable

iff a sequence of reachable markings {mi }i≥1 exists such that

m0
σ1
−→m1

σ2
−→m2 · · ·mi−1

σi
−→mi · · ·

and lim
i→∞

mi = m. The lim-reachability set is the set of lim-reachable markings, and will be

denoted lim −RSut (N ,m0).

Example 2.7. Let us consider the contPN in Fig. 2.2a with m0 = [0.5,0.5,0,0.5]T . At this mark-

ing, either t1 or t3 can be fired. The firing of t3 in the amount 0.5 leads to the new marking m′ =



13

[0.5,0.5,0.5,0]T from which t2 can be fired in an amount 0.25 leading to m1 =
[

0.5,0.5,0, 0.5
2

]T
.

Now firing t3 in an amount of 0.25 followed by t2 in the maximum possible amount 0.125

the system evolves to m2 =
[

0.5,0.5,0, 0.5
4

]T
. It is obvious that keeping firing the same pair

of transitions t3 and t2, at step k the marking obtained is: mk =

[

0.5,0.5,0, 0.5
2k

]T
, for which

lim
k→∞

mk = [0.5,0.5,0,0]T = m. Therefore, the marking m is reached in the untimed contPN

system at the limit.

In Fig. 2.2b are shown the reachability set and the lim-reachability set for the contPN in

Fig. 2.2a. The only difference between these two sets is the segment [B ,C ] that belongs to the

l im−RSut but not to RSut . It can be seen that going from A to B firing t3 and t2, at every step

the distance is halved but the point B is never reached (like in Zeno paradox).

Characterizations of RSut and l im−RSut are given in [41]. To give the characterizations,

let us denote as F S(N ,m0) the set of all sets of transitions for which there exists a sequence

fireable from m0 that contains those and only those transitions.

Definition 2.8. [41] F S(N ,m0) = {υ| there exists a sequence fireable from m0, σ, such that

υ= ||σ||}.

Then, a full characterization of the reachable markings is obtained.

Theorem 2.9. [41] A marking m ∈RSut (N ,m0) iff

1. m = m0 +C ·σ, σ≥ 0

2. ||σ|| ∈ F S(N ,m0)

3. there is no empty trap in Nσ at m

where Nσ denotes the subnet obtained from N removing the transitions not in the support of

σ and the isolated places that appear.

For the l im −RSut , the characterization is quite similar, only the third condition disap-

pears. This is because in continuous systems, marked trap can be emptied in the limit.

Theorem 2.10. [41] A marking m ∈ l im −RSut (N ,m0) iff

1. m = m0 +C ·σ, σ≥ 0

2. ||σ|| ∈ F S(N ,m0).

Example 2.11. Going back to the Example 2.7 we have seen that m = [0.5,0.5,0,0]T is a lim-

reachable marking from m0 = [0.5,0.5,0,0.5]T . The first two conditions of Theorem 2.9 and

the conditions of Theorem 2.10 are satisfied because taking σ = [0,0.5,1]T , m = m0 +C ·σ

and ||σ|| ∈ F S(N ,m0). This is a lim-reachable marking, because the third condition of Theo-

rem 2.9 is not satisfied: a marked trap is empty at m (Θ= {p3, p4}, Θ• = •
Θ= {t2, t3}).

In many cases, the systems under discussion have some interesting properties as con-

sistency. In this case, the lim-reachability condition can be relaxed to a linear inequality

system.



14

Proposition 2.12. [41, 64] Let 〈N ,m0〉 be a contPN system. If it is consistent and all transi-

tions are fireable the following statements are equivalent:

1. m is lim-reachable

2. ∃σ≥ 0 s.t. m = m0 +C ·σ≥ 0

3. B T
y ·m = B T

y ·m0, m ≥ 0 where B y is a basis of P-flows.

2.2.3 Implicit arcs and places

In discrete models, a place is said to be implicit if it can be removed without changing the

behavior of the system [71]. For continuous models it is important even to know if a place

is never the unique that bounds the enabling degree. We will see that for timed contPN the

simulation and the analysis techniques are easier if the number of joins (transitions with

more than one input place) is reduced. Therefore, for the output arcs of a place the notion of

implicit arc is defined. If all the output arcs of a place are implicit, this place will be implicit,

and can be completely removed. In that case we will say that the place is implicit.

Definition 2.13. An arc (p, t ) is implicit in 〈N ,m0〉 if p is never the unique place that defines

the enabling of t . That is, for every reachable marking m,
m[p]

Pr e[p,t]
≥

m[p ′]

Pr e[p ′,t]
∀p ′ ∈ •t .

Place p is implicit if all its output arcs are implicit.

This is equivalent to saying that for any reachable marking m, the following system has

no solution, where s represents the amount in which t is fired.






m[P ′]−Pr e[P ′, t ] · s ≥ 0, P ′ = P \ {p}

m[p]−Pr e [p, t ] · s < 0

s ≥ 0

(2.2)

Using that any reachable marking has to verify the state equation, a sufficient condition for

(p, t ) being implicit is that the solution to the following linear programming problem (LPP),

z, verifies m0[p] ≥ z.

z = max Pr e[p, t ] · s −C [p,T ] ·σ

s.t . m −C ·σ= m0

m[P ′]−Pr e[P ′, t ] · s ≥ 0, P ′ = P \ {p}

m,σ, z ≥ 0

(2.3)

Notice that m = m0, σ = 0 and s = 0 is always solution of the equations in (2.3). Hence,

applying duality, the solution to this LPP is the same as the solution of its dual problem:

z = min y T ·m0

s.t . y T ·C [P ′,T ] ≤C [p,T ]

y T ·Pr e [P ′, t ] ≥ Pr e[p, t ]

y ≥ 0

(2.4)

For place p to be implicit, putting together all the equations related to its output arcs, a

sufficient condition is that m0[p] ≥ z, with z defined as follows:

z = min y T ·m0

s.t . y T ·C [P ′,T ] ≤C [p,T ]

y T ·Pr e[P ′, p•] ≥ Pr e[p, p•]

y ≥ 0

(2.5)



15

p1

t1

t3

t2

p3

p6

.

p4 .

t5

t4

p5 . p2

Figure 2.3: ContPN system used in Example 2.14.

This condition (equivalent to that for discrete net systems in [66]) simplifies the one in [71],

because traps can be emptied.

Example 2.14. Let us consider the contPN system in Fig 2.3. For this net and initial marking,

p2 is implicit because it is easy to observe that m2(τ) = m4(τ)+m6(τ). Hence p2 will never

constrain the firing of t4 and can be removed without changing the system evolution.

2.2.4 Configurations and regions

Definition 2.15. A configuration of N is a set of (p, t ) arcs, one per transition covering the set

of transitions T .

Remark 2.16. Abusing notation, a configuration will also represent the set of places associated

to the arcs in the configuration. We use this denomination if there is no confusion.

The number of configurations of N is given by the net structure:

γ=
∏

t∈T

|•t | (2.6)

The reachability space of a contPN can be partitioned, associating to each configuration

Ck a region Rk , i.e., (l im−)RSut = R1∪·· ·∪Rγ. Some regions can be eventually empty in the

case in which some places are implicit. A region Rk is defined as the set of markings such

that if (pi , t j ) is an arc belonging to the configuration Ck then,

∀m ∈ Rk ,
m[pi ]

Pr e[pi , t j ]
= min

pl∈
•t j

m[pl ]

Pr e[pl , t j ]
.

These regions only may have the borders in common, but their insides are disjoint. In

fact, the regions represent a partition (except on the border) of the reachability space.

Example 2.17. The net in Fig. 2.3 has γ= 4 configurations:

• C1 = {(p1, t1), (p3, t2), (p4, t3), (p2, t4), (p5, t5)}

• C2 = {(p1, t1), (p6, t2), (p4, t3), (p2, t4), (p5, t5)}



16

• C3 = {(p1, t1), (p3, t2), (p4, t3), (p6, t4), (p5, t5)}

• C4 = {(p1, t1), (p6, t2), (p4, t3), (p6, t4), (p5, t5)}

According to the Example 2.14, with this initial marking, p2 is implicit, and so m[p2] ≥ m[p6],

therefore the regions associated to C1 and C2 are empty, except at the border when m2 = m6.

2.2.5 Liveness and deadlock-freeness

Using the similitude with the discrete nets, the liveness and the deadlock-freeness defini-

tions are given immediately:

Definition 2.18. [41] Let 〈N ,m0〉 be a contPN system.

• 〈N ,m0〉 lim-deadlocks iff a marking m ∈ lim−RSut (N ,m0) exists such that enab(t ,m) =

0 for every transition t .

• 〈N ,m0〉 is lim-live iff for every transition t and for any marking m ∈ lim −RSut (N ,m0)

a successor m′ exists such that enab(t ,m′) > 0.

• N is structurally lim-live iff ∃m0 such that 〈N ,m0〉 is lim-live.

Although deadlocks at limit may only be reached in the limit, they represent an impor-

tant system weakness. They enable the system to reach a marking in which all transitions

have infinitely small enabling degrees.

In general, if a system is live and bounded as discrete, it is not necessary live and bounded

as continuous, a kind of reverse can be proved under weak conditions.

Theorem 2.19. [64] Let 〈N ,m0〉 be a bounded lim-live P/T system. Then, N is structurally

live and structurally bounded as a dicrete net.

Any necessary condition for a discrete system to be structurally live and structurally

bounded is also necessary for it to be structurally lim-live and bounded as continuous. In

particular, the rank theorem is a necessary condition based on the existence of left and right

annullers of the token flow matrix and the existence of an upper bound on the rank of this

matrix.

Theorem 2.20. [71] A bounded and lim-live contPN is consistent, conservative and r ank(C ) ≤

|SEQS|−1.

For some subclasses of continuous nets, there are other necessary conditions. In the case

of mono-T-semiflow contPN systems, lim-liveness is equivalent with deadlock-freeness.

Theorem 2.21. [43] A continuous mono-T-semiflow system is lim-live iff it is lim-deadlock-

free.

Using this result, and Theorem 2.20, the necessary condition can be obtained:

Theorem 2.22. [43] Let N be a mono-T-semiflow net. If N is structurally lim-live then every

transition has at least one input persistent place, i.e., that has only one output transition.



17

2.3 (Unforced) Timed Continuous Petri nets

2.3.1 Finite and infinite server semantics

If a timed interpretation is included in the model, the fundamental equation depends on

time: m(τ) = m0 +C ·σ(τ). Differentiating with respect to time, the following equation is

obtained: ṁ(τ) =C ·σ̇(τ). The derivative of the firing sequence will be called the (firing) flow

of the timed model: f (τ) = σ̇(τ).

To associate a time semantics to a transition, observe that a transition can be seen as a

station in Queuing Networks (QNs): the meeting point of servers and clients. In discrete nets

a transition can model a station with one server (single server semantics), k servers working

in parallel (multiple server semantics) or an infinite number of servers (infinite server seman-

tics). Single and multiple (both finite) server semantics for t j can be simulated with infinite

server by adding a self-loop place p j around t j with the appropriate number of tokens. Thus

infinite server semantics is more general for discrete models.

Different definitions of the flow of continuous timed transitions have been given, the two

most important being finite server (or constant speed) and infinite server (or variable speed)

[2, 68]. Under finite server (constant speed), each transition t j has associated a real positive

number, λ j , called maximal firing speed. If the markings of the input places of the transition

are strictly greater than zero (strongly enabled), its flow will be constant, equal with this value

(all servers working at full speed). Otherwise (weakly enabled), the flow will be the minimum

between its maximal firing speed and the total input flow to the places with zero marking.

With this definition, λ j represents the product of the number of servers in the transition and

their speed.

f j =







λ j , if 6 ∃pi ∈
•t with mi = 0

min

{

min
pi∈

•t |mi =0

{

∑

t ′∈•pi

f [t ′]·Post [t ′,pi ]

Pr e[pi ,t j ]

}

,λ j

}

otherwise
(2.7)

For the computation of the instantaneous firing speed of the transitions under finite

server semantics different procedures have been proposed. In [28], an iterative algorithm

is given, while in [7] a linear programming problem (LPP) is used. In fact, in [7], the continu-

ous transitions have associated two values: a minimum and a maximum firing speed. When

the transitions are strongly enabled, their instantaneous flow can be any value in the given

interval. This can be seen as a relaxation of finite server semantics and we will discuss more

of this formalism in chapter 5. However, taking the lower bound equal to zero, keeping the

conflict policy and maximizing the instantaneous flow, the obtained semantics is equivalent

with finite server semantics. The only difference is in the case of empty cycles but, since

this constructions cannot model a system with good properties, we are using here the LPP

approach. The instantaneous firing speed f of the transitions at marking m in the case in

which there is no choice can be computed using:

max {1T · f }

s.t. 0≤ fi ≤λi ∀ti ∈T

C [p,T ] · f ≥ 0 ∀p with m[p] = 0

(2.8)

This LPP computes the maximum instantaneous firing speed where there is no conflict,

so maximizing the sum of flows with the constraints corresponding to (2.7). Observe that



18

(2.7) is not defining completely the flow of a contPN under finite server semantics (it is not

deterministic). In the case of conflict, a resolution policy should be specified. Otherwise,

(2.8) can have many solutions. When using priorities for the routing policy, the computation

of the firing speed implies solving several LPP [7]. In each step the previous computed flows

are fixed (added as new constraints) and a new problem maximizing the flow of the transi-

tions with greatest priority not computed before is solved. If t1, t2 are in CEQ relation it is

also easy to define how the flow is split at the conflict, just adding a constraint of the form

α · f1 = (1−α) · f2 in (2.8). If t1 and t2 are not in CEQ relation the splitting is more difficult to

introduce.

Under infinite server (variable speed) the flow of a transition t j can be expressed as:

f j =λ j ·enab(t j ,m) =λ j · min
pi∈

•t j

{
mi

Pr e[pi , t j ]

}

(2.9)

The enabling degree of the transition t j represents the number of active servers for that tran-

sition at m. The flow will be the number of active servers times the work each one does per

time unit, i.e., λ j . Notice that the number of active servers depends only on the weighted

marking of the input places.

In both cases, the timed system is defined by the net and a positive vector, λ (here it is

assumed that there are no immediate transitions), althoughλ has a different meaning under

each semantics: it is the firing rate of a transition in the case of infinite server semantics, and

it is a maximal firing speed in the case of finite server semantics (the product of the number

of servers and the firing rate of one server).

Example 2.23. Let us consider the PN system in Fig. 2.3, modeling a shared resource (place

p6) among two processes. Observe that in this case the behavior of the discrete PN is the same

for finite and infinite server semantics because the servers are implicit in the model. The speed

of each transition is defined as λ= [1,2,1,1,0.5] (for both firing semantics).

Let us consider first the model under the continuous relaxation, and infinite server se-

mantics. The flows through transitions given by (2.9) are:







f1(τ) = m1(τ)

f2(τ) = 2 ·min{m3(τ),m6(τ)}

f3(τ) = m4(τ)

f4(τ) = min{m2(τ),m6(τ)}

f5(τ) = 0.5 ·m5(τ)

(2.10)

Assume now finite server semantics. At m0, the input places of t1 and t4 are marked,

therefore t1 and t4 are strongly enabled and f1 = f4 = 1. The other transitions are weakly

enabled and their flow depends on the input flows to the empty input places. For t2, the input

flow to p3 (the only empty input place) is 1, hence f2 = min{λ2,1} = 1. Transition t3 will also

work at its maximum speed because the input flow in p4 is f2 = 1, equal to λ1. For t5, the input

flow to p5 is 1, then its flow is limited by its maximal firing speed that is 0.5. Therefore:

{
f1(τ) = f2(τ) = f3(τ) = f4(τ) = 1

f5(τ) = 0.5
(2.11)



19

The same result is obtained solving the LPP defined in (2.8):

max{1T · f }

s.t. f1 ≤ 1

f2 ≤ 2

f3 ≤ 1

f4 ≤ 1

f5 ≤ 0.5

f2 ≤ f1

f3 ≤ f2

f5 ≤ f4

(2.12)

These values are kept constant until τ= 2 when m6 becomes empty and a new computation of

the flows is required to ensure the positiveness of the markings.

Piecewise linear behaviors are obtained under finite and infinite server semantics, i.e.,

technically speaking, both continuous timed models are hybrid. Under finite server seman-

tics the behavior changes when a place is emptied, and flows are piecewise constant func-

tions. Under infinite server semantics the change of behavior happens when in a synchro-

nization the place that gives the enabling degree changes. In this case the flow is a differential

piecewise linear function of the marking. In both situations, the switching among the linear

systems is given by internal events.

Under infinite server semantics, the behavior of a system without synchronizations would

be linear with constraints. In general, the set of linear systems is defined by the pairs transition-

input place that defines its flow. Using the notions of configuration and region defined in

Subsection 2.2.4, to each region a linear system is associated that will govern the evolution

of the contPN when the marking belongs to that region. This can be done since in each

region, the same set of places gives the enabling degree of the transitions.

For a given region Rk , we can define the constraint matrix Πk : T ×P →R≥0 such that:

Πk [t j , pi ] =







1

Pr e[pi , t j ]
, if (∀m ∈Rk ),

mi

Pr e[pi , t j ]
= min

ph∈
•t j

{
mh

Pr e[ph , t j ]

}

;

0, otherwise.

(2.13)

Example 2.24. For the system sketched in Fig. 2.4 with λ= 1, the flow of t1 can be restricted by

the marking of p1 or p4 and the flow of t2 can be restricted by the marking of p2 or p4. Thus,

the number of regions in this case is γ= 4 and they are defined as follows:

• R1:
m1

2
≤

m4

2
and m2 ≤ m4 with Π1 =





1
2

0 0 0

0 1 0 0

0 0 1 0



,

• R2:
m1

2
≤

m4

2
and m2 ≥ m4 with Π2 =





1
2

0 0 0

0 0 0 1

0 0 1 0



,

• R3:
m1

2
≥

m4

2
and m2 ≤ m4 with Π3 =





0 0 0 1
2

0 1 0 0

0 0 1 0



,



20

2

3

p1

2

p3p2

p4

t1

t2 t3

Figure 2.4: ContPN system.

• R4:
m1

2
≥

m4

2
and m2 ≥ m4 with Π4 =





0 0 0 1
2

0 1
2

0 0

0 0 1 0



.

�

If marking m belongs to Rk , we denote Π(m) =Πk the corresponding constraint matrix.

Furthermore, the firing rate of transitions can also be represented by a diagonal matrix Λ :

T ×T →R>0, where

Λ[t j , th] =

{
λ j if j = h

0, otherwise

Using this notation, the non-linear flow of the transitions at a given marking m (see eq. (2.9)

for f j ) can be written as:

f =Λ ·Π(m) ·m (2.14)

A contPN system evolves and may reach a steady state (i.e. a marking such that ṁ(τ) = 0).

The configuration (see Definition 2.15 and Remark 2.16) of the steady state marking will be

called the steady state configuration. Given an initial marking, the problem of whether the

system approaches a steady state is undecidible [37]. However this steady state marking, if it

exists, has to fulfill certain conditions: the flow it defines has to be a T-semiflow (because ṁ =

C · f = 0), and has to verify the equations defined by the P-flows (necessary for reachability).

That is, 





B T ·m0 = B T ·m

C · f = 0

f j =λ j · min
pi∈

•t j

{
mi

Pr e[pi ,t j ]

}

, ∀t j ∈T

f ≥ 0

(2.15)

where B is a basis of P-flows.

In other words, the solutions of these equations represent all the possible ways of dis-

tributing the tokens of the P-flows so that the system remains on that marking. However, it

may happen that several markings fulfill these conditions. We will refer to all these possi-

ble steady states markings as possible equilibrium markings. All their configurations will be

called possible equilibrium configurations.



21

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m[p2]
m[p3]
m[p6]

Σ1 Σ2

commutation

Figure 2.5: Evolution of contPN in Fig. 2.3 with λ = [1,2,1,1,0.5]T under infinite server se-

mantics.

Example 2.25. Let us go back to Example 2.23 (system of Fig. 2.3) under the same conditions:

λ= [1,2,1,1,0.5]. It is evidenced in Example 2.14 that p2 is implicit and may be removed.

Infinite server semantics. Because p2 is implicit, in (2.10), f4 = min{m2,m6} = min{m4 +

m6,m6} = m6, and so two configurations can govern the system evolution. At τ= 0, m3 < m6,

therefore the evolution of the contPN system is governed by the configuration C3 = {(p1, t1),

(p3, t2), (p4, t3), (p6, t4), (p5, t5)} (see Example 2.17). It leads to the following linear system:

Σ1 :







ṁ1(τ) = f1(τ)− f2(τ) = m1(τ)−2m3(τ)

ṁ2(τ) = f5(τ)− f4(τ) = 0.5m5(τ)−m6(τ)

ṁ3(τ) = f1(τ)− f2(τ) = m1(τ)−2m3(τ)

ṁ4(τ) = f2(τ)− f3(τ) = 2m3(τ)−m4(τ)

ṁ5(τ) = f4(τ)− f5(τ) = m6(τ)−0.5m5(τ)

ṁ6(τ) = f3(τ)+ f5(τ)− f2(τ)− f4(τ)

= m4(τ)+0.5m5(τ)−2m3(τ)−m6(τ)

The evolution of the contPN system is sketched in Figure 2.5. It evolves according to Σ1

until τ≃ 1.14 t.u. when m3(τ) = m6(τ). At that point, a switch occurs and the new governing

configuration is: C4 = {(p1, t1), (p6, t2), (p4, t3), (p6, t4), (p5, t5)}. It leads to a new linear system:

Σ2 :







ṁ1(τ) = m1(τ)−2m6(τ)

ṁ2(τ) = 0.5m5(τ)−m6(τ)

ṁ3(τ) = m1(τ)−2m6(τ)

ṁ4(τ) = 2m6(τ)−m4(τ)

ṁ5(τ) = m6(τ)−0.5m5(τ)

ṁ6(τ) = m4(τ)+0.5m5(τ)−2m6(τ)−m6(τ)



22

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

m[p1]
m[p3]
m[p6]

Σ5Σ4Σ3

commutation

Figure 2.6: Evolution of contPN in Fig. 2.3 with λ= [1,2,1,1,0.5]T under finite server seman-

tics.

The system evolves according to Σ2 and reaches the steady state marking [0.4,0.6,0.2,0.4,

0.4,0.2]T with the corresponding flow: [0.4,0.4,0.4,0.2,0.2]T .

Finite server semantics. The evolution of the system under finite server semantics is pre-

sented in Fig. 2.6. As explained before, at m0, the equations of the system will be:

Σ3 :







ṁ1(τ) = f1(τ)− f2(τ) = 0

ṁ2(τ) = f5(τ)− f4(τ) =−0.5

ṁ3(τ) = f1(τ)− f2(τ) = 0

ṁ4(τ) = f2(τ)− f3(τ) = 0

ṁ5(τ) = f4(τ)− f5(τ) = 0.5

ṁ6(τ) = f3(τ)+ f5(τ)− f2(τ)− f4(τ) =−0.5

These equations hold until τ= 2, when m6 and m2 become empty. At this time, the mark-

ing is [1,0,0,0,1,0]. Now, t1 and t5 are strongly enabled, therefore f1 = 1 and f5 = 0.5. The

weakly enabled transitions t2 and t4 are in conflict and a resolution policy should be specified.

Assume, for example, that the flow of t2 is equal to the flow of t4. Moreover, the output flows of

all the empty places are upper bounded by the input flows. This leads to the following system

of equations:



23

max{1T · f }






f1 = 1 (strongly enabled)

f5 = 0.5 (strongly enabled)

f2 = f4 (conflict resolution)

f4 ≤ f5 (p2 is empty)

f2 ≤ f1 (p3 is empty)

f3 ≤ f2 (p4 is empty)

f2 + f4 ≤ f3 + f5 (p6 is empty)

f3 ≤ 1 (maximal firing speed)

f2 ≤ 2 (maximal firing speed)

f4 ≤ 1 (maximal firing speed)

(2.16)

Remark that the inequality obtained for p2 empty,i.e., f4 ≤ f5 is redundant and can be ob-

tained from the inequalities for p4 and p6. This happens because place p2 is implicit in model.

The solution of (2.16) is f2 = f3 = f4 = 0.5. So, the system of equations that defines the evolu-

tion after τ= 2 is:

Σ4 :







ṁ1(τ)=−0.5

ṁ2(τ)= ṁ4(τ)= ṁ5(τ)= ṁ6(τ)= 0

ṁ3(τ)= 0.5

At τ= 4, p4 is emptied and a new flow computation has to be done. The current marking is

[0,0,1,0,1,0]. The only strongly enabled transition is t5, hence f5 = 0.5. Writing a linear pro-

gramming problem as done before, f1 = f2 = f3 = f4 = 0.5 is obtained. These values correspond

to a steady state marking (ṁ(τ) = 0).

Clearly, the evolution of a contPN system is quite different under both semantics: different

throughputs and different steady state markings are obtained.

Other semantics may appear in a natural way in particular application domains. For

example, in population dynamic models the product of the markings of the input places

of a transition may be useful to express the probabilities that tuples of elements meet in a

synchronization [68]. This semantics can be viewed as the result of decoloring some colored

nets under infinite server semantics.

Notice also that not every transition can be reasonably fluidified. For example, in a traffic

system, the “power on” or “power off” of a semaphore is purely discrete and in many cases

can be inappropriate to continuize it. If some transitions remain discrete and some are con-

tinuous then the model is conceptually hybrid [28, 69].

2.3.2 Immediate transitions

Immediate transitions appear as a simplification of a timed model when some transitions

are “much quicker” than others, case in which they are reduced to “fireable in zero time”. In

a certain sense, transitions could be logically classified, according to their speeds, into timed

(producing a job in a sensible time) and immediate (leading to some vanishing markings). Of

course, immediate transitions may be defined at several levels of immediateness, but here

we will simplify the presentation assuming that transitions are either timed or immediate,

i.e., T = TT ∪TI , TT ∩TI =;.

While immediate transitions were considered in contPN under finite server semantics [28],

they have not been defined in the case of infinite server semantics. Under finite server se-



24

mantics, it is ensured that the immediate transitions are weakly enabled at the initial mark-

ing (each one has at least one empty input transition) and its flow depends on the input flow

in the empty input places. Using (2.7), if t j is an immediate transition, its flow is defined as:

f j = min
pi∈

•t |mi =0

{

∑

t ′∈•pi

f [t ′] ·Post [t ′, pi ]

Pr e[pi , t j ]

}

For infinite server semantics, the problem is different since in (2.9) the flow of a transition

is by definition the product of the enabling degree times its firing rate, that it is infinite now.

In discrete markovian models immediate transitions can be removed when the Markov

Chain is generated. It is a kind of compilation technique because the tangible Markov chain

(in which no vanishing state remains) will not suffer, in general, from stiffness anymore.

Reduction of immediate transitions at net level for discrete Petri nets also gain some atten-

tion in the literature [1]. The advantage obtained in the case in which the immediate transi-

tions are removed derives from the isomorphism between the reachability graph of the PN

model without immediate transitions, and the state transition rate diagram of the underlying

markovian model. In the context of timed continuous net systems, obtaining stiffness-free

models is particularly interesting if numerical integration has to be done, because the net

model and the derived ODE system are isomorphic. Even if the introduction of immediate

transitions was historically done in order to cope with stiffness, since the routing of clients in

service networks is much quicker than the treatments to be performed, they can be seen at a

logical modelling level as a way to decouple routing from services. A real positive number is

associated to each transition t ∈ TI that is in conflict. This number is represented as r [t ] and

defines the firing rates of the transitions in a conflict. That is, if t1 and t2 are both enabled

and in conflict relation, the firing of t1 divided by the firing of t2 will be equal to r [t1]/r [t2].

In Section 3.5 it is presented an algorithm that permits to simulate contPN systems un-

der infinite server semantics that contain immediate transitions while in Section 3.6 some

techniques to reduce the number of immediate transitions are presented.

2.3.3 Timed implicit arcs

In subsection 2.2.3 we have seen that it is better if the implicit places, i.e., places that have

all the output arcs implicit, are removed from the model. This will help when the simulation

and the analysis of the underlying model is performed. There, only the autonomous model

has been considered, not taking time into account. Hence the results will be valid for any

timing of the model. However, timing will introduce additional restrictions in the dynamics

of the system, and so arcs that were not implicit in general might be so for a particular timing.

A new concept, of timed implicit arcs is introduced.

It is not easy to give general rules to characterize this kind of implicit arcs. However, some

situations can be dealt with. Assume for example a net with a par-begin par-end in which

the synchronization is an immediate transition (see Fig. 2.7). It is clear that in the empty

par-begin par-end net (tstar t − ts yn ), one of the arcs in the synchronization will be implicit.

In this case, since λ[Tpar 1] = 2 and λ[Tpar 2] = 1, the arc (p5, ts yn ) is implicit. Even more, in

this case place p5 becomes timed implicit, and can be removed. Its marking can always be

deduced using that m[p5] = m[p4]+m[p6]−m[p3].

This can be generalized to the case in which some tokens appear in one place of the par-

begin par-end subnet. To simplify, let us consider first a net with only a par-begin par-end



25

2

tstart

Tndata

p4

p5

tsyn

Tpar2Tpar1

tKO
p8

tOK

p7

p9

TI/O

p1

p2

p3

p6

tcheck

(a) (b)

0.99
0.01

2

Tndata

p4

Tpar2Tpar1

p8

p9

TI/O

p1

p3

tcheck

Figure 2.7: (a) Net system (taken from [1]) and (b) its reduction as a contPN.

connected by a place (see Fig. 2.8). If λ[t2] ≤λ[t3], then for any q ≥ 0, the arc (p5, t4) will be

timed implicit. If λ[t2] >λ[t3], it may also happen that (p5, t4) is timed implicit if q is large

enough. To get the lower q for this, we need to ensure that always m[p4] = 0 and m[p5] ≥ 0.

At the beginning, the evolution of the system can be described by the following equations:

ṁ[p1] =−λ[t1] ·m[p1]+λ[t2] ·m[p2]

ṁ[p3] =λ[t1] ·m[p1]−λ[t3] ·m[p3]

m[p1]+m[p2] = k

m[p1]+m[p3]+m[p5] = k +q

Integrating the system, it can be deduced that if q ≥ k ·
1/λ[t2]−1/λ[t3]
1/λ[t2]+1/λ[t1]

, then m[p5] ≥ 0.

Of course, in general the net will not be so simple. However, it can be proved that, as long

as the flow of transition t1 in the original net is at most that of t1 in the basic par-begin par-

end net, if (p5, t4) is implicit in the basic net it will also be implicit in the complete net. Hence,

the idea is to find λ[t1] and k such that the relationship between the flows of t1 in both nets

is guaranteed. For example, a simple way is to define k as the maximum number of tokens

in an input place of t1 (of course, if there are more than one place, take the minimum among

them) and λ[t1] the same as it is in the original net or, if this transition were immediate, a

previous timed one.

In this schema it has been assumed that the synchronization was immediate. In fact,

this is no restriction since the case with a timed synchronization can be reduced to this one



26

p2

t1

t2

p1k

q

p3

t3

t4

p4 p5

Figure 2.8: Par-begin par-end net

by unfolding the timed transition into an immediate synchronization followed by the timed

transition.

2.3.4 Steady state performance Bounds

For computing an upper bound of the flow of a transition in steady state the following non-

linear programming problem presented in [42] can be used:

max{φ[t ] | µss = m0 +C ·σ, (a)

φss[t ] =λ[t ] ·min
p∈•t

{
µss[p]

Pr e[p,t]

}

,∀t ∈ T, (b)

C ·φss = 0, (c)

µss ,σ≥ 0}. (d)

(2.17)

The equations in (2.17) represent: (a) the state equation that should be satisfied by the

marking; (b) the flow definition for each transition; (c) the steady state condition; (d) the

firing vector and the flow should be positive.

Nevertheless, this non-linear programming problem is difficult to solve due to the “min”

condition. When a transition t has a single input place, the equation 2.17 (b) reduces to

(2.18). When t has more than an input place, it can be relaxed (linearized) as in (2.19).

φss [t ] =λ[t ] ·
µss [p]

Pr e[p, t ]
, if p =

•t (2.18)

φss [t ] ≤λ[t ] ·
µss [p]

Pr e[p, t ]
,∀p ∈ •t ,otherwise (2.19)

This way we obtain a single linear programming problem, that can be solved in polyno-

mial time:

max{φ[t ] | µs s = m0 +C ·σ,

φss [t ] =λ[t ] ·
µss[p]

Pr e[p,t]
, if p = •t ,

φss [t ] ≤λ[t ] ·
µss[p]

Pr e[p,t]
,∀p ∈ •t ,otherwise,

C ·φss = 0,

µss ,σ≥ 0}.

(2.20)



27

Unfortunately, this LPP is a relaxation of the original problem (2.17), and provides in

general a non-tight bound, i.e. the solution may be non-reachable for any distribution of the

tokens verifying the P-semiflow load conditions, y ·m0. This can happen for a join transi-

tion t since a solution of (2.20) can be obtained such that its flow, φss[t ], is strictly less than

its enabling degree multiplied by λ[t ], so the real flow of t is greater and the steady state

condition, i.e., C ·φss , may not be satisfied.

One way to improve this bound is to force the equality for at least one place per synchro-

nization. This corresponds to a correct interpretation of the min operator. The problem is

that there is no way to know in advance which of the input places should restrict the flow. A

branch & bound algorithm can be used to compute a steady state marking that fulfills what

(2.17) expresses. The procedure is: first solve (2.20). If the marking solution of (2.20) does

not correspond to a steady state (i.e. there is at least one transition (z in total) such that all

its input places have “more than necessary” tokens) choose one of those synchronizations

and solve the set of LPPs that appear when each one of the input places are assumed to be

defining the flow. Variable eqs tracks the information of the places assumed to define the

flow of some synchronizations. That is, build a set of LPPs by adding an equation that relates

the marking of each input place with the flow of the transition. These subproblems become

children of the root search node. The algorithm is applied recursively, generating a tree of

subproblems. If the optimal marking to a subproblem is a feasible steady state marking, it

can be used to prune the rest of the tree: if the solution of the LPP for a node is smaller

than the best known feasible solution, no globally optimal solution can exist in the subspace

of the feasible region represented by the node. Therefore, the node can be removed from

consideration. The search proceeds until all nodes have been solved or pruned.

Algorithm 2.26. procedure BRANCH & BOUND(N ,m0,eqs)

Global variable bound := 0

(x, z) := max_LPP (N ,m0,eqs)

if x ≤ bound or the LPP was unfeasible then ⊲ Do nothing.

else

if z = 0 then ⊲ The solution represents a steady state

bound := max(bound , x)

else

take a t ∈nt do

for every p ∈ •t do

eqs := eqs ∪ (p, t )

Branch & Bound(N ,m0,eqs)

end for

end if

end if

end procedure

2.3.5 Mono-T-semiflow reducible systems

A classical concept in queueing network theory is the visit ratio. In Petri net terms, the visit

ratio of transition t j with respect to ti , v (i )[t j ], is the average number of times t j is visited

(fired) for each visit to (firing of) the reference transition ti . In general, the visit ratio of a



28

Marked Graphs MarWeighted T−systems Choice Free

Mono−T−Semiflow

Free Choice

Equal Conflict

Mono−T−Semiflow reducible

Figure 2.9: Live and bounded net classes included in the class of mono-T-Semiflow reducible

nets.

discrete Petri net depends on the structure, the rates of the transitions, and the initial mark-

ing [17].

Mono-T-semiflow nets is the class of nets for which the visit ratio vector depends only on

the net structure (the token flow matrix). The class of mono-T-semiflow reducible nets is the

class for which the visit ratio vector depends at most on the net and the firing rate vector, but

not on m0, i.e., v (i ) = v (i )(N ,λ).

Definition 2.27. [42] 〈N ,λ〉 is a mono-T-semiflow reducible net if it is consistent, conserva-

tive and the following system has a unique solution:







C ·v (1) = 0

v (1)[ti ]
Pr e[p,ti ]·λ[ti ]

=
v (1)[t j ]

Pr e[p,t j ]·λ[t j ]
∀ti , t j in CEQ relation,∀p ∈ •ti

v (1)[t1] = 1

Notice that checking if a net belongs to the class has a polynomial time complexity. More-

over, it offers a reasonable modelling power, since it includes the class of live and bounded

EQ nets [76] (which are the weighted generalization of FC nets), live and bounded CF nets [75],

live and bounded weighted T-graph nets and live and bounded MG nets. The inclusions have

been represented in Fig. 2.9. Additionally, synchronized processes with shared resources

can be modeled with mono-T-semiflow reducible net models and deterministically synchro-

nized sequential processes (DSSP) [63].

Example 2.28. The mono-T-semiflow reducible net in Fig. 2.10 represents a queuing network,

adapted from [18] and explained in detailed in Ex. 2.10. It has four minimal T-semiflows:

x1 = t1+ t2+ t3, x2 = t1+ t2+ t4+ t6+ t8+ t11, x3 = t6+ t8+ t10 and x4 = t1+ t2+ t5+ t7+ t9+ t12.

The values of λ3, λ4 and λ5 will determine the splitting of the flow entering in p3 (because t3,

t4 and t5 are in free-choice relationship) while λ10 and λ11 will define the splitting of the flow

entering in p11. For example, for the particular value of λ= 1, the visit ratio vector normalized

for t3 is v (3) = [3,3,1,1,1,2,1,2,1,1,1,1]T (the addition of the minimal T-semiflows).

An immediate consequence of Definition 2.27:



29

3

11

1

p2
p3

p4

p5 p6

p8p9 p10

p12

p11

p7

p1

t1 t2

t3

t4 t5

t6 t7

t8 t9

t10

t12

t11

Figure 2.10: Continuous mono-T-semiflow reducible net system, adapted from a queuing

network in [18].

Remark 2.29. Let 〈N ,m0〉 be a mono-T-semiflow reducible net system, and assumeλ1 andλ2

keep the same proportion in continuous equal conflicts (i.e., for every pair ti , t j in CEQ relation

λ1[ti ]/λ1[t j ] =λ2[ti ]/λ2[t j ]). The timed contPN systems 〈N ,λ1,m0〉 and 〈N ,λ2,m0〉 have

the same visit ratio vector.

A mono-T-semiflow reducible net can be transformed in a mono-T-semiflow net fusing

the transitions in CEQ. The procedure will be discussed in Section 3.6.

In section 2.3.4 a branch and bound algorithm is used to compute upper bounds of the

steady state throughput for continuous systems under infinite server semantics, each node

corresponding to a LPP. In the case of mono-T-semiflow reducible nets, the bounds can be

computed solving only one simple LPP. The linear programming problem is the “continuous

version” of the bounds obtained in [17] for discrete nets1.

Let 〈N ,m0〉 be a mono-T-semiflow reducible net and γi the solution of the linear pro-

gramming problem:

γi = max
{

y ·PD i |y ·C = 0, y ·m0 = 1, y ≥ 0
}

(2.21)

where PD(p) = max
t∈p•

Pr e[p,t]·v (i )[t]

λ[t]
and v (i ) is the visit ratio vector normalized for transition ti .

According to [42] and [17] the throughput of the discrete system in steady state (χ) and

the flow of the continuous system under infinite server semantics ( f ) verify χ ≤ 1
γ · v (i ) and

f ≤ 1
γv (i ) respectively. Moreover, this bound is reached in the continuous system (i.e. f =

1In [17] the mono-T-semiflow reducible nets are called Free Related T-semiflows nets (FRT)



30

1
γ

v (i )) iff the steady state configuration contains the support of a P-semiflow [42]. Generaliz-

ing for every possible equilibrium configuration:

Proposition 2.30. Let 〈N ,λ,m0〉 be a mono-T-semiflow reducible net system. If every pos-

sible equilibrium configuration contains the support of a P-semiflow, the throughput of the

discrete PN is upper bounded by the throughput of the continuous PN under infinite server

semantics.

Proof. If every possible equilibrium configuration contains the support of a P-semiflow then

the steady state configuration contains the support of a P-semiflow and applying Proposi-

tion 5 in [42], 1
γv (i ) is the flow of the continuous system in steady state.

Hence, for mono-T-semiflow reducible nets under infinite server semantics, the through-

put of the system will be given by the slowest P-semiflow when the possible equilibrium con-

figurations contain the support of a P-semiflow.



Chapter 3

Performance properties and

simulation

Summary

In the first part of this Chapter we limit our consideration to the class of mono-T-semiflow re-

ducible nets. First it is proved that under some “broad” conditions, infinite server semantics

is always a better approximation of the discrete system than finite server semantics, moti-

vating the choice of this semantics in the most part of the thesis. Then, for the same class,

monotonicity of the throughput in steady-state with respect to the firing rate and the ini-

tial marking, is studied and it is shown under which conditions holds. In the second part

of the Chapter, contPNs under infinite server semantics containing immediate transitions

are under study. An algorithm to simulate these systems and some techniques to improve

simulation and analysis are presented.

31



32

3.1 Comparison of server semantics

In this section the throughput of mono-T-semiflow reducible nets under infinite and finite

server semantics will be compared. According to Proposition 2.30, the throughput of the

markovian discrete net is upper bounded by the throughput of the continuous net system

with infinite server semantics under some conditions. Here, we prove that the throughput of

continuous net systems under finite server semantics is greater than the throughput under

infinite server semantics and conclude that for this class infinite server semantics provides a

more accurate approximation of discrete models. The servers are made explicit under con-

tinuous infinite server semantics when they are not implicit in the model because otherwise

the comparison is inappropriate. This fact ensures that the throughput of the continuous

system under both semantics is upper bounded by the same value.

The comparison between contPN systems under finite and infinite server semantics is

done under the liveness hypothesis of the untimed contPN system. Liveness is used to en-

sure that in every moment the continuous system under finite server semantics has at least

one strongly-enabled transition (liveness is equivalent to deadlock-freeness for this class).

Otherwise, according to the flow definition (2.7) every transition has at least one empty in-

put place and the net is not live as untimed. Liveness analysis of autonomous and timed

mono-T-semiflow reducible nets is studied in [43]. A necessary condition for the existence

of a marking that makes the system lim-live is given, which can be checked in polynomial

time: every transition has at least one place that is not input of any other transition. In [38]

it is proved that deadlock-freeness is decidible in general nets, and an algorithm is provided.

Proposition 3.1. Let 〈N ,m0〉 be a live mono-T-semiflow reducible contPN system. For any λ,

the flow in steady state under finite server semantics is greater than or equal to the flow under

infinite server semantics.

Proof. The net is mono-T-semiflow reducible so the throughput in steady state will be pro-

portional to the visit ratio vector for both finite and infinite server semantics ( fF = αF · v (i ),

f∞ = α∞ · v (i )). Under finite server semantics at least one transition will be strongly en-

abled in steady state (otherwise the net is not live). Let ti be one of those transitions, and

assume that we normalize the visit ratio with respect to this transition. Then αF = ni ·λ[ti ]

where ni is the number of servers for transition ti . Under infinite server, if m is the steady

state marking, it verifies that α∞ = min
p∈•ti

m[p]

Pr e[p,ti ]
·λ[ti ] ≤ min

p∈•ti

m[p] ·λ[ti ] (Pr e[p, ti ] ∈ N).

Since the place that models the servers of ti is input of the transition, min
p∈•ti

m[p] ≤ ni and

so α∞ ·v (i ) = f∞[ti ] ≤ fF [ti ] =αF ·v (i ).

Putting together Propositions 2.30 and 3.1 we can conclude that infinite server semantics

provides a better approximation of the throughput of the discrete system than finite server

semantics, under the expresed conditions.

Theorem 3.2. Let 〈N ,λ,m0〉 be a live mono-T-semiflow reducible Petri net system with every

possible equilibrium configuration containing the support of a P-semiflow. For any T-timed

interpretation of a discrete model, the continuous model under infinite server semantics pro-

vides a better approximation than the continuous model under finite server semantics.

Example 3.3. Let us consider again the queuing network presented in Fig. 2.10. We have com-

puted simulations for the discrete stochastic model (exponential distribution for servers) and



33

the continuous model under infinite and finite (single-server) server semantics, using λ = 1.

The servers were made explicit in the model and are not represented in the figure to simplify

it. Every configuration contains the support of a P-semiflow (this will be proved in Exam-

ple 3.16), so infinite server semantics will fit better. Simulating the model and measuring the

flow of transition t1 (the completed flow vector is computed as f1 · v (1), where v (1) is given in

Example 2.28), the following results are obtained: the throughput is 0.1337 for the discrete

model, 0.1667 for the continuous model under infinite server semantics, and 0.3333 for the

continuous model under finite server semantics (i.e. two times bigger).

In general, proving that every configuration contains the support of a P-semiflow is dif-

ficult since the number of configurations may be large. However, there are net subclasses

for which it is immediate. Take for example EQ nets. A bounded lim-live contPN system is

structurally live and structurally bounded as discrete [64], and, for EQ nets this implies that

every configuration contains a P-semiflow [76]. Therefore the conditions of Theorem 3.2 are

satisfied. Moreover, for this class being structurally live and bounded is equivalent to being

conservative, consistent and the rank of the token flow matrix equal to the number of equal

conflicts minus one [76]). Hence it can be verified in polynomial time. Moreover, if the ini-

tial marking is such that every P-semiflow is marked, the structurally live and structurally

bounded EQ net is live as continuous.

Corollary 3.4. Let N be an EQ net system that is structurally live and structurally bounded as

discrete. For any m0 such that every P-semiflow is marked, the continuous system 〈N ,λ,m0〉

with infinite server semantics provides a better approximation of the throughput of the dis-

crete system than finite server semantics.

3.2 Monotonicity and fluidification

In this section we will put our attention on the timed conPN system under infinite server se-

mantics and study some properties related to monotonicity. From the flow definition in (2.9)

it is easy to observe that if the vector λ is multiplied by a constant k > 0 then at any reachable

marking the flow will be also multiplied by k. When the initial marking of the net system is

multiplied by k, the system will be k times faster. But, what happens if only some compo-

nents of λ or only some components of m0 are increased? In general, as happens for discrete

nets, increasing the rate of a transition or the initial marking of a place may lead to a slower

system (see examples in Subsection 2.2 in [42]). However, this unexpected behavior is usu-

ally not desirable in many kinds of systems. For example, replacing a machine by a faster one

or adding new machines in a production system should not decrease the throughput. In this

section we will see that mono-T-semiflow reducible nets, under quite general conditions,

have the a priori expected monotonicity property.

Theorem 3.5. Let 〈N ,λ1,m0〉 and 〈N ,λ2,m0〉 be mono-T-semiflow reducible contPN sys-

tems and λ1 ≤λ2 imposing the same flow proportions in continuous equal conflicts (i.e., for

every pair ti , t j in CEQ relation, λ1[ti ]/λ1[t j ] = λ2[ti ]/λ2[t j ]). If both systems reach some

steady states and both steady state configurations contain the support of a P-semiflow then

steady state flows verify f1 ≤ f2.

Proof. For i = 1,2, let mi be the steady state marking of 〈N ,λi ,m0〉, and yi a P-semiflow

whose support is contained in one configuration defined by mi .



34

Let us focus on f2 and y2. Every place p j 2 ∈ ||y2|| restricts the flow of at least one of its

one output transitions, denoted by t j 2, i.e.:

f2[t j 2] =λ2[t j 2] ·
m2[p j 2]

Pr e[p j 2, t j 2]

Using the P-semiflow y2, we can write the token conservation law for m1 and m2, and taking

m2 from the previous equation:

∑

p j 2∈||y2||

y2[p j 2] ·
Pr e[p j 2, t j2 ] · f2[t j 2]

λ2[t j 2]
=

∑

p j 2∈||y2||

y2[p j 2] ·m1[p j 2]

Now, m1[p j 2] can be replaced using f1 because

f1[t j 2] =λ1[t j 2] ·enab(t j 2,m1) ≤λ1[t j 2] ·
m1[p j 2]

Pr e[p j 2, t j 2]
.

Moreover, λ1 ≤λ2, so:

∑

p j 2∈||y2||

y2[p j 2] ·m1[p j 2] ≥

≥
∑

p j 2∈||y2||

y2[p j 2] ·
Pr e[p j 2, t j2 ] · f1[t j 2]

λ1[t j 2]
≥

≥
∑

p j 2∈||y2||

y2[p j 2] ·
Pr e[p j 2, t j2 ] · f1[t j 2]

λ2[t j 2]

The net is mono-T-semiflow reducible, and λ1 and λ2 keep the same proportion in con-

tinuous equal conflicts. Hence, both visit ratios will be the same, v (1) > 0. Let f1 = k1 · v (1)

and f2 = k2 ·v (1). Therefore, merging the last equations:

∑

p j 2∈||y2||

y2[p j 2] ·
Pr e[p j 2, t j2 ] ·v (1)[t j 2]

λ2[t j 2]
· (k2 −k1) ≥ 0

And so k2 ≥ k1.

The previous result can be extended to sets of rates.

Definition 3.6. Let 〈N ,λ,m0〉 be a timed contPN system and let L ⊆R
|T |

>0 . The system 〈N ,λ,m0〉

is said to be monotone for t j in steady state w.r.t. λ ∈L if ∀λ1,λ2 ∈L with λ1 ≤λ2, if these

systems have steady states, the associated steady state flows verify f1[t j ] ≤ f2[t j ].

In the case of mono-T-semiflow reducible net systems, since the steady state flow is pro-

portional to a vector defined by the net structure and routing (speeds at CEQs), if a system

is monotone for a given t j , it is monotone for ∀t ∈ T . Therefore, it can be said that the net

system is monotone (i.e. it is monotone for all transitions).

The previous theorem provides sufficient conditions for a timed system to be monotone

w.r.t. λ.



35

Theorem 3.7. Let 〈N ,λ,m0〉 be a timed mono-T-semiflow reducible contPN system under in-

finite server semantics. Let L ⊆R
|T |

>0 be such that ∀λ1,λ1 ∈L they impose the same flow pro-

portions in continuous equal conflicts (i.e. for every pair ti , t j in CEQ relation λ1[ti ]/λ1[t j ] =

λ2[ti ]/λ2[t j ]). If the possible equilibrium configurations of 〈N ,λ,m0〉 contain the support

of a P-semiflow then the timed system is monotone in steady state with respect to λ ∈L .

Example 3.8. Let us consider the contPN in Figure 2.4. This net is mono-T-semiflow with x =

[1,1,1] and has 4 configurations: C1 = {p1, p2, p3}, C2 = {p1, p4, p3}, C3 = {p4, p2, p3} and C4 =

{p4, p3}, and two minimal P-semiflows: y1 = p1 +p2 +p3 and y2 = p1 +4 ·p3 +p4. Therefore

there are two configurations that contain a P-semiflow, C1 and C2, one configuration that

contains the support of a P-flow, C3 (y3 = y1 − y2) but no P-semiflow, and one configuration

that does not contain the support of any P-flow, C4.

1) Let m0 = [1,1,0,15]. We will see that the only possible equilibrium configurations for

λ ∈R
|T |

>0 are C1 and C2. Both contain P-semiflows, so using Theorem 3.7 the timed system will

be monotone with respect to λ ∈R
|T |

>0 (for this initial marking).

First, let us see that C3 is not a possible equilibrium configuration. To be an equilibrium

configuration, the following system of equations should be satisfied:







m1 +m2 +m3 = 2 (a) first P-semiflow

m1 +4 ·m3 +m4 = 16 (b) second P-semiflow

m1 ≥ m4 (c) f1 restricted by p4

m4 ≥ m2 (d) f2 restricted by p2

(3.1)

where m1,m2,m3,m4 and f1, f2, f3 is a possible steady state in C3. From (3.1.a) =⇒ m1 ≤ 2

and m3 ≤ 2. Moreover, (3.1.c) implies m4 ≤ m1 ≤ 2. Therefore, m1 +4 ·m3 +m4 ≤ 2+8+2= 12

and so (3.1.b) cannot be satisfied.

Assume now that C4 is the steady state configuration, therefore the following system should

be satisfied:






m1 +m2 +m3 = 2 (a) first P-semiflow

m1 +4 ·m3 +m4 = 16 (b) second P-semiflow

m1 ≥ m4 (c) f1 restricted by p4

m2 ≥ m4 (d) f2 restricted by p4

(3.2)

Observe that the only difference with respect to (3.1) is the constraint (d). Notice that (d) has

not been used above to prove that (3.1) cannot have a solution. Therefore (3.2) has no solution

and C4 cannot be an equilibrium configuration.

Thus for m0 = [1,1,0,15]T the only possible equilibrium configurations, for any λ ∈ R
|T |
>0 ,

are C1 and C2. Both contain the support of a P-semiflow, thus the timed system is monotone

w.r.t. λ ∈ R
|T |

>0 (Theorem 3.7). In Figure 3.1 it is shown the evolution of the throughput of the

net for m0 = [1,1,0,15]T and λ = [1, z,1]T with 0 < z ≤ 5 and, as expected, the throughput of

the system increases when λ2 increases.

2) Let m0 = [15,1,1,0]. For this marking, C2, C3, C4 can be equilibrium configurations

choosing appropriate values for λ. For example: m2 = [1,13,3,6]T in C2 is an equilibrium

marking for λ2 = [6,1,2]T with f2 = 6; m3 = [13.67,3,0.33,4]T in C3 is an equilibrium mark-

ing for λ3 = [3,2,18]T with f3 = 1; m4 = [10.5,4.5,2,0.5]T in C4 is an equilibrium marking for

λ4 = [8,4,1]T with f4 = 2. Since some possible equilibrium configurations do not contain the

support of a P-semiflow, monotonicity cannot be guaranteed.

In Figure 3.2 it is sketched the evolution of the throughput of the net system for m0 =

[15,1,1,0]T and λ = [1, z,1]T with 0 < z ≤ 5. It can be seen that it is not monotonic, even a



36

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lambda[t2]

T
hr

ou
gh

pu
t

C1

Figure 3.1: Throughput of the contPN system in fig. 2.4 for m0 = [1,1,0,15]T and different

values of λ2.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

lambda[t2]

T
hr

ou
gh

pu
t

C3

C2

Figure 3.2: Throughput of the contPN system in fig. 2.4 for m0 = [15,1,1,0]T and different

values of λ2.

discontinuity exists at λ2 = 0.5. When 0 < λ2 < 0.5, the equilibrium configuration is C2 and

the throughput is increasing. For λ2 ≥ 0.5 the steady state configuration becomes C3 that con-

tains the support of a P-flow and the steady state throughput is decreasing (the conditions of

Theorem 3.7 are not satisfied). Therefore, for m0 = [15,1,1,0]T the system is not monotone in

steady state w.r.t. λ ∈R
|T |

>0 .

3) Let us now study the monotonicity of the contPN with m0 = [15,1,1,0]T w.r.t λ ∈ L1

where L1 = {[λ1,λ2,λ3]T |λ1 =λ3 = 1,0<λ2 < 0.5}.

First, C4 cannot be an equilibrium configuration. If it were, p4 restricts the flows of t1 and

t2 in steady state, and so since the steady state flow verifies f1 = f2 = f3, λ2 ·m4 = λ1 ·
m4

2
=

m4

2
.

We are assumingλ2 < 0.5, therefore m4 = 0 and f1 = f2 = f3 = 0, i.e., the system is in a deadlock.

Notice that f3 is defined by m3, so m3 = 0. Using the P-semiflows the following equations are

obtained: m1 +m2 = 17 and m1 = 19 which cannot be satisfied.

If C3 were the equilibrium configuration, since the steady state flow verifies f1 = f2 = f3,



37

then λ1 ·
m4

2
=λ2 ·m2 =λ3 ·m3. But λ1 =λ3 = 1, and so m4

2
=λ2 ·m2 = m3. Hence, the following

system of equations should have a solution:







m1 +m2 +m3 = 17 (a) first P-semiflow

m1 +4 ·m3 +m4 = 19 (b) second P-semiflow

m1 ≥ m4 (c) f1 restricted by p4

m4 ≥ m2 (d) f2 restricted by p2
m4

2
=λ2 ·m2 = m3 (e) steady state flows

(3.3)

Using (3.3.e), m4 = 2λ2 ·m2 and considering (3.3.d) the following inequality is obtained: 2λ2 ·

m2 ≥ m2. But m2 > 0 because the system cannot deadlock (see the reasoning for C4) therefore

2·λ2 ≥ 1 that cannot be satisfied since 0<λ2 < 0.5. Hence, the time contPN system is monotone

w.r.t. λ ∈ L1 since the only possible equilibrium configurations are C1 and C2 that contain

the support of a P-semiflow.

Theorem 3.9. Let 〈N ,λ〉 be a mono-T-semiflow reducible contPN under infinite server se-

mantics, and let m1 ≤ m2. If for every i = 1,2 〈N ,λ,mi 〉 reaches a steady state and the steady

state configuration contains the support of a P-semiflow, then the steady state flows verify

f1 ≤ f2.

Proof. According to [42], fi =
1
γi
·v (1) with γi = max

{

y ·PD |y ·C = 0, y ·mi = 1, y ≥ 0
}

=

max
{

1
y ·mi

· y ·PD |y ·C = 0, y ≥ 0
}

. Let us assume m10 ≤ m20. Then, for every P-semiflow y ,

y ·m1 ≤ y ·m2 and so, γ1 ≥ γ2. Therefore, f1 ≤ f2.

Monotonicity w.r.t. the initial marking can be studied also on a set of markings as done

in the case of the monotonicity w.r.t. λ.

Definition 3.10. Let 〈N ,λ〉 be a timed contPN and let M ⊆ R
|P |
>0. The system 〈N ,λ,m0〉 is

said to be monotone for t j in steady state w.r.t. m0 ∈M if ∀m01,m02 ∈M with m01 ≤ m02, if

these systems have steady states, the associated steady state flows verify f1[t j ] ≤ f2[t j ].

As in the case of the monotonicity w.r.t. λ, Theorem 3.9 can be used to derive the follow-

ing sufficient condition for monotonicity of a mono-T-semiflow net system w.r.t. the initial

marking.

Theorem 3.11. Let 〈N ,λ,m0〉 be a timed mono-T-semiflow reducible contPN system under

infinite server semantics. If for every m0 ∈ M the possible equilibrium configurations of

〈N ,λ,m0〉 contain the support of a P-semiflow then 〈N ,λ,m0〉 is monotone in steady state

w.r.t. m0 ∈M .

Example 3.12. Let us consider the contPN in figure 2.4. Assume now that λ= [1,1,1]T .

1) Let us study the monotonicity w.r.t. m0 ∈ M1 = {[m1,m2,m3,m4]T |m1 = 0,m2 = m3 =

1,m4 > 0}.

C4 cannot be an equilibrium configuration. If it were, in steady state p4 would limit the

flow of t1 and t2 and taking into account the T-semiflow: f1 = f2 →
m4

2
= m4 (because λ1 =

λ2 = 1). Then the only solution is m4 = 0 and from the T-semiflow, m3 = 0. Writing the P-

semiflows we have: m1 +m2 = 2 and m1 = 4+ z, with z the initial marking of p4. Since z ≥ 0

these equations cannot be satisfied. Therefore C4 cannot be an equilibrium configuration.



38

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m0[p2]

T
hr

ou
gh

pu
t

C3

C4

Figure 3.3: Throughput of the contPN system in fig. 2.4 for m0 = [15, z,1,0]T andλ= [1,1,1]T .

For C3, the following system of equations should have a solution:







m1 +m2 +m3 = 2 (a) first P-semiflow

m1 +4m3 +m4 = 4+ z (b) second P-semiflow
m4

2
= m2 = m3 (c) steady state flow

m1 ≥ m4 (d) f1 restricted by p4

m4 ≥ m2 (e) f2 restricted by p2

(3.4)

where z is the initial marking of p4. From (3.4.b) - (3.4.a) we obtain: 3 ·m3 −m2 +m4 = z +2

and replacing m3 and m4 using (3.4.c), 3 ·m2−m2+2 ·m2 = z+2 and so m2 =
z+2

4
. Hence, any

solution should be of the form: [m1, z+2
4

, z+2
4

, z+2
2

]T with m1 ≥
z+2

2
(3.4.d). But (3.4.a) implies:

m1 = 2− z+2
4

− z+2
4

= −z+2
2

and combining with (3.4.d) results −z+2
2

≥ z+2
2

→ 2 · z ≤ 0 → z ≤ 0

which is impossible because z is the initial marking of p4.

Thus neither C4 nor C3 can be equilibrium configurations. Using Theorem 3.11 the time

net system is monotone w.r.t. the initial marking m0 in M1.

2) Let us consider M2 = {[m1,m2,m3,m4]T |m1 = 15,m3 = 1,m4 = 0,m2 > 0}. C3 and

C4 can be equilibrium configurations and monotonicity can be lost. Indeed, simulating for

m0[p2] ∈ [0,5] (Figure 3.3), the throughput decreases, even deadlock is reached for m0[p2] ≥ 3.

Hence the timed net system with m0 ∈M2 is not monotonic in steady state.

3.3 Some properties of non-monotonicity

As an immediate consequence of Theorems 3.7 and 3.11, if all configurations defined by N

(i.e., independently of m0), contain a P-semiflow, then the underlying net system is mono-

tone in steady state w.r.t. the set of λ ∈ R
|T |

≥0 that impose the same routing, and w.r.t. m0 in

R
|P |

≥0 . Moreover, we will prove that this P-semiflow condition when asked to all the configu-

rations is in fact equivalent to an analogous P-flows condition (Corollary 3.15). Let us first

consider the following Lemma.

Lemma 3.13. Let N be a consistent join free net (i.e., ∀t ∈T , |•t | ≤ 1). For every P-flow y there

exist a P-semiflow y ′ such that ||y ′|| ⊆ ||y ||.



39

Proof. Dual of Theorem 9 of [75] (T-flows of CF nets).

Theorem 3.14. Let 〈N ,λ,m0〉 be a mono-T-semiflow reducible contPN system under infinite

server semantics. If there exist L (keeping the rates in the conflicts) or M such that 〈N ,λ,m0〉

is not monotone in steady state w.r.t. λ ∈L or w.r.t. m0 ∈M , then there exists a configuration

that does not contain any P-flow.

Proof. If 〈N ,λ,m0〉 is not monotone, applying Theorem 3.7 or Theorem 3.11, an equilib-

rium configuration exists that does not contain a P-semiflow. If this equilibrium configu-

ration does not contain the support of any P-flow this is the requested configuration. Oth-

erwise, assume that this equilibrium configuration contains one P-flow (or more). Let us

consider the subnet N ′ defined by the set of all transitions together with the places that

limit their flow in steady state, and let us call C ′ the token flow matrix of this subnet. Since

the original net is mono-T-semiflow, it is consistent. The same T-semiflow is also a right

annuller of C ′, hence N ′ is consistent.

If N ′ were a JF net, using Lemma 7.8 the support of a P-semiflow should be included in

N ′, but that is impossible by assumption. Hence N ′ must have at least one join. Let us call

tk this transition. Let pi and p j be the input places of tk that belong to the configuration.

Obviously, only one place restricts the flow of tk . Let us assume pi to be this one.

If we consider now that tk is restricted by p j and the other transitions are restricted by

the same places as before, we obtain a new configuration (possibly a non-equilibrium one)

in which place pi has been removed. If this configuration contains a P-flow, the reason can

be repeated and other place can be removed. At the end, this procedure will define a config-

uration that does not contain any P-semiflow (from hypothesis) or P-flow.

Therefore:

Corollary 3.15. Let 〈N ,λ,m0〉 be a continuous mono-T-semiflow reducible net under infinite

server semantics. If all the configurations contain the support of a P-flow, then the underlying

net system is monotonic in steady state w.r.t. m0 ∈M ∀M ⊆R
|P |

>0, and w.r.t. λ ∈L , ∀L ⊆R
|T |

>0

that imposes the same flow proportions to continuous equal conflicts.

Example 3.16. Let us consider again the queuing network presented in Fig. 2.10. It has the

following P-semiflows: y1 = p2 +p4, y2 = p7 +p9, y3 = p8 +p10 and y4 = p1 +p2 +p3 +p5 +

p6+p7+p8+p11+p12. We will see that all configurations contain the support of a P-semiflow.

First observe that p2, p3, p7, p8, p11 and p12 belong to all configurations because they are

the only input places in their output transitions. Starting with y1, if its support does not belong

to the configuration, p4 cannot restrict the flow of t2 forcing us to include p1. For y3, since p7

belongs to all configurations, p9 is not taken and to cover t6 we have to take p5. Finally, for y3

as p8 belongs to all configurations, we cannot take p10 forcing us to take p6. So, we are forced

to take: p1, p2, p3, p5, p6, p7, p8, p11, p12, which is the support of y4.

Hence, all configurations contain the support of a P-semiflow and both kinds of mono-

tonicity properties hold.

3.4 Algorithms to check monotonicity

In Section 3.2, monotonicity of the throughput w.r.t. firing speed λ or initial marking is

proved for mono-T-semiflow reducible nets whose possible equilibrium configurations con-

tain the support of a P-semiflow. Under the same hypothesis, plus liveness, in Section 3.1 it



40

is proved that infinite server semantics provides a better approximation of a discrete model

than finite server semantics. Therefore, it is really interesting to know the configurations

that do not contain the support of a P-semiflow because if these configurations are possible

equilibrium configurations the previous two properties may not hold.

A first idea is to use boolean equations to represent the conditions the places in a config-

uration have to fulfill. Let γi be a boolean variable such that γi = 1 iff pi belongs to the con-

figuration: (1) any P-semiflow will provide a boolean equation: the product of the boolean

variables associated to the support of the P-semiflow should be 0 if the P-semiflow does not

belong to the configuration; (2) if a transition is not a join (|•ti | = 1) its input place must be-

long to all configurations (it is an essential cover), therefore the boolean variables associated

to those places are 1 and can be removed. For every synchronization, we should have an-

other boolean equation ensuring that at least one input place is taken so that the solution

is (or contains) a configuration. The solutions of this system of boolean equations provide

configurations that do not contain the support of a P-semiflow.

Example 3.17. Let us consider the net in Fig. 2.4. This net has been used in Examples 3.8 and

3.12 where the configurations that do not contain the support of a P-semiflow were supposed

to be known. These configurations can be computed, for example, using the above algorithm.

This net has two P-semiflows: y1 = p1 +p2 +p3 and y2 = p1 +4 ·p3 +p4, so their two boolean

equations are: γ1 ·γ2 ·γ3 = 0 and γ1 ·γ3 ·γ4 = 0. In order to cover transitions we need additional

equations. For t1: γ1 +γ4 = 1 (m1 or m4 limit the flow of t1) and the same for t2: γ2 +γ4 = 1

(m2 or m4 limit the flow of t2). Clearly, p3 being the only input place in t3 is an essential cover

thus γ3 = 1. The following system of boolean equations is obtained:






γ1 ·γ2 ·γ3 = 0 (a) First P-semiflow not contained

γ1 ·γ3 ·γ4 = 0 (b) Second P-semiflow not contained

γ1 +γ4 = 1 (c) t1 is covered

γ2 +γ4 = 1 (d) t2 is covered

γ3 = 1 (e) t3 is covered

(3.5)

From (3.5.e), taking into account (3.5.a) and (3.5.b), γ1 ·
(

γ2 +γ4

)

= 0. Using (3.5.d): γ1 = 0,

thus γ4 = 1 and γ2 = ⊘. In summary: γ1 = 0, γ2 = ⊘, γ3 = 1 and γ4 = 1 telling us that the net

has two configurations (C1 = {p3, p4}, C2 = {p2, p3, p4}) that do not contain the support of a P-

semiflow. Depending on the initial marking these configurations can or cannot be equilibrium

configurations and monotonicity may be lost (see Example 3.8).

Remark 3.18. It can be seen in (3.5) that for every transition with only one input place (there

|•t3| = |{p3}| = 1) a boolean equation γ3 = 1 is introduced. Before solving the equations, these

variables can be removed reducing the number of variables. The interpretation in the PN is

that t3 and p3 can be removed in the model because it belongs to all configurations. If all

boolean variable corresponding to transitions with only one input place are removed, the order

of the system is lower.

According to Corollary 3.15, if all configurations contain the support of a P-flow, the

timed net system is monotonic in steady state w.r.t. m0 ∈ R
|P |
>0 and w.r.t. λ ∈ L , ∀L ⊆ R

|T |
>0

that impose the same flow proportions to continuous equal conflicts. A second algorithm

can be used to check if all configurations contain the support of a P-flow.

First, all configurations are computed (which is exponential) and then, each configura-

tion is checked to see whether it contains the support of a P-flow. For the second step, if



41

p2

t1
t2

p1 p3

Figure 3.4: Conflict between immediate transitions.

the token flow matrix of a configuration C j is denoted by C j (C j is obtained from the to-

ken flow matrix of the original net removing some rows), to check if C j contains the support

of a P-flow, is equivalent to check if the following system has a solution (polynomial time

complexity): ∃y such that y ·C j = 0.

One remark should be done: the second algorithm may fail, but this does not imply that

the net system is not monotonic, since the net may include configurations not containing

the support of a P-semiflow but which cannot be equilibrium configurations for that ini-

tial marking and transition rates (see Example 3.8). In fact, with the second algorithm it is

monotonicity for any λ> 0 and m0 ≥ 0 that is obtained.

Therefore, it seems reasonable first to check with the second algorithm if all configura-

tions contain the support of a P-flow. If not, we can compute configurations not containing

the support of a P-semiflow checking for each configuration C j with the associated token

flow matrix C j if the following system has a solution: ∃y ≥ 0, y 6= 0 such that y ·C j = 0. If we

prove that they cannot be equilibrium configurations, the system is monotonic in steady-

state.

3.5 Simulation of immediate transitions

As pointed out in section 2.3.2, the simulation of contPNs systems under infinite server se-

mantics containing immediate transitions is a difficult task, as using the flow definition 2.9,

their flow result infinite. Therefore, an algorithm is necessary for the computation of the

instantaneous marking.

The numerical integration of timed contPN with immediate transitions can be seen as

done at two levels: (1) if at least one immediate transition is enabled, stop the flows through

all timed transitions and fire immediate transitions until none is enabled; (2) after that,

continue computing flows through timed transitions. Numerical techniques developed for

ODEs can be applied to the above computational schema if flows through immediate tran-

sitions are solved.

For step 1, since all timed transitions are stopped, assume that they are “deleted” from

the net. In the remaining model some transitions may be in conflict. Compute the coupled

conflict sets of the immediate transitions and then, for each coupled conflict set, fire the en-

abled transitions according to their rates. That is, assume t1 and t2 in Fig. 3.4 are immediate

transitions with rates r [t1] =α and r [t2] =β. To be consistent with the way immediate transi-

tions are used in discrete nets, t1 and t2 should be fired according to their relative rates, until

one of the input places goes empty. If it is p2 that empties first (m[p1] ≥ α
α+β

·m[p2],m[p3] ≥
β

α+β ·m[p2]), we are done since t1 and t2 are not further enabled. Otherwise, fire the transi-

tion that remains enabled until one of its input places is empty.



42

Hence, at a certain marking m, it is possible that not all the transitions in a coupled con-

flict set are enabled. This introduces a new concept, effective structural conflict relation at

marking m, which is the same as structural conflict relation, but applied to the net without

the disabled transitions.

Let q[ti ] be the amount in which ti is fired. At a marking m, the algorithm to be applied

to each CCSi ∈ SCCS is:

Algorithm 3.19. procedure COMPUTE THE SUBSET OF TRANSITIONS IN CCSi THAT ARE EN-

ABLED AT THE CURRENT MARKING m

Input: m, CCSi = {t1, · · · , tg }

Let C I = the effective coupled conflict sets of CCSi at m

while C I 6= ; do

Let c = {t1, t2, . . . , tk } ∈C I

Solve the following linear programming problem (LPP):

max q[t1]+q [t2]+·· ·+q [tk ]

s.t .






1
r [t1]

·q [t1] = 1
r [t2]

·q[t2] = ·· · = 1
r [tk ]

·q [tk ]

m[p j ]−
∑

th∈p•
j

Pr e[p j , th] · s[th] ≥ 0,∀p j ∈
•ti

q[t1], q [t2], · · · , q[tk ] ≥ 0

Fire {t1, t2, · · · , tk } with q [t1], q [t2], · · · , q [tk ] and let m′ be the obtained marking, i.e.

m′ = m +C ·q .

Let C I = (C I \ c)∪ { the effective coupled conflict sets of c at m′}, and m = m′

end while

end procedure

If the net does not have self-loop arcs associated to immediate transitions, at each exe-

cution of the loop at least one of the transitions will not be enabled anymore. Otherwise it

may happen that the procedure has to be repeated several times until one place gets empty.

If sequences of several immediate transitions exist, the order in which the elements of

the SCCS are visited is important and should be obtained first. It has to ensure that when

applying the algorithm to one coupled conflict set, transitions belonging to a previously fired

set do not become enabled. This order can be solved as long as we are not dealing with a

circuit of immediate transitions, which clearly is a modeling error.

The net in Figure 3.5, taken from [70], models a simple manufacturing cell. The size of

its reachability set is not very big and so it could have been analyzed as discrete. However,

we have rather kept its token load small so as to observe the quality of the continuous ap-

proximation. Notice that the computational effort for the discrete analysis will increase in a

more loaded system, while it will not significatively change for the continuous model, and

the quality of the approximation usually improves with more loaded systems. To simplify

the presentation, only the steady state results will be compared, although the simulation will

also give the transient behavior. The throughput of the system as discrete is 0.0412, while it

is 0.0415 as continuous. However, the simulation time for the continuous model until the

steady state is obtained is 186 seconds using MATLAB in a Pentium IV 3.2 MHz. Quite large

for such a simple net. Efficient algorithms for the solution of linear ODEs exist, however the

relative abundance of immediate transitions and synchronizations slows down the simula-



43

1

1

10

11

1

Operation: 6 t.u.

Robot movement: 1.6 t.u.

M1- > B1: 0.6 t.u.

Failure: 10 t.u.

Repair: 1.5 t.u.

Synchronization: 0 t.u.

Figure 3.5: Example of a simple manufacturing cell taken from [70].

tion. Hence, if the number of synchronizations and immediate transitions are smaller, the

simulation is faster.

3.6 Model reduction

Any set of transitions in CEQ relation can be reduced to a single transition, t . Although the

idea of the transformation is the same both for timed and immediate transitions, the new

rates and arc weights are not computed the same way. The reason is that in a conflict among

immediate transitions, their firing rate does not depend on the enabling, while it does in

the timed case. To simplify the presentation here we will consider that the set has only two

elements: t1 and t2. Then ∀p ∈P :

• Timed transitions

– Pr e[p, t ] = Pr e[p, t1]

– Post [p, t ] = 1
λ[t1]+λ[t2]

· (Post [p, t1] ·λ[t1]+Post [p, t2] ·λ[t2] ·
Pr e[p,t1]

Pr e[p,t2]
)



44

t

p2

p

t1 t2

p1

(a) (b)

p2

t1
t2

p1

Figure 3.6: Removing a non-synchronizing immediate transition that is not in conflict rela-

tion with any other transition.

– λ[t ] =λ[t1]+λ[t2]

• Immediate transitions,

– Pr e[p, t ] = Pr e[p, t1],

– Post [p, t ] =
Pr e[p1,t1]

r [t1]·Pr e[p1,t1]+r [t2]·Pr e[p1,t2]
· (r [t1] ·Post [p, t1]+Post [p, t2] ·r [t2])

This rule can be applied for example to merge transitions tOK and tK O in Fig. 2.7.a. Let

us call this transition tOK−K O.

Pre- and post-fusion rules for discrete P N s were first introduced by Berthelot in [12]. In

their original form, they were designed for autonomous discrete nets, but they have been

extended/refined afterwards for different kinds of timing [56, 73]. Similar rules can also be

applied for continuous nets. Fluidification simplifies the problem of weights in the input arcs

of a transition, which were difficult to deal with in the discrete case, and also the problem of

transitions in a CEQ, since they can be merged using the result in the previous section.

Let p be a place with only one output transition t which does not have other input

place. That is •t = p and p• = t , see Fig. 3.6.a. Both p and t can be removed, and the in-

put transitions of p will now split the flow among the output places of t . More formally, let
•p = {t1, · · · tk }, t• = {p1, · · ·pr } and m0[p] = 0. In the reduced net, Post [pi , t j ] = Post [p, t j ] ·

Post [pi , t ]/Pr e[p, t ]. In the figure the input transitions are represented as timed, but the

transformation can be used also with immediate transitions.

This rule allows to remove transitions tstar t , ts ync and tOK−K O in the net in Fig. 2.7.a (re-

call that place p5 has been removed before). Hence, in this case all the immediate transitions

of the net have been removed.

A similar rule can be obtained changing the role of immediate and timed transitions. On

one side this rule is slightly more restrictive because it requires that none of the immediate

transitions is in structural conflict relation with any other transition (that is, all the immedi-

ate transitions are persistent) and their only output is p. On the other side, it is more general

since it allows synchronizations in t (see Fig. 3.7.a). The arc weights are computed as in the

previous rule.

Other situation that can be simplified can be seen in Fig. 3.8.a. This kind of situation

appears in the example we will study in the following section. In this case, a timed transition

is followed by an immediate one. It is not difficult to see that although a synchronization



45

p2

p

t1 t2

p1

(a) (b)

t

p3

p2

t1
t2

p1

p3

Figure 3.7: A kind of symmetric rule to the one presented in Fig. 3.6.

p2

t1

t2

p1

(a) (b)

p2

t1

k

k

t3

t3

Figure 3.8: All the tokens that arrive to place p1 will immediately go through.

appears at the immediate transition, it will never stop the flow that comes from the input

transition as long as no other transition consumes tokens from the place represented as p2.

That is, p2 could have other output arcs if they are equal-weighted self-loops. Then, (p2, t2)

is implicit and so, transition t2 will fire as soon as tokens arrive to p1, and its firing takes no

time. Hence, both transitions can be fused. Observe that this could not have been done if

both were timed, or if t1 were immediate and t2 were timed.

3.7 Case studies

3.7.1 Example 1

Let us consider the open markovian queuing network in Figure 3.9, consisting in three nodes

with infinite capacity queues, exponentially distributed service time (µ1 =µ2 = 4 and µ3 = 2)

for the servers, a single Poisson arrival process with rate r1 = 1 and feedback paths with given

routing probabilities (pr11 = 30%, pr12 = 20%, pr13 = 50%, pr21 = 20% and pr22 = 80%).

The PN model corresponding to this queuing network is sketched in Figure 3.10, for

which: transition I N models the arrival process of the clients and has λ[I N ] = r1 = 1; m1,

m2, m3 model the serving process by each server; t11, t12 and t13 have associated the proba-



46

Figure 3.9: Structure of the open queueing network used in Example 3.7.1.

s1IN t1 m1

. s10

o1

t11

t12 t13

q1

q2 q3

s20

s2 s3
s30

o2

t2 t3

m2 m3

t22t21

. .

Figure 3.10: Petri net model of the queuing network in Figure 3.9.



47

s1IN t1 m1

. s10

q1

q2 q3

s20

s2 s3
s30

t2 t3

m2 m3

. .

. 0.3

0.2 0.5

0.80.2

pIN

Figure 3.11: Equivalent Petri net model of the queuing network in Figure 3.9.

20

0.3

0.2 0.5

0.8

0.2

.

.

. .

p
IN

IN 1
q

m
1

s
10

q
2

q
3

m
2

m
3

s
30

s

Figure 3.12: Reduced Petri net model of the queuing network in Figure 3.9.

bilities pr11, pr12 and pr13 modeling the routing after the first station; t21, t22 have associated

the probabilities pr21, pr22 modeling the routing after the second station.

The PN model includes immediate transitions and according to the discussion before,

these transitions make more difficult the analysis. To reduce these transitions, let us remove

the immediate transitions that are in equal conflict relationship (see Subsection 3.6). For

each relationship (〈t11, t12, t13〉 and 〈t21, t22〉) one immediate transition results and removing

also these transitions, the reduced PN is shown in Figure 3.11.

Using the rule presented in Figure 3.7, transitions t1, t2, t3 and places s1, s2, s3 can be



48

Table 3.1: Comparisons for the net in Fig. 3.12

Discrete Continuous

Finite server Infinite server

Throughput(I N ) 1 1 1

Throughput(m1) 2 2 2

Throughput(m2) 2 2 2

Throughput(m3) 1 1 1

t1_10

p1
t2 p2

t3 p3
t4 p4

t5 p5 t6 p6
t7 p7

t8 p8 t9

p9
p10t11 p11

t12
p12t13 p13

t14

p14t15 p15t16
p16t17

t18

α

β

λ*

Buf2
Buffer2

Buf1
Buffer1

M1 M2 M3

Figure 3.13: Equivalent mono-T-semiflow net of the contPN in Fig. 2.1 (λ∗ = λ1 +λ10,α =
λ1

λ1+λ10
,β=

λ10

λ1+λ10
).

eliminated and the resulted net has no immediate transitions (Figure 3.11). Remark that one

place is introduced connected with a self-loop to transition I N in order to define the flow

of the transitions when contPN under infinite server semantics is considered. This place is

marked and will not change the evolution of the system under discrete or finite server se-

mantics. The model obtained can be used under both continuous interpretations (finite and

infinite server). For the discrete simulation, the weights of the arcs and the initial marking

can be multiplied by 10 obtaining an isomorphous net.

The net system in Figure 3.12 is used in the following to compare the throughput of dis-

crete and continuous approximations under both semantics. All configurations contain the

support of a P-semiflow, because pI N is the only input place in transition I N , therefore, we

expect that infinite server semantics approximates better the throughput of the discrete net.

Table 3.1 shows the throughput obtained by simulations and it can be observed that all are

the same. In this case, the bottleneck of the system is given by the P-semiflow pI N , which

contains only one place, therefore the throughput under continuous infinite and finite server

semantics is the same, and is equal with the throughput of the discrete system because it is

mono-T-semiflow reducible with all configurations containing the support of a P-semiflow

(Theorem 2.30). But what happens when the bottleneck is given by a P-semiflow containing

more places?

3.7.2 Example 2

Let us consider the production system presented in Fig. 2.1 that has the following P-semiflows:

y1 = p1+p2+M1+p9+p10 (corresponds to the state of machine M1), y2 = p3+Bu f f er1+p11



49

(Buffer 1), y3 = p4 + p5 + M2 + p12 + p13 (machine M2), y4 = p6 +Bu f f er2 + p14 (Buffer 2)

and y5 = p7 + p8 + M3 + p15 + p16 (machine M3). We have computed simulations for the

continuous model under infinite and finite (single-server) server semantics using λ = 1,

Bu f 1 = Bu f 2 = 10 and we have compared it with the results obtained in the case of dis-

crete net system (exponential distribution for transitions). This model is mono-T-semiflow

reducible and can be transformed into an equivalent mono-T-semiflow net (see Fig. 3.13)

without changing the loading/scheduling policy for the underlying manufacturing system.

In fact, the net in Fig. 2.10 has two T-semiflows that correspond to two production lines and

for the particular value of λ1 =λ10, the “global” T-semiflow will be x = 1. Therefore, in steady

state all the transitions will run at the same speed.

Measuring the flow of transition T7 we have obtained the following results: T h(T7) =

0.186 for the discrete model, T h(T7) = 0.2 for the continuous model under infinite server se-

mantics and T h(T7) = 1 for the continuous model under finite server semantics. The results

are showing clearly that continuous infinite server semantics fits here much better with the

discrete results.

This net is mono-T-semiflow reducible and (as it will be seen afterwards) the equilib-

rium configuration contains a P-semiflow. Therefore, the throughput of the system will be

given by the slowest P-semiflow. Moreover the net system is live and in that case the exact

throughput of the continuous system under infinite server semantics can be computed in

polynomial time (is equal with the LPP bound (2.21)) [42]. Hence, infinite server semantics

is a better approximation than finite server semantics which is too optimistic in this case.

In this example, every configuration contains a P-semiflow. Let us try to find a configu-

ration that does not contain the support of a P-semiflow. Starting with the P-semiflow cor-

responding to M3 (i.e. y5 = p7 +p8 +M3 +p15 +p16), the places p7, p8, p15, p16 are essential

covers (because their output transitions have only one input place) so should belong to the

configuration. In order to not include this P-semiflow, the place M3 should be not taken,

forcing us to include p6 and p14 in order to restrict the flow of t7 and t16. Now, taking into

account the P-semiflow y4 = p6 +Bu f f er2 +p14, Bu f f er2 cannot be taken, so p5 and p13

are needed to limit the flow of t6 and t15 respectively. p4 and p12 are essential covers and will

be taken. Observing y3 = p4 + p5 + M2 + p12 + p13, M2 cannot be taken, and so p3 and p11

have to be in the configuration. Watching to y2 = p3 +Bu f f er1 + p11, place Bu f f er1 will

not belong to the configuration. But then, p2, p1, M1, p10, p9 have to be in the configuration.

However, all these places are the support of a P-semiflow (the one corresponding to the state

of the first machine), y1 = p1 +p2 +M1 +p9 +p10. This means that no configuration without

P-semiflow exists.

3.7.3 Example 3

In this example, we will apply some of the previous rules for the elimination of the immedi-

ate transitions to a manufacturing example from the literature and see how the simulation

time is improved. This net can be seen in Figure 3.14, adding the arcs indicated in the text

to avoid deadlock situations. Transitions par ta and par tb are in EQ relation and can be

grouped, and the transition that appears can be fused with the previous one. Transitions

out M a
2 and out Mb

2 can be fused with their previous transitions (rule in Fig. 3.6). Transi-

tions inM a
1 and inMb

3 can be reduced applying the rule shown in Fig. 3.8. Hence, the only

immediate transitions that remain are out M a
1 , inM a

2 , inMb
2 and out Mb

3 .

The results can be seen in Table 3.2. First, observe that throughput at steady state is quite



50

1

1

1

1

1
1

1

1

10

partb parta

mv
LU-1

b

mv
LU-1

a

inM1
a

outM1
a

busyM1
ain

S1
b

type

wait1
a

outLU a

outLU b

inM1
a

outM1
a

idleM1

inS1
afreeS1

freeS2

freeS3

freeS4

freeS5

LU

load

mv
1-2

b

mv
2-3

b

mv
3-4

b

in
S2

b

mv
1-2

a

in
S2

a

mv
2-3

a

wait2
a

wait2
b

inM2
a inM2

a

inM2
binM2

b

busyM2
b

busyM2
a

idleM2

outM2
aoutM2

a

outM2
boutM2

b

in
S3

a

in
S3

b

mv
3-4

a

mv
4-5

b

mv
4-5

a

in
S4

b

in
S4

a

wait3
b inM3

b
inM3

b

busyM3
b

outM3
boutM3

b

idleM3

mv
5-LU

b

in
S5

b

mv
5-LU

a

in
S5

a

Figure 3.14: A manufacturing example taken from [1], fig. 97



51

Table 3.2: Comparisons for the net in Fig. 3.14

Discrete Continuous

Original Reduced

Throughput(LU ) 0.0446 0.051 0.051

Throughput(mv a
5−LU

) 0.0357 0.040 0.040

Throughput(mv b
5−LU

) 0.0089 0.010 0.010

Effort (in seconds) 197 146

similar to the discrete case. Since all the reduction techniques we have applied are exact,

the performance of the original continuous net and of the reduced one are the same. The

simulation time has been reduced approximately in 25%.





Chapter 4

Observability of continuous Petri

nets with infinite server semantics

Summary

Observability of continuous Petri nets under infinite server semantics is discussed in this

chapter. The first goal is to give some criteria for observability of general contPNs system

that are non-linear systems, extending the results in [40] for JF class. Second, structural ob-

servability is studied trying to determine the places that should be measured such that this

observability holds, a problem different from the one in [40] where the problem has been

the determination of the set of places that are structurally observable from a set of measured

places. Third, a new concept of observability of contPN is introduced, called generic observ-

ability using the results for structural linear systems. And, fourth, an algorithm to compute

the set of places with minimum cost that ensures the observability of a JF contPN is given.

53



54

4.1 Observability: basic concepts

4.1.1 Observability of linear systems

An unforced (i.e., without control inputs) time invariant linear system is expressed by the

following equations:
{

ẋ(τ) = A ·x(τ)

y(τ) = S ·x(τ)
(4.1)

where x(τ) is the state of the system and y(τ) is the output, i.e., the set of measured variables.

Knowing matrices A and S, and being able to watch the evolution of y(τ), a linear system is

said to be observable if it is always possible to compute its initial state, x(τ0) (in fact, since

the system is deterministic, knowing the state at the initial time is equivalent to knowing the

state at any time).

In Systems Theory a very well-known observability criterion exists which allows to de-

cide whether a continuous time invariant linear system is observable or not. Besides, several

approaches exist to compute the initial state of a continuous time linear system that is ob-

servable.

Given an unforced linear system (4.1), the output of the system and the observability

matrix are:

y(τ) = S ·e A·τ ·x(τ0) (4.2)

ϑ=
[

ST , (S A)T , · · · , (S An−1)T
]T

(4.3)

Proposition 4.1. [46, 58] Equation (4.2) is solvable ∀x(τ0),∀τ> 0 iff the observability matrix

ϑ has full rank (r ank(ϑ) = n).

The initial state can be obtained solving the following system of equations that has a

unique solution under the rank condition:











y(0)
d

dt
y(0)

d2

dt2 y(0)
...
dn−1

dtn−1 y(0)











=ϑ ·x(0) (4.4)

An interpretation of complete observability is that there is no simplification in the trans-

fer function between the (actions on) state variables and the output [72]. Considering a

single-output system, the transfer functions vector between the state variables and the out-

put is given by:

Y (s)= S(sI − A)−1 =
1

∆(s)
[q1(s) . . . qn(s)] (4.5)

If Y (s) has a cancelation (all the polynomials qi (s) and ∆(s)) have a common factor) this

canceled mode cannot be observed in the output y .



55

4.1.2 Observability of hybrid systems

While observability is well understood in classical linear system theory [46, 58], it becomes

more complex in the case of hybrid systems. Observability of hybrid systems was studied

in the literature in the last years [3, 4, 8, 22, 79]. For unforced systems, i.e., systems without

input, the problem is to determine either the initial state or the final state from a set of ob-

servations. A system is (initial-state) observable if the initial state can be determined from

the output function. In this chapter we consider this observation problem. Being contPN

a subclass of piecewise affine systems, we provide here some of the more relevant results

regarding the observability for these systems.

Definition 4.2. [22] A continuous-time piecewise-affine hybrid system consists of

• A closed convex polyhedral input set U ⊂Rm .

• An observation set Y ⊂Rp .

• A finite discrete state set Q.

• A set E of discrete events, comprising a set Ei n of input events and a set Ect of dynami-

cally generated events.

• A discrete state transition function ρ, which is a partial function Q ×E →Q.

• For each discrete state q ∈Q,

– a convex polyhedral continuous state space Xq ⊂Rnq

– a convex polyhedral initial state set X i ni t
q ⊂ Xq given by:

Jq (x) = jq + J q x = 0

– an affine system Aq given by

ẋ(τ) = aq + Aq ·x(τ)+B q ·u(τ)

– an affine output map Y : Xq ×U → Y given by

y(τ) = sq +Sq ·x(τ)+D q ·u(τ)

• For each event e ∈ E , and each discrete state q ∈Q such that ρ(q,e) is defined,

– a closed convex polyhedral guard set X
guar d

(q,e)
⊂ Xq , given by:

G(q,e)(x) = g(q,e) +G(q,e)x = 0

– an affine continuous state transition function F(q,e) : X
guar d

(q,e)
→ Xρ(q,e) given by

F(q,e)(x) = f(q,e) +F(q,e)x

Definition 4.3. A trajectory of the piecewise-affine hybrid system on the time index set [τ0,τ1) ⊂

R with continuous input u : [τ0,τ1) → U is a right-continuous function (q, x) : [τ0,τ1) → X

such that



56

1. x(τ0) ∈ X i ni t
q(τ0)

.

2. If an event e ∈ E occurs at time τ, then

x−(τ) ∈ X
guar d

(q−(τ),e)
, q(τ)= ρ(q−(τ),e) and x(τ)=F(q−(τ),e)(x−(τ))

where q−(τ) = limτ′րτ q(τ′) and x−(τ) = limτ′րτ x(τ′).

3. If no event occurs at time τ, then x is continuous at τ, and

d

dτ
x(τ) = aq(τ) + Aq(τ)x(τ)+B q(τ)u(τ)

Considering the affine system with state x ∈Rn evolving by ẋ = a + Ax , and observations

y ∈Rp given by y = s +Sx . Computing derivatives of y , we obtain the general formula

d k y

dτk
= S Ak−1a +S Ak x ,k ≥ 1

Denoting

ϑ=








S

S A

S A2

...








o =








s

Sa

S Aa
...








Y (τ) =








y(τ)

ẏ(τ)

ÿ(τ)
...








(4.6)

and defining the observability map ϑ̄ by ϑ̄(x(τ)) = o +ϑx(τ), the observability equation is

given by:

Y (τ) = ϑ̄(x(τ)) = o +ϑx(τ)

Observe that if the system is linear and not affine, i.e. aq(τ) = 0,∀τ, the observability map

is exactly the observability matrix of the corresponding linear system times the states, i.e.,

ϑ̄(x(τ)) =ϑx(τ).

Related to the observation time needed for the reconstruction, a hybrid system can be

observable (1) in infinitesimal time, (2) in finite time T or (3) in infinite time. In this chap-

ter we study only the observability in infinitesimal time. A very important problem in the

observability of hybrid systems is the determination of the discrete state.

Definition 4.4. Two discrete states i and j are distinguishable if for any x ∈ Xi and x ′ ∈ X j

the observations y(τ) (for the trajectory through x) and y ′(τ) (for the trajectory through x ′) are

different on an interval [0,ǫ).

A sufficient condition for discrete states q and q ′ to be distinguishable follows immedi-

ately by considering Y (τ).

Proposition 4.5. [22] If the linear equations

ϑ̄q (x) = ϑ̄q ′(x ′) (4.7)

have no solution with (x, x′) ∈ Xq ×Xq ′ , then the discrete states q and q ′ are distinguishable.

There exists a necessary and sufficient condition for observability in infinitesimal time of

piecewise affine systems:



57

p
1

t

p
2

1 2t

Figure 4.1: Configuration {(p1, t1), (p2, t2)} is redundant.

Theorem 4.6. [22] A piecewise affine hybrid system is observable in infinitesimal time iff:

1. All discrete states are distinguishable, and

2. For all discrete states, the corresponding affine system is observable.

4.2 Observability of unforced timed continuous Petri

nets

As mentioned in Section 2.3, the evolution of the timed contPNs under infinite server se-

mantics is ruled by a set of switched linear systems. Let us consider that the marking of

some places can be measured (i.e. the token charge at every time is known) due to some

sensors. The other marking variables will be estimated using these measurements. Going

back to (2.13), the system considered here is given by:

{
ṁ(τ) =C ·Λ ·Π(m(τ)) ·m(τ)

y(τ)= S ·m(τ)
(4.8)

where S is a |Po |× |P | matrix, with Po the set of observable places, each row of S has all com-

ponents zero except the one corresponding to the i th measurable place that it is 1. Observe

that this is a piecewise linear system since the matrix Π is dynamically changing with the

marking but the matrix S is the same for all linear systems.

Definition 4.7. A timed contPN system 〈N ,λ〉 under infinite server semantics is observable

in infinitesimal time if it is always possible to compute its initial state m0 observing a set of

Po ⊆ P places.

In the rest of the chapter we will study observability in infinitesimal time and when we

are saying that a system is observable we understand that it is observable in infinitesimal

time.

Using the notions of configuration and region defined in Section 2.2.4 it may happen that

for every initial marking all the markings of a region are on the border. This means that all

its markings belong to other region, and so it is not necessary to consider this configuration.

In the rest of the chapter we consider that these redundant configurations are removed.

Definition 4.8. Let Ci and C j be two configurations with associated regions Ri and R j , respec-

tively. If for all m0, Ri ⊆
⋃

j 6=i
R j then Ci is a redundant configuration and the corresponding

linear system is a redundant linear system.



58

Example 4.9. Let us consider the subnet in Fig. 4.1. Assume the arcs (p1, t1), (p2, t2) ∈C1 (with

associated region R1) and the arcs (p1, t1), (p1, t2) ∈ C2 (with associated region R2). Assume

also that the other arcs of the configurations are the same, i.e., C1 \C2 = {(p2, t2)} and C2 \C1 =

{(p1, t2)}.

For every initial marking m0, all reachable markings m ∈ R1 satisfy:

1. m[p1] ≤ m[p2] since for the join t1, the flow is given by the marking of p1

2. m[p2] ≤ m[p1] since the flow of the join t2 is given by the marking of p2.

Obviously, (1) & (2) implies m[p1] = m[p2], ∀m ∈ R1, so R1 is reduced to its border.

Since the flow of the other transitions is given by the same places by assumption, it is ob-

vious that R1 ⊂ R2 and the linear system associated to C2 provides the same time-evolution

for the markings m ∈ R1. Hence, C1 can be ignored and not considered as configuration that

governs the evolution of the contPN system.

To see if a configuration is redundant, check if there exists a real positive marking such

that the enabling degree of all the join transitions can be satisfied only according to the arcs

in the configuration. In other words, if t is a join and (pi , t ) belongs to the configuration then

check if there exists a marking m ∈R
|P |
≥0 such that for all p j ∈

•t , p j 6= pi ,
m[p j ]

Pr e[p j ,t]
>

m[pi ]

Pr e[pi ,t]
. If

such a marking does not exist, it means that the region is included into another one.

Proposition 4.10. Let N be a timed contPN system and Ci a configuration. Ci is a redundant

configuration iff there exists no marking m solution of:

{

m[pk ] ∈R≥0 ∀pk ∈P
m[pk ]

Pr e[pk ,t j ]
<

m[pu ]

Pr e[pu ,t j ]
, ∀(pk , t j ) ∈Ci ,∀pu ∈ {•t j } \ pk

(4.9)

Proof. Obviously, if (4.9) has a solution this is an interior point of the region corresponding

to Ci and does not belong to other region, by definition.

For the reverse sense, let us assume that (4.9) has no solution. This means that for

all m0 ≥ 0 there exists at least one join transition t j such that
m[pk ]

Pr e[pk ,t j ]
≥

m[pu]

Pr e[pu ,t j ]
with

(pk , t j ) ∈ Ci . If for all m this inequality is satisfied strictly the region is empty and can be

eliminated without problems together with the corresponding configuration. Otherwise, if

it is an equality, considering that the flow of t j is given by m[pu] not by m[pk ] it is clear that

the corresponding regions include the region corresponding to Ci . Hence, Ci is a redundant

configuration.

It may seen that if a configuration is redundant, a set of arcs has to be implicit, since they

cannot define the enabling. However, it is not true, since it is not that an arc never defines

the enabling, but that a combination of arcs may never define the enabling. For example, in

the net in Fig. 4.1, none of the arcs is implicit, although a configuration is redundant. In this

example, the redundant configuration could also have been avoided by fusing transitions t1

and t2 into a single one as explained in Section 3.6. However, this kind of transformation

cannot always be applied, as shown in the following example.



59

t2 t3t1

p
3

p
2

p
1

Figure 4.2: ContPN with redundant regions.

Example 4.11. Let us consider the contPN in Fig. 4.2 and let us write the inequalities (4.9)

corresponding to C1 = {(p2, t1), (p3, t2), (p1, t3)}. These are:






m1 ∈R≥0 (a)

m2 ∈R≥0 (b)

m3 ∈R≥0 (c)

m2 < m1 (p2, t1) ∈C1, p1 ∈
•t1 (d)

m3 < m2 (p3, t2) ∈C1, p2 ∈
•t2 (e)

m1 < m3 (p1, t3) ∈C1, p3 ∈
•t3 ( f )

(4.10)

Combining 4.10(e) and 4.10(f) we obtain m1 < m2 that is in contradiction with 4.10(d). There-

fore, C1 is a redundant configuration.

Synthesizing, the following assumptions are considered in this section:

(A1) The timed net structure 〈N ,λ〉 is known;

(A2) The redundant configurations and regions are removed.

It is pointed out in Section 4.1.2 that for the observability of hybrid systems an important

problem is the determination of the discrete state. Hence, the problem consists not only in

estimating the continuous state but also the discrete one. In contPN systems, the discrete

state can be deduced if the continuous state is known. However, if not every place is ob-

served, it may happen that the observation fits with different discrete states, i.e., observing

some places, it may happen that more than one system of the form (4.4) has solution. If the

continuous states are on the border of some regions, it is not important which linear sys-

tem is assigned, but it may happen that the solution corresponds to interior points of some

regions and it is necessary to distinguish between them.

Example 4.12. Let us consider the timed contPN in Fig. 4.3 and assume λ = 1 and p3 is the

measured place. This system has two configurations: C1 = {(p1, t1); (p2, t2); (p1, t3); (p3, t4)}

and C2 = {(p1, t1); (p2, t2); (p2, t3); (p3, t4)}, corresponding to the following linear systems:

Σ1 =







ṁ(τ) =





−2 1 0

0 −1 0

1 0 −1



 ·m(τ)

y(τ) = [0,0,1] ·m(τ)

Σ2 =







ṁ(τ) =





−1 0 0

1 −2 0

0 1 −1



 ·m(τ)

y(τ) = [0,0,1] ·m(τ)



60

p p

p

t

t

2

3

4

t

t1

1 2

3

Figure 4.3: Timed contPN which has all linear systems observable measuring p3 but which

is not observable.

The observability matrices are:

ϑ1 =





0 0 1

1 0 −1

−3 1 1



 ; ϑ2 =





0 0 1

0 1 −1

1 −3 1





which have both full rank meaning that both linear systems are observable. Let us take m1 =

[1,2,0]T ∈R1\R2 and m2 = [2,1,0]T ∈ R2\R1. If the actual marking of the system is m1 then the

observation is: ϑ1 ·m1 = [0,1,−1]T . But, if the marking is m2, we observe ϑ2 ·m2 = [0,1,−1]T

that it is exactly the same. Therefore, if the output of this system is [0,1,−1]T it is impossible to

distinguish between m1 and m2.

Definition 4.13. Let C1 and C2 be two configurations with R1, R2 the associated regions. C1

and C2 are distinguishable if for any m1 ∈ R1\R2 and any m2 ∈R2\R1 the observation y1(τ) for

the trajectory through m1 and the observation y2(τ) for the trajectory through m2 are different

on an interval [0,ǫ).

Remark that we remove the solutions at the border R1 ∩R2 since for those points both

linear systems can be used, therefore it is not important which one is chosen. This is a big

difference between piecewise affine hybrid systems and contPNs: in general, for piecewise

affine systems, given two states (q, x) 6= (q ′, x), the systems that define the evolutions are dif-

ferent; in contPN, if the continuous states are the same, the evolution is equal by definition

using any linear system.

An immediate sufficient condition for being distinguishable, according to Prop. 4.5, is:

Proposition 4.14. Let Ci , {i = 1,2} be a configuration, ϑi the corresponding observability ma-

trix and Ri the corresponding region. If the linear equations

ϑ1 ·m1 =ϑ2 ·m2 (4.11)



61

have no solution (m1,m2) ∈ (R1 \ R2)× (R2 \ R1), then the configurations C1 and C2 are distin-

guishable.

Proof. If (4.11) has no solution then the outputs for any two markings belonging to that re-

gions are distinct. So, given a marking in any of these regions we can determine which is the

configuration that governs the evolution of the contPN system.

Example 4.15. Let us go back to Ex. 4.12 where the timed contPN in Fig. 4.3 is studied. Since

ϑ1 ·m1 = ϑ2 ·m2 = [0,1,−1]T , Proposition 4.14 does not allow to conclude that C1 and C2 are

distinguishable.

(For the interpretation of this result) Let us consider the equations that govern the evolution

of the system:

f3 =λ3 ·min{m1,m2} (4.12)

ṁ1 =λ2 ·m2 −λ1 ·m1 − f3 (4.13)

ṁ2 =λ1 ·m1 −λ2 ·m2 − f3 (4.14)

Summing and integrating (4.13) and (4.14), we obtain

(m1 +m2)(τ) = (m1 +m2)(0)−2

∫τ

0
f3(Θ) ·dΘ (4.15)

Obviously, if p3 is measured, f3 can be estimated since f3(τ) = ṁ3(τ)+λ4 ·ṁ3(τ). Therefore,

according to (4.12), the minimum between m1 and m2 is estimated and according to (4.15)

their sum is also known. These two equations are not enough to compute the markings, i.e.,

we have the values but it is impossible to distinguish which one corresponds to which place.

Using the notion of distinguishable configurations, an immediate criterium for observ-

ability in infinitesimal time is:

Theorem 4.16. A timed continuous Petri net system 〈N ,λ〉 under infinite server semantics is

observable in infinitesimal time iff:

1. All configurations are distinguishable,

2. For each configuration, the associated linear system is observable.

Proof. Assume that given an observation m̄, there are two different markings m1 and m2

coherent with m̄. Since the linear systems are observable, m1 and m2 belong to different

configurations. But the configurations are all distinguishable, contradiction.

If the contPN is observable, for any initial marking in any configuration it must be pos-

sible to reconstruct it from observation, hence all the linear systems associated to the con-

figurations have to be observable. Moreover, the configurations have to be distinguishable,

since otherwise it would be possible to have two different markings that fit with the obser-

vation.

4.3 Structural observability

Observability has been defined for a timed contPN system 〈N ,λ〉, so the firing rates of the

transitions are fixed. Since the firing rate represents the speed of a machine or a server, in



62

p1

p3

t3

t1

t

t2

p2

(b)(a)

p2

p1

t1

t2 t3

t5

t4

p4

p3

p5
.

Figure 4.4: (a) A JF net that if λ2 = λ3 then m2 and m3 cannot be estimated from the obser-

vation of p1; (b) A PN observable for any initial marking only if all places are measured.

many cases, an interesting problem is to study the observability for any value of its rate.

Imagine that we want to design an observer and we know that in the future some machines

will be replaced but we don’t know exactly which one will be bought, hence their speed is

not fixed. In this chapter, we are concentrate on the study of the observability of contPNs

under infinite server semantics in infinitesimal time for any value of firing rate λ. We call

this problem: structural observability. The following assumptions are done:

(A1) The net structure N is known and λ is a parameter;

(A2) The redundant configurations and regions are removed.

Definition 4.17. Let 〈N ,m0〉 be a contPN system and Po ⊆ P the set of measured places.

• A place p ∈ P is structurally observable from Po if ∀λ > 0, m0[p] = m(τ0)[p] can be

computed in 〈N ,λ,m0〉 by measuring the marking evolution of the places in Po .

• Let K (Po ) be the set of places structurally observable from Po . N is structurally observ-

able from Po if every place p ∈P is structurally observable, i.e., K (Po) = P.

Since structural observability means that the contPN system is observable for all values

of λ> 0, we have:

Remark 4.18. Let N be a contPN. If N is structurally observable then for all λ> 0 〈N ,λ〉 is

observable.

Due to the graphical representation of PNs, the observation procedure has a quite inter-

esting interpretation, going backward on the net:



63

Example 4.19. Let us consider the contPN system in Fig. 4.4(a) and assume that p2 is mea-

sured. So, the marking in p2 is known at every time instant. Then the derivative of the mark-

ing can be estimated, and also the flow of the transition t2 because f2 = λ2 ·m2. Evidently, the

flow of t4 is deduced immediately using that f4 = ṁ2 + f2 and then the marking of p4 can be

computed because, on the other hand, f4 =λ4 ·m4.

The backward procedure explained in the previous example assumes that all places on

the backward path are AF (a unique input flow per place) and all transitions are JF (the min

operator will stop the reasoning).

Definition 4.20. Let N be a contPN. 〈p1, t1, p2, t2, . . . , tk , pk+1〉 is a JF & AF (JA-F) path from

p1 to pk+1 if:

• p1, p2, . . . , pk+1 ∈ P and t1, t2, . . . , tk ∈T ;

• •ti = {pi } and pi+1 ⊆ ti
• with i = 1, . . .k (ti is not a join transitions and has as an output

place pi+1);

• •pi = {ti−1}, i = 2, . . . ,k+1 and ti ∈ pi
•, i = 1, . . . ,k (pi is not an attribution and has as an

output transition ti ).

Definition 4.21. Let N be a contPN.

• A place p ′ is output connected if there exists a path from p ′ to a measured place p.

• N is output connected if all places are output connected.

For JA-F PN, i.e., only forks and choices may exist, structural observability is solved with-

out difficulty using the basic backward strategy presented above (see [40] for more details).

Proposition 4.22. [40] Let N be a JA-F contPN. A place p ′ is structurally observable if it is

output connected.

Therefore, for JA-F nets, the set Po of places that ensures the output-connectedness of

each place is computed immediately using the strongly connected components with respect

to the places. In these components, transitions are not important so we can have a source

transition entering in a place or an output transition from a place.

Definition 4.23. Let N = 〈P,T,Pr e ,Post 〉 be a net and N ′ = 〈F,T ′,Pr e ′,Post ′〉 a subnet of

N , i.e., F ⊆ P, T ′ ⊆ T and Pr e ′,Post ′ are the restrictions of Pr e ,Post to F and T ′. N ′ is

called a strongly connected component of N w.r.t. the places if for all p1, p2 ∈ F there is a

path from p1 to p2 of the form 〈p1, t1, pi , ti , . . . , t j , p j , t2, p2〉 with t1 ∈ p1
•, pi ∈ t1

•, . . ., p j ∈ t j
•,

t2 ∈ p j
•, p2 ∈ t2

•.

Abusing of notation it will be said that a set of places F is a strongly connected com-

ponent of N if N ′ is a strongly connected component of N with F its set of places and

T ′ = •F ∪F • its set of transitions.

The net in Fig. 4.5 has only one strongly connected component F = {p1, p2, p3, p4} be-

cause a path exists connecting any two places. For example from p1 to p4 there is: 〈p1, t1,

p3, t2, p2, t4, p4〉. The net in Fig. 4.4(a) has 5 strongly connected components, each one cor-

responding to a place, i.e., Fi = {pi }, i = 1 . . .5.



64

p1

p3

t1

t2

p2

.
t4

t3

p4

.

Figure 4.5: A simple contPN system.

Output connectedness is required for structural observability but also for observability.

Obviously, for those places for which there is no path to an output their marking cannot

be estimated because they do not affect the observed outputs. Therefore, a special interest

represent the terminal strongly connected components because all places are connected to

those components.

Definition 4.24. A strongly connected component N ′ = 〈F,T ′,Pr e ′,Post ′〉 of a net N is said

to be terminal if there is no path from a place belonging to F to a place not in F .

Strongly-connected components of a PN can be computed immediately, adapting the

algorithm in [24] to a bipartite graph. The net in Fig. 4.5 has one strongly connected compo-

nent which is obviously terminal, while the net in Fig. 4.4.(a) has only one terminal strongly

connected component F1 = {p1}.

Proposition 4.25. Let N be a JA-F contPN. N is (structurally) observable iff at least one place

from each terminal strongly connected component is measured.

Proof. If N is (structurally) observable then every place that is not measured should be out-

put connected to a place that is measured. Therefore at least one place from each terminal

strongly connected component should be measured.

On the contrary, if at least one place from each terminal strongly connected component

is measured, every place is output connected and the net is structurally observable according

to Prop. 4.22. If N is structurally observable, according to Remark 4.18 it is observable for a

particular λ.

Therefore, the minimum number of places to ensure the (structural) observability of a

JA-F contPN is equal to the number of terminal strongly connected components. Let us see

what happens when joins (|•t | ≥ 2) occur. According to (2.9), this introduces nonlinearity

into the flow definition due to the minimum function and this will cause problems in the

observation procedure.

Example 4.26. Let us consider the contPN subsystem in Fig. 4.4(b). It is (structurally) observ-

able iff places Po = {p1, p2, p3} are measured.

Place p3 must be measured (it is a terminal strongly-connected component). Using the

marking of p3, the flow of transition t3 can be computed as f3 = λ3 ·m3. The derivative of the

marking of p3 and the flow of transition t3 permit to compute the flow of transition t using



65

ṁ3 = ft − f3 =⇒ ft = ṁ3 + f3. On the other hand, this flow is equal to ft = λt ·min{m1,m2}.

In the last expression, ft and λt are known which implies that the minimum of m1 and m2

can be evaluated. If m1 ≤ m2 (place p2 does not constraint the firing of t), m1 equals to the

minimum and p2 must be measured. Identically, if at a certain moment m2 ≤ m1, p1 should

be measured. Therefore, if no information regarding how m1 and m2 compare is known, then

the only solution for observability is to measure both p1 and p2. Moreover, since p1, p2 and p3

are measured, the observability space of this system is the same as that of the system obtained

removing the join transition t .

Proposition 4.27. [52] Let 〈N ,λ〉 be a timed AF contPN and N ′ obtained from N by just

removing all join transitions together with its input and output arcs. N is (structurally) ob-

servable iff N ′ is (structurally) observable.

Proof. Let us see that if N ′ is (structurally) observable then N is (structurally) observable.

In N ′ all places must be output connected to measured places. Then, adding the join tran-

sitions in N the net system is also output connected and the same JA-F paths exist. Hence

the observation procedure is the same, going backwards on the paths.

For the reverse, if N is structurally observable it is observable for any value of λ. 〈N ,λ〉

is observable iff every linear system is observable and the configurations are distinguishable

(Prop. 4.16). Let us assume, for simplicity, that N has only one join t with p1, p2 ∈ •t (see

Fig. 4.4(b)) (the proof can be easily extended).

The system has two configurations C1 and C2 and let (p1, t ) ∈C1 and (p2, t ) ∈C2, respec-

tively. The linear system associated to C1 is observable, hence from p2 a path should exist to

one output, but not using the arc (p2, t ) because the marking of p2 is not giving the enabling

degree of t in this configuration (the arc (p1, t ) can be used). Let us denote by P2 the path

from p2 to one output. Analogously, the linear system associated to C2 is observable, then a

path from p1 to an output should exit but not using the arc (p1, t ). Let P1 be the path from

p1 to one output.

If P1 and P2 do not contain the transition t , it is obvious that the both nets are observ-

able (with and without t ) since p1 and p2 are output connected to the same outputs in both

systems (linear and nonlinear). If only one of the paths contains t , for example P1, it has

the form: P1 = 〈p1, · · · , p2, t , · · · , pi 〉, with pi a measured place, since the arc (p1, t ) cannot

be considered. But it is assumed there exists a path from p2 to an output not containing t ,

therefore p1 is also connected to other output not containing t and the same as before, both

systems are observable.

If P1 and P2 both contain t , and there are no other outputs to which they are connected,

then the configurations are not distinguishable. Indeed, the same evolution is obtained tak-

ing
m[p1]

Pr e[p1,t]
= q1 and

m[p2]

Pr e[p2,t]
= q2, q1 6= q2, at the output through t , or

m[p1]

Pr e[p1,t]
= q2 and

m[p2]

Pr e[p2,t]
= q1 (see Example 4.15).

The previous theorem does not hold when the net is not AF.

Example 4.28. Let us consider the contPN system in Fig. 4.6 with λ = [a,1,2,3,4]T , a ∈ R≥0

and p5 measured. This net is not AF and has a join in t1. Notice that the linear system obtained

removing the join t1 is observable. For the non-linear system, the corresponding linear systems

are:



66

p5

p3 p4

t4t3 t5t2

p1 p2

t1

Figure 4.6: ContPN system used in Ex. 4.28.

Σ1 =







ṁ(τ) =










−1−a 0 0 0 0

−a −4 0 0 0

a 0 −2 0 0

a 0 0 −3 0

1 2 3 4 0










·m(τ)

y(τ) = [0,0,0,0,1] ·m(τ)

Σ2 =







ṁ(τ) =










−1 −a 0 0 0

0 −4−a 0 0 0

0 a −2 0 0

0 a 0 −3 0

1 2 3 4 0










·m(τ)

y(τ) = [0,0,0,0,1] ·m(τ)

with observability matrices:

ϑ1 =










0 0 0 0 1

1 2 3 4 0

4 ·a−1 −8 −6 −12 0

−(4 ·a−1) · (a+1)−10 ·a 12 36 0

((4 ·a−1) · (a+1)+10 ·a) · (a+1)+16 ·a −128 −24 −108 0










ϑ2 =










0 0 0 0 1

1 2 3 4 0

−1 4 ·a−8 −6 −12 0

1 −(4 ·a−8) · (a+4)−17 ·a 12 36 0

−1 ((4 ·a−8) · (a+4)+17 ·a) · (a+4)+47 ·a −24 −108 0










Computing the determinants of the observability matrices, we have: det (ϑ1) = 192 · a3 −

912 · a2 + 720 · a + 288, which has two positive real roots, and det(ϑ2) = −96 · a3 − 408 · a2 −

216 · a + 288, with one positive real root. Obviously, if λ1 is equal to one of these roots, the

contPN system will not be observable since one of the corresponding linear systems will not be

observable.



67

Hence, for some particular values of λ, the system obtained removing the join is observable

but the original system (with join) is not observable.

Hence, for AF nets, the observability can be studied using the linear system theory since

their observability space with respect to the JF net, obtained removing the joins, includes

only some additional information (minimum of some weighted markings) that cannot pro-

vide information to estimate markings. For this class, the set Po of places that ensures struc-

tural observability of the system is computed as in JA-F case using Prop. 4.25, after the joins

are eliminated. Notice that due to the elimination of the joins, several unconnected PN can

be obtained. In this case, Prop. 4.25 is applied for each connected component.

Proposition 4.29. The structural observability of an AF contPN can be solved in polynomial

time at the graph level.

In the case of CEQ nets, observability can be studied also using linear system theory since

the joins can be eliminated as in the case of AF nets.

Proposition 4.30. Let 〈N ,λ〉 be a timed CEQ contPN system and N ′ obtained from N by

just removing all join transitions together with its input and output arcs. N is (structurally)

observable iff N ′ is (structurally) observable.

Proof. First, notice that the net N can be transformed into an equivalent one obtained

through fusion of the CEQ (see Section 3.6). Hence, it can be assumed that the net has no

choice, i.e., for every join transition t , for all p ∈ •t , p• = {t }.

“=⇒” Let t be a join, and p, p ′ ∈ •t . For those markings in the region defined by the

configuration that contain (p, t ), the only way to observe p ′ for any λ[t ] is to measure it,

since its only output is t and that transition cannot be used to estimate it.

The same can be said for p, hence both places have to be measured and removing their

output transition cannot affect the (structural) observability of the system.

“⇐=”If N ′ is structurally observable it is observable for a given λ. Since N ′ is obtained

from N (that it is CEQ by assumption) and the joins are removed, all input places in the joins

of N have no output transition in N ′. But N ′ is observable, hence all these places should be

measured because cannot be estimated with others measurements. Measuring these places,

the linear systems of N are distinguishable. Moreover, all linear systems are observable

since the observability does not depends on the firing rates of the output transitions of the

measured places (Prop. 6 in [40]). According to Theorem 4.16 N is observable.

Unfortunately, the elimination of joins cannot be performed in general, because the ob-

servability of nets with attributions should be study globally, not locally (see Ex. 4.28). For

CEQ nets, that in principle have attributions, all joins can be removed (Prop. 4.30), but only

because their input places should be measured which is not true in general. This can be seen

in Ex. 4.28 taking λ = [a,1,2,3,4]T with a different from the roots of det (ϑ1) and det (ϑ2).

Since t1, t2, t5 are not in CEQ relation, it is not sure that all their input places have to be mea-

sured. Indeed, this contPN system is observable measuring only p5.

In summary, according to Prop. 4.27, given an AF contPN, joins can be removed without

affecting the observability. This holds also for CEQ nets (Prop. 4.30). In the new net all the

conflicts are CEQ without synchronizations (if t1, t2 ∈ p•,•t1 =
•t2 = p) and so, the net can be

mapped into CF [42]. Therefore, forks and choices do not pose any problem for observability

(JA-F case), while joins are real “barriers” in the backward procedure. Let us now consider



68

attributions, the only local construction of nets not yet studied. This construction can intro-

duce zeros in the transfer functions, possibly leading to pole-zero cancelations, thus loss of

observability.

Example 4.31. Let us consider the JF contPN system in Fig. 4.4(a) (it has an attribution in p1).

Assume that p1 is measured. This system is a continuous (time-invariant) linear system. If we

consider that the input of the system is the input flow to p4 and the measured output is m1,

the equivalent linear system ẋ(τ) = A ·x(τ), y(τ)= S ·x(τ) has:

A =








−λ1 λ2 λ3 0

0 −λ2 0 λ4

0 0 −λ3 λ4

0 0 0 −λ4








,

S =
(

1 0 0 0
)

The transfer function vector between the input flow in places and the output, using Equa-

tion (4.5) is:

Y (s) =
1

(s +λ1)(s +λ2)(s +λ3)(s +λ4)
HT (4.16)

where:

H =








(s +λ2) · (s +λ3) · (s +λ4)

λ2 · (s +λ3) · (s +λ4)

λ3 · (s +λ2) · (s +λ4)

(λ2 · (s +λ3)+λ3 · (s +λ2))








(4.17)

In Equations (4.16) and (4.17), if λ2 =λ3 there is a pole-zero simplification in all elements

of vector Y (s) leading to the conclusion that the system is not observable [72]. If λ2 6= λ3, but

λ4 =
2·λ2·λ3

λ2+λ3
, there is another simplification and the system is not observable. Consequently,

when an attribution appears, particular values of λ exist such that the observability is lost.

Moreover, it is not a local property, but depends on the whole net structure.

Usually, if p is an attribution place and λ[t1] = λ[t2], with t1, t2 ∈ •p then there exists a

pole-zero cancelation and an additional place should be measured. But this is not a general

rule as illustrated in the following example.

Example 4.32. Let us consider the net in Fig. 4.7 with λ= 1 and assume that p2 is measured.

Then p4 and p5 cannot be estimated directly, but a linear combination of the markings of these

places is known (place p45 in Fig. 4.7). Going backwards, p1 is estimated and, even although

p1 is an attribution, since p2 is measured p3 is also estimated. Using the marking of p3, p4

is estimated and through the linear combination of p45, p5 as well. Therefore, the system

is observable measuring p2 for any values of firing rates of the transitions. As said before:

observability is a global property of the system.

4.4 Generic observability

In Ex. 4.31, the pole-zero cancelation due to the attribution happens for very specific values

of λ. If the firing rates of the transitions are chosen randomly in R+, the probability to ob-



69

p4

t4

p2

t2

p1

t1

p3

t3

p5

t5

p45 2

Figure 4.7: A JF net that is observable measuring the attribution place p2 even if λ4 =λ5.

tain this cancelation is null. Hence, a concept weaker than structural observability can be

studied. It is defined following the ideas presented in [30, 23] for linear systems hence we

consider JF nets for which the behavior is linear and not piecewise linear as in general case.

Regarding our assumptions, we consider:

(A1) The net structure N is known and λ is a parameter;

(A2) N is JF.

According to the results in the previous section generic observability can be studied also

for AF and CEQ nets. In these cases, as explained before, joins can be removed and the

obtained JF net is observable iff the original net is observable. In a JF net, choices are CEQ,

thus can be transformed into forks (see Section 3.6), and a JC-F net is obtained. Therefore,

we can assume that the nets are JC-F.

Definition 4.33. Let 〈N ,λ,m0〉 be a JF contPN system and Po a set of measured places. N is

weakly structural or generically observable from Po if 〈N ,λ,m0〉 is observable for all values

of λ outside a proper algebraic variety of the parameter space.

Connection between structural and generic observability is obvious. If N is structurally

observable then it is generically observable. The reverse is not true (see Example 4.31). Con-

nections between observability for a given λ and generic observability are also obtained im-

mediately.

Proposition 4.34. Let N be a contPN, λ a set of rates. Generic observability for N does not

imply observability for a particular λ.

In [23], generic observability is studied for structured linear systems using an associated

graph; observability is guaranteed when there exists a state-output connection for every

state variable (the system is said to be output connected) and no contraction (defined after)

exists.

The associated graph of an unforced linear system (4.1), G = (Z ,W ) is defined by a vertex

set Z and an edge set W [23]. The vertex set Z = X ∪Y with X the set of state vertices and



70

p1

p2

p3

p4

p5

p1

p2

p4

p3

p5

t3 t4

t2t1

(a) (b)

Figure 4.8: (a) A JF ContPN; (b) Associated graph.

Y the set of output vertices. Denoting (v, v ′) for a direct edge from the vertex v ∈ Z to a

vertex v ′ ∈ Z , the edge set W is described by WA ∪WS with WA = {(x j , xi )|A[i , j ] 6= 0} and

WS = {(x j , yi )|S[i , j ] 6= 0}.

The transformation of a JF net into its corresponding associated directed graph can be

computed as follows (see Fig. 4.8). The vertex set Z is given by the set P of places (i.e.

Z = P ). The edge set W is computed as: W = {(pi , p j )|p j ∈ (pi
•)•

∧
pi 6= p j }∪ {(pi , pi )|∃t ∈

pi
•,Pr e[pi , t ] 6= Post [pi , t ]}. The first set adds an edge from a place pi to all places (pi

•)•

since the dynamic matrix has a non null entry and prevents adding an edge in the case of a

self-loop. The second subset will add a self-loop in the associated graph for any place with

Pr e[pi , t ] 6= Post [pi , t ], i.e., the marking of pi will change firing t , implying that the dynam-

ical matrix has an non zero entry.

Definition 4.35. Let N be a contPN system and G(N ) its associated graph with vertex set Z

and edge set W . Consider a set S made of kS state vertices. Denote E (S) the set of vertices wi

for i = 1, · · · , lS of Z , such that there exists an edge (x j , wi ) ∈ W with x j ∈ S. S is said to be a

contraction if kS − lS > 0.

Based on the procedure to generate the associated graph (Fig. 4.8), and using Prop. 1 in

[23], the following is true:

Proposition 4.36. Let N be a contPN and G(N ) its associated graph. N is generically ob-

servable iff:

1. N is output connected

2. G(N ) contains no contraction.

Example 4.37. Let us consider the contPN in Fig. 4.8(a) whose associated graph is sketched in

Fig. 4.8(b). Taking S = {p2, p3, p4, p5} (kS = 4), E (S) = {p1, p3, p5} (lS = 3). Thus, the net has a

contraction (kS − lS = 4−3 = 1), so it is not generically observable. This happens because the

flows of the transitions t1 and t3 are constant and measuring p1 it is impossible to distinguish

between these two constant incoming flows.

In the case of pure contPN systems, the necessary and sufficient condition of generic

observability can be simplified. Since the associated graph of a pure PN has in every node

a self-loop (under infinite server semantics, if pi has at least one output transition t j the



71

derivative of the marking is: ṁi = ·· ·−λ j ·mi +·· · ). Therefore, no contraction can exist and

the only remaining condition in Prop. 4.36 is the output connectedness.

Corollary 4.38. Let N be a pure JF contPN. N is generically observable iff at least one place

from each terminal strongly connected component is measured.

4.5 Minimum cost observability of JF nets

4.5.1 Problem statement

In this section, minimum cost observability of JF nets is studied. We have:

(A1) The timed net structure 〈N ,λ〉 is known;

(A2) N is JF net.

As done for generic observability, the problem of minimum cost can be studied also for

AF and CEQ nets since in these cases joins can be removed without affecting the observabil-

ity (see Section 4.3). Moreover, JF nets can be transformed in JC-F and this class is considered

from now.

Definition 4.39. Let w(p) > 0 be the cost to measure place p. The observability cost for a given

set Po is w(Po) =
∑

pi∈Po

w(pi ); the minimal cost observability problem is to determine a set Po

with minimum cost that makes 〈N ,λ,m0〉 observable for every initial marking m0.

Minimal cost observability problem can be seen as a Set Covering Problem (SCP), which

is NP-hard in the strong sense [31]. For each set of places Po , let KPo be the set of observable

places. It will be said that Po is covering KPo . The problem is to determine a set Poi
with

minimum cost such that the covered elements Ki contain all the places of the net. Unfortu-

nately, the number of covering elements (Poi
) is not limited to the isolated places, but also

subsets of places have to be considered.

Example 4.40. Let us consider the contPN system in Fig. 4.4(a) without place p5 and transition

t5, with λ2 = λ3 and λ4 6= λ2. The set of observable places from Po1 = {p1} is K1 = {p1, p4} (m1

being measured, m2+m3 can be estimated and also m4). From Po2 = {p2} the set of observable

places is K2 = {p2, p4}; from Po3 = {p3} we obtain K3 = {p3, p4}; and finally from Po4 = {p4},

K4 = {p4}. According to this, a solution is to measure p1, p2 and p3 because that way all the

places are covered. Nevertheless, that solution is not in general an optimal one.

If λ2 = λ3, the incoming flows into the attribution in p1 ( f2 and f3) are indistinguishable:

ṁ1 = λ2(m2 +m3)−λ1m1. But, if the flow through t2 is known, the flow through t3 is known

too, and viceversa.

Indeed, measuring Po5 = Po1 ∪ Po2 = {p1, p2} or Po6 = Po1 ∪ Po3 = {p1, p3} the system is

observable, i.e., K5 = K6 = {p1, p2, p3, p4}. It is interesting to notice that K5 ⊃ K1 ∪ K2 and

K6 ⊃ K1 ∪K3. The optimal solution for the observability is: w(p1)+min{w(p2), w(p3)}.

Remark 4.41. Minimal cost solutions need not to be of minimal cardinality.

This can be seen considering the net system in Fig. 4.9, assuming λ3 = λ4, λ5 = λ6 and

the other λs different. Measuring Po1 = {p4} or Po2 = {p3, p5} the system is observable. If

w(Po2 ) < w(Po1 ) then the minimal solution is Po2 , even if |Po2 | > |Po1 |.



72

p4

t4

p2

t2

p1

t1

t5

p5

p6

t6

p3

t3

Figure 4.9: If λ3 =λ4 and λ5 =λ6 the JF net is not observable measuring p3 or p5 but observ-

able measuring both.

4.5.2 Brute force method

Considering that n is the number of places, the brute force approach to solve this problem is

to try all subsets of places of size n, n −1, · · · , 1. Obviously, two monotonicity properties can

be used to reduce the complexity: (1) if the system is not observable measuring Poi
then it is

not observable for any Po j
with Po j

⊂ Poi
, and (2) if the system is observable measuring Poi

or Po j
and Po j

⊂ Poi
then Poi

cannot be the optimal solution because its cost is greater than

the one of Po j
.

Example 4.42. Let us consider the net in Fig. 4.9 with λ = 1 and w = (1,1,2,5,3,4). A brute

force method to solve minimum cost observability consist in:

• Considering subsets of length 6:

– Po1 = {p1, p2, p3, p4, p5, p6} ensures the system observability at cost w(Po1 ) = 16

therefore it is kept as a provisional solution

• With subsets of length 5, we have the following 6 possibilities:

– Po2 = {p1, p2, p3, p4, p5}, w(Po2 ) = 12

– Po3 = {p1, p2, p3, p4, p6}, w(Po3 ) = 13

– Po4 = {p1, p2, p3, p5, p6}, w(Po4 ) = 11

– Po5 = {p1, p2, p4, p5, p6}, w(Po5 ) = 14

– Po6 = {p1, p3, p4, p5, p6}, w(Po6 ) = 15

– Po7 = {p2, p3, p4, p5, p6}, w(Po2 ) = 15

All of them ensure the observability and Po4 is kept because has a lower cost.

• There are 15 subsets of length 4:

– Po8 = {p1, p2, p3, p4}, w(Po8 ) = 9



73

– Po9 = {p1, p2, p3, p5}, w(Po9 ) = 7

– Po10 = {p1, p2, p3, p6}, w(Po10 ) = 8

– Po11 = {p1, p2, p4, p5}, w(Po11 ) = 10

– Po12 = {p1, p2, p4, p6}, w(Po12 ) = 11

– Po13 = {p1, p2, p5, p6}, w(Po13 ) = 9

– Po14 = {p1, p3, p4, p5}, w(Po14 ) = 11

– Po15 = {p1, p3, p4, p6}, w(Po15 ) = 12

– Po16 = {p1, p3, p5, p6}, w(Po16 ) = 10

– Po17 = {p1, p4, p5, p6}, w(Po17 ) = 13

– Po18 = {p2, p3, p4, p5}, w(Po18 ) = 11

– Po19 = {p2, p3, p4, p6}, w(Po19 ) = 12

– Po20 = {p2, p3, p5, p6}, w(Po20 ) = 10

– Po21 = {p2, p4, p5, p6}, w(Po21 ) = 13

– Po22 = {p3, p4, p5, p6}, w(Po22 ) = 14

Only Po10 and Po17 do not ensure the observability. According to the first monotonicity

property, any subset of places included in these two cannot ensure the observability and

so, when they are generated their observability will not be checked. The other ones are

possible solutions but the one with lower cost is Po9 and only this one is kept.

• With 3 places, we have 20 possibilities but only for the following 12 the observability has

to be checked:

– Po23 = {p1, p2, p4}, w(Po23 ) = 7

– Po24 = {p1, p2, p5}, w(Po24 ) = 5

– Po25 = {p1, p3, p4}, w(Po25 ) = 8

– Po26 = {p1, p3, p5}, w(Po26 ) = 6

– Po27 = {p2, p3, p4}, w(Po27 ) = 8

– Po28 = {p2, p3, p5}, w(Po28 ) = 6

– Po29 = {p2, p4, p5}, w(Po29 ) = 9

– Po30 = {p2, p4, p6}, w(Po30 ) = 10

– Po31 = {p2, p5, p6}, w(Po31 ) = 8

– Po32 = {p3, p4, p5}, w(Po32 ) = 10

– Po33 = {p3, p4, p6}, w(Po33 ) = 11

– Po34 = {p3, p5, p6}, w(Po34 ) = 9

All of them ensure the observability but only the one with minimum cost, i.e., Po24 , is

kept. Observe that for the following subsets the observability will not be checked be-

ing subsets of Po10 and Po17 : {p1, p2, p3}, {p1, p2, p6}, {p1, p3, p6}, {p1, p4, p5}, {p1, p4, p6},

{p1, p5, p6}, {p2, p3, p6}, {p4, p5, p6}.



74

• With 2 places we have to check the observability for the following sets:

– Po35 = {p2, p4}, w(Po35 ) = 6

– Po36 = {p2, p5}, w(Po36 ) = 4

– Po37 = {p3, p4}, w(Po37 ) = 7

– Po38 = {p3, p5}, w(Po38 ) = 5

And the following are not checked: {p1, p2}, {p1, p3}, {p1, p4}, {p1, p5}, {p1, p6}, {p2, p3},

{p2, p6}, {p3, p6}, {p4, p5}, {p4, p6}, {p5, p6}. All sets for which the observability was checked

ensure the system observability and we keep only the one with minimum cost, Po36 .

• Taking only one place is not a good choice since all are subsets of Po10 and Po17 .

Hence the optimal solution is Po36 = {p2, p5}, that ensures the system observability at a cost

w(Po36 ) = 4. Observe that with this brute force algorithm, observability have been checked 38

times.

4.5.3 Splitting the net in threads

In this section we try to use some properties of contPN systems in order to reduce the com-

plexity of the brute force algorithm presented. We try to reduce the number of observability

checks. The idea is to try to group the set of places into subsets such that only one place per

subset can belong to an optimal solution. First, since attributions can yield a loss of observ-

ability, the net is split in AF parts and the observability is checked in the subnets. Moreover,

the number of places from each subnet will be reduced using some properties.

Using Definition 4.20, for an attribution we can define:

Definition 4.43. Let N be a JC-F contPN and p ∈ P an attribution, i.e., |•p| > 1. The AF path

from a place p ′′ ∈P to p ′ is called a thread of p if p ′ ∈ •
(
•p

)

and the path is maximal, i.e., there

no exists other AF path from a place px to p ′ that contains the path from p ′′ to p ′.

Therefore, a thread is a maximal connected subnet without attributions (and synchro-

nizations) that “ends” in a place in •
(
•p

)

with p an attribution. Since for the observability we

are interested in state and output variables (places in our case), an ordered set of places (a

list) of the form: g l =
(

p1, . . . , pk+1

)

can be associated to each thread. Abusing notation we

will say that g l is a thread. Moreover, we will try to remove elements from this ordered sets

to obtain a lower complexity for the covering problem and we will still call them threads.

Example 4.44. Let us consider the JF contPN system in Fig. 4.10. Let us compute the threads

associated to the attributions. First, there are two attributions, in p9 and p10 and we obtain:

g 1 = (p3, p1, p2) and g 2 = (p8, p6, p7) for p9, respectively g 3 = (p4, p3, p1, p2) and g 4 = (p9) for

p10.

For g l , we will denote by g l (i ) the i th element of the list. The number h of threads of a

JC-F net N is given by:

h =
∑

|•p|>1

|
•p| (4.18)

It is obvious that if the first place of each thread is measured, the other ones in the same

thread are observed from it. Hence, measuring the first places of all threads and one from



75

.

t1 p1 t2

t6 p6 t7

t3 t4 t5p3 p4 p5

t8 t9 t10p8 p9 p10

p7

p2

.

Figure 4.10: A JF conPN system used in Ex. 4.44.

each terminal strongly-connected components, the contPN system will be observable, even

structurally observable. But we are interested in minimum cost observability and in general

this is not an optimal solution.

Given an attribution place p, algorithm 4.45 computes one of its threads. The input is a

place pi ∈
•(•p) and the returned value is a list g containing all the places that belong to the

path in reversed order, such that g (1) = pi . To compute all the threads of p, the algorithm

should be called for all the places in •(•p).

Algorithm 4.45.

procedure THREAD(p)

g := append(;, p); ⊲ initialize g with p

while (|•p| ≤ 1)&(•(•p) 6∈ g ) do ⊲ until p is not an attrib. and is not already incl. in g

p := •(•p); ⊲ get the backward place

g := append(g , p); ⊲ add it to the list

end while

return g

end procedure

Applying Prop. 4.22 it can be seen that at most one place from a thread should be mea-

sured in the optimal solution:

Proposition 4.46. Let g be a thread. If g ( j ) is measured then ∀k ≥ j , g (k) is observable.

Hence, at most one place of the thread belongs to the optimal solution. At this point, the

covering problem reduces to trying all combinations of places, taking at most one from each

thread. We try now to reduce the number of places in the threads that need to be analyzed

while preserving the optimality of the solution.

(Step 1) For every JA-F cycle, choose the place with minimum cost and remove the other places

from the threads and the optimal observation is preserved.



76

If a thread contains a JA-F cycle, in the optimal solution at most one place with mini-

mum cost can appear. A thread contains a cycle iff this cycle is a root strongly-connected

component (strongly-connected component that has no input) of the original net.

Proposition 4.47. Let N be a JF contPN. If a thread g into an attribution contains a cycle

then the cycle is a strongly-connected component of N without inputs.

Proof. If it is not a root strongly-connected component then a place or a transition should

have two or more inputs. Obviously, none of this is possible because g is JCA-F.

Example 4.48. Let us go back to the Example 4.44 where the threads of the net in Fig. 4.10 are

given. We will apply the first reduction step. Assume the measurement cost w = (2,1,1,1,1,1,2,

0.5,1,1). This net has two root strongly connected components: S1 = {p1, p2} and S2 = {p6, p7}.

It is clear that knowing p1, p2 can be estimated or viceversa. But w(p1) = 2 > w(p2) = 1,

therefore p1 cannot be in the optimal solution. For S2, w(p6) = 1 < w(p7) = 2 hence p7 cannot

be in the optimal solution. Updating g 1, g 2, g 3 and g 4, the threads are: g 1 = (p3, p2), g 2 =

(p8, p6), g 3 = (p4, p3, p2) and g 4 = (p9), respectively. Therefore, the number of places of threads

g 1, g 2 and g 3 is reduced.

(Step 2) Eliminating the places estimated from all terminal strongly connected components.

To further reduce the number of places let us consider the terminal strongly connected

components. If at the previous step we remove all the cycles, then at this point, for any ter-

minal strongly connected component (defined in 4.24) one place Fi has been chosen and

all of them are essential covers for observability. Therefore, these places and those observ-

able from them can be ignored when the optimal solution is searched. The set of places that

are structurally observable from Fi can be computed using the algorithm 4.45 (calling it for

the unique place in Fi ). The union of all threads, denoted by g F , are the places structurally

observable from terminal strongly-connected components.

Example 4.49. Let us consider the contPN in Fig. 4.10. Its threads have been computed in

Ex. 4.44 and have been updated in Step 1, removing some places based on the root strongly

connected components in Ex. 4.48. Let us now apply Step 2.

Let us consider here the estimations due to the terminal strongly connected components.

There are two terminal strongly connected components: F1 = {p5} and F2 = {p10}. Hence p5

and p10 will be measured. Using Alg. 4.45, the set of places structurally observable from the

terminal strongly connected components is: g F = (p5, p4, p3, p1, p2, p10). All of these can be

removed from the threads: g 1 \ g F =;, g 2 \ g F = (p8, p6), g 3 \ g F =; and g 4 \ g F = (p9).

4.5.4 Dominance and an improved algorithm

(Step 3) Eliminating some places in each thread looking at their cost.

Other reduction of the threads can be done considering the measuring cost w . From

Prop. 4.46, if g ( j ) is measured then∀k > j , g (k) is observable. Looking at the cost, if w(g (k)) ≥

w(g ( j )), the place g (k) can be ignored when the solution is searched because for sure will not

be in the optimal solution. This represents the dominance idea: the number of observable

places measuring g (k) is less than or equal to the number of observable places measuring

g ( j ), the cost of g (k) is higher, therefore cannot be in the optimal solution.



77

After the elimination of the places looking at the cost, the cost observing the places in the

reduced thread will be in descending order, i.e., ∀g i , if j ≤ k then w(g i ( j )) > w(g i (k)). Thus,

in the particular case in which all places have the same measuring cost, each thread will

contain only one element and the combinatorial algorithm will have complexity 2h, where h

is the number of threads.

Example 4.50. Consider the contPN in Fig. 4.10 with the threads given in Ex. 4.44 and updated

in Ex. 4.48 and Ex. 4.49 using Step 1 and 2. The obtained threads are: g 1 = ;, g 2 = (p8, p6),

g 3 = ; and g 4 = (p9). Remember that the measurement costs that have been considered are:

w = (2,1,1,1,1,1,2,0.5,1,1).

In the case of g 2 = (p8, p6), w(p8) = 0.5 < w(p6) = 1. Since measuring p8, p6 is observable,

for sure p6 cannot be in the optimal solution. Therefore, g 2 = (p8) and both non-empty threads

have only one element. Now, if a covering algorithm is applied, we have to make only 22 = 4

combinations, a number that is for sure smaller than the number of combinations of the brute

force method. Observe that here we have 2h combinations, not 2h −1 as in Ex. 4.42 since here

the system can be observable measuring only the terminal strongly connected components that

is not the case in Ex. 4.42.

(Step 4) Making the threads disjoint.

After all these three steps, the number of places that belong to the threads is reduced but

may happen that a place p of the net belongs to more that one thread, a fact that will lead to

generating more than once some combinations.

Example 4.51. Let us consider the net in Fig. 4.4(a) that has the following threads: g 1 =

(p2, p4, p5) and g 2 = (p3, p4, p5). Making combinations, taking at most one place from each

thread, {p4, p5} and {p5, p4} are obtained. Obviously, the observability will be checked only

once but the combinations are generated anyhow.

Therefore, these threads can be made disjoint. This implies that the number of places

that belong to at least one of those disjoint threads is less than or at most equal to the number

of places in the contPN. In general, to make these threads disjoint many solutions can exist

and any of them can be used.

Observe that all the reductions preserve the optimality of the solution. Now, the covering

problem can be stated. We have to generate all combinations taking at most one place from

each thread and then check the observability of the system. To facilitate the procedure of

making of the combinations, a null element will be inserted at the end of each thread. If the

system is observable, the solution is kept if has a cost lower than the previous one. A good

choice is starting with the first places of each thread and going backward since Prop. 4.46 can

be used in the following way: if the system is not observable for the current observations we

don’t have to advance in the threads because the system will not be observable.

Example 4.52. Let us go back to the net in Fig. 4.9 with λ= 1 and w = (1,1,2,5,3,4). The brute

force algorithm was applied in Ex. 4.42 checking for the observability 38 times. Let us apply

the technique of threads.

This net has the following threads: g 1 =
(

p3, p1

)

, g 2 =
(

p2

)

, g 3 =
(

p5, p1

)

and g 4 =
(

p4, p6, p1

)

.

Applying the reductions of the threads, Step 1,2 and 3 do not modify them since after Step 4, a

solution can be: g 1 =
(

p3, p1,;
)

, g 2 =
(

p2,;
)

, g 3 =
(

p5,;
)

and g 4 =
(

p4, p6,;
)

.

The combinations obtained are:



78

• Po1 = {p3, p2, p5, p4} (first place of each thread) that ensures the system observability at

a cost w(Po1 ) = w3 +w2 +w5 +w4 = 11

• Po2 = {p3, p2, p5, p6} (advancing in g 4) ensures the observability at a cost w(Po2 ) = 10

and becomes a possible solution replacing Po1

• Po3 = {p3, p2, p5} (advancing in g 4) that is kept because ensure the observability at a cost

w(Po3 ) = 6

• Po4 = {p3, p2, p4} we obtain an observable system at a cost w(Po4 ) = 8 but it is higher

than w(Po3 )

• with Po5 = {p3, p2, p6}, the system is not observable and according to Prop. 4.46 it is not

necessary to keep advancing in the threads from this node since the system will not be

observable. Therefore, for the following combinations the observability will not be gen-

erated: {p3, p2}, {p3, p6}, {p3}, {p1, p2, p6}, {p1, p2}, {p1}, {p2, p6}, {p2} and {p6}

• Po6 = {p3, p5, p4} with w(Po6 ) = 10 ensures the system observability but w(Po6 ) > w(Po3 )

• Po7 = {p3, p5, p6} with w(Po7 ) = 9 ensures the system observability but w(Po7 ) > w(Po3 )

• Po8 = {p3, p5} with w(Po8 ) = 5 ensures the system and will become the candidate to the

optimal solution since w(Po8 ) < w(Po3 )

• next node is Po9 = {p3, p4} with w(Po9 ) = 7

• Po10 = {p1, p2, p5, p4} with w(Po10 ) = 10 ensures the system observability but w(Po10 ) >

w(Po8 )

• Po11 = {p1, p2, p5, p6} with w(Po11 ) = 9 ensures the system observability but w(Po11 ) >

w(Po8 )

• Po12 = {p1, p2, p5} with w(Po12 ) = 5 ensures the system observability and w(Po11) = w(Po8 ),

hence it is also a possible solution

• Po13 = {p1, p2, p4} with w(Po13 ) = 7 ensures the system observability but w(Po13) > w(Po8 )

• measuring Po14 = {p1, p5, p4} the system is not observable, hence is not necessary to ad-

vance in threads from this node. Consequently, for the following threads, the observabil-

ity will not be checked: {p1, p5, p6}, {p1, p5}, {p5, p4}, {p5, p6}, {p5} and {p6}

• Po15 = {p2, p5, p4} with w(Po15 ) = 9 ensures the system observability but w(Po14) > w(Po8 )

• Po16 = {p2, p5, p6} with w(Po16 ) = 8 ensures the system observability but w(Po16) > w(Po8 )

• Po17 = {p2, p5} with w(Po17 ) = 4 ensures the system and may be the optimal solution since

w(Po17 ) < w(Po8 )

• finally, Po18 = {p2, p4} with w(Po18 ) = 6 but w(Po18 ) > w(Po17 )

Then, the optimal solution is Po17 and its cost is 4. Observe that we have obtained the same

solution as in brute force algorithm but now, the number of observability checks is 18. This

represent a drastically reduction in comparison with brute force algorithm where 38 checks of

the observability are needed.



79

p4 t4

p3 t3 p6

t5
p7 t6

2

4p5

t2

t1

2
2

2

p1

p2

p8

p9

t7

t8

Figure 4.11: Petri net modeling a table factory.

The results presented are combined in Algorithm 4.53 to obtain the optimal solutions for

observability in the case of a given λ. The complexity of the algorithm remains exponential,

but in practice has been considerably reduced.

Algorithm 4.53.

procedure OPT-OBSERV(〈N ,λ〉)

if N is AF then

remove all joins (Prop. 4.27).

end if

remove all the synchronizations/joins that are in CEQ (Prop. 4.30).

if N has more joins then

return error: the algorithm cannot be applied

end if

Compute the terminal str.connected components F and g F executing Alg. 4.45.

if 6 ∃ attributions (Prop. 4.25 applies) then

return one place from each term. str. conn. comp. with minimum cost and the cost.

else

Compute the threads g j

Step 1: remove the cycles from threads

Step 2: remove the str. obsv. places from terminal comp.

Step 3: update the threads looking at their costs.

Step 4: make the threads disjoint.

solve the covering problem

end if

end procedure

Example 4.54. The small net system presented in Fig. 4.11 models a FMS that consists of three

different machines to make table-legs, one (t1) which produces two legs at a time, and two

(t7 and t8) which make legs one by one; one machine (t3) to produce the table-boards; one



80

machine (t5) to assemble four legs and a board; And a big painting line (t6) which paints

two tables at once. The painting line has more capacity than the other machines, so more

unpainted tables are brought (t4) from a different factory. The different products are stored in

buffers: Table-legs are stored in p5, the ones produced by the slow machines are first stored in

p2 and have to be taken to p5 (operation t2), boards are stored in p6, and p7 is devoted to the

storage of unpainted tables. The rest of places contains work orders: Whenever the painting

line finishes a couple of tables, it delivers work orders to the leg-makers, the board-maker, and

the other factory. Moreover, 50% of the tables are assembled, and 50% are brought from the

other factory, while 50% of the legs are produced by the fast leg-maker, and 50% by the slow

one, half and half.

The number of clients in each buffer can be measured with a sensor, the cost of the sensor

depends on the buffer. We want to know the minimum amount of money that we should invest

to make the system observable.

Let us apply the Alg. 4.53 assuming λ = 1 and w = (1,1,1,1,1,1,1,1,1). After removing

the synchronization, F1 = {p5}, F2 = {p6} and g F = (p5, p6, p3, p7, p4). Measuring p5 and p6

the system is not observable. Then, we need to compute the threads that are: g 1 = (p1, p7),

g 2 = (p2), g 3 = (p8, p7) and g 4 = (p9, p7). Applying first step of the reductions, these threads

are not changed since the net has no root strongly connected component. In Step 2, we obtain:

g 1\g F = (p1), g 2\g F = (p2), g 3\g F = (p8) and g 4\g F = (p9) that remain unchanged after Step

3 and 4. Applying the covering problem, the following sets of places are considered and the ob-

servability will be checked for them: Po1 = {p1, p2, p8, p9}, Po2 = {p2, p8, p9}, Po3 = {p1, p8, p9},

Po4 = {p1, p2, p9}, Po5 = {p1, p2, p8}, Po6 = {p8, p9}, Po7 = {p2, p9}, Po8 = {p2, p8}, Po9 = {p1, p9},

Po10 = {p1, p8} and Po11 = {p1, p2}. The optimal solution is one of: Po7 , Po8 , Po9 or Po10 .

Observability was checked only 12 times applying the algorithm that it is much less than

solving with brute force method.

We have considered that only the marking of the places can be measured, but measur-

ing the flow through transitions might be possible. When a non join transition is measured,

based on the infinite server semantics that it is considered there, the marking of the input

place is computed immediately. Hence, measuring the flow through the transition or the

marking of the input place is equivalent. If a transition is a join, measuring the flow through

it, the enabling degree of the transition is estimated. In general, the marking of its input

places cannot be computed from the minimum. Anyhow, part of the previous results ob-

tained measuring the instantaneous marking of some places can be easily extended when

the flow of the transitions is measured or in a mixed case (measuring the markings of some

places and the flow through some transitions).



Chapter 5

State estimation of continuous

Petri nets with finite server

semantics

Summary

In this chapter we consider the state estimation problem for untimed nets and timed nets

with finite server semantics, trying to determine all states that are consistent with an ob-

served sequence of transition firings. Firstly, we show how the results previously obtained

for discrete nets can be applied, with minor modifications, to untimed continuous net sys-

tems. Secondly, we consider timed continuous Petri nets with a particular relaxation of finite

server semantics. Under the assumption that no measuring is available (thus the set of con-

sistent markings only depends on the time elapsed), we study the observation based on the

time-reachability analysis.

81



82

5.1 Motivation

In this chapter we will study the state estimation problem of continuous system under finite

server semantics. We assume that the initial marking is known and based on some obser-

vations of the flows we want to determine the set of markings that are consistent with the

observation.

Finite server semantics is taken with a particular relaxation: transitions are not forced

to fire at their maximum firing speeds but can fire with a speed smaller than its maximum.

This semantics it is used for the continuous part of so called First Order Hybrid Petri Nets

(FOHPN) [7] and we will show in Section 5.5 that can be seen as finite server semantics de-

fined in [2] with control.

We consider the observation problem for both untimed continuous nets and timed con-

tPN with finite server semantics under this relaxation. Following [25], we make the following

assumptions:

(A1) the initial marking m0 is known;

(A2) the net structure is known.

(A3) the set of transitions is partitioned into T = To ∪Tu , where To is the set of observable

transitions, whose firing is known during all time trajectory and Tu is the set of unob-

servable or silent transitions, whose firing cannot be measured directly.

First, let us see that the results in chapter 4 cannot be easily extended to finite server

semantics. Under this semantics, the flow of a transition ti is defined by equations (2.7).

So, it is constant and equal with its maximum firing speed when all input places contain

tokens/fluid (their markings are positive) and it is the minimum input flow if there are input

places without tokens/fluid.

The algorithms in the previous chapter are based on the going backward procedure: us-

ing the flow of a transition, the marking of its input places is estimated. In this case, it is easy

to see that the flow of one transition cannot provide, in general, enough information to es-

timate the marking of the input places. Therefore, it is not possible to extend the algorithm

presented in section 4.5 for infinite server semantics to finite server semantics.

Let us consider the contPN system in Figure 5.1 and assume finite server semantics with

λ = [0.5,0.5]T . For the initial marking in the figure, the flow of the transitions will be f =

[0.5,0.5]T (t2 will fire at the maximum speed because m1 > 0 and f2 = min{λ2,0.5} = 0.5). For

the contPN system with m0 = [3,0]T , the same flow will be obtained.

In the case of untimed contPN the nets behavior is asynchronous and sequential, as in

discrete nets with interleaving semantics; the only difference between the first and the latter

model is the relaxation of the integer constraint (see section 2.2). In this case after each

observable transition fires we observe its firing quantity which is the continuous counterpart

of the number of firings. The set of markings consistent with an observation σo, i.e., the set

of markings in which the net may be after a firing sequence σo is observed, will be denoted

T (σo). It is not surprising that most of the results derived for discrete nets also apply in this

case. The state estimation problem for this class of nets is briefly discussed in Section 5.2.

In the case of timed continuous nets the situation is significantly different for two main

reasons. Firstly, transitions may fire in parallel and what we observe is the instantaneous fir-

ing speed of observable transitions. Secondly, timing constraints must be taken into account

and embedded into the state estimation procedure.



83

t1

t2

p1

p2

.

Figure 5.1: A simple contPN.

.
p ttp

w

1 1 2 2

Figure 5.2: ContPN system for which the marking [0,0]T is lim-reachable in the untimed

system but reachable in the timed one with finite server semantics if w = 2.

For example, let us consider the net in Fig. 5.2 with arc weight w = 1, where the instan-

taneous firing speed of each transition must belong to the interval [0,1]. Assume that the

observed flow of transition t2 is v2(τ) = 0.5 during a time interval [0,0.5], while the flow v1

of transition t1 cannot be observed. We want to determine the marking consistent with this

observation, given that it holds that m1(τ) = 1− (v1 − v2) · τ and m2(τ) = (v1 − v2) · τ. Ob-

viously, we impose the non-negativity conditions on m1 and m2, and also observe that m1

cannot empty until 0.5 t.u. Since t2 is firing with firing speed 0.5, to keep the marking of p2

non negative, transition t1 must have been firing in parallel during this time interval, with

an average speed of at least 0.5. However, t1 may be firing with an even greater speed, up to

v1 = 1; thus the set of consistent markings in the considered observation interval is:

T (v2(·),τ) = {[1−m, m]T
| 0≤ m ≤ 0.5τ}.

This shows that the set of consistent markings explicitly depends not only on the observed

firing speeds but also on the elapse of time.

A first approach to state estimation of timed continuous nets with particular relaxation

of finite server semantics is presented in the second part of the chapter. We assume that

no observation is available, thus the observation problem reduces to determining the set of

markings T (τ), in which the net may be at time τ. This problem is similar to that of time-

reachability for continuous models: this is why in Section 5.4 we also study the equivalence

of reachability of the continuous untimed model and reachability of the timed one showing

under which conditions it holds. For some classes, a procedure to compute the minimum



84

time such that the set of the consistent markings is the same as the reachability space is

given.

5.2 State estimation of untimed contPN

First, we concentrate on the state estimation of untimed contPN following [25]. As men-

tioned in Assumption (A3) we consider that the set of transitions is divided into T = To
⋃

Tu ,

where To is the set of observable transitions and Tu is the set of unobservable transitions. We

assume that the firing count vector σ ∈Rn
≥0 has two components: σo ∈R

no

≥0 associated to the

observable transitions and σu ∈ R
nu

≥0 associated to the unobservable transitions, where n,no

and nu are respectively the corresponding sets.

Let us introduce the following definitions:

Definition 5.1. Given a vector σ= [σT
o σT

uo ]T ∈Rn
≥0, we define its observable projection as:

Γ(σ) =σo

�

This definition can also be applied to a firing sequence σ.

Definition 5.2. Given an untimed contPN 〈N ,m0〉 we define Nu the net obtained from N

removing all observable transitions. �

As shown in the introduction, observing the firing of an observable transition may allow

to reconstruct the firing of a transition that is not observable. To characterize this fact we

introduce the following definitions.

Definition 5.3. Given a marking m, an observable transition t ∈ To , and α> 0, we define the

set of explanations of t (α) at m as:

Σ(m, t (α)) = {σu ∈L (Nu ,m0) | m[σu〉m′, m′ ≥αPr e(·, t )}

where L (N ,m0) is the set of all fireable sequences in the net. We denote

Y (m, t (α)) = {σu ∈R
nu
≥0

| σu ∈Σ(m, t (α))}

the corresponding set of firing vectors. �

Thus Σ(m, t (α)) is the set of unobservable sequences whose firing is necessary to enable

t (α). Among the above vectors we want to select those whose firing vector is minimal, that

we call minimal e-vectors.

Definition 5.4. Given a marking m and an observable transition t ∈ To with its firing amount

α, we define the set of minimal explanations of t (α) at m:

Σmi n(m, t (α)) = {σu ∈Σ(m, t (α)) |∄ σ
′

u ∈Σ(m, t (α)) : σ
′

u ≤σu}

and we denote

Ymi n(m, t (α)) = {σu ∈R
nu

≥0 | σu ∈Σmi n(m, t (α))}

the corresponding set of e-vectors. �



85

4

..

..

1p

t3

p2 p3

t6

t4

0.7

t2t1
0.7 0.7

t5

0.7

p

Figure 5.3: Conservative and consistent contPN used in Ex. 5.5 and Ex. 5.24.

Example 5.5. Let us consider the contPN in Fig. 5.3 with To = {t4, t5, t6} and Tu = {t1, t2, t3}.

Assume the initial marking in the figure and an observation of the firing of t6 in an amount

0.7. Observe that this firing is not possible at this marking since the input places in t6, p1 and

p2, are empty initially. This means that some unobservable transitions were fired before the

firing of t6.

To fire t6(0.7) places p2 and p3 should be marked at least with 0.49 tokens. To put 0.49

tokens in p2 and p3, t1 and t2 should fire in an amount 0.49 or t3 should fire in an amount

0.7. Obviously, a combination of the firings of t1, t2 and t3 is also possible. Hence,

Σmi n(m0, t6(0.7))=
{

α ·0.49t1t2 +β ·0.7t3|α+β= 1,α,β≥ 0
}

Note that if t (α) is enabled at m, then Σmi n (m, t (α)) =;. Now let us introduce an algo-

rithm to compute the firing vectors of a set of minimal explanations. In the discrete case, the

algorithm returns all sets of minimal explanations. In the continuous case, if the returned

value of the algorithm is not unique then all combinations of the vectors obtained are also

minimal explanations (see the previous example), hence an infinite number of solutions are

obtained.

Algorithm 5.6. procedure COMPUTATION OF Ymin(m, t (α))

Let Γ :=
C T

u Inu×nu

A B
, where A := (m −αPr e[·, t ])T , B :=~0 T

nu
.

if A < 0 then

Choose an element A[i∗, j∗] < 0.

Let I+ = {i | C T
u [i , j∗] > 0}.

for all i ∈I+ do

add to [A | B] a new row [A[i∗, ·]+kC T
u [i , ·] | B[i∗, ·]+ke T

i
],

where ei is the i-th canonical basis vector and k =−
A[i∗, j∗]

C T
u [i , j∗]

.

⊲ the element A[i∗, j∗] is now set to 0

end for

Remove the row [A[i∗, ·] | B[i∗, ·]]



86

end if

Remove from B any row that covers other rows.

Each row of B is a vector in Ymin(m, t (α)).

end procedure

In previous algorithm, Cu is the restriction to the unobservable transitions of the inci-

dence matrix. Vector A contains the marking obtained after firing only the observable tran-

sitions, that can have negative components. To avoid this, a set of unobservable transitions

should fire, for this reason we consider only Cu . The algorithm stops when A ≥ 0. It is similar

to the one presented in [35] with two main differences. The first difference is that we have to

consider not only that a transition has fired, but also we have to take into account its firing

amount. The second difference is in the part in which we have to make linear combinations

of rows, where we can simply set to zero the element A[i∗, j∗] without taking into account

the integer constraint.

As mentioned, if the set of minimal explanations obtained in Alg. 5.6 is not a singleton

then we have infinite number of minimal explanations.

Proposition 5.7. Let 〈N ,m0〉 be an untimed contPN system. If its Nu is acyclic and AF, then

|Ymi n(m, t (α))| = 1.

Proof. It is proved in [25] that for discrete nets with Nu acyclic and AF, for all m and for all

firing transitions t (α), |Ymi n(m, t (α))| = 1 (Theorem 4). This result holds also in continuous

case since the same definition is used for Ymi n(m, t (α)).

Under the conditions of Prop. 5.7, we can define the basis marking mb(σo), as the mark-

ing reached from m0 by firing the sequence σo and its minimal explanation. The basis

marking can be computed recursively. Observe that mb(ε) = {m0}, i.e., when no observa-

tion has occurred, (i.e., σo = ε), the set of basis marking is equal to the initial marking.

Moreover, mb(σo to(α)) = mb(σo)+Cuσ̄u +αC [·, to ], where m
′

= mb(σo)+αC [·, to ] and σ̄u =

Ymi n(m
′

, to(α)), i.e., the basis marking in which the system can be after σo to(α) is reached

from the previous basis marking mb(σo) with the firing of the observed transitions at mb(σo)

and the e-vector σ̄u .

Finally, given an observable firing sequence σo , we can define a set of σo-consistent

markings as the set of all markings in which the system may be after the sequence σo .

Definition 5.8. Given a firing sequence σo we define

T (σo) = { m ∈R
|P |

≥0 | (∃σ ∈L (N ,m0))

Γ(σ) =σo ∧ m0[σ〉m}

the set of σo-consistent markings. �

We can also give an algebraic characterization of the set of the marking consistent with

the observation σo for AF systems. Since in contPN some markings can be lim-reachable

the set of σo-consistent markings should consider this case and these markings are lim-

reachable.

Proposition 5.9. Let 〈N ,m0〉 be an contPN system with its Nu AF. Given a firing sequence σo

the set of σo- consistent markings is

T (σo) = {m ∈R
|P |

≥0 | (∃σu ∈L (Nu ,mb)) m = mb(σo)+Cuσu }



87

p1 t1 ε3 
 

p3 t2 
p2 

2 

Figure 5.4: Untimed contPN used in Example 5.10

�

Proof. This result follows from the definition of basis marking as in the previous work for

discrete nets (Theorem 11 in [25]) and from Theorem 2.10 because σu ∈ L (Nu ,mb) =⇒

‖σu‖ ∈ F S(Nu ,mb) and implies that m is lim-reachable from mb(σo).

Example 5.10. Consider the net in Fig. 5.4, where To = {t1, t2} and Tu = {ε3}. Given the mark-

ing m = [0,1,0]T and the transition t2(0.5), the set of minimal explanations is Σ(m, t2(0.5)) =

ε3(0.25). Given the marking m = [1,0,0]T and the observable firing sequence σo = t1(1) the

basis marking mb,σo
= {[0,1,0]T } and the set of consistent markings according to Prop. 5.9 is

T (σo) = {[0,β,2(1−β)]T }, where β can assume any real value between 0 and 1.

5.3 Relaxing finite server semantics

In this chapter we consider the continuous part of the First Order Hybrid Petri Nets [7] that

can be seen as a particular relaxation or controlled finite server semantics.

Definition 5.11. A timed contPN system 〈N ,m0,V 〉 with relaxed finite server semantics is a

contPN system 〈N ,m0〉 together with a function V : T → R≥0 ×R>0 that associates to each

transition t j a firing interval V (t j ) = [V
j

m ,V
j

M
]. �

In the untimed case, a contPN evolves sequentially and only one transition is fired at a

time. When time is present, more than one transition can be fired at the same time. There

are two types of enabling: strong and weak enabling.

A transition t j is strongly enabled if ∀pi ∈
•t j , mi > 0. When ∃pi ∈

•t j such that mi = 0,

then t j is weakly enabled iff the empty input places are feed by other transitions. If an empty

input place cannot receive input flow then the transition is not enabled.

Observe that we consider the same notion of enabling given in [2], that is different from

the one used in [7]. The notion used in [2] prevents the firing of transitions that belong to an

empty cycle. See Section 4.3. in [6] for more details. However, considering the same notion

of enabling as in [2] does not imply that the flow of the transitions is computed by the same

formula. In fact, here the model is more general since the flow can take a smaller value.

The firing interval [V
j

m ,V
j

M
], associated to the transition t j ∈ T through the function V

has the following interpretation: V
j

m represents the minimum firing speed at which t j can

fire and V
j

M
represents the maximum firing speed at which t j can fire.

At a marking m, the instantaneous firing speed (IFS) (or the flow) of a transition t j , de-

noted v j is given by:



88

• if t j is not enabled then v j = 0;

• if t j is strongly enabled then it may fire with any firing speed v j ∈ [V
j

m ,V
j

M
];

• if t j is weakly enabled then it may fire with any firing speed v j ∈ [V
j

m ,V̄ j ], where

V̄ j = min

{

min
pi∈

•t j |mi=0

{

∑

tk∈
•pi

vk ·Post [tk , pi ]

Pr e[pi , t j ]

}

,V
j

M

}

(5.1)

The value V̄ j in (5.1), corresponding to a weak enabled transition t j , is computed in

such way that the marking of the input places of t j that are empty will not become nega-

tive. Hence, the flow of t j depends on the input flows in the empty input places. If the input

flow is greater than V
j

M
then the flow is bounded by this value. We assume that the net is well

defined, such that V̄ j ≥V
j

m for all reachable markings. Observe that in the case of V
j

m = 0 the

net is well defined.

The instantaneous firing speed is piecewise constant. It remains constant until a macro-

event happens. We have two types of macro-events: (1) internal macro-events appearing

when a place becomes empty and a new flow-computation is required to ensure the non-

negativity of the markings and, (2) external macro-events appearing when the external oper-

ator change the IFS of some transitions. Therefore, a timed contPN is a piecewise constant

system and the period in which the IFS is constant is called macro-period.

A procedure to compute the set of admissible IFS vectors at m is given in [7] based on a

set of linear equations and inequations. Let v be a feasible solution of the following linear

set: 





v j ≤V
j

M
∀t j ∈ T

v j ≥V
j

m ∀t j ∈ T

C [p, ·] ·v ≥ 0 ∀p ∈ P with m[p] = 0

(5.2)

The first two equations in (5.2) correspond to the bounds of the firing IFS that should

be respected by all transitions (strongly and weakly enabled), while the last equation corre-

sponds to (5.1). Since transitions that belong to an empty cycle cannot be fired, we have to

remove from the previous solutions those containing transitions that belong to empty cycles.

Let S (N ,m) be the set of all admissible IFS vectors at marking m.

Example 5.12. Let us go back to the Ex. 2.25 (system of Fig. 2.3) but assuming now a relaxed

finite server semantics with V (t1) = [0,1], V (t2) = [0,2], V (t3) = [0,1], V (t4) = [0,1] and V (t5) =

[0,0.5].

At τ= 0 since m0 = [1,1,0,0,0,1]T then t1 and t4 are strongly enabled and can fire each one

with any firing speed in the interval [0,1]. Let us assume that v1 = 0.7 and v4 = 0.9 are chosen.

Transition t2 is weakly enabled hence can be fired with any speed between 0 and 0.7, the input

flow in the input empty place p3 (i.e. v1). Assume it is fired with v2 = 0.5. The possible firing

speed for t3 is upper bounded by 0.5, the input flow in p4 since it is weakly enabled. Assume

the maximum firing speed is chosen, i.e, v3 = 0.5. The instantaneous firing speed of t5 is at

most 0.5, the maximum firing speed even if it is weakly enabled because the input flow in p5

is v4 = 0.9. Let v5 = 0.5.



89

Then, the system will start evolving using: v = [0.7,0.5,0.5,0.9,0.5]T and the marking evo-

lution is given by:

Σ1 =







ṁ1 =−v1 +v3 =−0.2

ṁ2 =−v4 +v5 =−0.4

ṁ3 =−v2 +v1 = 0.2

ṁ4 =−v3 +v2 = 0

ṁ5 =−v5 +v4 = 0.4

ṁ6 =−v2 −v4 +v3 +v5 =−0.4

(5.3)

This flow can be kept constant if no external event appears until τ= 2.5 when places p2 and p6

will become empty and an internal event will appear. Let us assume that at τ= 1, an external

operator changes the firing speed of transition t1 from v1 = 0.7 to a new value v1 = 0.1. At

this time, according to (5.3) the current marking is: m1 = [0.8,0.6,0.2,0,0.4,0.6]T . From that

moment, the system will evolve according to other system, given by:

Σ2 =







ṁ1 =−v1 +v3 = 0.4

ṁ2 =−v4 +v5 =−0.4

ṁ3 =−v2 +v1 =−0.4

ṁ4 =−v3 +v2 = 0

ṁ5 =−v5 +v4 = 0.4

ṁ6 =−v2 −v4 +v3 +v5 =−0.4

(5.4)

An internal event appears at τ= 1+0.5= 1.5 when place p3 empties (assuming no other ex-

ternal event happens before). At this time, the current marking will be: m2 = [1,0.4,0,0,0.6,0.4]T

and a new flow computation is required to ensure the positiveness of the markings. Now, t1

and t5 are strongly enabled and can be fired with any speed between [0,1] in the case of t1

and between [0,0.5] in the case of t5. Let us assume that both fire at the same speed with

v1 = v5 = 0.5. The other transitions are weakly enabled and firing all of them with 0.5 is an

admissible solution. Assume that these values are chosen. It is easy to see that this corresponds

to a steady-state. The evolutions of the markings of p1, p2 and p3 are illustrated in Figure 5.5.

5.4 State estimation of timed contPN with relaxed

finite server semantics

Through this section we assume that To = ;, that is, no transition is observed, and we try

to estimate the possible markings after some time has elapsed. This represents a time-

reachability problem, in the sense that the reachability space will depend not only on the

net structure N and the initial marking m0 but also on time. Let us define the following sets:

1. RSτ(N ,m0) = {m|∃ an admissible IFS vector v(·) : m = m0 +
τ∫

0

C · v (τ) ·dτ}, that is the

set of markings in which the net may be at time τ.

2. RS t (N ,m0) =
⋃

τ≥0 RSτ(N ,m0) that represents the set of markings reachable in the

timed system.

Example 5.13. Let us consider the contPN system in Fig. 5.2 with w = 1 and assume V (t1) =

[V 1
m ,V 1

M ] = [0,1] and V (t2) = [V 2
m ,V 2

M ] = [0,1]. At time τ = 0.1, the set of reachable markings



90

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

 

 

m
1

m
2

m
3

external macro−event

internal macro−event

Σ1 Σ3Σ2

Figure 5.5: Marking evolution of a continuous system under relaxed finite server semantics

is: RS0.1(N ,m0) = {[m1,m2]T |m1 ∈ [0.9,1],m2 ∈ [0,0.1],m1 +m2 = 1} because the maximum

number of tokens that can be removed from p1 is V 1
M

· τ = 0.1 and the maximum number

of tokens that can enter in p2 is V 1
M · τ = 0.1. At τ = 0.2, RS0.2(N ,m0) = {[m1,m2]T |m1 ∈

[0.8,1],m2 ∈ [0,0.2],m1+m2 = 1}. The reachability space of the timed system is: RS t (N ,m0) =

{[m1,m2]T |0 ≤ m1,m2 ≤ 1,m1 +m2 = 1}= RSut (N ,m0).

Note that we assume that the IFS vector is kept constant during a macro-period. As

shown before, some markings are reachable in the limit in the untimed continuous system

(see Ex. 2.7). In the case of (relaxed) finite server semantics, since the flow is kept constant

these markings can be effectively reached in finite time.

Example 5.14. Going back to the contPN in Fig. 5.2 but assuming now w = 2, it is obvious that

the marking [0,0]T is lim-reachable in the untimed model. While as timed, if V (ti ) = [0,1] then

v = [1,1]T is an admissible firing speed and [0,0]T is reached after 1 time unit.

If the minimum firing speed of each transition is “0” then all the markings that are lim-

reachable in the untimed net are reachable in the timed one.

Theorem 5.15. Let 〈N ,m0,V 〉 be a timed contPN and∀t j ∈T , V
j

m = 0. Then lim−RSut (N ,m0) =

RS t (N ,m0).

Proof. Obviously, RS t (N ,m0) ⊆ l im −RSut (N ,m0). In fact each marking m that is reach-

able in a timed net satisfies the state equation and, since we are assuming that empty cycles

cannot be fired, according to Theorem 2.10 the same firing sequence also ensures that m is

also lim-reachable in the untimed net.



91

2t

[1,1]

p t

[1,1]

(a) (b)

t

[1,1]

p1 1 1 1

Figure 5.6: ContPN systems in which some markings reachable as untimed cannot be

reached in the timed model.

Conversely, let us take m ∈ l im −RSut (N ,m0), therefore, according to Theorem 2.10,

exists a vector σ such that m = m0+C ·σ and a firing sequence σ with the same support that

is fireable at m0. Hence transitions in the support of σ cannot belong to empty cycles.

Let us construct a IFS v using σ that can be fired in the timed net. First, let V mi n
M

=

min
∀ j ,σ j>0

{V
j

M
} be the maximum firing speed at which a proportion of σ can fire and σmax =

max
j

{σ j }. Now, v =
V mi n

M

σmax ·σ can be fired in the timed net since for every v j =
V mi n

M

σmax ·σ j the

following is true: 0 ≤V mi n
M

·
σ j

σmax ≤V mi n
M

≤V
j

M
. If v is fired for a time σmax

V mi n
M

then m is reached

in the timed model.

In the previous theorem, the condition that the minimum firing speed of every tran-

sitions is zero is fundamental. If it is not satisfied there can exist markings that are lim-

reachable in the untimed system but not reachable in the timed one. This happens because

with a minimum firing speed greater than zero, some transition firing sequences are not

possible in the timed system.

Example 5.16. Let us go back to the timed contPN system of Fig. 5.2 with w = 2 and let us

assume now V (t1) = [0.1,0.1] and V (t2) = [0.1,0.1]. In the untimed system, m = [0,0.5]T is

reachable firing σ= t1 but in the timed net system it is not since v1(τ) = v2(τ) = 0.1,∀τ imply-

ing ṁ2(τ) = v1(τ)−v2(τ)= 0 with m2(0) = 0. Hence, place p2 remains empty.

The reachability space of a timed contPN system is, by definition, the union of all mark-

ings that can be reached in a timeτ≥ 0. In general, the reachability space is not a monotonous

function of time, i.e, given two time instants τ1≤ τ2, the condition RSτ1(N ,m0) ⊆ RSτ2(N ,m0)

does not necessarily hold.

Example 5.17. Let us consider the timed contPN in Fig. 5.6(a). For τ0 = 0, RS0(N ,m0) = {[0]}

but for τ1 = 1, RS1(N ,m0) = {[1]} because transition t1 has v1(τ) = 1,∀τ> 0.

However, under some conditions this monotonicity property holds.

Theorem 5.18. Let 〈N ,m0,V 〉 be a timed contPN and ∀t j ∈ T , V
j

m = 0. If τ1 ≤ τ2 then

RSτ1(N ,m0) ⊆ RSτ2 (N ,m0).

Proof. Since the minimum firing speed of each transition is null then all the markings that

are reachable in a time τ1 can be reached in τ2 just stopping all transitions after τ1.



92

Computation of the reachability space of a timed contPN system is very difficult as long

as it is necessary to compute the markings reached in a time τ for all τ ≥ 0. In the case

of contPN system that it is bounded as timed there exists a time instant τmi n such that
⋃

0≤τ≤τmi n
RSτ(N ,m0) = RS t (N ,m0). Moreover, if V

j
m = 0 for all t j ∈ T , according to The-

orem 5.18
⋃

0≤τ≤τmi n
RSτ(N ,m0) = RSτmi n

(N ,m0) and RS t (N ,m0) = RSτmi n
(N ,m0). In

other words, the markings reached before τmi n form the reachability space of the timed net

system.

Proposition 5.19. Let 〈N ,m0,V 〉 be a timed contPN and ∀t j ∈T , V (t j ) = [0,V
j

M
]. There exists

τmi n such that RSτ(N ,m0) = RS t (N ,m0), ∀τ≥ τmi n iff the net is bounded as timed.

Proof. “=⇒” Let us assume that the net is not bounded as timed. Then exists a place pi

whose marking is growing firing at least one transition t j . If mi is reached in minimum τ0

time units, then the infinite sequence mi ,mi +1,mi +2,mi +3, . . . is reached at (minimum)

time instants τ0 < τ1 < τ2 < τ3 < . . .. This is impossible because by hypothesis there exists

τmi n such that all the markings can be reached in this time. Hence the net is bounded as

timed.

“⇐=” If the net is bounded as timed the reachability space is a closed convex and each

marking can be reached in the finite time, thus there exists a τ such that every marking can

be reached in a time τ′ with τ′ ≤ τ. The minimum firing speed is assumed to be null, then

according to Theorem 5.18 all markings reachable in a time τ′′ ≥ τ are reachable in a time τ.

Taking τmi n = τ, the conclusion is satisfied.

Observe that in the previous theorem we require only time boundedness not bounded-

ness as untimed.

Example 5.20. Let us consider the net in Fig. 5.6(b). This net is not bounded as untimed be-

cause t1 can fire infinitely and the marking of p1 is unbounded. But this net is timed bounded

for the time intervals associated, and according to Prop. 5.19, there exists τmi n such that all

reachable markings can be reached in a time inferior to τmi n . For this system, τmi n = 0 because

RS t (N ,m0) = {m0}.

An interesting problem is the computation of such τmi n ensuring that each reachable

marking is reachable within this time. Here we characterize τmi n for a particular class of nets

(consistent and conservative) that although restricted, are significant for many real applica-

tions. The idea of these computations is to search for the longest time to reach the markings

at the border of l im −RSut .

Definition 5.21. Let 〈N ,m0〉 be a contPN system. A marking m1 ∈ l im −RSut is an extreme

marking if it is not inside of any line segment contained in lim −RSut . In other words, if

m1 = α ·m2 + (1−α) ·m3 where m2,m3 ∈ l im −RSut , implies α = 0 or α = 1, then m1 is an

extreme marking. �

Proposition 5.22. Let 〈N ,m0〉 be a consistent, conservative contPN system, each transition

can be fired at least once and m1 ∈ l im−RSut (N ,m0). If there exists a P-semiflow y such that

∀pi ∈ ||y ||, m1[pi ] 6= max
m∈l i m−RSut (N ,m0)

{m[pi ]} then m1 is not an extreme marking.

Proof. Let m1 ∈ l im −RSut (N ,m0) and y a P-semiflow such that ∀pi ∈ ||y ||, m1[pi ] 6=

max{m[pi ]}. Since in every place support of y , the marking is not maximal then ∃pk , pl such



93

that m1[pk ],m1[pl ] > 0 with pk , pl ∈ ||y ||. We construct two reachable markings such that

m1 is the midpoint of the line segment defined by these markings. Using the fact that pk

and pl are the support of the same P-semiflow and their corresponding markings at m1 are

neither maximum, neither minimum, there exists α> 0 such that m2 and m3 defined as:

m2[ph] =







m1[ph], if ph 6= pk and ph 6= pl

m1[ph]+α, if ph = pk

m1[ph]−
y f [pk ]

y f [pl ]
·α, if ph = pl

m3[ph] =







m1[ph], if ph 6= pk and ph 6= pl

m1[ph]−α, if ph = pk

m1[ph]+
y f [pk ]

y f [pl ]
·α, if ph = pl

are reachable according to Theorem 2.12. It is obvious that 1
2 (m2 +m3) = m1 and m1 6=

m2 6= m3 and according to Def. 5.21, m1 is not an extreme marking.

Using the previous proposition, the set of extreme markings can be computed for the

class of conservative and consistent contPN just ensuring that in each P-semiflow there ex-

ists one place marked with the maximum number of tokens. Let us denote by PM ⊆ P a

subset of places such that for every P-semiflow y i , |{||y i ||∩PM }| = 1. In other words, there

exists only one place in PM support of any P-semiflow y i . Considering pM : P → [0,1] such

that pM [pi ] = 1 if pi ∈ PM and pM [pi ] = 0 otherwise, let us present the following linear pro-

gramming problem (LPP):

min τ−M ·pT
M ·m

s.t.

{
m = m0 +C ·h

τ ·V m ≤ h ≤ τ ·V M

(5.5)

where, M is a big value such that the performance index corresponds to the minimum

time τ to reach the maximum number of tokens in places PM ; h = v ·τ and it is introduced to

obtain a linear state equation; the last constraints are the bounds for the IFS written in terms

of h; V m and V M are the vectors containing the minimum and the maximum for IFS.

Theorem 5.23. Let 〈N ,m0〉 be a consistent, conservative contPN system, each transition can

be fired at least once and ∀t j ∈ T , V
j

m = 0. For any τ≥ τmi n where τmi n = maxτk with τk the

solutions of LPP (5.5) for all possible sets PM , RSτ(N ,m0) = RS t (N ,m0).

Proof. According to Theorem 5.18, all markings reachable in a time τ< τmi n can be reached

in a time τmi n . We have to prove that all markings in RS t (N ,m0) can be reached in the

time τmi n . Since τmi n is the minimum time to reach all extreme markings, it is enough to

prove that all other markings at the border of the reachability space can be reached in τmi n .

Obviously, the interior points of the reachability space are reached in a time less than the

time to reach the markings at the borders.

Let m2 and m3 be two extreme markings. We are going to prove that m1, a linear combi-

nation of these two markings can be reached in a time equal to the minimum time needs to

reach m2 and m3. Since m2 and m3 are reachable, there exist 0 ≤ v 2 ≤ V M , τ2, 0 ≤ v 3 ≤ V M

and τ3, such that m2 = m0 +C ·v 2 ·τ2 and m3 = m0 +C ·v 3 ·τ3.

Computing m1 =α ·m2 + (1−α) ·m3 from the previous equations, we obtain: m1 = m0 +

C ·(α·v 2 ·τ2+(1−α)·v 3 ·τ3). Let us assume τ2 ≤ τ3, then m1 can be reached first obtaining an



94

intermediate marking: m′
1 = m0+C ·(α ·v 2 ·τ2+(1−α) ·v 3 ·τ2) and then m1 = m′

1+C ·(1−α) ·

v 3 · (τ3 −τ2). The marking m1 is reachable from m′
1 because the conditions of Theorem 2.12

are satisfied.

The time need to reach m1 is τ′ = α ·τ2 + (1−α) · (τ3 −τ2) = (2 ·α−1) ·τ2 + (1−α) ·τ3 ≤

(2 ·α−1) ·τ3 + (1−α) ·τ3 ≤α ·τ3 ≤α ·τ3 ≤ τ3.

Example 5.24. Let us consider the timed contPN system in Fig. 5.3 with V (t1) = V (t2) = V (t4) =

V (t5) = [0,1], V (t3) = V (t6) = [0,0.1]. This net has one P-semiflow: y = [5,5,5,2]T . Solving

LPP (5.5) for VM = {pi }, i = 1, . . . ,4 we obtain the following results: for p1 the minimum time

to reach m = [2.8,0,0,0]T is 20 t.u., for p2 the minimum time to reach m = [0,2.8,0,0]T is 20

t.u., for p3 the minimum time to reach m = [0,0,2.8,0]T is 20 t.u., for p4, the minimum time

to reach m = [0,0,0,7]T is 50 t.u. corresponding to the firing of h = [3.5;3.5;0;0;0;5]T . Hence

for τ≥ 50 all lim-reachable markings of the untimed model can be reached in the timed one.

The computation of such τmi n is important because for the state estimation without any

measurement, and if V m = 0, if the time is greater than τmi n then all reachable markings are

possible. If the time at which the estimation is performed is less than τmi n , the following

constraints provide the space of all possible markings, that, in fact, is the set RSτ(N ,m0):

m(τ)= m0 +C ·h(τ) (5.6)

τ ·V m ≤ h(τ) ≤ τ ·V M (5.7)

Obviously, for each marking, the corresponding vector h should be such that there is no

empty cycle that fires. In the case of conservative and consistent contPN with all transi-

tions fireable and V m = 0, if the time that is considered is greater than τmi n then the con-

straint (5.7) can be ignored and the possible states belong to RS t (N ,m0).

5.5 Going back to finite server semantics

In this chapter we have considered relaxed finite server semantics in which the main differ-

ence with respect to the original definition is that we are letting the firing speed of a transi-

tion belong to an interval and not be limited to its maximal value. In this part we are going

to consider controlled finite server semantics, showing how the previous results can be used

to prove some controllability aspects. We can define a control as an external command that

can slow down the firing speed of a transition and in some cases stop the flow. In the next

chapter we will motivate the choice of this control. Here let us see that this choice is consis-

tent with the discrete case where a controllable transition can be fired or not if it is enabled

but cannot fire if it is not enabled. Therefore the flow of a transition under controlled finite

server semantics, w (τ), will be given by:

{
w (τ)= f (τ)−u(τ)

b(τ) ≤ u(τ) ≤ f (τ)
(5.8)

where f is the flow of an autonomous contPN system with finite server semantics given

by (2.7) and b ≥ 0 is a vector that specifies the minimum firing speed of the transitions. We

assume here that all transitions are controllable, i.e., admit an external control.

It is immediate to observe that according to Definition 5.11 taking b = V m contPN with

finite server semantics with control is equivalent to relaxed finite server semantics.



95

Almost all results regarding the reachability of the relaxed model presented in the pre-

vious section are proved in the case in which the minimal firing speed of each transition is

zero, i.e., V m = b = 0. Considering this assumption, the flow of a controlled contPN system

with finite server semantics is given by the following set of equations:

{
w (τ)= f (τ)−u(τ)

0 ≤ u(τ) ≤ f (τ)
(5.9)

where the flow is kept constant during a macro-period, i.e., the flow changes either when

the controller change the nominal value of at least one transition or when a place becomes

empty.

A first question is which are the markings that can be reached in the controlled finite

server semantics. A direct application of Theorem 5.15 is:

Corollary 5.25. Let 〈N ,λ,m0〉 be a contPN system with finite server semantics with all tran-

sitions controllable. All markings lim-reachable in the untimed contPN system are reachable

in the controlled finite server semantics system.

Definition 5.26. Let 〈N ,λ,m0〉 be a contPN system with finite server semantics. 〈N ,λ,m0〉

is controllable if for all m f ∈RS t , m f can be reached in finite time.

According to Prop. 5.19, the characterization of the controllability arises:

Corollary 5.27. Let 〈N ,λ,m0〉 be a contPN system with finite server semantics with all tran-

sitions controllable. 〈N ,λ,m0〉 is controllable iff the net is timed bounded.

Proof. According to Prop. 5.19 there exists a finite τmi n such that all markings can be reached

at this time iff the net system is timed bounded. Therefore, the net system is controllable iff

the net system is timed bounded.

The computation of τmi n such that all markings can be reached in the timed model for

the class of conservative and consistent nets is based on some LPP 5.5. This value ensures

that for a time greater than τmi n there exists for sure a control law such that all markings can

be reached, i.e., it is the minimum time to reach all possible markings.

Corollary 5.28. Let 〈N ,λ,m0〉 be a conservative and consistent contPN with finite server se-

mantics with all transitions fireable and controllable. The minimum time to reach all mark-

ings in the reachability space is τmi n = maxτk with τk the solutions of LPP (5.5) for all possible

sets PM .

Example 5.29. Let us consider the conservative and consistent contPN in Fig. 5.3. Let us as-

sume finite server semantics with λ = [1,1,0.1,1,1,0.1]T . Considering that all transition are

controllable, this net is controllable since it is bounded. According to Ex. 5.24, τmi n = 50 t.u.

is the minimum time to reach all markings. Observe that m = [0,0,0,7]T is reached in a time

equal to 50 t.u. with the firing vector f = [3.5;3.5;0;0;0;5]T hence this bound is reached.





Chapter 6

On controllability and steady state

control

Summary

This chapter addresses several questions related to the control of timed continuous Petri

Nets under infinite server semantics. First, some results regarding equilibrium states and

control actions are given. In particular, it is shown that the considered systems are piecewise

linear, and for every linear subsystem the possible steady-states are characterized. Second,

optimal steady-state control is studied, a problem that surprisingly can be computed in poly-

nomial time, when all transitions are controllable and the objective function is linear. Third,

an interpretation of some controllability aspects in the framework of linear dynamic systems

is presented. An interesting finding is that non controllable poles are zero valued.

97



98

6.1 Introduction

In this chapter we will study some aspects regarding the control of contPN systems with

infinite server semantics. We are showing how an external command, called control is in-

troduced in the case of this systems and then we are studying some problems regarding the

steady state control. In general, given a contPN it is impossible to say which will be the steady

state, therefore, we will study all possible steady states, the equilibrium markings. For some

subclasses, an unique solution exists. In other cases, many equilibrium points exist but all

of them have the same flow, a desirable property in many situations.

To compute an optimal steady state, minimizing/maximizing a linear profit function, a

LPP is purposed. In the case in which all transitions are controllable, this LPP provide an

optimal solution. Otherwise, a branch & bound algorithmic extension can be used.

A bridge between controllability in classical linear theory and Petri nets is established.

The simplifying idea is to keep the fact that the dynamic model is multilinear, but ignore

the constraints that must be respected by the action: non-negative and upper bounded by a

function of the marking (state). It is shown that net systems generate different token conser-

vation laws, some of them leading to uncontrollability. Some conservation laws are gener-

ated by the P-flows (which depend only on the net structure) and zero valued poles appear

in the uncontrollable part of the system. Other zero valued controllable poles are related to

conservation laws that depend on the net structure, the firing rates and the token load of

P-(semi)flows. Finally, some controllable non zero poles may generate token conservation

laws for particular values of m0.

6.2 Controllability of linear systems

Let us consider a time-invariant linear system expressed by:

{
ẋ(τ) = A ·x(τ)+B ·u(τ)

y(τ) = S ·x(τ)+D ·u(τ)
(6.1)

where x(τ) ∈ X n is the state of the system, u(τ) ∈U m the input control and y(τ) ∈ Y l is the

output.

Definition 6.1. [45][72] A dynamic system (6.1) is said to be completely state controllable if

for any time τ0 and any final state, it is possible to construct an unconstrained control vector

u(τ) that will transfer the initial state x(τ0) to the final state x(τ) in a finite time.

A very well-known controllability criterion exists which allows to decide whether a con-

tinuous linear system is controllable or not. Given a linear system (6.1), the controllability

matrix is defined as:

C= [B · · · Ak B · · · A(n−1)B ] (6.2)

Proposition 6.2. [45][72] A linear continuous-time system (6.1) is completely controllable iff

C is full rank (i.e. r ank(C) = n). If C is not a full rank matrix then the controllable subspace

has dimension r ank(C).

Equation (6.1) corresponds to a state-space representation of the system description.

Other representation is the input/output one. Applying Laplace transform to the first equa-

tion in (6.1) and considering null initial conditions (x(0) = 0, which can always be obtained



99

by translation) we have: s ·x(s) = A ·x(s)+B ·u(s) and combining with the second equation,

the transfer-matrix function is obtained:

G(s) =
y(s)

u(s)
= S · (s · I − A)−1 ·B +D =

S ·ad j (s · I − A)B +∆(s)D

∆(s)
(6.3)

where, ad j (s · I − A) is the adjoint of the matrix (s · I − A) and ∆(s) the determinant of the

same matrix.

The roots of the denominator of the transfer function are called the poles of the system

and they can be obtained by solving the characteristic equation: ∆(s) = det (s · I − A) = 0.

Notice that the poles of the transfer function matrix and the eigenvalues of the matrix A are

the same.

The poles play a very important role in system analysis and design. For example, if all

poles have negative real part then the system is stable (for any bounded input, the output is

bounded). If one pole has positive real part then the system is unstable. Zero valued poles

correspond to integrators.

6.3 Controllability of timed continuous Petri nets:

problem statement

In section 3.2 it is shown that, in general, a contPN system under infinite server semantics

is not monotone neither w.r.t. firing speed of the transitions λ nor w.r.t. the initial marking

m0. Therefore, for the faster evolution of the system it is not necessary that all transitions

work at their maximum firing speed. Since a transition is associated in general to a machine

and this machine cannot work faster then its maximum firing rate, the only control action

we can consider is to brake it down.

The parameters λ associated with the transitions in timed contPNs with infinite server

semantics represent their firing rate. We assume that the only action that can be applied is

to reduce their firing flow i.e. throughput. If a transition can be controlled (its flow reduced

or even stopped), we will say that it is a controllable transition. The flow of a controlled

transition ti becomes fi −ui , where fi is the flow of the unforced system (i.e. defined as in

Eq. (2.9)) and ui is the control action 0 ≤ ui ≤ fi .

Definition 6.3. The flow of the forced (or controlled) timed contPN is denoted as w(τ) = f (τ)−

u(τ), with 0≤ u(τ) ≤ f (τ), where u(τ) represents the control input.

According to the above notation, the controlled flow vector is w = Λ ·Π(m) ·m −u ≥ 0,

with ui = 0 if ti is not controllable. Thus the state equation of controlled timed contPNs (i.e.

net systems in which all the transitions are controllable: ∀t ∈ T , u[t ] > 0 is possible at certain

instant) becomes:

{
ṁ =C · (Λ ·Π(m) ·m −u)

0≤ u ≤Λ ·Π(m) ·m
(6.4)

This is a particular hybrid system: piecewise linear with autonomous switches and dy-

namic (or state-based) constraints in the input.

Example 6.4. Let us consider the net system in Fig. 2.4 with λ= 1. It is ruled by the following

set of systems of the form (6.4):



100

• m ∈R1:







ṁ(τ) =








−1 1 1 0
1
2

−1 0 0
1
2

0 −1 0

−1 −1 3 0








m(τ)−








−2 1 1

1 −1 0

1 0 −1

−2 −1 3








u(τ)

0 ≤ u(τ) ≤





1
2

0 0 0

0 1 0 0

0 0 1 0



m(τ)

• m ∈R2:







ṁ(τ) =








−1 0 1 1
1
2

0 0 −1
1
2

0 −1 0

−1 0 3 −1








m(τ)−








−2 1 1

1 −1 0

1 0 −1

−2 −1 3








u(τ)

0 ≤ u(τ) ≤





1
2

0 0 0

0 0 0 1

0 0 1 0



m(τ)

• m ∈R3:







ṁ(τ) =








0 1 1 −1

0 −1 0 1
2

0 0 −1 1
2

0 −1 3 −1








m(τ)−








−2 1 1

1 −1 0

1 0 −1

−2 −1 3








u(τ)

0 ≤ u(τ) ≤





0 0 0 1
2

0 1 0 0

0 0 1 0



m(τ)

• m ∈R4:







ṁ(τ) =








0 1
2

1 −1

0 −1
2

0 1
2

0 0 −1 1
2

0 −1
2

3 −1








m(τ)−








−2 1 1

1 −1 0

1 0 −1

−2 −1 3








u(τ)

0 ≤ u(τ) ≤





0 0 0 1
2

0 1
2

0 0

0 0 1 0



m(τ)

�

Unless otherwise stated, during this chapter we will assume that all transitions are con-

trollable, i.e., can be slowed down by an external controlling agent. It may also be possible

to extend the approach to deal with uncontrollability of certain transitions. If transition t j

cannot be controlled, then it is obvious that the control input must be u j = 0 at every time

instant.

6.4 Control of timed contPNs and characterization

of steady-states

Controlling all transitions, almost all reachable markings of an untimed system can be reached

in the timed one. The only problem is at the borders when the marking of one place is

zero. In this case, the marking is reached at the limit (this is like the discharging of a ca-

pacitor in an electrical RC-circuit: theoretical total discharging takes an infinite amount



101

. .p1 p2

p3

t1 t2

t3

2

Figure 6.1: Timed continuous Join-Free system withλ= [1,1,1]T . It has a unique equilibrium

point for a given ud (for example md = [0.66,0.66,0.66]T for ud = [0,0,0]T ).

of time). For example, in the net system in Figure 6.1 the marking [0,1,1]T is reachable

in the untimed model. Considering now the timed model, stopping transitions t2 and t3

(u2 = f2 and u3 = f3) and setting u1 = 0, the marking [0,1,1]T is reached at the limit because

ṁ1(τ) =−λ1 ·m1(τ) ⇒ m1(τ) = e−λ1·τ ·m1(0). Note that it takes an infinite amount of time to

empty p1.

The steady-state markings we are interested to obtain (reference markings for the control

loop) are strictly positive (if the marking of a place is zero then the flows of its output tran-

sitions are zero, meaning total inactivity of the machines or processors being controlled).

These markings can be reached in finite time in the timed model. Let us first prove the fol-

lowing Lemma:

Lemma 6.5. If all transitions are controllable, any fireable sequence in the untimed model

that does not empty any place in the process, can be fired in the timed-controlled model in

finite time.

Proof. The same sequence can be reproduced, for example firing one transition each time

and stopping the others. Since the firings do not empty any place, they take finite time.

Proposition 6.6. If all transitions are controllable:

1) if m is reachable in the timed-controlled model then it is reachable in the untimed model

(i.e., RS t ⊆ RSut )

2) if m is reachable in the untimed model then it is lim-reachable in the timed-controlled

model (i.e., RSut ⊆ l im −RS t );

3) If m > 0 is reachable in the untimed model, it can be reached in finite time in the timed-

controlled model (i.e., RSut+⊆ RS t ).

Proof. 1) If m is reachable in the timed-controlled model then, according to (6.4), m(τ) =

m0 +
∫τ

0 C · w (θ) ·dθ = m0 +C ·
∫τ

0 w (θ) ·dθ. Let σ =
∫τ

0 w (θ) ·dθ ≥ 0. Since m is reachable

in the timed model no trap can be empty at m in Nσ (a marked place cannot be emptied).

Moreover, since σ is fireable in the timed model, a sequence with the same support can be

fired in the untimed model. Hence m is reachable in the untimed net according to Prop. 2.9.

2) If m is reachable in the untimed model from m0, there exists a sequence σ =

α1t1α2t2 . . .αk tk that leads from m0 to m passing throug the intermediary markings: m1,

m2, . . ., mk−1 . This sequence is equivalent to an infinite sequence σ1σ2 . . . defined as:



102

σi = (βi ,1α1)t1(βi ,2α2)t2 · · · (βi ,kαk )tk

β1, j = 1/2 j , ( j = 1, . . . ,k)

βi ,1 = 1/2i , (i = 1,2, . . .)

βi , j = 1
2

(∑i
l=1

βl , j−1 −
∑i−1

l=1
βl , j

)

, (i ≥ 2 j ≥ 2).

Intuitively, in the first round the proportion of firing is decreasing each time so that places

are never emptied by more than one half. In the following rounds, it is taken into account

how much the previous transitions in the sequence have been fired, and how much the ac-

tual transition has been fired until now, again to be sure that the reduction never exceeds

one half.

Formally, consider an intermediate step in which σ1 . . .σi−1 and only part of σi , namely,

(βi ,1α1)t1(βi ,2α2)t2 . . . (βi , j−1α j−1)t j−1,

have been fired. If we denote

c j =α j C (·, t j )

the actual marking can be described as

mi , j−1 = m0 +
(∑i

h=1
βh,1

)

c1 + . . .+
(∑i

h=1
βh, j−1

)

c j−1+

+
(∑i−1

h=1
βh, j

)

c j + . . .+
(∑i−1

h=1
βk, j

)

c k =

=
(

1−
(∑i

h=1
βh,1

))

m0 +
(∑i

h=1
βh,1

)

(m0 +c 1)+ . . .+
(∑i

h=1
βh, j−1

)

c j−1+

+
(∑i−1

h=1
βh, j

)

c j + . . .+
(∑i−1

h=1
βk, j

)

c k =

=
(

1−
∑i

h=1
βh,1

)

m0 +
(∑i

h=1
βh,1

)

m1+

+
(∑i

h=1
βh,2

)

c 2 + . . .+
(∑i

h=1
βh, j−1

)

c j−1+

+
(∑i−1

h=1
βh, j

)

c j + . . .+
(∑i−1

h=1
βk, j

)

c k =

=
(

1−
∑i

h=1
βh,1

)

m0 +
(∑i

h=1
βh,1 −

∑i
h=1

βh,2

)

m1 +
∑i

h=1
βh,2 (m1 +c 2)

+
(∑i

h=1
βh,2

)

c 2 + . . .+
(∑i

h=1
βh, j−1

)

c j−1+

+
(∑i−1

h=1
βh, j

)

c j + . . .+
(∑i−1

h=1
βk, j

)

c k = . . .

=
(

1−
∑i

h=1
βh,1

)

m0 +
(∑i

h=1
βh,1 −

∑i
h=1

βh,2

)

m1 +
∑i

h=1
βh,2m2

+
(∑i

h=1
βh,2

)

c 2 + . . .+
(∑i

h=1
βh, j−1

)

c j−1+

+
(∑i−1

h=1
βh, j

)

c j + . . .+
(∑i−1

h=1
βk, j

)

c k = . . .

=
(

1−
∑i

h=1
βh,1

)

m0 +
(∑i

h=1
βh,1 −

∑i
h=1

βh,2

)

m1+

+ . . .+
(∑i

h=1
βh, j−1 −

∑i−1
h=1

βh, j

)

m j−1+

+
(∑i−1

h=1
βh, j −

∑i−1
h=1

βh, j−1

)

m j + . . .+

+
(∑i

h=1
βh,k−1 −

∑i−1
h=1

βh,k

)

mk−1+

(∑i
h=1

βh,k

)

mk

Hence,

mi , j−1 ≥

(
i∑

h=1

βh, j−1 −
i−1∑

h=1

βh, j

)

m j−1



103

and so tr j
can be fired half of this amount and no place looses more that one half of its token

content. Therefore, each σi can be fired in the timed-controlled model (Lemma 6.5).

With respect to the convergence to σ, it can be proved that

βi , j =
(i + j −2)!

( j −1)!(i −1)!
·

1

2i+ j−1
,

which is the probability mass distribution of the negative binomial of parameters j , 1/2.

Applying induction, the proof is based on the fact that the cumulative distribution function

F j can be immediately expressed as a regularized incomplete beta function, i.e., F j (h) =

I1/2( j ,h +1), and that a regularized incomplete beta function enjoys the following property:

I1/2(a,b)− I1/2(a+1,b) =
(a+b −1)!

(a)!(b −1)!
·

1

2a+b
.

Observe that

β1, j =
1

2 j
=

(1+ j −2)!

( j −1)!(1−1)!
·

1

21+ j−1
,

βi ,1 =
1

2i
=

(i +1−2)!

(1−1)!(i −1)!
·

1

2i+1−1
.

Applying induction “following the rows”, assume it holds for βl ,k , with 1 ≤ l ≤ i −1 and

1≤ k ≤ n, and for βi ,k , with 1 ≤ k ≤ j −1. Let us prove it for βi , j :

βi , j =

∑i
l=1

βi , j−1 −
∑i−1

l=1
βi , j

2
=

βi , j−1

2
+

∑i−1
l=1

βi , j−1 −
∑i−1

l=1
βi , j

2

=
βi , j−1

2
+

1

2





i−1∑

l=1

(l+ j−3
j−2

)

2l+ j−2
−

i−1∑

l=1

(l+ j−2
j−1

)

2l+ j−1





=
βi , j−1

2
+

1

2





i−2∑

l=0

(l+ j−2
j−2

)

2l+ j−1
−

i−2∑

l=0

(l+ j−1
j−1

)

2l+ j





=
1

2

(i+ j−3
j−2

)

2i+ j−2
+

1

2
(I1/2( j −1, i −1)− I1/2( j , i −1))

=
1

2i+ j−1

(i + j −3)!

( j −2)!(i −1)!
+

1

2i+ j−1

(i + j −3)!

( j −1)!(i −2)!

=
1

2i+ j−1

(i + j −2)!

( j −1)!(i −1)!

This means that the amount in which transition t j is fired is α j times a cumulative dis-

tribution function, and so in the limit it converges to α j .

Observe that m is reached at the limit, being an infinite sequence.

3) Let m > 0 be such that a sequence σ=α1t1 · · ·αi ti · · ·α j t j · · ·αk tk exists that leads from

m0 to m in the untimed model. If the firing of σ does not empty any place, Lemma 6.5 can

be applied. Otherwise, we prove that a control law exists that brings the timed model from



104

m0 to a marking m′ = m0 +Cσ′ > 0 such that m can be reached from m′ using other control

law.

To construct σ′, let us assume without loss of generality that when firing ti and t j while

firing σ, at least one place in •ti and one place in •t j become empty. Define σ′ = α1t1 . . .

. . . 1
2
αi ti . . . 1

4
α j t j . . . 1

4
αk tk . This sequence can be fired in the timed-controlled model, since

the amounts in which ti and t j are fired ensure that no place is emptied.

The desired marking is reachable from m′ according to Prop. 2.9: m = m′+C ·σ′′ with

σ′′ =σ−σ′ ≥ 0, m′ > 0 implying the existence of a firing sequence with the same support as

σ′′ since all the transitions of the net system are fireable; and m > 0 means that no empty

trap exists at m.

Now, the control law to go from m′ to m is constructed. Since m > 0 and m′ > 0, the

sequence σ′′ =σ−σ′ = 1
2
αi ti . . . 3

4
α j t j . . . 3

4
αk tk can be reordered in such a way that no place

is emptied. For example, imagine σ′′ starts firing 1
2
αi ti . This would empty a place ph ∈ •ti .

However, since m[ph] > 0, at least one transition puts more tokens in ph than the amount

removed by the firing of 1
2
αi ti . Let tk be one of those transitions such that the marking of ph

is positive after firing it, σ′′ = 1
2
αi tiβr tr . . .βk tk . . ..

Let γ be the number of tokens in ph after firing βk tk , and define ǫ <
γ

αi+γ
. Clearly the

sequence 1
2
αi (1−2ǫ)tiβr (1−ǫ)tr . . .βk (1−ǫ)tk can be fired without emptying any place. Now,

m[ph] = Post [ph , tk ](1−ǫ)βk−Pr e[ph , ti ](1−ǫ)αi = (1−ǫ)(Post [ph , tk ]βk −Pr e[ph , ti ]αi ) =

(1−ǫ)γ> ǫαi . Hence, ǫαi tiǫβr tr . . .ǫβk tk can be fired now.

Clearly this procedure can be extended to the case in which several places are emptied.

Constructing a new firing sequence not emptying any place, Lemma 6.5 can be applied.

Definition 6.7. Let 0 ≤ ud ≤Λ ·Π(md ) ·md . Then md ∈ l im−RS t is an equilibrium point for

ud if C · (Λ ·Π(md ) ·md −ud ) = 0.

An equilibrium point represents a state in which the system can be maintained using the

defined control action. Given m0 (initial) and md (desired) markings, one control problem

is to reach md and then keep it. In this section we concentrate on the properties of steady

states.

Obviously, taking into account (6.4), md ∈ RS t is a equilibrium marking if together with

the control input ud is a solution of the following system:

C · (Λ ·Π(md ) ·md −ud ) = 0

0 ≤ ud ≤Λ ·Π(md ) ·md
(6.5)

Therefore, the steady-state flow of a controlled timed contPN w = Λ ·Π(md ) ·md −ud

is a T-semiflow of the net. Notice that if the net is not consistent, some transitions will be

stopped in steady-state, i.e., w will contain some zero components.

Given a ud , let us denote as M ud
all the equilibrium states it could maintain. That is,

M ud
= {m ∈ l im −RS t |C · (Λ ·Π(m) ·m −ud ) = 0 and 0 ≤ ud ≤ Λ ·Π(m) ·m}. The set M ud

can have one single element (Figure 6.1) or an infinite number of equilibrium markings in a

single configuration ({(p1, t1), (p2, t2), (p3, t3), (p4, t4), (p5, t5), (p7, t6)} in Figures 6.2 and 6.3),

or infinite equilibrium markings in several configurations ({(p1, t1), (p4, t2), (p7, t3), (p5, t4),

(p6, t5), (p8, t6)} and {(p1, t1), (p4, t2), (p7, t3), (p5, t4), (p6, t5), (p9, t6)} in Figures 6.4 and 6.5).

Next proposition characterizes all the equilibrium points of a net system with the same

control action in steady state, ud .



105

.

.

p1

p2 p3

t1

p4 p5 p6

p7 p8

t2 t3

t4 t5

t6

0.5

Figure 6.2: Timed continuous Marked

Graph system with λ = [1,1,1,1,1,1]T and

many equilibrium points in the same con-

figuration for a given ud .

Figure 6.3: Equilibrium points of the

timed continuous Marked Graph system in

Fig. 6.2 for ud = [0,0,0,0,0,0]T .

.

.

p1

p2 p3

t1

.

0.5 0.5

p4 p5 p6 p7

p8 p9

t2 t3

t4 t5

t6

Figure 6.4: Timed continuous Marked

Graph system with λ = [1,1,1,1,1,1]T and

many equilibrium points in several config-

urations for a given ud .

Figure 6.5: Equilibrium points of the

timed continuous Marked Graph system in

Fig. 6.4 for ud = [0,0,0,0,0,0]T .

Proposition 6.8. Let 〈N ,m0〉 be a consistent contPN system with all transitions fireable at

least once. Let 〈N ,λ,m0〉 be the timed contPN system and md an equilibrium point for ud .

Then mi ≥ 0 is also an equilibrium point (reachable in finite time if mi > 0) for ud iff:







B y
T · (md −mi ) = 0 (a)

C ·Λ · (Πd ·md −Πi ·mi ) = 0 (b)

0 ≤ ud ≤Λ ·Πi ·mi (c)

(6.6)

with B y a basis of P-flows.



106

Proof. =⇒ If mi is an equilibrium point then it is a reachable marking. The system is consis-

tent so: B T
y ·mi = B T

y ·md , i.e. (6.6.a) is necessary.

Both markings are equilibrium points: C ·(Λ·Πd ·md −ud ) = 0 and C ·(Λ·Πi ·mi −ud ) = 0.

Subtracting ud from both equations, (6.6.b) is obtained.

⇐= Equation (6.6.a) ensures the reachability of mi according to Prop. 2.12. The control

input ud can be applied (6.6.c), and using (6.6.b) mi is an equilibrium marking.

Lemma 6.9. Let 〈N ,λ,m0〉 be a timed contPN system and md , mi two equilibrium points for

ud . The flows at these markings are equal iff Πd ·md =Πi ·mi .

Proof. Flows are equal: iff Λ·Πd ·md −ud =Λ·Πi ·mi −ud , that is iff Λ·(Πd ·md −Πi ·mi ) = 0.

SinceΛ is a full rank matrix (by definition is a diagonal matrix with diagonal elements greater

than zero), this can happen iff Πd ·md =Πi ·mi .

.p1

p4

t4

2

3

2 2

t2

t3

p2 p3

t1

Figure 6.6: Conservative but not lim-live

continuous EQ system with several equilib-

rium points for λ = [1,1,1,1]T , with differ-

ent flow.

t1

p1

p2 p3

p4

t2 t3

2

2

3

15

Figure 6.7: Bounded and lim-live contPN

that has several equilibrium points with

distinct flow.

Example 6.10. For the timed contPN system depicted in Figure 6.6 the optimal flow w max =

[0.2,0.2,0.6,0.2]T is obtained with ud = [0,0,0,0]T and marking md = [0.2,0.6,0.6,0.6]T . Mark-

ing m′ = [0.1,0.3,1.8,0.3]T , is also an equilibrium point for ud = [0,0,0,0]T , and the flow is dif-

ferent w ′ = [0.1,0.1,0.3,0.1]T . Obviously, the conditions of the lemma do not hold, Πd ·md 6=

Π
′ ·m ′.

Let B x be a basis of T-flows of a net (i.e. C ·B x = 0).

Theorem 6.11. Let 〈N ,λ,m0〉 be a consistent timed contPN system with all transitions fire-

able at least once. In one configuration Π all the equilibrium points for a given u have the

same flow if

r ank

[
Λ ·Π | B x

B T
y | 0

]

= r ank

[
Π

B T
y

]

+|T |− r ank(C )

Proof. Let us assume that ma and mb are two equilibrium points under Π for the same con-

trol u. Obviously, the flow in steady state will be a T-semiflow: Λ ·Π ·ma −u = B x ·α (B x ·α=



107

∑

i
αi ·bxi

), and Λ·Π·mb −u = B x ·β. Now, subtracting both equations: Π·∆m−Λ
−1 ·B x ·ζ= 0

(∆m = ma −mb , ζ=α−β). Moreover, since these markings are reachable, B T
y ·∆m = 0.

[
Π | −Λ−1 ·B x

B T
y | 0

]

·

[
∆m

ζ

]

= 0 (6.7)

Under the rank condition, the vectorial spaces generated by the row vectors of [ΠT |B y ] and

[(Λ−1B x )T |0] are linearly independent. Hence the null element is the only vector that be-

longs to both of them, i.e., Λ−1B x ·ζ= 0. Moreover, Λ−1 is a diagonal matrix and the columns

in B x are linearly independent since they are a T-flows basis, and so ζ= 0. Therefore ma and

mb have the same flow.

Example 6.12. Let us consider the contPN system in Figure 6.7 with λ= [2,1,1]T . The config-

uration {(p4, t1), (p4, t2), (p3, t3)} with associated matrix Π can have several equilibrium points

with different flows because the conditions of Theorem 6.11 are not satisfied. For this system,

Π =





0 0 0 1
2

0 0 0 1

0 0 1 0



, B T
y =

[
1 1 1 0

1 0 4 1

]

, Λ−1 ·B x =





1
2

1

1



 and r ank

[
Π −Λ ·B x

B T
y 0

]

=

r ank

[
Π

B T
y

]

= 4. If u = [0,0,0]T , the equilibrium markings m1 = [15.25,1,0.75,0.75]T and

m2 = [15.5,0.8,0.7,0.7]T belonging to this configuration have the flows w1 = [0.75,0.75,0.75]T

and w2 = [0.7,0.7,0.7]T respectively. Thus, any intermediate value is also possible.

For the class of Equal Conflict contPN, if the conflicting transitions are not controlled

(otherwise the visit ratio is changed by the control), we can prove that all equilibrium points

in a configuration have the same flow under the same control. Obviously, the result can be

extended considering that the conflict transitions are controlled but in such way that the

visit ratio is not changed.

Theorem 6.13. Let 〈N ,λ,m0〉 be a bounded and lim-live EQ timed contPN system. Given ud

in which transitions in conflict are not controlled, there exists at least one equilibrium point.

If there are more than one, all of them have the same flow.

Proof. The throughput in steady state for unforced (ud = 0) continuous EQ nets can be com-

puted using a linear programming problem [42]. More precisely, the throughput is obtained

looking for the slowest P-semiflow. The solution is unique with respect to the flow, but there

can exist more than one marking that respect the P-semiflows and have the same associated

flow.

Assume •t = p, i.e., t is a non synchronizing transition, and ud [t ] 6= 0. If the steady-

state marking of p is m[p], we can reduce the value of m[p] to m′[p] = m[p]−
Pr e[p,t]

λ[t]
·ud [t ]

corresponding to the same steady state flow. This will be: λ[t ] ·
m′[p]

Pr e[p,t]
= λ[t ] ·

m[p]

Pr e[p,t]
−

ud [t ], the same as in the original system (with ud [t ] 6= 0). For every controlled transition

we can apply the same technique (in the case of synchronizations we remove tokens from all

input places) obtaining an equivalent system with ud = 0. For this system all the equilibrium

points have the same flow.

Figure 6.1, 6.2 and 6.4 are CF (thus EQ). Therefore, this theorem ensures that all their

equilibrium points have the same flow for any constant control input ud . The following



108

theorem provides a sufficient condition to guarantee that the equilibrium point of a config-

uration is unique.

Theorem 6.14. Let 〈N ,λ,m0〉 be a bounded and lim-live EQ timed contPN system. If

r ank

[
Πd

B y
T

]

= |P |

and conflict transitions are not controlled, then at most one equilibrium marking exists under

Πd for a given ud .

Proof. Let r ank

[
Πd

B y
T

]

= |P | and md , mi (mi = md +∆m) two equilibrium points under

Πd for ud . Using Theorem (6.13) all equilibrium points with the same action ud have the

same flow, i.e., Πd ·md =Πd ·mi or Πd ·∆m = 0. Moreover, B T
y ·mi = B T

y ·md , or B T
y ·∆m = 0.

Under the rank assumption, the previous system has only one solution, ∆m = 0. So md =

mi . Hence, Πd has at most one equilibrium point.

Example 6.15. Let us consider the net in Figure 6.4 and let

Π=












1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0












define one configuration. One P-flow basis is:

B T
y =








0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0

1 1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0 1








.

Since r ank

[
Πd

B y
T

]

= 8 < 9 (the number of places) this configuration may have an infi-

nite number of equilibrium points. In particular (Fig. 6.5), for m0 = [1,1,1,0.5,0,0,0.5,0,0]

the configuration 1
(

{(p1, t1), (p4, t2), (p7, t3), (p5, t4), (p6, t5), (p8, t6)}
)

has an infinite number

of equilibrium points.

But, for m0 = [1,0,0,0.5,0,0,0.5,0,0] the contPN system has only one equilibrium marking.

Thus, the condition in Theorem 6.14 is sufficient, but not necessary.

Corollary 6.16. Let N be a conservative and consistent JF contPN. Given ud and assuming

that the conflict transitions are not controlled, for any m0 only one equilibrium point exists in

〈N ,λ,m0〉.

Proof. Since the net is JF, all the conflicts are CEQ (if t1, t2 ∈ p•,•t1 = •t2 = p), thus the net

can be mapped into CF [42]. A CF net is conservative iff it is strongly-connected implying

r ank(C ) = |T |−1 = |SEQS|−1 [75]. A conservative and consistent contPN with r ank(C ) =

|SEQS|−1 is structurally lim-live and bounded [64] and Theorem 6.14 can be applied.



109

p6

t3 t4

p5

p4

t2

p3

p2

t1

p1

t

Figure 6.8: Timed contPN (marked graph) with several equilibrium points.

6.5 Optimal control for steady state

In production control, the profit function frequently depends on production sales, work in

process (WIP) and amortization of investments. Under linear hypothesis for fixed machines

(i.e. λ defined), the profit function may have the following form: hT ·w − z T ·m −q T ·m0,

where w is the throughput vector, hT a price vector w.r.t. flows, m the average marking, z T

is the WIP cost vector and qT represents depreciations or amortization of the initial invest-

ments (over m0).

Let us consider the following linear programming problem:

max hT ·w − zT ·m −qT ·m0

s.t . C ·w = 0, w ≥ 0 (a)

m = m0 +C ·σ, m,σ≥ 0 (b)

wi =λi ·

(
m j

Pr e[p j ,ti ]

)

−v [p j , ti ],∀ti ∈ T,∀p j ∈
•ti (c)

(6.8)

where v [p j , ti ] are slack variables.

The equations correspond to: (a) w is a T-semiflow; (b) fundamental equation (m is a

reachable marking); (c) firing law for infinite server semantics.

Theorem 6.17. Let 〈N ,λ,m0〉 be a timed contPN system and let 〈w ,m, v〉 be a solution of

LPP (6.8), then

1. For every transition ti , let ui = minp j∈
•ti

v [p j , ti ] be its control input. Then u is the

control in steady-state for m. (In the case of |•ti | = 1 the corresponding slack variable is

the same as the control input.)

2. If for every ui > 0 transition ti is controllable, then u is an optimal steady-state control.

Proof. In steady state, wi = λi · min
p j∈

•ti

(
m j

Pr e[p j ,ti ]

)

−ui . Choosing ui = minp j∈
•ti

v [p j , ti ] for all

transitions, the equation (6.8.c) is verified. If all ti with ui 6= 0 can be controlled, the control

can be applied in steady state; then the command is optimal.

For mono T-semiflow nets (conservative and consistent that have a unique minimal T-

semiflow) (or nets reducible to mono T-semiflow [42]), the equation (6.8a) can be replaced

with the equivalent one: w =α ·x (6.8a’) with x the minimal T-semiflow.

If the net is consistent and every transition can be fired at least once, the equation (6.8b)

is equivalent to: B T
y ·m = B T

y ·m0, m ≥ 0 (6.8b’).

Example 6.18. The solution of LPP 6.8 is not necessarily unique (as we mentioned in the pre-

vious section). Let us see which is the maximum throughput in steady-state for the contPN in



110

Figure 6.8 with λ= [1,1,1,1]T and m0 = [1,0,3,3,1,0]T . Notice that this is a marked graph net

system, hence is monotone and the optimal control should be ud = 0. Indeed, LPP (6.8) with

(6.8a’) and (6.8b’) leads to:

max w1

s.t . w1 = w2 = w3 = w4 (6.8a’)

m1 +m2 = m5 +m6 = 1

m3 +m4 = 6

}

(6.8b’)

w1 = m1 −u1

w2 = m2 −v22

w2 = m3 −v23

w3 = m4 −v34

w3 = m5 −v35

w4 = m6 −u4

u1,u4 ≥ 0

w ,m, v ≥ 0

(6.9)

One optimal solution of this LPP is: w1 = 0.5, md = [0.5 0.5 3.5 2.5 0.5 0.5]T and v =

[0,0,3,2,0,0]T . Therefore u2 = min(v22, v23) = 0, u3 = min(v34, v35) = 0 and ud = [0 0 0 0]T is

an optimal control in steady state (ud = 0 leads always to optimal flow in marked graphs).

For sure the solution is not unique: all the markings that satisfy (6.10) are also solution of

(6.9).







m1 = m2 = m5 = m6 = 0.5

m3 +m4 = 6

m3,m4 ≥ 0.5

(6.10)

Up to now we have considered that all transitions are controllable. What happens when

some are uncontrollable? In the extreme case, in which all transitions are uncontrollable (the

unforced system), the problem to compute the optimal steady-state (maximum throughput)

was addressed in [42] and can be solved using a branch and bound algorithm. Let us assume

T = TC ∪TN , where TC is the set of controllable transitions and TN the set of the uncontrol-

lable transitions.

When all synchronizations are controllable ({t s.t. |•t | > 1} ⊆ TC ), the problem remains

polynomial time. In fact, it is the same problem as (6.8) in which slack variables are not

allowed for the uncontrolled transitions, i.e., v [p j , ti ] = 0 for all ti such that |•ti | = 1. In this

case, the solution of (6.8) can be reached with a specific control.

When a synchronization is not controllable, the problem may be more difficult. The

corresponding slack variable cannot be used. As in [42] we can relax (6.8) and the flow of

non controllable transitions will be upper bounded with inequalities written for every input

place:



LAWS 111

p1 p2t1 t2
.

Figure 6.9: Join-Free timed contPN system with λ= [1,1]T , t1 ∈TN , t2 ∈TC .

max hT ·w − z T ·m −q T ·m0

s.t . C ·w = 0, w ≥ 0 (a)

m = m0 +C ·σ, m,σ≥ 0 (b)

wi =λi ·

(
m j

Pr e[p j ,ti ]

)

−v [p j , ti ],

∀p j ∈
•ti , ti ∈ TC , v [p j , ti ] ≥ 0 (c)

wi =λi ·

(
m[p]

Pr e[p,ti ]

)

, if p = •ti , ti ∈ TN , (d)

wi ≤λi ·

(
m j

Pr e[p j ,ti ]

)

,∀p j ∈
•ti , ti ∈ TN . (e)

(6.11)

Because of (6.11.e), the LPP (6.11) provides in general a non tight bound, i.e. the solu-

tion may be non reachable. This occurs when none of the input places of a non controllable

join transition really restricts the flow of that transition. Similar to [42], a branch and bound

algorithm can be used. For every non controllable join transition t j , a number of |•t j | LPPs

should be computed by adding an equation that relates the flow of t j with the marking of

each one of its input places. Thus, a very similar algorithm with the one presented in Sec-

tion 2.3.4, can be used in this situation.

6.6 Approaching dynamic control: on controllabil-

ity and marking invariance laws

6.6.1 Definition of controllability

Controllability with constrained inputs

Assume the systems under study are described by the equations in (6.4). The classical control

theory for linear systems cannot be applied because we are working inside a polytope (not

in a vectorial space) and our control input is non negative and dynamically bounded.

Definition 6.19. Given Σ= 〈N ,λ,m0〉 and a set of controlled transitions TC ⊂ T , a marking

m f is said to be a lim-reachable steady-state when there exists a constrained control action

u(τ) on TC that is able to drive the marking from m0 to m f (in finite or infinite time) and

maintain it.

Definition 6.20. The timed contPN 〈N ,λ〉 with a set of controlled transitions TC ⊂ T is con-

trollable if ∀m0 and ∀m f ≥ 0 such that B T
y ·m0 = B T

y ·m f , m f is a lim-reachable steady-state.

Unfortunately, the controllability of all transitions is required in order to obtain a con-

trollable contPN system.



112

Example 6.21. Let us consider the net system in Figure 6.9 and assume that only t2 is con-

trollable. The marking m = [1,0]T cannot be an equilibrium marking because in steady-state

w1 = w2 so 1 = 0−u[t2] which implies a negative command on t2. Therefore, m cannot be

maintained in the timed and controlled model. In fact, any marking m′ with m′[p1] > m′[p2]

is non maintainable, because ṁ′[p1] =−m′[p1]+m′[p2]−u[t2] ≤−m′[p1]+m′[p2] < 0. Hence,

the timed JF model of Figure 6.9 is not controllable with TC = {t2}.

Proposition 6.22. A pure and conservative timed contPN 〈N ,λ〉 is controllable iff all transi-

tions are controllable i.e. T = TC .

Proof. The sufficient condition is immediate: if all transitions allow a control action, the net

is controllable. We can reach any desired marking (maybe at the limit) (Prop. 6.6) and then

we stop all transitions (i.e. u = f ).

Necessity: Let m0 be an initial marking that puts tokens in all the P-semiflows and let us

assume ti is not controllable. We are going to prove that a marking m satisfying B T
y ·m0 =

B T
y ·m exists that cannot be maintained.

Let

βi = max
{

b|m ≥ b ·Pr e[·, ti ] and B T
y ·m0 = B T

y ·m
}

(6.12)

In fact, βi represents the enabling bound of ti [16]. Let m be a solution of (6.12). Since

βi is obtained through maximization, and the P-semiflows are all marked, for sure m[p j ] >

0,∀p j ∈
•ti .

Since the net is pure and conservative, ti
•∩ (T \ •ti ) 6= ;, then at least one place in ti

•

must be empty (otherwise the enabling degree could have been greater). Clearly this place

cannot remain empty if ti is not controlled.

Classical approach: controllability without constrained inputs

During the rest of the chapter, a relaxation of the equations modeling the system is proposed,

eliminating the restrictions related to the bounds of the control input. Therefore, the system

under study is relaxed to the non-linear dynamical equation of (6.4):

ṁ =C ·Λ ·Π(m) ·m −C ·u (6.13)

The goal is to understand better the behavior of contPN and interpret classical results in

the contPN setting. In many cases, the regulation of the system is done to a point (desired

marking + desired input) that is not at the boundary. In this case, a region around it can be

defined in which the constraints are not active. Hence, this study is interesting when the

system is considered in a local sense around these non boundary points.

Basically, the number of null eigenvalues are explored, eigenvalues that introduce token

conservation laws. It will be seen that some of these conservation laws are given by the net

structure N (the P-flows, Subsection 6.6.2), others depend on 〈N ,λ〉 (Subsection 6.6.3) and

others depend also on the particular marking 〈N ,λ,m0〉 (Subsection 6.6.4).

For classical linear systems controllability has been thoroughly studied. For contPN sys-

tems, every Π(m) leads to a linear and time-invariant dynamic system with controllability

matrix C(m):

C(m) =−
[

C · · · (C ·Λ ·Π(m))n−1 ·C
]

(6.14)



LAWS 113

Proposition 6.23. If all transitions are controllable, ∀m ∈ l im −RS t , the spaces generated by

the columns of C(m) and C are equal. Thus r ank(C(m)) = r ank(C ) = |P |−dim(B y ).

Proof. Since the columns of C are contained in C, it is immediate that the space generated

by the columns of C contains the space generated by the columns of C . Thus we only need

to prove that it cannot be greater. Observe that (C ·ΛΠ(m))n−1 ·C =C · (ΛΠ(m) ·C )n−1.

Thus, C=C ·[I · · ·(Λ·Π(m)·C )n−1]. Notice that any P-flow of C is also a P-flow of C. Hence,

r ank(C) = r ank(C ) = |P |−dim(B y ).

Notice that C(m) depends on Π(m), but the space generated by its columns is always

the same, just that one defined by matrix C . This is something that can be easily expected

because all transitions have been assumed to be controllable.

6.6.2 Uncontrollable zero valued poles and decomposition

Token conservation laws given by the net structure (P-flows) produce non controllable con-

tPN systems in a classical sense. This was observed in [57] and happens because the P-

flows based token conservation laws make |P |− r ank(C ) places linearly-redundant. Using

a proper similitude transformation (the QN matrix that will be given in Definition 6.25) it is

possible to obtain a decomposition into a controllable subsystem and an uncontrollable one

(similar to the Kalman controllable canonical form). The uncontrollable subsystem has only

zero valued poles and they will be called uncontrollable (zero) valued poles.

Example 6.24. Let us consider the contPN system in Figure 6.8 with λ= [α,β,γ,δ]T . This net

has three linearly independent token conservation laws derived from P-(semi)flows: m1+m2 =

1,m3 +m4 = 6 and m5 +m6 = 1. Thus ṁ1 + ṁ2 = ṁ3 + ṁ4 = ṁ5 + ṁ6 = 0, which means that

three uncontrollable zero valued poles will appear.

The following transformation matrix is used to change the reference in which the mark-

ing vector is expressed. This will be useful for studying the controllability of the system. The

kind of transformation matrix to be considered will have in this context a particular struc-

ture.

Definition 6.25. Let N be a contPN. A transformation matrix QN , is formed with rows from

a basis of P-flows and elementary vectors in order to build a full rank matrix.

Example 6.26. For the timed models in Figure 6.9 and Figure 6.8, P-flow basis are respectively:

B T
y1 =

[
1 1

]

and B T
y2 =





1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1



 (6.15)

Adding elementary vectors, Q matrices can be, for example:

Q1 =

[
1 1

0 1

]

and Q2 =












1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1












(6.16)



114

The system described by equation (6.13) can be rewritten in new coordinates m̄, when

matrix QN is used as a state vector transformation matrix. Let m̄ =QN ·m.

Definition 6.27. Let 〈N ,λ,m0〉 be a timed contPN described by equation (6.13), where QN is

a transformation matrix of N . Then

•

m̄=QN CΛΠ(m)Q−1
N m̄ −QN C u (6.17)

will be called a Q-canonical representation of equation (6.13).

Theorem 6.28. Let Σ= 〈N ,λ,m0〉 be a contPN system, then:

1) In the linear system under Π(m) the number of zero valued poles is given by the dimen-

sion of the right annullers of C ·Λ ·Π(m).

2) The number of non controllable poles is |P |− r ank(C ) and they are zero valued.

Proof. 1) The zero eigenvalues of the matrix CΛΠ(m) are:

CΛΠ(m) ·v = 0 ·v = 0

2) Making the change of variables m̄ =QN ·m, (6.17) is obtained. For each P-flow of the

basis one zero row appears in QN ·C .

Without loss of generality, assume that the i th row of QN ·C is zero. Then the i th row

of QN CΛΠ(m)Q−1
N

is zero. Therefore the value of the state variable m̄i is never affected by

other state variables, or by the input, thus m̄i is uncontrollable. Each one of these m̄i comes

from a P-flow equation, a linear constraint among variables (i.e. token conservation law:

bi
T ·m̄ = bi

T ·m̄0). Thus the pole value associated to m̄i is zero and there exist dim(B y ) un-

controllable zero valued poles. According to Proposition 6.23, r ank(C(m)) = |P |−dim(B y ),

then there exist no more uncontrollable poles. Otherwise stated, if there are more zero val-

ued poles, they are controllable (as we will see in Section 6.6.3).

Example 6.29. Let us consider the contPN system in Figure 6.9. It has the following equation:

ṁ =

[
−1 1

1 −1

]

·m −

[
−1 1

1 −1

]

·u (6.18)

The controllability matrix of this timed net is the following:

C=

[
−1 1 2 −2

1 −1 −2 2

]

Its rank being one, it has only one controllable pole (equal to −2) and one non controllable

pole (equal to 0). A transformation matrix is:

Q=

[
1 1

0 1

]

and, the corresponding Q-canonical representation is:

•

m̄ =

[
0 0

1 −2

]

m̄ −

[
0 0

1 −1

]

u



LAWS 115

6.6.3 Token conservation laws and controllable zero valued

poles

In addition to those expressed by P-flows, other token conservation laws corresponding to

zero valued poles can appear.

Example 6.30. Let us consider the contPN system shown in Figure 6.8 with λ = [α,β,γ,δ]T .

Clearly, ṁ1+ṁ2 = ṁ3+ṁ4 = ṁ5+ṁ6 = 0 are token conservation laws that correspond to zero

valued uncontrollable poles (as mentioned in Example 6.24).

If we fix m2,m3 and m5 as state variables then m1,m4 and m6 are redundant. The linear

dynamic system corresponding to the configuration {(p1, t1), (p2, t2), (p5, t3), (p6, t4)} is:







ṁ2 =−β ·m2 +α · (1−m2) =−(α+β) ·m2 +α

ṁ3 =−β ·m2 +γ ·m5

ṁ5 =−γ ·m5 +δ · (1−m5) =−(γ+δ) ·m5 +δ

Eliminating all variables in the right hand side:

−
β

α+β
·ṁ2 +

γ

γ+δ
·ṁ5 +ṁ3 =

γ ·δ

γ+δ
−

α ·β

α+β
= q

Therefore, if q = 0 a new token conservation law appears introducing an additional zero val-

ued pole (that it is not rooted in a P-flow): −
β

α+β ·m2 +
γ

γ+δ ·m5 +m3 = const ant. If q 6= 0,

sooner or later the above configuration will be left. This is evident since at least one of the vari-

ables (m2,m3 or m5) will grow (or decrease) while the system is in the configuration. This can

also be deduced using the fact that the steady state flow has to be a T-semiflow of the net. Since

it has only one minimal T-semiflow [1,1,1,1]T , in steady state: f1 = f2 = f3 = f4.

f1 = f2 =⇒α ·m1 =β · (1−m1) =⇒ f1 =
α ·β

α+β

f3 = f4 =⇒ γ ·m5 = δ · (1−m5) =⇒ f3 =
γ ·δ

γ+δ

f1 = f3 ⇐⇒
α ·β

α+β
=

γ ·δ

γ+δ
⇐⇒ q = 0

Thus, if q 6= 0 the configuration will not be an equilibrium configuration.

In this case, the system has the following poles: (0,0,0,-2,0,-2) (for λ= [1,1,1,1]T ) and three

linearly independent P-flows. The fourth zero valued pole that appears in the configuration is

given by a new token conservation law which depends on λ.

Obviously, the non controllable poles (P-flow related) appear in all the configurations. On

the other hand, the controllable poles can have different values depending on the configura-

tion. For example, if we consider the same system and the configuration {(p1, t1),(p3, t2),(p5, t3),

(p6, t4)}, the poles are: (0,0,0,-1,-1,-2).

Example 6.31. Let us see that for a specific value of λ, additional token conservation laws and

zero valued poles can appear. Let us consider the net in Figure 6.7 with λ = [α,β,γ]T and let

us consider the configuration {(p4, t1), (p4, t2), (p3, t3)}. For place p2 we can write:

ṁ2 = f1 − f2 =α ·
m4

2
−β ·m4 = m4 ·

(α

2
−β

)



116

.p1

p2 p4

t1

t2 t4

p3 p5

t3

Figure 6.10: Choice-Free timed contPN system for Example 6.32.

1. α
2
= β =⇒ ṁ2 = 0. In this situation, a new zero valued pole introduces a new token

conservation law. For example, if α = 2,β = 1,γ = 1 the poles of this configuration are:

(0,0,0,−4).

2. α
2
>β=⇒ ṁ2 > 0. Now, the marking of p2 will increase and since the net is bounded, this

configuration will be left sooner or later. Moreover, a positive pole appears. If λ= [3,1,1]

the configuration poles are: (0,0,0.0981,−5.0981).

3. α
2
<β=⇒ ṁ2 < 0. The marking of p2 will decrease and the only solution to be an equilib-

rium configuration is to reach the deadlock (m4 should be 0). All the controllable poles

are negative. For λ= [1,1,1] they are (0,0,−0.1771,−2.8229).

So, other token conservation laws can appear depending on λ (here when α
2
= β) that

introduce new zero valued but controllable poles.

6.6.4 Token conservation laws and controllable non zero val-

ued poles

New token-invariant laws may appear depending on 〈N ,λ,m0〉 (i.e. depending not only

on the net structure as those derived from the P-semiflows), but also on λ and the precise

marking m0. Let us present a simple case.

Example 6.32. Consider now the contPN in Figure 6.10 with λ= [α,β,δ,γ]T . There exist two

P-semiflows: m1+m2+m3 = 1 and m1+m4+m5 = 1. Then there are only three state variables,

for example m1, m3 and m5. The dynamic linear system associated with the configuration

{(p1, t1), (p2, t2), (p3, t3), (p4, t4)} is:







ṁ1 = δ ·m3 −α ·m1

ṁ3 =−δ ·m3 +β · (1−m1 −m3)

ṁ5 =−δ ·m3 +γ · (1−m1 −m5)

Nevertheless, if β = γ, ṁ3 − ṁ5 = −β · (m3 −m5). Making a linear transformation in order to

compute: m̄35 = m3 −m5, then ˙̄m35 = −β · m̄35. If m0[p3] = m0[p5] =⇒ ˙̄m35 = 0. In this case,

the pole is different from 0, and depends on m0, thus m3 = m5 is a token conservation law that

is not rooted in a zero valued pole.



117

6.7 Case study

Let us consider the manufacturing system sketched in Fig. 2.1 which consists in three ma-

chines (M1, M2 and M3) and two intermediate buffers (Bu f f er1 and Bu f f er2). Assume

that each operation takes 1 time unit. Hence, the firing rate of all the transitions is 1.

This net has 5 P-semiflows (y1 = p1 +p2 +p9 +p10 +M1, y2 = p3 +p11 +Bu f f er1, y3 =

p4+p5+p12+p13+M2, y4 = p6+p14+Bu f f er2, y5 = p7+p8+p15+p16+M3) introducing in

every configuration 5 uncontrolled zero valued poles. Computing the optimal steady-state

(maximum flow) for the controlled contPN, the solution is: w = 0.2 ·1 and u = 0.

This net has γ= 256 configurations and for each one Theorem 6.11 tells that all the equi-

librium points have the same flow in steady state (i.e. 0.2) for the same control input u = 0.

Nevertheless, as expected, the equilibrium marking is not unique. For example, the configu-

ration {(p1, t2), (p2, t3), (p4, t5), (p5, t6), (p7, t8), (p8, t9), (p9, t11), (p10, t12), (p12, t14), (p13, t15),

(p15, t17), (p16, t18), (M1, t1), (M1, t10), (M2, t4), (M2, t13), (M3, t7), (M3, t16)} has:

r ank

[
Π

B T
y

]

= 17 (6.19)

Therefore, this configuration may contain an infinite number of equilibrium markings

(Theorem 6.14). It is easy to see that the places corresponding to the P-semiflows given by

the buffers (y2 and y4) can be loaded in any quantity greater than 0.2 and an equilibrium

marking is obtained.

Computing the poles of this configuration we obtain 9 zero valued poles, three of them

equal with −2+ i , other three −2− i and six equal with −1. Five of these zero valued poles

are uncontrollable and are given by the P-semiflows and the other four are given by some

token conservation laws given by the particular value of λ and the considered configuration.

Anyhow, these are controllable and can be moved using an appropriate control law.





Chapter 7

Optimal control of continuous Petri

nets

Summary

Our goal in this chapter is to find a control input optimizing a certain cost function that per-

mits the evolution from an initial marking (state) to a desired steady-state. The solution we

propose is based on a particular discrete-time representation of the controlled continuous

Petri net system under infinite server semantics, as a certain linear constrained system. An

upper bound on the sample period is given in order to preserve important information of the

timed continuous net, in particular the positiveness of the markings. The reachability space

of the sampled system in relation to autonomous continuous Petri nets is also studied.

119



120

7.1 Introduction

Steady state optimal control of contPN was studied in Section 6.5 and if all transitions can

be controlled the problem can be solved in polynomial time. The solution is an optimal

marking and an optimal control input in steady state.

In this chapter we assume that this steady state condition (m f , w f ) is known and our

problem is how to reach it (from a given m0) in a finite time while optimizing a given perfor-

mance index.

Model Predictive Control (MPC) [47], also referred as moving horizon control or receding

horizon control, is an advanced control method that has become an attractive control strat-

egy. In the last years, many research groups have also worked on MPC of nonlinear systems.

In the next sections we will show how these results can be applied in the case of contPN

under infinite server semantics.

In the literature, the model predictive control is studied, in general, for discrete time sys-

tems. There is a few work regarding the continuous time systems, but finally, when this

control is implemented on a computer the system should be discretized. For this reason, in

this chapter we propose first a discrete time version of contPN systems with infinite server

semantics based on a constrained linear representation.

Obviously, as happens in the classical linear systems, if the sampling period is too big,

the discrete time approximation can be very bad. For contPN systems we give a bound of

this sampling period, bound that will preserve the most important information: the non-

negativity of the markings. For the discrete time contPN obtained with a good sampling

period, we will study the reachability space and we will prove that under some conditions

(that are more o less similar with the ones in previous chapter where the equivalence be-

tween the reachability of timed contPN and untimed contPN was studied) the reachability

space of discrete time contPN is the same with the one of untimed contPN and with the one

of timed contPN.

Using the discrete time approximation, we apply the MPC in both variants: implicit and

explicit. Many simulations were performed and we show some results here. In the last part

of the chapter, we study the asymptotic stability of a contPN with model predictive control

scheme and we provide one that ensures this property.

7.2 Constrained linear representation of controlled

timed continuous Petri nets

In order to apply the MPC scheme we rewrite the model used in the previous chapter in

an equivalent form. The system in eq. (6.5) is a piecewise linear system with a dynamical

constraint on the control input u that depends on the current value of the system state m.

For our control purposes, in this section we provide an alternative expression that takes the

form of a simple linear system with dynamical constraints on the control input.

Proposition 7.1. Any piecewise linear constrained model of the form (6.5) can be rewritten, by

suitably defining a constant matrix G (see the proof of the proposition), as a linear constrained



NETS 121

model of the form:







ṁ(τ) =C ·w (τ)

G ·

[
w(τ)

m(τ)

]

≤ 0

w (τ) ≥ 0

(7.1)

that we call continuous time controlled contPN model, or ct-contPN model for short. The

initial value of the state system is m(0) = m0 ≥ 0.

Proof. The equivalence of the dynamic equations immediately follows by replacing w(τ) =

f (τ)−u(τ) in (7.1) being f (τ) defined as in (2.14).

Concerning the constraints on the input, we first observe that, by virtue of (2.14), con-

straints in (6.5) can be rewritten as 0 ≤ w (τ) ≤ f (τ), i.e., ∀ j = 1, · · · ,n, and at any marking

m,

0≤ w j ≤λ j min
pi∈

•t j

(
mi

Pr e[pi , t j ]

)

that is equivalent to the following set of equations

0 ≤ w j ≤λ j
mi

Pr e[pi , t j ]
(∀pi ∈

•t j ).

All these equations can be combined as

0 ≤∆ ·w ≤Γ ·m

where matrices ∆ (q ×n) and Γ (q ×m) have as many rows as there are “pre” arcs in the net,

i.e., q =
∑

t∈T |•t |.

In particular, given a pre arc (pi , t j ) the corresponding row of ∆ is the vector



0 · · · 0 1
︸ ︷︷ ︸

j

0 · · · 0



 ,

while corresponding row of Γ is the vector








0 · · · 0
λ j

Pr e[pi , t j ]
︸ ︷︷ ︸

i

0 · · · 0








.

If we let

G =
[
∆ −Γ

]

we obtain the constraints in the last two equations of (7.1).

The system in eq. (7.1) is a linear system with a dynamic-matrix equal to 0 and an in-

put matrix equal to the token flow matrix of the contPN. Note however, that there is still a

dynamical constraint on the system inputs that depends on the value of the system state m.



122

7.3 On sampled (or discrete-time) continuous Petri

nets models

Let us obtain a discrete-time representation of continuous-time contPN under infinite server

semantics. Sampling should preserve the important information of the original model (for

example the positiveness of the markings). This is directly studied in the next section through

the equivalence of the reachability graph of the discrete-time model and the untimed model.

In Section 6.4 the reachability space equivalence between continuous-time model and un-

timed model was studied and the equivalence was proved under the same conditions as in

this case. Hence, the results in Section 6.4 together with those presented in this chapter pro-

vide as immediate conclusion that the reachability space of continuous-time and discrete-

time are the same. In this section the discretization is defined together with a bound for the

sampling period.

Definition 7.2. Consider a ct-contPN as in eq. (7.1) and let Θ be a sampling period (τ= k ·Θ).

The discrete-time controlled contPN or dt-contPN 〈N ,λ,m0,θ〉 can be written as follows:







m(k +1) = m(k)+Θ ·C ·w (k)

G ·

[
w(k)

m(k)

]

≤ 0

w (k) ≥ 0

(7.2)

The initial value of the state of this system is m(0) = m0 ≥ 0.

Example 7.3. Let us consider the net system in Fig. 2.4 with Θ = 1. Then the discrete-time

representation is given by:







m(k +1) = m(k)+C w (k)

w1(k)− λ1

2
·m1(k) ≤ 0

w1(k)− λ1

2
·m4(k) ≤ 0

w2(k)−λ2 ·m2(k) ≤ 0

w2(k)−λ2 ·m4(k) ≤ 0

w3(k)−λ3 ·m3(k) ≤ 0

w (k),m(k +1) ≥ 0

(7.3)

thus

G =










1 0 0 −
λ1

2
0 0 0

1 0 0 0 0 0 −
λ1

2

0 1 0 0 −λ2 0 0

0 1 0 0 0 0 −λ2

0 0 1 0 0 −λ3 0










(7.4)

�

The reachability space of dt-contPN can be defined as follows.

Definition 7.4. We denote RSdt (N ,m0,Θ) the set of markings m ∈ R≥0 such that there exists

a finite input sequence w = w (0) · · ·w (k) and m(0) w (0)
−→ m(1) w (1)

−→ m(2) · · · w (k−1)
−→ m(k) = m,

where 0 ≤ w( j ) ≤ f ( j ) ∀ j , and f ( j ) is the flow of the unforced system at time j ·Θ.



123

It is important to stress that, although the evolution of a sampled contPN occurs in dis-

crete steps, discrete time evolutions and untimed evolutions are not necessarily the same. As

an example, while an untimed net can be seen evolving sequentially, executing a single tran-

sition firing at each step, a dt-contPN may evolve in concurrent steps where more than one

transition fires. We denote such a concurrent step as follows:

m[{ti1 (α1), ti2 (α2), . . . , tik
(αk )}〉m′.

In unforced ct-contPN under infinite server semantics, the positiveness of the marking

is ensured if the initial marking m0 is positive, because the flow of a transition goes to zero

whenever one of the input places is empty [69].

In a dt-contPN, this is not always true.

Example 7.5. Let us consider the net in Fig. 2.4, with m0 = [0.1,5.9,1,5.9]T , λ = 1T , Θ = 2.

Assume transitions t2 and t3 are stopped (w2(0) = w3(0)= 0), then m1(1) = m1(0)−2·Θ·w1(0) =

0.1−4·w1(0). But w1(0) is upper bounded by λ1

2
·m1(0) = 0.5·0.1= 0.05. If the maximum value

is chosen, then m1(1) will be negative!!!

�

This can be avoided if the sampling period is small enough.

Proposition 7.6. Let 〈N ,λ,m0,Θ〉 be a dt-contPN system with m0 ≥ 0 where the sampling

period Θ is such that:

∀ p ∈P :
∑

t j∈p•

λ jΘ< 1. (7.5)

Then the following statements hold.

1. Any marking reachable from m0 is non negative, i.e.,

RSdt (N ,m0,Θ) ⊆Rm
≥0.

2. A place cannot be emptied with a finite sequence of firings, i.e., if m[p] > 0, then ∀ m′ ∈

RSdt (N ,m,Θ) it also holds m′[p] > 0.

Proof. Let us consider a place pi with pi
• = {t1, t2, · · · , t j } and mi (k) > 0. Then:

mi (k +1) = mi (k)+ΘC [i , ·]w (k)

≥ mi (k)−Θ(λ1 +λ2 +·· ·+λ j )mi (k)

= mi (k)

(

1−
∑

t j∈p•
λ jΘ

)

> 0.

In the rest of the chapter we will assume that all nets are sampled with a sampling period

Θ that satisfies (7.5).

Proposition 7.7. If m is reachable in a dt-contPN system 〈N ,λ,m0,Θ〉 with Θ verifying (7.5),

then m is reachable in the underlying untimed contPN system 〈N ,m0〉, i.e.

RSdt (N ,m0,Θ) ⊆ RSut (N ,m0).



124

Proof. In dt-contPN, transitions can fire concurrently and in order to prove that a marking

is reached in the untimed contPN it is necessary to prove the existence of a sequence of

transition firings leading to the same marking. This sequence exists due the fact that (7.5)

implies m(k)−Pr e ·Θ ·w (k) ≥ 0 at any marking m(k).

In general the converse of Proposition 7.7 is not true: in fact, the second item of Proposi-

tion 7.6 shows that in a dt-contPN with Θ satisfying (7.5) it is never possible to empty a place

(only at the limit, thus timed contPN can be deadlocked only at the limit), while this may

be possible in an untimed net system. As an example, in the untimed net system in Fig. 2.4

from the marking shown it is possible to fire t1(2)t1(0.5), thus emptying place p1. This mark-

ing is clearly not reachable on the same net system if we associate to it a firing rate vector

and choose a sampling period Θ satisfying (7.5).

In the next section, two relaxations are studied: (1) considering in the untimed case only

those sequences that never empty a marked place or (2) allowing the lim-reachable mark-

ings of the discrete-timed model. These relaxations are the same as in continuous-time case

presented in the previous chapter. In fact we will prove that under any of these relaxations

and with the sampling period as in (7.5), the reachability space of the discrete-time model

will be the same as the reachability space of the continuous-time model.

7.4 Reachability “equivalence” between sampled

and continuous models

Condition (7.5) can be seen like a kind of “Sampling Theorem”: Θ should be small enough

to maintain some properties as those in Proposition 7.6. But it does not mean that all signal

information is preserved by sampling. The following result characterizes the reachability set

of dt-contPN.

Lemma 7.8. Let 〈N ,λ,m0,Θ〉 be a dt-contPN system. Assume that in the underlying untimed

net system it is possible from m to fire the sequence m[t j (α)〉m′ and that for a certain a > 1,

for all p ∈ •t j it holds m′(p) ≥ m(p)/a.

Then in the discrete time net system marking m′ is reachable from marking m with a finite

sequence of length

r =

⌈
a

Θλ j

⌉

.

Proof. Let us first prove by induction that the firing of a sequence [t j (αΘλ j /a)〉 can at least

be repeated r −1 times in the discrete-time net.

(Basic step) It is immediate to observe that t j(αΘλ j /a) can be fired from m, sinceΘλ j /a <

1. The new marking is m1 = (αΘλ j /a) ·m ′+ (1−αΘλ j /a) ·m.

(Inductive step) Assume that at a given intermediate step mh = βm′+ (1−β) ·m, with

0 < β < 1. It can be observed that for all p ∈ •t j , it holds mh(p) = βm′(p)+ (1−β)m(p) ≥

β
m(p)

a
+ (1−β)

m(p)

a
=

m(p)

a
, hence t j (αΘλ j /a) can be fired from mh , since Θλ j < 1.

After r −1 firings t j (αΘλ j /a) can still be fired and it is sufficient to fire t j for a quantity

less or equal to that to reach m′ in one step.



125

According to the previous lemma, regardless of the initial token content in a place p, if

an untimed sequence reduces the marking of p by at most a factor 1/a, then an equivalent

finite sequence exists in the dt-net system.

Theorem 7.9. A marking m′ is reachable in a dt-contPN 〈N ,λ,m0,Θ〉 system (with Θ satisfy-

ing (7.5)) iff it is reachable in the underlying untimed contPN system 〈N ,m0〉 with a sequence

that never empties an already marked place.

Proof. A sequence

m[ti1 (α1)〉m1[ti2 (α2)〉m2 · · · [tik
(αk )}〉mk = m′

never empties a marked place if the following condition is verified

(∀ j = 1, . . . ,k), (∀p ∈ •ti j
) m j (p) > 0 (7.6)

(If) Applying the previous Lemma for each m1, m2, . . ., mk implies that m′ is reachable

with a finite sequence.

(Only if) Assume there is a finite sequence that reaches m in the dt-contPN, then there ex-

ists an equivalent firing sequence for the untimed net system, according to Proposition 7.7.

In the dt-contPN a place cannot be emptied with a finite sequence, according to Prop. 7.6

part 2.

One may wonder what happens if a marking m is reachable in the untimed PN but there

exists no sequence satisfying condition (7.6). In this case it can be proved that the marking

is lim-reachable in the timed net, i.e., it is reachable with an unbounded sequence of steps.

The result is formally stated in Theorem 7.10 by showing how such an infinite sequence may

be determined.

Theorem 7.10. If a marking m is reachable in the untimed contPN system 〈N ,m0〉, then it is

lim-rechable in a dt-contPN system 〈N ,λ,m0,Θ〉 with Θ satisfying (7.5).

Proof. Assume that in the untimed net system

m0[tr1(α1)〉m1[tr2(α2)〉m2 . . . [trk
(αk )〉mk = m,

and let us define σ= tr1(α1)tr2(α2) · · · trk
(αk ).

We will prove that this sequence is equivalent to an infinite sequence σ1σ2 · · · in which

the marking of all input places of the fired transitions are reduced by each firing by at most

a factor 1/2. Thus, applying Lemma 7.8, it can be fired in the discrete time net. This infinite

sequence will fire each transition in σ, but in a smaller amount, and repeat the process. It

will be seen that the amount of firing of each transition converges to the value in σ.

For each round, the sequence is defined as

σi = tr1(βi ,1α1)tr2(βi ,2α2) · · · trk
(βi ,kαk )

βi ,1 = 1/2i , (i = 1,2, . . .)

β1, j = 1/2 j , ( j = 1, . . . ,k)

βi , j = 1
2

(∑i
l=1

βl , j−1 −
∑i−1

l=1
βl , j

)

, (i = 2, . . . ; j = 2, . . . ,k).

It is proved in Proposition 6.6 that this infinite sequence converge to σ.



126

7.5 Optimal transient control via MPC

The basic idea of MPC is the following: at every time step, the control action is chosen solving

an optimal control problem, minimizing a performance criterion over a future horizon. Only

the first control command will be applied. After one time step other measurements will be

got and the optimization problem is repeated. This is an on-line procedure and in many

cases it is difficult (or even impossible) to implement because it requires the on-line solution

of a linear or quadratic program (LP or QP, respectively), depending on the performance

index.

MPC algorithms use different cost functions to obtain the control action. In this paper

we consider the following standard quadratic form:

J (m(k), N ) =
{

(m(k +N )−m f )′ ·Z · (m(k +N )−m f )

+
N−1∑

j=0

[

(m(k + j )−m f )′ ·Q · (m(k + j )−m f )+

(w (k + j )−w f )′ ·R · (w (k + j )−w f )
]}

(7.7)

where Z , Q and R are positive definite matrices.

The constraints are derived from the dt-contPN definition, and at every step the new

marking should respect (7.2). Thus, at each step the following problem needs to be solved:

min J (m(k), N )

s.t. : m(k + j +1) = m(k + j )+Θ ·C ·w (k + j ),

j = 0, . . . , N −1,

G ·

[
w (k + j )

m(k + j )

]

≤ 0, j = 0, . . . , N −1,

w (k + j ) ≥ 0, j = 0, . . . , N −1.

(7.8)

Now, using standard notation in the MPC framework, we say that (7.8) is a finite time

optimal control (FTOC) problem if N <∞; on the contrary we say that (7.8) is an infinite time

optimal control (ITOC) problem if N =∞. In such a case the first term of the performance

index (7.7) should be neglected, or equivalently it should be assumed Z = 0.

In [36] it has been proved that, if the region defined by the set of feasible state + input

vectors is bounded and contains the final state + input in its interior, an ITOC problem may

be reduced to a FTOC problem by appropriately choosing a finite value of N . In such a case

the optimal control law after the finite horizon is taken equal to the unconstrained infinite

horizon LQR problem with weights Q and R . This guarantees both the constraint fulfillment

for any time instant, and the asymptotic stability of the closed-loop system.

Note however that such a result is not applicable in many practical cases because con-

trollers may be required to operate at the boundary of the feasible region. For instance, in

the case of contPN the final marking may be null, that corresponds to minimize the inven-

tory level. Then, if it often the case that we want to maximize the flow of certain transitions

because this corresponds to maximize the production. As a result the final state and/or in-

put are on the boundary and we cannot guarantee that an ITOC problem can be reduced to

a FTOC problem.

We denote as implicit MPC the MPC control law computed solving on-line the optimiza-

tion problem (7.8).



127

An alternative to implicit MPC has been proposed in [10], where the authors present a

technique to compute off-line an explicit solution of the MPC control problem, based on

multi-parametric linear programming (mp-LP) or quadratic programming (mp-QP). They

split the maximum controllable set (i.e., all states that are controllable) into polytopes de-

scribed by linear inequalities1 in which the control command is described as a piecewise

affine function of the state. Thus, the control law results in a state feedback control law.

In [10] it is shown how the state space partition and the affine control laws can be com-

puted by means of multiparametric quadratic programming. The main results are presented

in the following.

7.6 Explicit Model Predictive Control

In this section we recall the main features of eMPC. In particular, we show how a FTOC prob-

lem can be written as a multi-parametric programming problem and thus solved using ap-

propriate efficient algorithms in this framework. This results in a state feedback control law

based on a partition of the state space in polytopic regions.

Let us consider a discrete-time time-invariant system

x(k +1) = Ax(k)+Bu(k) (7.9)

with A ∈Rn×n and B ∈Rn×m . Assume that the system (7.9) is subject to the constraint

E x(k)+Lu(k) ≤ M (7.10)

for any k ≥ 0.

Consider the following constrained FTOC problem

J∗N (x(0)) = min
UN

x′
N P xN +

N−1∑

k=0

u′
k Ruk +x′

kQxk

s.t . E xk +Luk ≤ M k = 0,1, . . . , N −1

xN ∈Xset

xk+1 = Axk +Buk k = 0,1, . . . , N −1

x0 = x(0)

(7.11)

where N is the time horizon and Xset ⊆ Rn is a terminal polyhedral region. In (7.11) we

denote with

UN ,
[

u′
0 u′

1 . . . u′
N−1

]′
∈Rs , (7.12)

s , mN the optimization vector; xk is the state of the system at time k obtained starting from

x0 = x(0) and applying the input sequence u0, . . . , uk−1; P , Q and R are the user-defined

weighting matrices where Q = Q ′ º 0, R = R ′ ≻ 0, P º 0. Finally, xN ∈ Xset is a user-defined

set-constraint on the final state which may be chosen such that the stability of the closed-

loop system is guaranteed [55].

We define the N-step feasible set X N
f

⊆ Rn as the set of initial states x(0) for which the

FTOC problem (7.11) is feasible, i.e.,

X N
f

= {x(0) ∈Rn | ∃(u0, . . . ,uN−1) ∈Rs ,

E xk +Luk ≤ M ,∀k = 1, . . . , N −1;

xN ∈Xset}.

(7.13)

1A bounded polyhedron P ⊂Rn , P = {x ∈Rn | Ax ≤ B } is called a polytope.



128

For a given initial state x(0), problem (7.11) can be solved as a quadratic programming

problem, but this type of on-line optimization may be prohibitive for control of fast pro-

cesses.

By substituting

xk = Ak x(0)+
k−1∑

j=0

Ak Buk−1− j ,

problem (7.11) can be rewritten as

J∗N (x(0)) =
1

2
x′(0)Y x(0)+min

UN

1

2
U ′

N HUN +x′(0)FUN

s.t . GUN ≤W +E x(0)
(7.14)

where H = H ′ ≻ 0, H , F , Y , G , W are obtained from P , Q, R , (7.9), (7.10) (see [10]) for details).

Because problem (7.14) depends on x(0), it can be solved as a multi-parametric program

[10], i.e., considering x(0) as a parameter, problem (7.14) can be solved for all parameters

x(0) to obtain a feedback solution, thus making this dependence explicit.

To this aim it is convenient to define

z ,UN +H−1F ′x(0), (7.15)

z ∈Rs , and to transform (7.14) by completing squares to obtain the equivalent problem

J∗z (x(0)) =
1

2
z ′H z

s.t . Gz ≤W +Sx(0)
(7.16)

where S , E +G H−1F ′, J∗z (x(0)) = J∗
N

(x(0))− 1
2

x′(0)(Y −F H−1F ′)x(0), and the parameter vec-

tor x(0) appears only in the right hand side of the constraints.

Problem (7.16) is a multi-parametric programming problem that can be solved using ap-

propriate recursive algorithms, presented in detail in [9, 10, 77]. Moreover, some of them are

also implemented in the MATLAB toolbox MPT [44]. Now, considering x(0) as a parameter,

problem (7.16) can be solved for all parameters x(0), thus obtaining a feedback solution with

the following properties.

Theorem 7.11. [10, 14] Consider the constrained FTOC problem (7.11). Then, the set of

feasible parameters X N
f

is convex, the optimizer U∗
N

: X N
f

→Rs is continuous and piecewise

affine, i.e.,

U∗
N (x(0)) = Fr x(0)+Gr if x(0) ∈Pr = {x ∈Rn | Hr x ≤ Kr },

r = 1, . . . , NR

and the optimal cost J∗N : X N
f

→R is continuous, convex and piecewise quadratic.

Thus, according to Theorem 7.11, the feasible state space X N
f

is partitioned into NR poly-

topic regions, and a piecewise affine control law is univocally defined for each state x ∈X N
f

.

When the system evolves, at each sampling instant k we need to determine the value of r

such that x(k) ∈Pr , and apply the corresponding control law Fr x(k)+Gr .

Let us finally observe that the constrained ITOC problem, namely the optimal control

problem in the case of N = ∞, can be solved using the above results provided that N is



129

chosen large enough. The main theoretical results in this respect are due to Sznaier and

Damborg with their pioneering work [74]. These results have been reconsidered and gener-

alized later in [20, 65], and recently in [19].

The main advantage of the explicit approach is that the most burdensome part of the

procedure is performed off-line, while the on-line part of the procedure simply consists in

establishing in which region the current state is. However its applicability to real size cases

is limited by two important facts. Firstly, the computational complexity of the off-line part

highly increases with the length of the prediction horizon and with the order of the state

space, becoming prohibitive for relatively modest values of these parameters. Moreover, the

number of regions highly increases under the same circumstances, constituting a serious

limitation to the on-line part of the procedure (because it makes it difficult to establish which

control law should be applied).

Note that the explicit strategy can also be directly applied to the piecewise linear model.

However the implementation of the control design for the constrained linear model is much

simpler in particular because it does not require the knowledge of the state space regions

where the different modes of the evolution occur, whose number highly increases with the

number of places and transitions of the net.

7.7 Numerical examples

Using the control scheme presented in the previous sections, we consider two different nu-

merical examples of discrete time contPN and make a detailed comparison among the re-

sults obtained with the above approaches.

The explicit solution has been computed using the Multi-Parametric Toolbox called MPT

[44], a free and user-friendly MATLAB toolbox for design, analysis and deployment of opti-

mal controllers for constrained linear and hybrid systems.

Implicit MPC has been implemented using GAMS [13] and MATLAB. In particular, the

MINOS solver is utilized and the results of the optimization have also been compared with

the results of other solvers.

7.7.1 First example

Let us consider the net system in Fig. 2.4 with λ = [1,1,1]T . Assume that the steady state

(final) marking and control input are equal to m f = [2.50,3.25,1.25,2.50]T and w f =

[1.25,1.25,1.25]T , respectively.

Note that even if the net has 4 places this is just a second order system. In fact the num-

ber of independent markings is equal to 2 because of the presence of two independent P-

semiflows, namely m1 +m2 +m3 = 7 and m1 +4m3 +m4 = 10.

Finally, we consider a quadratic performance index of the form (7.7) where R = I , Q = I

and Z = 100 · I .

Implicit MPC – FTOC problem

Table 7.1 summarizes the results obtained in the case of implicit MPC with initial marking

equal to m0 = [3,3,1,3]T , the sampling periodsΘ= 0.1, 0.05, 0.01, all satisfying the inequality

(7.5), and different values of N .



130

Θ= 0.1 Θ= 0.05

N J̄
comput.

time [sec]
nP N J̄

comput.

time [sec]
nP

1 0.3409 0.0363 26 1 0.2359 0.0364 26

2 0.1794 0.0384 - 2 0.1795 0.0380 98

10 0.0851 0.0469 888 10 0.0822 0.0468 1436

20 0.0846 0.0614 2635 20 0.0810 0.0616 3202

Θ= 0.01

N J̄
comput.

time [sec]
nP

1 0.0787 0.0372 12

2 0.0787 0.0380 41

10 0.0784 0.0449 651

20 0.0782 0.0562 2489

Table 7.1: The simulation results applied to contPN system in Fig. 2.4 with m0 = [3,3,1,3]T .

The computational time is the average time in [sec] required to solve one QP problem in

an Intel Pentium 4 at 3.20 GHz.

Finally, in order to compare the different evolutions, we compute the closed-loop infinite

time horizon index multiplied by Θ, namely

J̄ (m(0),Θ) =Θ ·
∞∑

j=0

[

(m( j )−m f )′ ·Q · (m( j )−m f )+

(w ( j )−w f )′ ·R · (w ( j )−w f )
]

(7.17)

where Q and R are the same weighting matrices used to compute the MPC controller.

From these, and other similar experiments, we can draw the following conclusions.

Firstly, the cost J̄ is practically the same for N = 10 and N = 20, hence it is not necessary

to increase very much the moving horizon to improve the solution. Note that for sufficiently

large values of N this is not surprising. In fact, it is well known from classical systems’ theory

that there exists N̄ such that for any initial state and any N ≥ N̄ , the finite horizon controller

is equal to the infinite horizon controller.

Secondly, we observe that, while for Θ= 0.1 all the solutions are implementable in prac-

tice on this computer, this is not true in the other cases. In fact, the computational time to

solve the QP problem becomes larger than the sampling period if N exceeds certain values.

Some improvements can be done in order to reduce the computational times, e.g., rewriting

the optimization problem as in [10], but these solutions have not been investigated here.

Explicit MPC – FTOC problem

The same numerical simulations have also been performed using the explicit approach. As

already discussed above, in such a case we need to compute off-line an appropriate state

space partition. As an example, in Fig. 7.1 we have reported the state space partition relative

to the case of Θ= 0.1 and N = 10.

In Table 7.1, columns 4, 8 and 12 summarize the number nP of polytopic regions.



131

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

m2−m2.f

m
3−

m
3.

f

Controller partition with 888 regions. 

Figure 7.1: State space partition for the net system in Fig. 2.4 in the case of N = 10 andΘ= 0.1.

Note that in the case of Θ= 0.1 and N = 2 we have not been able to compute the explicit

MPC controller because of numerical errors.

Obviously, when applicable, the explicit MPC provides the same control laws and thus

the same values of the performance index J̄ as the implicit MPC.

ITOC problem

The ITOC problem cannot be solved in this case. In fact the considered final input lays on

the boundary of the region of feasible state + input vectors and it is not possible to determine

a finite value of N in order to reduce the ITOC problem to a FTOC problem.

7.7.2 Second example

In order to show how the application of the explicit MPC approach may be unfeasible when

the number of states increases, let us consider the net system in Fig. 7.2 withλ= [1,1,1,1,1,1]T

and m0 = [1,1,1,0.5,0,0,0.5,0,0]T . It is a 5th order system. In fact, even if the number

of places is equal to 9, the number of independent markings is equal to 5 because of the

presence of 4 independent P-semiflows: m1 + m2 + m5 + m8 = 1, m1 + m3 + m6 + m9 = 1,

m4 +m5 = 0.5, m6 +m7 = 0.5.

Here, we assume as final marking and control input m f = [0.25,0.75,0.7,0.25,0.25,0.25,

0.25,0.75,0.8]T and w f = [0.25,0.25,0.25,0.25,025,0.25]T , respectively.

We consider a quadratic performance index of the form (7.7) where R = I , Q = I and

Z = 100 · I . Finally, we assume Θ= 0.1 that satisfies the inequality (7.5).

When applying the explicit MPC we found out that the number of polytopic regions is

equal to nP = 743 in the case of N = 1, while no result is obtained after 2 days of computations

in the case of N = 2. Moreover, when we stopped computations the MPT toolbox had already

computed almost 17000 regions.

As a result of this and other numerical examples we investigated, we conclude that the

implicit MPC is often the only feasible solution even in the case of relatively low-order sys-

tems.



132

.

.

p1

p2 p3

t1

.

0.5 0.5

p4 p5 p6 p7

p8 p9

t2 t3

t4 t5

t6

Figure 7.2: Timed continuous Marked Graph system.

7.8 Properties of the closed-loop system

In the above section we have shown how MPC (either implicit or explicit) may be used to

control a contPN system in order to minimize a quadratic performance index that measures

the distance from a desired state + input (m f , w f ), e.g., a steady state.

In this section we want to investigate some properties of the resulting closed-loop sys-

tem, such as feasibility and asymptotic stability.

7.8.1 Feasibility

In general, given an initial feasible state, i.e., the optimization problem is feasible at initial

state (marking), there is no guarantee that the optimization problem we need to solve at each

time step will remain feasible at all future time steps k, as the system might enter “blind

alleys” where no solution to the optimization problem exists [10]. However, thanks to the

particular structure of the constraints, in the case of contPN systems the following result can

be proved, that guarantees the feasibility of (7.8) for any time step.

Proposition 7.12. The optimization problem (7.8) is feasible for any m(k) ≥ 0.

Proof. The solution w(k + j ) = 0 for j = 0,1, . . . , N −1 is feasible. In fact,

G ·

[
w(k + j )

m(k + j )

]

=
[
∆ −Γ

]

·

[
w (k + j )

m(k + j )

]

= −Γ ·m(k + j ) ≤ 0

because (see Proposition 7.1) Γ is a matrix of non-negative numbers and m(k + j ) = mk ≥ 0

for any j = 1, . . . , N −1.

7.8.2 Asymptotic stability

The feasibility of (7.8) is obviously a desirable property but it does not ensure the conver-

gence of the optimal solution to the desired state, that is our main requirement.



133

The following example clearly shows this.

t2

t1
p1 p22..

Figure 7.3: Example of an unstable contPN with basic MPC scheme.

Example 7.13. Let us consider the net system in Fig. 7.3 with λ = [1,5]T . Let Θ = 0.1, m f =

[0,1]T and w f = [0,0]T . Moreover, let Q = Z = R = I and N = 1.

The marking evolution of the system controlled with the MPC policy is presented in Fig.

7.4, that clearly shows that the desired marking is not reached. �

In this section we investigate three different approaches in order to improve conver-

gence. The first two approaches are quite standard in the literature, while, as far as we know,

the latter approach has not been considered previously.

— The first approach consists in assuming that

w (k + j ) = 0 ∀ j = N , · · · ,∞

and weighting the distance from the final marking not only for j = 0,1, · · · , N −1 but for any

j = 0,1, · · · ,∞.

This is equivalent to consider an optimization problem of the form (7.8) where the matrix

Z in the performance index is not an arbitrary positive definite matrix but Z = P , where P is

the solution of the Lyapunov equation P = AT P A+Q , and A = I in our case [60].

Unfortunately, this approach does not apply here because Q is a positive definite matrix

so the equation P = P +Q is unfeasible.

— The second approach consists in assuming that

w(k + j ) = K m(k + j ) ∀ j = N , · · · ,∞

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m1
m2

Figure 7.4: Marking evolution of the contPN in Fig. 7.3



134

and weighting the distance from the final marking not only for j = 0,1, · · · , N −1 but for any

j = 0,1, · · · ,∞. In particular, matrix K is defined as in the unconstrained LQR problem with

weighting matrices Q and R , namely

K =−(R +B T K B )−1B T P A,

P = (A +B K )T P (A+B K ))+K T RK +Q,
(7.18)

where in our case A = I and B =Θ ·C .

This is equivalent to consider an optimization problem of the form (7.8) where the matrix

Z in the performance index is Z = P , where P is defined as in eq. (7.18).

In such a case, using results from the classical optimal control theory [65], we can guar-

antee convergence to the desired condition only if the region defined by the set of feasible

state + input vectors is bounded and contains the final state + input in its interior.

As a consequence such an approach does not apply to most control problems within the

framework of contPN, because the desired marking is often null and/or the desired flow is

set to its maximum allowable value, thus we need to investigate for alternative procedures.

Note however that, if the final state + input is an interior point, and the moving horizon

N is sufficiently large, this approach is surely the most convenient. In fact, it has the major

advantage that the resulting strategy is indeed the optimal infinite horizon constrained LQR

policy [10].

— The third approach we consider consists in forcing the marking at time k +N to be-

long to the straight path m(k) — m f . In simple words, this is equivalent to add a terminal

constraint of the form {
m(k +N ) =α ·m f + (1−α) ·m(k)

0≤α≤ 1
(7.19)

to the optimization problem (7.8), where α is a new decision variable.

Note that the addition of this constraint makes it necessary to solve a certain number

of bilinear (rather than linear) programming problems when using explicit MPC [10]. In

particular, bilinear problems have to be solved when computing the Chebychev centers of

the polytopic regions, where both the initial state and α are unknown.

This approach revealed satisfactory in several numerical examples we considered even if

we have been able to prove asymptotic stability only under certain assumptions, as detailed

in the following.

Proposition 7.14. Let us consider a contPN system. Let m0 and m f be the initial and final

markings, respectively, with m0 > 0 and m f reachable from m0. Assume that the system is

controlled using MPC with a terminal constraint of the form (7.19) and prediction horizon

N = 1. Then the closed-loop system is asymptotically stable.

Proof. We prove the statement in three steps. We first prove that if m0 > 0 then α > 0 is

feasible at any k ≥ 0. Then, we define a quadratic function that we prove to be a Lyapunov

function. Finally, we demonstrate that it is strictly decreasing.

• We first observe that by item (2) of Proposition 7.6, if m0 > 0 then m(k) > 0 for any

k ≥ 1. Moreover, if m f is reachable from m0 then it is also reachable from any marking

in the straight path m f — m0 being the full reachability space a convex region.

Now, let us consider eq. (7.19) with N = 1. It holds m(k +1) = α ·m f + (1−α) ·m(k).

Being m f reachable from m(k), then there exists σ≥ 0 such that m f = m(k)+C ·σ.



135

Thus, m(k +1) =α ·m(k)+α ·C ·σ+ (1−α) ·m(k) = m(k)+C · (α σ). But there always

exists α> 0 such that ασ can be fired at m(k) being m(k) > 0.

• Now, without loss of generality we assume that m f = 0. In fact, if such is not the case,

we can always redefine the state by translation, in order to meet such an assumption.

Without loss of generality we may also assume that C in eq. (7.8) is full rank. This is

always true if the net has no P-semiflows, otherwise we can always remove the inde-

pendent P-semiflows in order make it true.

Let

V (m(k)) = m(k)T ·Z ·m(k)

where Z is the weighting matrix in the performance index (7.7).

Obviously, V (m(k)) ≥ 0 for any m(k) 6= 0, being Z positive definite. Moreover, V (m(k+

1)) ≤ V (m(k)) for any k ≥ 0. In fact, under the assumption that m f = 0, by constraint

(7.19) it holds m(k +1) = (1−α) ·m(k). Thus,

V (m(k +1)) = m(k +1)T ·Z ·m(k +1)

= (1−α)2 ·m(k)T ·Z ·m(k)

= (1−α)2 ·V (m(k)) ≤V (m(k)).

• We now prove that ∀ k ≥ 0 the optimal solution of problem (7.8) leads to α> 0.

Let k be an arbitrary time instant.

If α= 0 then the performance index (7.7) is equal to

J ′ = m(k)T ·Q ·m(k)+m(k)T ·Z ·m(k).

If α > 0 (this is always possible by the first item of this proof), then the performance

index (7.7) is equal to

J ′′ = m(k)T ·Q ·m(k)+w (k)T ·R ·w (k)+

+m(k +1)T ·Z ·m(k +1).

Being m(k +1) = (1−α) ·m(k), it holds

J ′′ = m(k)T ·Q ·m(k)+w (k)T ·R ·w (k)+m(k)T ·Z ·m(k)−2·α·m(k)T ·Z ·m(k)+α2·m(k)T ·Z ·m(k)

and

J ′′− J ′ = w (k)T ·R ·w (k)+α2 ·m(k)T ·Z ·m(k)−2 ·α ·m(k)T ·Z ·m(k)

= w (k)T ·R ·w (k)+α · (α−2) ·m(k)T ·Z ·m(k).

But it is always possible to have J ′′< J ′ by appropriately choosingα> 0, and this always

occurs since we are minimizing the performance index. In fact, being

m(k +1) = (1−α) ·m(k) = m(k)+Θ ·C ·w (k),

then

m(k) =−
Θ

α
·C w (k).



136

Therefore

J ′′− J ′ = w (k)T ·R ·w (k)−
Θ

2 · (2−α)

α
·w (k)T

·C T
·Z ·C ·w (k)

= w (k)T ·R ·w (k)−w (k)T ·

[(
2

α
−1

)

·Θ2 ·C T ·Z ·C

]

·w (k) < 0

if α is small enough and C T · Z ·C is positive definite. But C T · Z ·C is always posi-

tive definite because Z is positive definite by definition and C is a full rank matrix by

assumption.

Remark 7.15. In general m(0) > 0 is not a strict requirement in the above proposition. It is

sufficient to assume that for any k ≥ 0 the optimization problem (plus terminal constraint)

admits α > 0 as a solution. Physically this means that we can move along the straight line

m(0) — m f . However, since in general it is difficult to verify such a condition, for simplicity

of presentation we prefer to claim the statement of Proposition 7.14 providing a condition on

m(0).

0 1 2 3 4 5 6
0

0.5

1

1.5

2
Marking evolution

 

 
m

1

m
2

0 1 2 3 4 5 6
0

0.5

1

1.5
Controlled flow

 

 
f
1

f
2

Figure 7.5: Marking and controlled flow evolution of the contPN system with terminal con-

trsints.

Example 7.16. Let us go back to the Ex. 7.13 considering now the MPC scheme with terminal

constraints of the form (7.19). Observe that the initial marking has a null component but it is

possible to follow the direction from the beginning and according to the previous remark and

Prop. 7.14 the desired marking m f = [0,1]T is reached. The marking evolution is sketched in

Fig. 7.5 and can be seen that m f is reached.



137

7.9 Conclusions

In this chapter we have considered timed contPN under infinite server semantics and we

have studied the transitory control. Our problem is to reach a final marking optimizing a

performance index. First we give a linear constrained form (eq. (7.1)) that help us to obtain

the discrete time representation of contPN systems with infinite server semantics. For this

representation we have given a bound on the sampling period, bound that preserves the

reachability conditions (in particular non-negativity of markings).

Some relations between the reachability spaces of the sampled system and the untimed

one are given and it is shown under which conditions these two spaces are equivalent. Using

the discrete-time linear model, an optimal control is applied based on MPC. Both variants,

implicit and explicit, are studied and compared with many simulations, here we have shown

only few of them. And, in the last part, the feasibility and convergence of this control scheme

is studied providing a particular control law that ensures the asymptotic stability.





Chapter 8

Concluding remarks

Continuous Petri nets can be viewed -but not only- as an approximation of discrete Petri

nets, introduced to deal with the state explosion problem frequently appearing in discrete

event systems. They relax the firing of a transition to a real non negative amount and it is not

limited as in discrete systems to a natural quantity. Therefore, the marking of a continuous

Petri net system is not a vector of integers but of non negative real values. Unfortunately, not

all discrete systems can be fluidified and the properties of the original discrete system are

not always preserved by its continuous approximation.

This thesis mainly deals with timed contPN systems. The untimed contPN systems are

considered only for the state-estimation problem where the results from discrete Petri nets

are adapted for the continuous systems. For the timed systems the flow through a fluidified

transition can be defined in many ways. The most used in literature are constant and variable

(enabling proportional) speed, which can be seen as some kind of finite and infinite server

interpretations of the transitions behavior, and derived from stochastic (discrete) Petri nets.

For discrete PNs infinite server semantics is more general, since it can simulate finite

server semantics. However, the continuous approximation of this simulation model under

infinite server semantics is not equivalent to using finite server semantics in the original flu-

idified model. In the continuous case the two semantics are in fact related to different relax-

ations of the model. Since the two semantics are different, the immediate question is, given

a net, which continuous semantics is better? Up to now, the first reference to this problem

we were able to find in the literature is a remark in [2], where the authors mention having ob-

served that in several cases infinite server semantics provides a very accurate approximation

of discrete PNs.

One of the goals of chapter 3 is to provide some results about the use of these semantics.

It can be seen that it is not possible to say that one of them is always better than the other.

Hence, we have considered a class of nets, hopefully with a significant modeling power from

a practical point of view. The class is called mono-T-semiflow reducible. Focusing on live and

bounded systems, this class includes equal conflict nets, which is a superset of the classes

of free-choice, choice-free, weighted T-systems and marked graphs nets. It is proved that for

mono-T-semiflow reducible nets infinite server semantics provides a better approximation

of the steady state throughput of the system, if all possible steady-states contain the support

of a P-semiflow.

Another good indicator of the practical interest of a class of net models is the kind of

139



140

properties it verifies. In chapter 3 the monotonicity in steady-state with respect to the fir-

ing rate of the transitions and with respect to the initial marking is studed. This property is

checked for the continuous timed systems under infinite server semantics. Monotonicity is

a very desired property in the production systems since replacing a slower machine with a

faster one or increasing the number of the resources, the production should increase to jus-

tify the investments. We have proved that if all possible equilibrium configurations contain

the support of a P-semiflow then the net system exhibits these monotonicity properties.

In discrete models, an approximate way to deal with stiffness was to drastically classify

the transitions into immediate and timed (thus markings into vanishing and tangible). The

same kind of classification can be done for contPN. However, removing immediate transi-

tions at net level becomes a crucial issue in contPNs, because the semantics of timed contin-

uous net models is directly expressible as ODEs with minimum operators, for which reason-

able solutions are frequently obtained by means of numerical integration. The basic goals

of the last part of chapter 3 are: (1) reduce the number of minimum operators both for any

timing (implicitness in the autonomous model) and for a particular timing (implicitness in

the timed model); and (2) provide the semantics for immediate transitions and some rules

to reduce their number, since they are not easy to deal with in simulation or numerical com-

putations.

State estimation is a fundamental issue in system theory. Reconstructing the state of a

system from available measurements may be considered as a self-standing problem, or it can

be seen as a pre-requisite for solving a problem of a different nature, such as stabilization,

state-feedback control, diagnosis, filtering, and others. Despite the fact that the notions of

state estimation, observability and observer are well understood in time driven systems, in

the area of discrete event and of hybrid systems there are relatively few works addressing

these topics and several problems are still open.

In chapter 4 timed contPN systems under infinite server semantics and some observ-

ability problems are considered. First, some characterizations of the observability for the

general nets are given based on the literature on hybrid systems. Here, observability in in-

finitesimal time is studied and necessary and sufficient conditions for contPN systems are

given. If a net system is structurally observable then it is observable for any values of firing

rates associated to the transitions. Moreover if it is generic observable then it is observable

for “almost” any values of firing rates. In the chapter, for some subclasses, the set of places

that makes a timed net system structurally or generically observable is determined.

If some places have associated a measurement cost, an interesting problem is to deter-

mine the set of places with minimum cost that make the timed net system observable. This

problem is studied in the last part of chapter 4 where a tree based algorithm is provided. This

algorithm reduces the practical complexity of the problem, that is NP-complete using some

information of the net. In particular, the net is split into subnets from which only one place

can belong to the optimal solution.

Starting by showing that the results in chapter 4 are impossible to apply in case of timed

contPN systems with finite server semantics, in chapter 5, state estimation of this class is

studied. As well, this problem is studied for discrete PNs. Assuming that the firing amount

in which some transitions fire can be observed the problem is to determine the set of con-

sistent markings (markings in which the system can be) with this observation. Firstly, it is

shown how the results obtained for discrete Petri nets naturally extended in the untimed

contPN case. Then, for timed contPN this problem is started and here it is assumed that no

observation is available, hence the problem is to determine the reachability space at some



141

time.

Assuming that certain discrete event systems usually work close to congestion, and hav-

ing evidence of the gains that in certain cases are obtained by fluidification, chapter 6 deals

with some control problems of timed continuous PNs under infinite server semantics for

which the continuous model is a multilinear switched dynamic system.

The control problem is simply based on the idea of slowing down the firing flow of tran-

sitions. It is shown that if all transitions are controllable then the reachability space of the

timed net system coincides with the reachability space of the untimed one, maybe consid-

ered at the limit. The determination of the steady state is impossible in many cases because

it is an undecidible problem [37]. Anyhow, some characterizations of possible steady-states

are given in chapter 6. For some classes it is proved that even if they are more than one, they

have the same flow in steady-state. The second main contribution of chapter 6 is the compu-

tation of an optimal steady state control reference that in the case in which all transitions are

controllable, this problem is solved in polynomial time, using a LPP. Otherwise, a branch and

bound algorithm can be used, similar with the one to compute the performance bounds.

In many cases, the regulation of the system is done to a point that is not on the boundary,

hence the dynamical constraints on the input are not active. In this case a better understand-

ing of the behavior of contPN using the classical results of linear system can be useful. In the

last part of chapter 6, the poles location of the linear systems that can govern the evolution of

a contPN is studied. It is shown that net systems generate different token conservation laws,

some of them leading to uncontrollability. Some conservation laws are generated by the P-

flows (which depend only on the net structure) and zero valued poles appear in the uncon-

trollable part of the system. Other zero valued controllable poles are related to conservation

laws that depend on the net structure, the firing rates and the token load of P-(semi)flows. Fi-

nally, some controllable non zero poles may generate token conservation laws for particular

values of m0.

In chapter 7, we have considered timed contPN under infinite server semantics and rewrit-

ten the non-linear system in a linear constrained form. The linear constrained system is then

discretized and we provide a Sampling theorem giving an upper bound on sampling period.

The purpose of the Sampling theorem presented here is to preserve reachability conditions

(in particular non-negativity of markings), not to reconstruct the original signal from the

sampled one. In practice, the sampling rate may need to be higher (like in Nyquist-Shannon

sampling theorem) if signal reconstruction is required. But this is an open topic to be con-

sidered in future.

The reachability space of the sampled system is studied later and some relations between

this space and the space of the underlying untimed contPN are provided. Then, on the ba-

sis of the constrained discrete-time positive linear model of the system, we derived optimal

control laws based on MPC. In particular, we investigated the possibility of using both im-

plicit and explicit control. Some aspects regarding the convergence of MPC are studied, and

for a particular control law asymptotic stability is guaranteed.

An interesting issue is to extend the results presented here to more general contPN classes.

For example, the performance monotonicity that has been studied only for mono T-semiflow

reducible nets, optimal observability is studied only for Join Free, Continuous Equal Conflict

and Attribution Free nets; some results of the state estimation of systems with finite server

semantics are restricted to the conservative and consistent nets; an asymptotic stable MPC

scheme is given only if the timing horizon is one. Observability of systems with infinite server

semantics is studied only in infinitesimal time and aspects of finite time observability and



142

infinite time represent also some interesting problems. State estimation of systems with fi-

nite server semantics has been introduced but the problem deserve more attention in the

future. Others (sub)optimal control scheme can be purposed guaranteing the reachability of

the desired marking.



Bibliography

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with Gen-

eralized Stochastic Petri Nets. Wiley, 1995. [cited at p. 8, 24, 25, 50]

[2] H. Alla and R. David. Continuous and hybrid Petri nets. Journal of Circuits, Systems, and Com-

puters, 8(1):159–188, 1998. [cited at p. 1, 17, 82, 87, 139]

[3] M. Babaali and M. Egerstedt. On the observability of piecewise linear systems. In 43rd IEEE Con-

ference on Decision and Control (CDC 2004), pages 26–31, Paradise Island, Bahamas, December

2004. [cited at p. 55]

[4] M. Babaali and G. J. Pappas. Observability of switched linear systems in continuous time.

In M. Morari and L. Thiele, editors, Hybrid Systems: Computation and Control, 8th Interna-

tional Workshop, HSCC 2005,, volume 3414 of Lecture Notes in Computer Science, pages 103–117,

Zurich, Switzerland, 2005. Springer. [cited at p. 55]

[5] F. Balduzzi, A. Di Febbraro, A. Giua, and C. Seatzu. Decidability results in first-order hybrid Petri

nets. Journal of Discrete Event Dynamic Systems, 11(1–2):41–58, 2001. Special Issue on Hybrid

Petri nets. [cited at p. 1]

[6] F. Balduzzi, A. Giua, and C. Seatzu. Modelling and simulation of manufacturing systems with

first-order hybrid Petri nets. Int. J. of Production Research, 39(2):255–282, 2001. Special Issue on

Modelling, Specification and analysis of Manufacturing Systems. [cited at p. 1, 87]

[7] F. Balduzzi, G. Menga, and A. Giua. First-order hybrid Petri nets: a model for optimization and

control. IEEE Trans. on Robotics and Automation, 16(4):382–399, 2000. [cited at p. 1, 17, 18, 82, 87, 88]

[8] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. L. Sangiovanni-Vincentelli. Observabil-

ity for hybrid systems. In Proc. 42nd IEEE Conference on Decision and Control, Hawaii, USA,

December 2003. [cited at p. 55]

[9] M. Baotić. An efficient algorithm for multi-parametric quadratic programming. Technical Re-

port AUT02-04, Automatic Control Laboratory, ETH Zurich, 2002. [cited at p. 128]

[10] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear quadratic regulator

for constrained systems. Automatica, 38(1):3–20, 2002. [cited at p. 4, 127, 128, 130, 132, 134]

[11] A. Bemporad, F.D. Torrisi, and M. Morari. Performance analysis of piecewise linear systems and

model predictive control systems. In Proc. of the 39th IEEE Conference on Decision and Control,

pages 4957–4962, Sydney, Australia, 2000. [cited at p. 4]

143



144

[12] G. Berthelot. Checking properties of nets using transformations. In G. Rozenberg, editor,

Advances in Petri Nets 1985, volume 222 of Lecture Notes in Computer Science, pages 19–40.

Springer, 1986. [cited at p. 44]

[13] R.F. Boisvert, S.E. Howe, and D.K. Kahaner. Gams: A framework for the management of scientific

software. ACM Transactions on Mathematical Software, 11(4):313–355, 1985. [cited at p. 129]

[14] F. Borrelli. Constrained optimal control of linear and hybrid systems. Lectures Notes in Control

and Information Sciences, 290, 2003. [cited at p. 128]

[15] M.P. Cabasino, A. Giua, C. Mahulea, and C. Seatzu. State estimation of untimed and timed con-

tinuous petri nets. Research report, University of Cagliari, Italy, 2007. Submitted for publication.

[cited at p. 4]

[16] J. Campos, G. Chiola, and M. Silva. Ergodicity and throughput bounds of Petri net with

unique consistent firing count vector. IEEE Trans. on Software Engineering, 17(2):117–125, 1991.

[cited at p. 112]

[17] J. Campos and M. Silva. Structural techniques and performance bounds of stochastic Petri net

models. In G. Rozenberg, editor, Advances in Petri Nets 1992, volume 609 of Lecture Notes in

Computer Science, pages 352–391. Springer, 1992. [cited at p. 28, 29]

[18] C. G. Cassandras. Discrete Event Systems. Modeling and Performace Analysis. Asken Associates,

1993. [cited at p. 28, 29]

[19] L. Chisci and G. Zappa. Fast algorithm for a constrained infinite horizon LQ problem. Int. J. of

Control, 72(11):1020–1026, 1999. [cited at p. 129]

[20] D. Chmielewski and V. Manousiouthakis. On constrained infinite-time linear quadratic optimal

control. Systems and Control Letters, 29(3):121–130, 1996. [cited at p. 129]

[21] G. Cohen, S. Gaubert, and J. P. Quadrat. Algebraic system analysis of timed petri nets. In J. Gu-

nawardena, editor, Idempotency: Collection of the Isaac Newton Institute. Cambridge University

Press, 1998. [cited at p. 2]

[22] P. Collins and J.H. van Schuppen. Observability of piecewise-affine hybrid systems. In R. Alur

and G.J. Pappas, editors, Hybrid Systems: Computation and Control, 7th International Workshop,

HSCC 2004,, volume 2993 of Lecture Notes in Computer Science, pages 265–279, Philadelphia,

USA, 2004. Springer. [cited at p. 55, 56, 57]

[23] C. Commault, J.M. Dion, and D.H. Trinh. Observability recovering by additional sensor imple-

mentation in linear structured systems. In Proceedings of the 44t h IEEE Conference on Decission

and Control 2005, pages 7193–7197, Seville, Spain, December 2005. [cited at p. 69, 70]

[24] Thomas H. Cormen, E. Leiserson, Charles, and Ronald L. Rivest. Introduction to Algorithms. MIT

Press, 1990. [cited at p. 64]

[25] D. Corona, A. Giua, and C. Seatzu. Marking estimation of Petri nets with silent transitions. IEEE

Transactions on Automatic Control, 2007. Accepted for publication. [cited at p. 82, 84, 86, 87]

[26] J.G. Dai and B. Prabhakar. The throughput of data switches with and without speedup. In Proc.

of the IEEE INFOCOM, pages 2:556–564, 2000. [cited at p. 1]

[27] R. David and H. Alla. Continuous Petri nets. In Proc. 8th European Workshop on Application and

Theory of Petri Nets, Zaragoza, Spain, 1987. [cited at p. 1]



145

[28] R. David and H. Alla. Discrete, Continuous and Hybrid Petri Nets. Springer-Verlag, 2005.

[cited at p. 1, 2, 3, 8, 11, 17, 23]

[29] F. DiCesare, G. Harhalakis, J. M. Proth, M. Silva, and F. B. Vernadat. Practice of Petri Nets in

Manufacturing. Chapman & Hall, 1993. [cited at p. 8]

[30] J.M. Dion, C. Commault, and J. van der Woude. Generic properties and control of linear struc-

tured systems: a survey. Automatica, 39(7):1125–1144, 2003. [cited at p. 69]

[31] M.R. Garey and D.S. Johnson. Computers and Interactability: A Guide to the Theory of NP-

Completeness. W. H. Freeman and Company, 1979. [cited at p. 71]

[32] B. Gaujal and A. Giua. Optimal stationary behavior for a class of timed continuous Petri nets.

Automatica, 40(9):1505–1516, 2004. [cited at p. 2]

[33] A. Giua, C. Mahulea, L. Recalde, C. Seatzu, and M. Silva. Optimal control of timed continuous

Petri nets via explicit MPC. In Proc. of 2nd Multidisciplinary International Symposium on Positive

Systems: Theory and Applications, Lecture Notes in Control and Information Sciences, pages

383–390. Springer Berlin / Heidelberg, 2006. [cited at p. 4]

[34] A. Giua, C. Mahulea, L. Recalde, C. Seatzu, and M. Silva. Optimal Control of timed continuous

Petri Nets via model predictive control. In WODES’06: 8t h International Workshop on Discrete

Event Systems, pages 235–241, Ann Arbor, USA, July 2006. [cited at p. 4]

[35] A. Giua and C. Seatzu. Fault detection for discrete event systems using Petri

nets with unobservable transitions. In Proc. IEEE 44rd Int. Conf. on Deci-

sion and Control, December 2005. A corrected version can be found on:

http://www.diee.unica.it/~giua/PAPERS/CONF/05cdc­ecc_a_up.pdf. [cited at p. 86]

[36] P.O. Gutman and M. Cwikel. Admissible sets and feedback control for discrete-time linear dy-

namical systems with bounded control and states. IEEE Transactions on Automatic Control,

31(4):373–376, 1986. [cited at p. 126]

[37] S. Haddad, L. Recalde, and M. Silva. On the computational power of timed differentiable Petri

nets. In E. Asarin and P. Bouyer, editors, Formal Modeling and Analysis of Timed Systems, 4th Int.

Conf. FORMATS 2006, volume 4202 of LNCS, pages 230–244, Paris, 2006. Springer. [cited at p. 1, 20,

141]

[38] S. Haddad, L. Recalde, and M. Silva. On the computational power of timed differentiable Petri

nets. Technical Report RR-06-05, Universidad de Zaragoza, Zaragoza, Spain, 2006. [cited at p. 32]

[39] J. Júlvez. Algebraic Techniques for the Analysis and Control of Continuous Petri nets. PhD thesis,

Universidad de Zaragoza, 2004. [cited at p. 2]

[40] J. Júlvez, E. Jiménez, L. Recalde, and M. Silva. On observability in timed continuous Petri net sys-

tems. In 1st Conf. on Quantitative Evaluation of Systems (QEST) 2004, Twente, The Netherlands,

September 2004. [cited at p. 3, 53, 63, 67]

[41] J. Júlvez, L. Recalde, and M. Silva. On reachability in autonomous continuous Petri net systems.

In W. van der Aalst and E. Best, editors, 24t h International Conference on Application and Theory

of Petri Nets (ICATPN 2003), volume 2679 of Lecture Notes in Computer Science, pages 221–240.

Springer, Eindhoven, The Netherlands, June 2003. [cited at p. 13, 14, 16]

http://www.diee.unica.it/~giua/PAPERS/CONF/05cdc-ecc_a_up.pdf


146

[42] J. Júlvez, L. Recalde, and M. Silva. Steady-state performance evaluation of continuous mono-T-

semiflow Petri nets. Automatica, 41(4):605–616, 2005. [cited at p. 1, 3, 26, 28, 29, 30, 33, 37, 49, 67, 107,

108, 109, 110, 111]

[43] J. Júlvez, L. Recalde, and M. Silva. Deadlock-freeness analysis of continuous mono-T-semiflow

Petri nets. IEEE Trans. on Automatic Control, 51(9):1472–1481, 2006. [cited at p. 16, 32]

[44] M. Kvasnica, P. Grieder, and M. Baotić. Multi-Parametric Toolbox (MPT), 2004. [cited at p. 128, 129]

[45] D. G. Luenberger. Introduction to Dynamic Systems. Theory, Models, and Applications. John

Wiley & Sons, 1979. [cited at p. 98]

[46] D.G. Luenberger. An introduction to observers. IEEE Transactions on Automatic Control,

16(6):596–602, December 1971. [cited at p. 54, 55]

[47] J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002. [cited at p. 120]

[48] C. Mahulea, A. Giua, L. Recalde, C. Seatzu, and M. Silva. On sampling continuous timed PNs:

reachability "equivalence" under infinite servers semantics. In 2nd IFAC Conf. on Analysis and

Design of Hybrid Systems, pages 37–43, Alghero, Italy, June 2006. [cited at p. 4]

[49] C. Mahulea, A. Giua, L. Recalde, C. Seatzu, and M. Silva. Optimal model predictive control of

timed continuous petri nets. Research report, Dep. Informática e Ingeniería de Sistemas, Uni-

versidad de Zaragoza, María de Luna, 1, 50018 Zaragoza, Spain, 2006. Submitted for publication.

[cited at p. 4]

[50] C. Mahulea, A. Ramírez, L. Recalde, and M. Silva. Steady state control, zero valued poles and to-

ken conservation laws in continuous net systems. In Workshop on Control of Hybrid and Discrete

Event Systems, Miami, USA, June 2005. J.M. Colom, S. Sreenivas and T. Ushio, eds. [cited at p. 4]

[51] C. Mahulea, A. Ramírez, L. Recalde, and M. Silva. Steady state control reference and token con-

servation laws in continuous Petri net systems. IEEE Transactions on Automation Science and

Engineering, 2007. to appear. [cited at p. 4]

[52] C. Mahulea, L. Recalde, and M. Silva. Optimal observability for continuous Petri nets. In 16t h

IFAC World Congress, Prague, Czech Republic, July 2005. [cited at p. 4, 65]

[53] C. Mahulea, L. Recalde, and M. Silva. On performance monotonicity and basic servers semantics

of continuous Petri nets. In WODES’06: 8t h Workshop on Discrete Event Systems, pages 345–351,

Ann Arbor, USA, July 2006. [cited at p. 4]

[54] C. Mahulea, L. Recalde, and M. Silva. On performance monotonicity and basic servers semantics

of continuous Petri nets. 2007. submitted for publication. [cited at p. 4]

[55] D.Q. Mayne and S. Racović. Model predictive control of constrained piecewise affine discrete-

time systems. Int. J. of Robust and Nonlinear Control, 13(3):261–279, 2003. [cited at p. 127]

[56] J. C. Mugarza, H. Camus, J.-C. Gentina, E. Teruel, and M. Silva. Reducing the computational

complexity of scheduling problems in petri nets by means of transformation rules. In Proc. IEEE

Int. Conf. on Systems, Man, and Cybernetics (SMC’98), pages 19–25, October 1998. [cited at p. 44]

[57] T. Murata. State equation, controllability, and maximal matchings of Petri nets. IEEE Trans. on

Automatic Control, 22(3):412–416, 1977. [cited at p. 113]

[58] K. Ogata. Discrete-Time Control Systems, 2nd. ed. Prentice Hall, 1995. [cited at p. 54, 55]



147

[59] C.A. Petri. Kommunikation mit Automaten (Communication with Automata). PhD thesis, Bonn:

Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2, 1962. Second Edition:, New York:

Griffiss Air Force Base, Technical Report RADC-TR-65–377, Vol.1, 1966, Pages: Suppl. 1, English

translation. [cited at p. 1]

[60] J.B. Rawlings and K.R. Muske. The stability of constrained receding-horizon control. IEEE Trans-

action on Automatic Control, 38:1512 – 1516, 1993. [cited at p. 133]

[61] L. Recalde. Structural Methods for the Design and Analysis of Concurrent Systems Modeled with

Place/Transition Nets. PhD thesis, Universidad de Zaragoza, 1998. [cited at p. 2]

[62] L. Recalde, C. Mahulea, and M. Silva. Improving analysis and simulation of continuous Petri

nets. In 2nd IEEE Conference on Automation Science and Engineering, pages 7–12, Shanghai,

China, October 2006. [cited at p. 1, 4]

[63] L. Recalde, E. Teruel, and M. Silva. On linear algebraic techniques for liveness analysis of P/T

systems. Journal of Circuits, Systems, and Computers, 8(1):223–265, 1998. [cited at p. 28]

[64] L. Recalde, E. Teruel, and M. Silva. Autonomous continuous P/T systems. In J. Kleijn S. Donatelli,

editor, Application and Theory of Petri Nets 1999, volume 1639 of Lecture Notes in Computer

Science, pages 107–126. Springer, 1999. [cited at p. 12, 14, 16, 33, 108]

[65] P.O.M. Scokaert and J.B. Rawlings. Constrained linear quadratic regulation. IEEE Transaction on

Automatic Control, 43(8):1163 – 1169, 1998. [cited at p. 129, 134]

[66] M. Silva. Las Redes de Petri: en la Automática y la Informática. AC, 1985. [cited at p. 8, 15]

[67] M. Silva and J.M. Colom. On the structural computation of synchronic invariants in P/T nets.

In Proc. of the 8th European Workshop on Application and Theory of Petri Nets, pages 237–258,

Zaragoza, Spain, 1987. [cited at p. 1]

[68] M. Silva and L. Recalde. Petri nets and integrality relaxations: A view of continuous Petri nets.

IEEE Trans. on Systems, Man, and Cybernetics, 32(4):314–327, 2002. [cited at p. 1, 2, 11, 17, 23]

[69] M. Silva and L. Recalde. On fluidification of Petri net models: from discrete to hybrid and con-

tinuous models. Annual Reviews in Control, 28(2):253–266, 2004. [cited at p. 1, 2, 3, 23, 123]

[70] M. Silva and E. Teruel. A systems theory perspective of discrete event dynamic systems: The

Petri net paradigm. In P. Borne, J. C. Gentina, E. Craye, and S. El Khattabi, editors, Symposium

on Discrete Events and Manufacturing Systems. CESA ’96 IMACS Multiconference, pages 1–12,

Lille, France, July 1996. [cited at p. 42, 43]

[71] M. Silva, E. Teruel, and J. M. Colom. Linear algebraic and linear programming techniques for

the analysis of net systems. In G. Rozenberg and W. Reisig, editors, Lectures in Petri Nets. I:

Basic Models, volume 1491 of Lecture Notes in Computer Science, pages 309–373. Springer, 1998.

[cited at p. 1, 14, 15, 16]

[72] P. K. Sinha. Multivariable Control: An Introduction. Marcel Dekker, 1984. [cited at p. 54, 68, 98]

[73] R. H. Sloan and U. Buy. Reduction rules for time Petri nets. Acta Informatica, 33(7):687–706,

1996. [cited at p. 44]

[74] M. Sznaier and M.J. Damborg. Suboptimal control of linear systems with state and control in-

equality constraints. In Proceedings of the 26st IEEE Conference on Decission and Control (CDC

2001), pages 761–762, December 1987. [cited at p. 129]



148

[75] E. Teruel, J. M. Colom, and M. Silva. Choice-free Petri nets: A model for deterministic concurrent

systems with bulk services and arrivals. IEEE Trans. on Systems, Man, and Cybernetics, 27(1):73–

83, 1997. [cited at p. 28, 39, 108]

[76] E. Teruel and M. Silva. Structure theory of equal conflict systems. Theoretical Computer Science,

153(1-2):271–300, 1996. [cited at p. 28, 33]

[77] P. Tøndel, T.A. Johansen, and A. Bemporad. An efficient algorithm for multi-parametric quadratic

programming and explicit mpc solutions. In Proceedings of the 40st IEEE Conference on Decission

and Control (CDC 2001), Orlando, Florida, USA, December 2001. [cited at p. 128]

[78] Kishor S. Trivedi and Vidyadhar G. Kulkarni. Fspns: Fluid stochastic petri nets. In Application

and Theory of Petri Nets, pages 24–31, 1993. [cited at p. 1]

[79] R. Vidal, A. Chiuso, S. Soatto, and S. Sastry. Observability of linear hybrid systems. In O. Maler

and A. Pnueli, editors, Hybrid Systems: Computation and Control: 6th International Workshop,

HSCC 2003, volume 2623 of Lecture Notes in Computer Science, pages 526–539, Prague, Czech

Republic, 2003. Springer Berlin / Heidelberg. [cited at p. 55]

[80] J. Zhang. Performance study of markov modulated fluid flow models with priority traffic. In

Proc. of the IEEE INFOCOM’93, pages 10–17, 1993. [cited at p. 1]


	Preliminary
	ContPNs: notations, previous work and first results
	Discrete Petri nets and the state explosion problem
	Basic concepts
	Structural concepts
	Liveness and deadlock-freeness
	Petri net subclasses
	State explosion and fluidification

	Untimed Continuous Petri nets
	Definition
	Reachability
	Implicit arcs and places
	Configurations and regions
	Liveness and deadlock-freeness

	(Unforced) Timed Continuous Petri nets
	Finite and infinite server semantics
	Immediate transitions
	Timed implicit arcs
	Steady state performance Bounds
	Mono-T-semiflow reducible systems


	Performance properties and simulation
	Comparison of server semantics
	Monotonicity and fluidification
	Some properties of non-monotonicity
	Algorithms to check monotonicity
	Simulation of immediate transitions
	Model reduction
	Case studies
	Example 1
	Example 2
	Example 3


	Observability of contPN with infinite server semantics
	Observability: basic concepts
	Observability of linear systems
	Observability of hybrid systems

	Observability of unforced timed continuous Petri nets
	Structural observability
	Generic observability
	Minimum cost observability of JF nets
	Problem statement
	Brute force method
	Splitting the net in threads
	Dominance and an improved algorithm


	State estimation of contPN with finite server semantics
	Motivation
	State estimation of untimed contPN
	Relaxing finite server semantics
	State estimation of timed contPN with relaxed finite server semantics
	Going back to finite server semantics

	On controllability and steady state control
	Introduction
	Controllability of linear systems
	Controllability of timed continuous Petri nets: problem statement
	Control of timed contPNs and characterization of steady-states
	Optimal control for steady state
	Approaching dynamic control: on controllability and marking invariance laws
	Definition of controllability
	Uncontrollable zero valued poles and decomposition
	Token conservation laws and controllable zero valued poles
	Token conservation laws and controllable non zero valued poles

	Case study

	Optimal control of continuous Petri nets
	Introduction
	Constrained linear representation of controlled timed continuous Petri nets
	On sampled (or discrete-time) continuous Petri nets models
	Reachability “equivalence” between sampled and continuous models
	Optimal transient control via MPC
	Explicit Model Predictive Control
	Numerical examples
	First example
	Second example

	Properties of the closed-loop system
	Feasibility
	Asymptotic stability

	Conclusions

	Concluding remarks
	Bibliography

