

ROLE OF ANIMATION IN TEACHWARE FOR CONTROL ENGINEERING –
 A CASE STUDY

Cristian Mahulea, Mihaela-Hanako Matcovschi, Octavian Pastravanu
Department of Automatic Control and Industrial Informatics

Technical University “Gh. Asachi” of Iasi, Blvd. Mangeron 53A, 6600 Iasi, Romania
Phone/Fax: +40-232-230.751, E-Mail: {cmahulea, mhanako, opastrav}@ac.tuiasi.ro

Abstract: The paper identifies three main objectives
supported by animation in developing teachware for
Control Engineering: complementary information for
simulation experiments, substitute for expensive
hardware and demos for help on-line. Brief details are
given with respect to the software technologies that
allow approaching each of the three objectives. Concrete
aspects pertaining to these technologies are illustrated by
means of the numerous facilities available in the recently
created Petri Net Toolbox for MATLAB.

Keywords: animation, online help, Petri nets, MATLAB
software.

1. INTRODUCTION

In conventional Control Engineering education, the
combination of theoretical knowledge and practical
experience is ensured through lectures and exercises
together with highly resource-demanding laboratory
courses (Schmid, 2003). The new student-oriented type
of teaching aims to develop critical thinking skills, the
students being challenged to teach themselves by
examples. This trend represents a difficult task, not only
for the students, but also for those who educate. New
media technology can help teachers to overcome the
complexity of their new mission. Within this context, the
techniques based on animation are frequently
encountered because the recent digital equipment allows
running such applications that support the intuitive
understanding in the following directions: (i) arid
numerical simulations based on abstract mathematical
models, (ii) interactive demonstrations of the usage of
expensive laboratory hardware or (iii) of specific
software tools.

Hence, the organization of the first part of this paper
follows the three directions (i)–(iii). Section 2 points out the
importance of animation as a companion for simulation
experiments. The possible employment of animation as a
substitute for costly equipment in the practical training is
discussed in Section 3. Some key points on the role of
animation in the demonstration of the exploitation of
scientific software by inexperienced users are delivered
in Section 4. The second part of the paper is devoted to a
case-study (Section 5) that illustrates the implementation
of the three directions (i)–(iii) for the concrete situation

of the software Petri Net Toolbox developed by the
authors to run under MATLAB. Some concluding
remarks are formulated in Section 6.

2. SIMULATION EXPERIMENTS ACCOMPANIED

BY ANIMATION

The intuitive support provided by simulation in
understanding the essence of different types of
dynamics, can be enriched through adequate animation.
Thus, the time-evolution of the variables used by the
mathematical model (which, eventually, remain abstract
entities) get concrete meaning by their association with
the motion of graphical objects. Such objects should be
chosen to express the physical reality and the animation
should be carefully synchronized with the progress of the
numerical simulation.

Nowadays, the scientific computation offer includes
many environments ensuring highly accurate simulation
experiments. However, the development of animation
ingredients is far from a simple task when the basic tools
are missing. Therefore, the initiative of creating
animated companions for the pure numerical simulation
should take into account the availability of such built-in
facilities in the used software. In this respect, the
exploitation of MATLAB (The MathWorks Inc. 2003),
LabView (National Instruments Corporation 2003),
Dymola (Dinasim AB 2003) are typical examples
because, besides numerous computational procedures, a
set of basic functions allows the user to construct
demonstrative animations.

For instance, in MATLAB the kernel of the software
allows the simultaneous update of the numerical and the
imaging contexts, such that various types of animation
applications can be programmed whose degrees of
complexity are depending on the purposes of the
instructional tasks. Consequently, a wide range of
applications can be envisaged as training aids for
studying phenomena in different fields of engineering,
starting from the simple illustration of the basic laws in
physics and ending with the operation of sophisticatedly
automated systems.

In the direction discussed by this section, we can say that
LabVIEW had a revolutionary role due to the flexibility

of the programming language, disposing of the
complexity of traditional development tools. Rather than
focusing on the numerical interpretation of the data
provided by simulation, students can concentrate on the
global approach of the simulation experiments whose
results are delivered in a meaningful form by the easy to
handle visualizing instruments.

Another way to address simulation is offered by Dymola
which ensures the automatic manipulation of formulas
describing dynamics from many engineering domains.
The numerous ready to use model libraries, which can be
exploited by graphical model composition, combined
with 3-D animation facilities, permit much faster
simulation than the traditional usage of equations and
block diagrams.

3. ANIMATION AS A SUBSTITUTE FOR

EXPENSIVE HARDWARE

For laboratory classes, the experiments performed on
costly equipment can be replaced by relevant animation
illustrating the main features of the real life operation.
Although such a solution cannot involve students in the
physical handling of the studied systems, the animated
framework brings noticeable information that, otherwise,
could be revealed only by mental experiments. An
increasing class of beneficiaries comprises persons
enrolled in distance learning programs, by bringing them
closer to the practical aspects of the laboratory training.

The complexity of the animation depends on the
envisaged purpose of training and contributes to the
correct intuition of phenomena accordingly. This type of
training can be exploited even in an interactive manner,
aiming to develop certain skills in using some
equipment, not just to simply illustrate its functioning.
Basically, the implementation should result in a
simulator of the hardware that can be reproduced in
multiple copies and distributed to a large number of
beneficiaries. In these cases, the simulation mechanism
remains concealed during the regular training, the
emphasis being placed on the usage of the simulated
equipment.

A classical example of software that allows creating such
a complex simulator and may be regarded as a standard
for the training in Control Engineering is LabView. As a
software that pushed the virtual instrumentation forward,
LabVIEW offers a powerful graphical development
environment specialized for signal acquisition,
measurement analysis, and data presentation. The way
students learn can be substantially improved since the
laboratory classes are no longer focused on building the
simulation experiments, but on running them and
interpreting their results by means of dedicated tools for
data visualization, management and analysis.

The behavior exhibited by large, complex multi-domain
models can be explored in Dymola, whose new
modeling methodology based on object orientation
supports hierarchical structuring and enables the usage
of drag and drop techniques for handling components

from libraries. These components are defined as model
classes with inheritance properties that facilitate the
reuse of modeling knowledge. Connections between
modules are conveniently described by defining
connectors that model physical couplings. In the case of
mechanical systems, predefined parameters can be set
for their visual appearance.

4. ANIMATED DEMOS FOR HELP ON-LINE

Modern software packages, in addition to detailed
manuals, ensure help on-line for the current exploitation.
Less experienced users can find an extremely valuable
guidance in the animated demos meant to illustrate the
main capabilities of the software. Such demos are of a
crucial importance for exhibiting the correct sequencing
of commands accessible via graphical user interfaces
(GUIs). In particular, for scientific software the
demonstrations should be able to cover different types of
problems, significant for the area addressed by the
package, pointing up both the organization of the input
data and the interpretation of the results. Generally
speaking, the usage of animation by demonstrative
programs is approached as the design of short movies,
whose implementation requires specialized tools.

Frequent solutions to build movies are technically
assisted by the various Macromedia products
(Macromedia 2003), which concomitantly ensure the
Internet access. For instance, Macromedia Flash
(including ActionScript as a powerful scripting
language) allows the development of web applications
for detailing the usage of complex software. The purpose
of such a guide is to assist the training step-by-step,
starting from the primary formulation of an engineering
problem, followed by the construction of a mathematical
model and ending with the adequate manipulation of the
software.

ActionScript provides elements, such as actions,
operators, and objects that are put together in scripts.
The movie is set up so that events trigger these scripts,
for example, the user can stop/play the movie, switch
between different types of simulation. In addition,
ActionScript includes built-in objects and functions,
allows the creation of objects and functions and permits
the movies to run as long as it is not stopped by the user
(every event is implemented as a function and every
resource is modeled by an object). The other feature used
in the elaboration of the movies is the opportunity to
import videos and images from external files, extremely
useful in this particular case because the functionality of
real systems requires high quality captures.

Unlike the traditional help facilities, where a primary
problem is described just by a simple text (with static
figures), the applications implemented in Flash can give
multiple visual details on the dynamical aspects. As
regards the manipulation of the software, once the model
is available, the utilization of the software is emulated by
a movie (showing how to handle the windows, the
dialogue boxes, the menu options etc.). Moreover, the
physical interpretation of the results can also be

illustrated, giving the students a deeper insight into the
meaning of the solved problem.

Generally speaking, the Macromedia technology permits
to create: (1) frame-by-frame animation (in which is
possible to make a separate image for each frame) and
(2) tweened animation (creating frames that link together
keyframes). Tweened animation is an effective way to
create movement and changes over time while
minimizing file size. Therefore, another advantage
offered by the usage of Macromedia Flash in creating
animated demos is represented the size of the resulting
movie (smaller than the one of conventional movies)
which makes such demos more attractive to download
through the Internet and, consequently, very appropriate
for distance learning.

5. ANIMATION FACILITIES IMPLEMENTED

IN PN TOOLBOX 2.0 – A CASE STUDY

The Petri Net Toolbox (PN Toolbox) for MATLAB
(Mahulea 2002; Matcovschi et al. 2003a and 2003b;
Matcovschi and Pastravanu 2002) was designed and
implemented at the Department of Automatic Control
and Industrial Informatics of the Technical University of
Iasi. Its development was motivated by the fact that little
has been done towards developing adequate MATLAB
instruments for dealing with PNs.

As an educational aid, this software is suitable for
applications illustrating the theoretical concepts provided
by courses on PNs with different levels of difficulty, e.g.
(Pastravanu 1997; Pastravanu et al. 2002), allowing
relevant experiments for studying the event-driven
dynamics of physical systems encountered in many
technical fields (such as flexible manufacturing systems
(FMSs), computer systems, communication protocols,
power plants, power electronics).

An easy to exploit GUI (The MathWorks 2001a) gives
the user the possibility to draw PNs in a natural fashion,
to store, retrieve and resize (by Zoom-In and Zoom-Out
features) such drawings. Moreover, it permits the
simulation, analysis and design of the PNs, by exploiting
all the computational resources of the environment.

After drawing a PN model, the user can: ● visualize the
Incidence Matrix, which is automatically built from the
net topology; ● explore the Behavioral Properties (such
as liveness, boundedness, reversibility etc.) by
consulting the Coverability Tree, which is automatically
built from the net topology and initial marking; ●
explore the Structural Properties (such as structural
boundedness, repetitiveness, conservativeness and
consistency); ● calculate P-Invariants and T-Invariants;
● run a Simulation experiment; ● display current results
of the simulation using the Scope and Diary facilities; ●
evaluate the global Performance Indices (such as
average marking of places, average firing delay of
transitions, etc.); ● perform a Max-Plus Analysis
(restricted to event-graphs); ● Design a configuration
with suitable dynamics (via automated iterative
simulations).

5.1. Animated Support for Petri Net Dynamics

The simulation mechanism is based on the rule for
enabling and firing of transitions specific to the type of
the current PN model. In the simulation modes Step and
Run Slow, numerical computation is accompanied by
animation whose role consists in feeding the user with
visual information (current token contents of the places,
currently firing transition), complementary to the
numerical data available at the end of a simulation
experiment. The animation technique is based on the
general philosophy of the object-oriented graphics
system, called Handle Graphics (The MathWorks Inc.
2001b). The nodes and arcs of a model are uniquely
identified as MATLAB objects whose properties define
(i) the characteristics of the PN, (ii) the graphical
representation of the objects in the special area reserved
for model drawing and (iii) the simulation state. The
animation effects are obtained by automatically calling
the set function for the properties referring to the
appropriate instance of an object.

MATLAB benefits of an easy-to-use interface to the
Java programming language that facilitates the access to
the huge collection of functions provided by its built-in
class libraries. MATLAB’s Java interface enables to
create and manipulate Java components from the
MATLAB command line and integrate them into the
MATLAB environment. In this sense, we consider figure
1 as very relevant as presenting a screen capture of a
Java applet, which shows the values of global
performance indices obtained subsequent to the
simulation of a model in the PN Toolbox.

5.2. Movies to Illustrate the Functioning of Real

Systems

Most of the real-life systems whose functioning is driven
by events present a certain complexity which cannot be
reproduced by small scale laboratory set-ups. That is
why the PN Toolbox (Mahulea et al. 2003) was meant to
illustrate by short movies typical behaviors such as
sequential/parallel sharing of resources, routing policies,
services in queueing networks. Their implementation
combines, by means of the ActionScript Toolbox for
Macromedia Flash (Macromedia 2003), various
techniques such as 2D and 3D graphics developed in
Adobe Photoshop 7 and Maya 4.5, respectively. Each
movie shows the physical motion of a real-life system
synchronized with the token dynamics in the associated
PN model.

The four movies that illustrate the usage of the PN
Toolbox in the simulation, analysis and design of
discrete-event systems are accessible on the web site we
have created for the PN Toolbox (Mahulea et al. 2003).
Movie 1 refers to a computer system with two processors
sharing two disks (in parallel) which is a version of the
“Two Dinning Philosophers” well-known problem
(Dijkstra 1968). Movie 2 refers to a manufacturing
system with two machines and a sequentially shared
robot (Zhou and DiCesare 1993) illustrated by the frame
captured in figure 2. The role of this figure is to detail a

Fig. 1. Screen capture illustrating the animation support for the simulation (image in the background –

right side of the window) and the Java applet for the PN Toolbox.

Fig. 2. Screen capture of a frame in a movie illustrating the functioning of a

 manufacturing system concomitantly with the dynamics of the associated PN model.

pose of the cell resources during the operation and the
corresponding placement of the tokens in the associated
Petri net model. Movie 3 refers to a flow-shop system
with three machines, adapted from (Bacelli et al. 1992).
Movie 4 refers to an open markovian queueing network
(Cassandras 1993)

5.3. Animated Guide for Learning by Examples

The Macromedia technology is also used in the on-line
help of the PN Toolbox (Mahulea et al., 2003) for giving
the beginners a full assistance by animated demos.
Watching these demos, the user learns how to handle the
key problems of discrete event systems within a PN
framework: usage of adequate PN type (untimed, P/T-
timed, stochastic or generalized stochastic) in model
construction, study of behavioral/structural properties,
analysis of max-plus representation, simulation and
interpretation of the results, parameterized design, etc.

To illustrate such aspects, references to the problems
addressed within the contexts of the four movies
mentioned in subsection 5.2 are extremely profitable.
Movie 1 exemplifies the following topics: construction
of an untimed Petri net model; analysis of deadlock (via
the coverability tree); prevention of deadlock through
lookahead feedback (Lewis et al. 1995); access to the
following information about the Petri net model:
incidence matrix, minimal-support P- and T-invariants,
structural properties. The problems illustrated by Movie
2 are: construction of a P-timed Petri net model; analysis
of deadlock (via simulation); prevention of deadlock by
limiting the number of pallets; analysis of time-
dependent performance indices (figure 3); study of a
performance index depending on two design parameters
(figure 4). Movie 3 demonstrates the following issues:
simulation and animation in the Run Slow mode; record
of the simulation results in a log file; computation of the
cycle time; max-plus analysis of a place-timed event
graph: max-plus state-space representation, setting of the
values for the input vectors, max-plus based simulation
and plots of the components for the input, state or output
vectors. In Movie 4 the subsequent themes are
approached: construction of a generalized stochastic
Petri net model; usage of the Scope and Diary facilities;
analysis of time-dependent performance indices.

6. CONCLUSIONS

This work was devoted to the role that animation can
have in complementing the conventional Control
Engineering education by meaningful visual information
resulting from the application of animation in various
contexts of training. Three main directions were
identified as beneficial for such applications and an
extensive case-study reveals the coordinates of
implementation and exploitation in the PN Toolbox for
MATLAB. In the development of this software,
primarily designed for education purposes, the authors
proved a great interest in taking advantage of the deeper
insight created by animation.

7. REFERENCES

Bacelli F., Cohen G., Olsder G.J. and Quadrat J.P.
(1992) Synchronization and Linearity, An Algebra for
Discrete Event Systems, Wiley, New York.
Cassandras C.G. (1993). Discrete Event Systems:
Modeling and Performance Analysis, Irwin.
Dinasim AB (2003), Home Page,
http://www.dynasim.se/.
Djikstra E. W. (1968). Co-operating sequential
processes, in Genyus, F. (ed.) Programming Languages,
New York Academic, pp. 43-112.
Lewis F., Huang H.H., Pastravanu O. and Gurel A.
(1995). Control Systems Design for Flexible
Manufacturing Systems, In: A. Raouf, and M. Ben-Daya
(Eds.), Flexible Manufacturing Systems: Recent
Developments, Elsevier Science, pp. 259-290.
Macromedia Inc. (2003). Home Page,
http://www.macromedia.com.
Mahulea C. (2002). Petri Net Toolbox – A MATLAB
Library for Discrete Event Systems, MS thesis, The
Sheffield University, Department of Automatic Control
& System Engineering, UK.
Mahulea C., Matcovschi M.H. and Pastravanu O.
(2003). Home Page of the Petri Net Toolbox,
http://www.ac.tuiasi.ro/pntool.
Matcovschi M.H., Mahulea C. and Pastravanu O.
(2003a). Petri Net Toolbox for MATLAB, 11th IEEE
Mediterranean Conference on Control and Automation
MED'03, Rhodes, Greece.
Matcovschi M.H., Mahulea C. and Pastravanu O.
(2003b). Modeling, Simulation and Analysis of Petri
Nets in MATLAB, 14th International Conference on
Control Systems and Computer Science - CSCS14,
Bucharest, Romania.
Matcovschi M.H. and Pastravanu O. (2002).
Developing Practicals for a Course on Queueing
Systems Delivered to Control Engineering Students, 5th
International Conference on Technical Informatics
CONTI'2002, Timişoara, Romania.
National Instruments Corporation (2003), Home
Page, http://www.ni.com/labview.
Pastravanu O. (1997). Discrete Event Systems.
Qualitative techniques in a Petri Net Framework (in
Romanian), Ed. Matrix Rom.
Pastravanu O., Matcovschi M.H. and Mahulea C.
(2002). Applications of Petri Nets in Studying Discrete
Event Systems (in Romanian), Ed. Gh. Asachi.
Schmid C. (2003). Virtual Action Group on Teachware
for CACSD, http://www.esr.ruhr-uni-bochum.de/cacsd/
teachware.
The MathWorks Inc. (2001a). Building GUIs with
MATLAB. Natick, Massachusetts.
The MathWorks Inc. (2001b). Using MATLAB
Graphics. Natick, Massachusetts.
The MathWorks Inc. (2003). Developers of MATLAB
and Simulink for Technical Computing.
http://www.mathworks.com.
Zhou M.C. and DiCesare F. (1993). Petri Net Synthesis
for Discrete Event Control of Manufacturing Systems,
Kluwer, Boston.

Fig. 3. Screen capture of a frame in an animated demo presenting the table of the

performance indices and advising on their interpretation.

Fig. 4. Screen capture of a frame in an animated demo introducing

the usage of parameterized design.

